当前位置:文档之家› 磁分离水处理技术的影响

磁分离水处理技术的影响

磁分离水处理技术的影响
磁分离水处理技术的影响

磁分离水处理技术的影响

1.带来了工艺变革

在冶金行业浊环水中,主要的污染物是油和导磁性悬浮物。磁分离水体净化技术应用之前,我国基本应用传统的“三段式”(即一重力沉淀、二平流沉淀、三过滤)处理工艺进行浊环水净化处理。传统工艺处理钢铁浊环水占地面积大、流程长、处理效率低,限制了生产企业的生产效率,并可能因出水水质而影响产品品质。

传统冶金浊环水处理工艺流程

磁分离水体净化相比传统技术,其取代了二次沉淀池、过滤器、污泥浓缩池、污泥脱水系统等处理环节,对污染水体实现主动吸附打捞,大幅缩短工艺流程及反应时间,节省占地面积和投资,为冶金浊环水处理带来了工艺变革。

磁分离水体净化技术的工艺流程

2.磁分离水体净化技术相较其他工艺技术的优势

以每小时1,000 立方米处理量为例,磁分离水体净化技术与其它冶金浊环水处理工艺技术对比情况如下:

对比项目传统沉淀工艺化学除油工艺磁分离处理工艺分离原理重力分离重力分离强磁力分离

工艺复杂性工艺流程长工艺流程短工艺流程短

占地面积1,000~3,000m2(包括

二沉池、过滤器、反冲

洗装置、板框压滤间

等,占地大。)500~800m2(包括加药

间、油泥池、板框压滤

间,占地面积较小。)

300~400m2(包括磁盘

分离机、管道过滤器、

磁力压榨脱水等,占地

少。)

出水水质SS≤50mg/L,油≤

5mg/L 水质波动大时

不稳定SS≤30mg/L,油≤

5mg/L 水质波动大时不

稳定

SS≤20mg/L,油≤5mg/L

基本不受入水水质影响

泥渣处理有反洗,渣量大,含水

率高排渣量大,含水率高,

含油泥多,后续脱水困

无反洗,渣量小,渣处理

容易。

投资费用综合总投资高综合投资较高综合总投资节约10%

以上

运行费用运行费用较高药剂用量较大,运行费

用较高药剂用量节省三分之一,运行费用低。

磁分离处理法

水工程与工艺新技术期末小论文 学生姓名: _ 李静 学号: 6002208016 专业班级:给排水081班 时间: 2011-12-6

磁分离技术简析 班级:给排水081班 姓名:李静 学号:6002208016 文章摘要: 本文章主要研究了磁分离技术在水处理中的应用以及其现阶段存在的问题。除此之外,本文还对磁分离技术的基本原理、优点、分类等做了简单介绍。对于磁分离技术的应用及存在问题作了简单的分析和探讨,以及对磁分离技术的应用前景做了简单概括和总结。还对磁分离技术的优缺点做了简略剖析等。 文章关键词: 磁分离技术 水处理 分离原理 外加磁场 应用前景 正文 (一)磁分离处理法 磁分离法又称电磁吸附法,是近年来发展的一种水处理技术。利用现代磁化技术能实现磁性微粒粗粒化,弱磁性颗粒强磁化,非磁性颗粒磁性化。磁分离作为物理处理技术在水处理中获得了许多成功应用,显示出许多优点。该法不仅能直接处理水体中各种微粒的弱磁性、顺磁性物质,而且还能分离不具磁性的细菌、病毒、藻类悬浮物、有机和无机化合物、油脂类、重金属类等,应用范围非常广。如磁分离法已用于含油废水治理,包括磁性粉末法,被覆油膜磁粉法,磁流体法,油层悬浮磁粉过滤法,43O Fe 超微粒子破乳净化法等除油技术。 磁分离的基本原理就是通过外加磁场产生磁力,把废水中具有磁性的悬浮颗粒吸出,使之与废水分离,达到去除或回收的目的。对于水中非磁性或弱磁性的颗粒,利用接种技术可使他们具有磁性。目前具有代表性的磁分离设备是圆盘磁分离器和高梯度磁过滤器。 (二)磁分离技术的分类 磁分离按装置的原理可分为磁凝聚分离、高梯度磁分离和磁盘分离法,其中磁盘分离法中按使用磁铁类型的不同可分为铁氧体磁盘法和稀土磁盘法。 按磁场的产生方法可分为永磁分离和电磁分离(含超导电磁分离)。 按工作方式可分为连续式磁分离方法和间歇式磁分离法。 按颗粒的去除方式可分为磁处理技术的优点磁凝聚沉降分离和磁力吸着分离。 (三)磁分离技术的磁力分离原理 物质在外磁场的作用下会被磁化而产生附加磁场,其磁场强度'H 与磁场强度H 的向量和即为磁介质内部的磁场强度或称磁感应强度,'H 的方向与H 相

磁分离技术在水处理中的运用

磁分离技术在水处理中的运用 【摘要】磁分离技术具有分离速度快、效率高等特点,它已经应用于食品废水处理、含油废水处理、城市污水处理、印染废水处理等工业废水的处理,随着发展进步,该技术不断拓宽应用领域,如固体废弃物矿渣、粉煤灰。 【关键词】磁分离技术;高梯度磁分离技术;水处理 Magnetic separation technology in water treatment Li Sa-li (Taiyuan University of Technology Shanxi taiyuan 030024) 【Abstract】Magnetic separation technology has higher separate speed and efficiency. It is widely used in the food waste water treatment,oily wastewater treatment,the urban sewage treatment,printing and dyeing wastewater treatment of industrial waste water treatment.Along with the development of society,this technology is widening its fields in application,such as solid waste slag and fly ash. 【Key words】Magnetic separation technology;High gradient magnetic separation technology;Water treatment 1.磁分离技术简介 磁分离技术是借助磁场力的作用,对磁性不同的物质进行分离的一种物理分离方法。 废水中的污染物种类很多,对于具有较强磁性的污染物,可直接用高梯度磁分离技术分离;对于磁性较弱的污染物可先投加磁种(如铁粉、磁铁矿、赤铁矿微粒等)和混凝剂,使磁种与污染物结合,然后用高梯度磁分离技术除去。磁分离的物理作用基本原理就是通过外加磁场产生磁力,把废水中具有磁性的悬浮颗粒吸出,使之与废水分离,达到去除或回收的目的。 2.磁分离技术的研究进展 磁分离技术用于水处理工程,它又可以称得上是一门新兴技术。从上世纪60年代开始,苏联用磁凝聚法处理钢厂除尘废水,60年代末,美国MIT教授科姆发明高梯度磁过滤器,70年代美国应用磁絮凝法和高梯度磁分离法处理钢铁、食品、化工、造纸等废水。1974年瑞典开始用磁盘法处理轧钢废水,随后的75年日本开发盘式“两秒分离机”。我国从70年代中期到80年代初,将磁聚凝法、磁盘法、高梯度磁分离法用于炼钢、轧钢废水的处理。近年来,磁分离技术在电镀废水、含酚废水、湖泊水、食品发酵废水、市政废水、钢铁废水、厨房污水、

磁分离净化技术在矿井污水处理中的应用研究

磁分离净化技术在矿井污水处理中的应用研究 发表时间:2020-04-09T02:56:05.983Z 来源:《防护工程》2020年1期作者:李耀耀[导读] 能否通过合理的技术应用来净化煤矿矿井水,在很大程度上决定了煤矿企业的资源利用率及其节能减排情况。 安徽途晟规划设计咨询有限公司安徽合肥 230051摘要:能否通过合理的技术应用来净化煤矿矿井水,在很大程度上决定了煤矿企业的资源利用率及其节能减排情况。很多矿井为了更加合理充分的利用资源,通过建设污水处理站的形式对矿井污水进行综合的净化处理,其中应用了磁分离水体净化技术。。大量实践结果 表明,将该技术运用在水体净化过程中,能够有效实现泥水分离,以较低的运行成本节省更多的能源,不仅实现了对矿区污染的控制,同时煤泥经处理后可流通入市,产生二次经济效益。鉴于此,本文围绕磁分离净化技术在矿井污水处理中的应用展开探究。首先简述了超磁分离净化技术工艺流程、水质及排放指标,然后介绍了在矿井污水处理中磁分离净化技术应用的主要构筑物及工艺系统,最后分析了磁分离净化技术在矿井污水处理中的应用效果。 关键词:煤矿污水;煤泥资源;磁分离;净化节能 1工艺简述 1.1工艺流程 由巷道沟渠对矿井污水进行引流和收集,最终集中于近水渠,在其中布置机械格栅来进行初次过滤,接下来引入预沉池中。过一段时间的沉积,水中比较大的颗粒会沉淀到底部形成污泥,由下方的潜水渣浆泵将其倒入泥池中,在污泥泵的带动下转送至压滤机,经过脱水后再进入下一阶段处理。超磁分离净化技术具体的工艺流程显示在图1中。 图1 超磁分离净化技术工艺流程图 超磁分离混凝系统接收来自预沉处理后的污水,该系统中含有大量的混凝剂和磁种,其中混凝剂主要是PAM和PAC,在三分钟到六分钟的时间内悬浮在水面上的物质会在磁种的吸引下团聚形成微絮团。经过此过程后水再次进入超磁分离机,在这里进行固液分离的净化过程。之后经检测达到相关标准后实现清水入仓,在排水泵的加压提升下运送至水面进行综合运用。 经过超磁分离机的分离作用后,磁分离磁鼓接收分离后的煤泥,同时开始高速分散,非磁性悬浮物和磁性悬浮物彼此分开,磁鼓将磁种吸附出来在泵的带动下再次回流至混凝投加系统。而非磁性悬浮物仅有污泥中转池和之前产生的预沉池污泥共同进入压滤机脱水阶段,完成后运送至地面。 1.2水质及排放指标 岩粉和煤粉是矿井污水中的主要杂质,除此之外还包含一定含量的可溶无机盐,相对来说有机污染物含量较小。对于净水结果,相关报告和调研的具体标准:对于进水,其PH值在6-7之间,同时SS不大于1000毫克每升;而对于出水,其水质应符合《煤炭工业污染物排放标准》 GB20426—2006,同时PH值在6-9之间,SS不大于30毫克每升。 2主要构筑物及工艺系统 2.1主要构筑物 格栅渠的主要作用在于过滤掉体积较大的机械杂质,由钢筋混凝土构成,这对于降低后续设备运行的安全隐患具有重要意义。预沉池的总容积为160立方米,同样由钢筋混凝土构成,其作用是过滤掉体积比较大的颗粒杂质,为后续处理进程减轻负荷。污泥在潜水渣浆泵的推动下流至污泥池。微磁絮凝反应发生在混凝反应池中,其中的各种物质在反应之后共同形成微絮凝体,这使得后续的吸附分离更为简便。快速混合池,一级反应池和二级反应池的有效溶剂分别是4.48立方米,18.75立方米和18.75立方米,三者均有钢筋混凝土构成。经过磁鼓的分离后,其中的污泥成分先在中转池短暂停留,再在渣浆泵的压力作用下流通到污泥池。中转池同样由钢筋混凝土构成,有效容积是10立方米。预沉池储存的污泥和分离后的污泥最终都被汇集到污泥池,该池的有效容积是37.5立方米,由钢筋混凝土构成。 2.2主要工艺系统

超磁分离技术设计要点

一,工程说明 超磁分离技术设计要点 一、超磁分离技术的特点 超磁分离水体净化技术是一项新颖的水处理技术,其成套设备与普通的沉淀和过滤相比,具有无反冲洗,分离悬浮物效率高,工艺流程短,占地少,投资省,运行费用低等特点。针对城市污水、工业废水、矿井水、油田采出水、河道水、景观水等不同种类的废水,长期的净化试验和工程实例表明该技术具有以下显著特点: 1、处理时间短、速度快、处理量大,磁盘瞬间产生大于重力640 倍的磁力,处理效率高,流程短,总的处理时间大约3 min,可多台并联运行,满足大流量处理要求; 2、占地少,出水稳定,占地面积约为传统絮凝沉淀的1 /8,混凝时间1min,絮凝时间2min,过水平均流速320m/h。(占地面积:600m3/d,2.4×4.0;3000 m3/d,9.6×6.0;10000 m3/d,磁盘机外形尺寸6.0×3.0×1.9,磁分离磁鼓外形尺寸,3.3×2.0×1.45) 3、排泥浓度高,磁盘直接强磁吸附污泥,连续打捞提升出水面,通过卸渣系统得到高浓度污泥; 4、运行费用低,采用微磁絮凝技术,投加药量少,且磁种循环利用率高,运行费用低; 5、日常维护方便,设备无需反洗,自动化程度高,运行稳定可靠。 二、超磁分离技术的原理 直接磁选技术在分离污水(如钢厂废水)中的铁磁性杂质方面效果明显,但对于造纸、化工、制药、食品、石油等工业废水,由于废水中的有毒有害

物质大多为酸碱离子、有机物、油等,主要是非磁性或弱磁性物质,因此采用直接磁分离方法很难将这些有害物质有效分离,必须通过预先加入磁种的方法,使本身无磁性的有害物质带上磁性,然后在高梯度磁场中实现磁分离。磁种—絮凝分选法主要包括磁种絮凝、磁分离和磁种回收三大主要步骤。具体方法是在一定的化学条件下,向污水中添加专用磁种和絮凝剂,或铁磁性絮凝剂(如表面处理过的三价铁盐),水中有害物质通过氢键、范德瓦尔斯力或静电力与经表面官能团修饰的磁种絮接,从而使非磁性物质具有磁性或使弱磁性物质的磁性增强,与污染物结合的磁絮凝剂可以被高梯度磁滤网或磁盘捕获,从而实现污染物的去除。磁分离设备分离出的废渣(磁种和悬浮物的混合体)经输送装臵进入高速搅拌剪切环节,实现磁种和悬浮物的分离,再经由磁鼓回收装臵,就可将其中的磁种分选出来,磁种回收率可达99.4 %以上。回收的磁种可循环利用,既节约了生产成本,又减少了环境负荷。 图:超磁分离水体净化技术工艺流程

磁分离技术在水处理工程中的应用工艺及发展趋势[工程类精品文档]

磁分离技术在水处理工程中的应用工艺及发展趋势[工程类精品文档] 本文内容极具参考价值,如若有用,请打赏支持,谢谢! 【学员问题】磁分离技术在水处理工程中的应用工艺及发展趋势? 【解答】摘要:本文介绍了磁分离技术的主要应用工艺,综述了各种工艺在处理各种废水时的应用现状。磁分离技术具有分离效率高、分离速度快、占地面积小等优点。磁分离技术与絮凝技术、磁种洗选回收技术、生化技术的结合,是目前污水处理中磁分离技术的发展方向,它大大扩展了磁分离技术的处理对象和应用领域。 关键词:高梯度磁过滤器稀土磁盘CoMagTM工艺BioMagTM工艺MagBRTM工艺ReMagdiscTM工艺磁性生物载体 一、引言 磁分离技术是借助磁场力的作用,对磁性不同的物质进行分离的一种物理分离方法。磁分离技术可以说是一门比较古老、较成熟的技术,最早应用于选矿和瓷土工业。1845年,美国发表了工业磁选机的专利。磁分离技术作为有磁性差异的两种及多种物质的选别手段,在矿石的精选、煤的脱硫、玻璃及水泥等?;?;料的除铁、高岭土的提纯、生物工程中的细胞分离、石化行业的催化剂回收等领域得到了广泛的应用[1-6]. 磁分离技术用于水处理工程,它又可以称得上是一门新兴技术。从上世纪60年代开始,苏联用磁凝聚法处理钢厂除尘废水,60年代末,美国MIT教授科姆发明高梯度磁过滤器,70年代美国应用磁絮凝法和高梯度磁分离法处理钢铁、食品、化工、造

纸等废水。1974年瑞典开始用磁盘法处理轧钢废水,随后的75年日本开发盘式两秒分离机。我国从70年代中期到80年代初,将磁聚凝法、磁盘法、高梯度磁分离法用于炼钢、轧钢废水的处理。近年来,磁分离技术在电镀废水、含酚废水、湖泊水、食品发酵废水、市政废水、钢铁废水、厨房污水、屠宰废水、石油采出水等处理方面都取得了一定的研究成果,有的已经在实际废水处理中得到了很好的应用。本文主要介绍水处理工程中磁分离技术的应用工艺。 二、磁分离技术在水处理中的应用与研究情况 一项新技术、一种新设备的研发成功,必将带来大量的应用研究成果。同时,人们在设备的分离净化机理、如何提高设备的分离效率等方面也开展了大量的研究工作。对水处理工程而言,由于磁分离技术仅仅是一种物理性质的固液分离手段,在实际应用时,很多场合都必须辅以其他相关技术,才能发挥很好的效果。下面,根据磁分离技术的特点,按照应用工艺的划分,对磁分离技术在水处理中的应用研究情况作一介绍。 1、处理富含磁性污染物的污水 无论是开发成功的高梯度磁过滤器还是各种圆盘式磁分离器,在水处理方面,它们的首选应用领域都是钢铁废水的处理。 钢铁热轧/连铸废水、冷轧乳化液等,其污染物98%以上都是强磁性物质,另外还含有部分油类和少量非磁性物质,非常适合用磁分离的方式净化。其工艺简单,占地面积小,处理效果好。图1为一种典型含磁性污染物废水处理工艺流程。 1977年,第一台工业性高梯度磁分离器在日本千叶川崎製鉄(株)投入使用,是HGMS 在废水处理中的成功应用例子。处理对象是真空排气过程中的洗涤废水,SS的去除率达到80%,洗涤废水中的固体颗粒主要成分是氧化铁和氧化锰,粒径小于100μm,

磁分离技术与应用#(精选.)

分离工程期末论文 磁分离技术与应用Magnetic separation technology and application 学院:化学工程学院 专业班级:化学工程与工艺化工081 学生姓名:樊波学号:050811101 指导教师:戴卫东(副教授) 2011年6月

磁分离技术 1 引言 磁化技术是将物质进行磁场处理,并导致物质的宏观性质发生某些变化,从而实现某种工程或工艺目的【1】。液态物质磁场处理技术的研究工作起始于60年代,近半个世纪来获得飞速发展,给科技进步和社会经济的发展注入了新的活力。 随着强磁场、高梯度磁分离技术的问世,磁分离技术的应用已经从分离强磁性大颗粒到去除弱磁性及反磁性的细小颗粒、从最初的矿物分选、煤脱硫发展到工业水处理、从磁性与非磁性元素的分离发展到抗磁性流体均相混合物组分的分离。 2 正文 2.1 磁分离技术研究历史 采用超导磁体分离矿石、煤、高岭土等固体物质中磁性杂质在国内外已得到广泛应用,但用于废水分离净化尚少涉及。主要原因是对于废水中的有机、无机污染物,由于这些污染物本身没有磁性,靠磁场产生的磁吸引力无法分离。日本大阪大学Nshijima研究组最早开始超导磁分离污水处理研究,并建立了示范装置,用于分离造纸厂污水,分离后污水COD(化学需氧值)可由起始的110mg/L,降到25mg/L,去除率近80%。他们采用的是预先在污水中添加Fe3O4"磁种子"颗粒和聚氯化铝絮凝剂,絮凝剂将污水中有害物质和Fe3O4磁性颗粒一起絮凝,这样通过超导磁体吸引分离。尽管分离效果很好,但由于还需加入有机絮凝剂,没有完全摆脱因有机絮凝剂的加入带来的二次污染,此外超导磁体冷却采用的是液氦浸泡冷却,对于我国,氦资源贫乏,这将导致大规模应用推广的限制。 而李来凤的研究却克服了以上问题,采用等离子有机覆膜技术在Fe3O4磁性颗粒表面生长带活性基团的有机薄膜,这层纳米厚度的薄膜可以有效地捕捉污水中的有机物、无机离子,代替了有机絮凝剂的加入,而且由于有机膜与Fe3O4有很强的结合力,使得这种新型复合"磁种子"材料可以重复使用,较单纯的Fe3O4磁种子材料有明显优势【2】。因此开展新型、高效、低成本超导磁分离工业废水处理技术的研究对我国节能减排具有重要意义,是未来极具潜在应用价值的技术。 2.2 磁分离技术的现状 从1993年开始,洛阳石化总厂、洛阳石化工程公司炼制所和中南工业大学合作致力于FCC废催化剂磁分离技术的开发,到1995年底,在洛阳石化总厂建

磁分离技术在重金属废水处理中的应用及前景

Water Pollution and Treatment 水污染及处理, 2014, 2, 40-45 Published Online October 2014 in Hans. https://www.doczj.com/doc/bf1718338.html,/journal/wpt https://www.doczj.com/doc/bf1718338.html,/10.12677/wpt.2014.24007 Application and Prospect of Magnetic Separation Technology in the Treatment of Heavy Metal Wastewater Luyuan Li1,2, Yang Chen2*, Lianqin Yin1, Liyuan Liu2, Baojun Jia2, Qinzhong Feng2, Xiaoxia Wu1,2 1North China Electric Power University, Baoding 2Institute of High Energy Physics, Chinese Academy of Science, Beijing Email: *chenyang.hky@https://www.doczj.com/doc/bf1718338.html, Received: Jul. 26th, 2014; revised: Aug. 25th, 2014; accepted: Sep. 3rd, 2014 Copyright ? 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/bf1718338.html,/licenses/by/4.0/ Abstract With the development of magnetic separation technology, the technology has extended from the traditional dressing to the field of waste gas, waste residue, waste water treatment and other en-vironmental protection. As a new water treatment technology, high gradient magnetic separation (HGMS) technology has been widely applied in the separation of magnetic material and COD5of organic pollutants in wastewater. Study of superconducting high gradient magnetic separation technology with advantages as high removal efficiency, energy saving and simple operation in the separation of small particle size and nonmagnetic contaminants such as heavy metal ions has be-come a hot research topic. This paper introduces the basic principle of this technology, the re-search results of this technique for the treatment of heavy metal wastewater at home and abroad, and has made the forecast. Keywords Magnetic Separation, Heavy Metal, Water Treatment, Superconducting 磁分离技术在重金属废水处理中的应用及前景 李路远1,2,陈扬2*,尹连庆1,刘俐媛2,贾保军2,冯钦忠2,吴晓霞1,2 *通讯作者。

超磁分离技术设计要点

超磁分离技术设计要点 Final approval draft on November 22, 2020

一,工程说明 超磁分离技术设计要点 一、超磁分离技术的特点 超磁分离水体净化技术是一项新颖的水处理技术,其成套设备与普通的沉淀和过滤相比,具有无反冲洗,分离悬浮物效率高,工艺流程短,占地少,投资省,运行费用低等特点。针对城市污水、工业废水、矿井水、油田采出水、河道水、景观水等不同种类的废水,长期的净化试验和工程实例表明该技术具有以下显着特点: 1、处理时间短、速度快、处理量大,磁盘瞬间产生大于重力 640 倍的磁力,处理效率高,流程短,总的处理时间大约3 min,可多台并联运行,满足大流量处理要求; 2、占地少,出水稳定,占地面积约为传统絮凝沉淀的1 /8,混凝时间 1min,絮凝时间2min,过水平均流速320m/h。(占地面积:600m3/d,×;3000 m3/d,×;10000 m3/d,磁盘机外形尺寸××,磁分离磁鼓外形尺寸,××) 3、排泥浓度高,磁盘直接强磁吸附污泥,连续打捞提升出水面,通过卸渣系统得到高浓度污泥; 4、运行费用低,采用微磁絮凝技术,投加药量少,且磁种循环利用率高,运行费用低; 5、日常维护方便,设备无需反洗,自动化程度高,运行稳定可靠。 二、超磁分离技术的原理 直接磁选技术在分离污水(如钢厂废水)中的铁磁性杂质方面效果明显,但对于造纸、化工、制药、食品、石油等工业废水,由于废水中的有毒

有害物质大多为酸碱离子、有机物、油等,主要是非磁性或弱磁性物质,因此采用直接磁分离方法很难将这些有害物质有效分离,必须通过预先加入磁种的方法,使本身无磁性的有害物质带上磁性,然后在高梯度磁场中实现磁分离。磁种—絮凝分选法主要包括磁种絮凝、磁分离和磁种回收三大主要步骤。具体方法是在一定的化学条件下,向污水中添加专用磁种和絮凝剂,或铁磁性絮凝剂(如表面处理过的三价铁盐),水中有害物质通过氢键、范德瓦尔斯力或静电力与经表面官能团修饰的磁种絮接,从而使非磁性物质具有磁性或使弱磁性物质的磁性增强,与污染物结合的磁絮凝剂可以被高梯度磁滤网或磁盘捕获,从而实现污染物的去除。磁分离设备分离出的废渣(磁种和悬浮物的混合体)经输送装置进入高速搅拌剪切环节,实现磁种和悬浮物的分离,再经由磁鼓回收装置,就可将其中的磁种分选出来,磁种回收率可达 %以上。回收的磁种可循环利用,既节约了生产成本,又减少了环境负荷。 图:超磁分离水体净化技术工艺流程 三、设计要点 1、混凝反应设计 (1)停留时间:磁分离设备的分离方式不同于沉淀池,无需形成大颗粒的密实絮体,属于微絮凝技术,其混凝反应停留时间约 3min,同时投加混凝剂和助凝剂,前段投加混凝剂,通常为聚合氯化铝(PAC)或硫酸铝,反应时间 1min,后段投加助凝剂,通常为聚丙烯酰胺(PAM),反应时间 2min。在SS=200mg/L~450mg/L,磁种200目(44μm)投加量为200 mg/L~300mg/L,PAC:40 mg/L,PAM:1 mg/L.

超磁分离技术处理矿井废水的应用

超磁分离技术处理矿井废水的应用 在井下建设矿井水处理中心,将井下的矿井水排放到水处理中心集中处理。可实现清水入仓,水仓不需要清挖,矿井水达标排放,矿井水井下直接利用,提高了矿井水利用率,降低矿井水处理成本。 1、超磁分离技术介绍 超磁分离水处理技术是目前应用于矿井水处理的一种新工艺,其净化原理是依靠稀土永磁材料所产生的高强磁场,对水体中的悬浮物,通过投加磁种介质与微磁絮凝药剂,在强磁场力的作用下对赋磁性水体悬浮物进行快速分离,其泥水分离的原理是机械力(超强磁力),根本有别于传统的泥水分离。超磁分离水处理技术因其分离速度快,大大地缩短了水力停留时间,为工程设施占地面积的缩小提供了可能。 1.1超磁分离水体净化技术作用 能有效去除水中悬浮物、总磷、非可溶性COD、重金属等污染物。是替代传统工艺“絮凝+沉淀(沉淀法或斜板管澄清法)+普通过滤+微滤”环节的最佳选择。处理水量大,速度快,出水能达到膜前供水要求。 1.2超磁分离水体净化技术应用领域 超磁分离技术较早在冶金行业得到应用,技术成熟;对高浊度,悬浮物难沉降,大水量矿井水处理有特别优势。市

政给水一级强化处理,取代传统混凝沉淀、加砂澄清工艺、高密澄清池、过滤器等。 1.3超磁分离设备工作原理 超磁分离净化设备是由一组强磁力磁分离机械组成。当流体流经磁盘之间的流道时,流体中所含的磁性悬浮絮团受到强磁场力的作用,吸附在磁盘盘面上,随着磁盘的转动,逐渐从水体中分离出来。磁盘转速为1~ 3r/min,待悬浮物脱去大部份水份,运转到刮渣条时,形成隔磁卸渣带,由刮渣刨轮刮入“螺旋输送机”,产生的废渣输入渣池。被刮去渣的磁盘又重新转入水体,形成周而复始的超磁分离净化水体的全过程。 2、水处理工程概况 2.1水处理工艺流程 井下矿井水通过水仓入水口引至水处理中心的进水渠道,进入预沉池、机械格栅,除去0.2mm以上的大颗粒煤块、石块以及容易沉淀的悬浮物和矿井水中的漂浮物,然后水自流进入混凝池,通过向混凝池中投加磁种和化学药剂(PAC和PAM),使悬浮物在较短时间内(约4.5min)形成以磁种为载体的微絮团。经过混凝之后的水自流进入超磁分离机进行固液分离净化,通过磁盘暇附打捞后,使得水体中的悬浮物得到去除,处理后的水自流到四号水仓。 在粗颗粒预沉池中设置链条式刮砂设备,预沉池的粗颗

磁分离水处理技术的影响

磁分离水处理技术的影响 1.带来了工艺变革 在冶金行业浊环水中,主要的污染物是油和导磁性悬浮物。磁分离水体净化技术应用之前,我国基本应用传统的“三段式”(即一重力沉淀、二平流沉淀、三过滤)处理工艺进行浊环水净化处理。传统工艺处理钢铁浊环水占地面积大、流程长、处理效率低,限制了生产企业的生产效率,并可能因出水水质而影响产品品质。 传统冶金浊环水处理工艺流程 磁分离水体净化相比传统技术,其取代了二次沉淀池、过滤器、污泥浓缩池、污泥脱水系统等处理环节,对污染水体实现主动吸附打捞,大幅缩短工艺流程及反应时间,节省占地面积和投资,为冶金浊环水处理带来了工艺变革。 磁分离水体净化技术的工艺流程 2.磁分离水体净化技术相较其他工艺技术的优势 以每小时1,000 立方米处理量为例,磁分离水体净化技术与其它冶金浊环水处理工艺技术对比情况如下:

对比项目传统沉淀工艺化学除油工艺磁分离处理工艺分离原理重力分离重力分离强磁力分离 工艺复杂性工艺流程长工艺流程短工艺流程短 占地面积1,000~3,000m2(包括 二沉池、过滤器、反冲 洗装置、板框压滤间 等,占地大。)500~800m2(包括加药 间、油泥池、板框压滤 间,占地面积较小。) 300~400m2(包括磁盘 分离机、管道过滤器、 磁力压榨脱水等,占地 少。) 出水水质SS≤50mg/L,油≤ 5mg/L 水质波动大时 不稳定SS≤30mg/L,油≤ 5mg/L 水质波动大时不 稳定 SS≤20mg/L,油≤5mg/L 基本不受入水水质影响 泥渣处理有反洗,渣量大,含水 率高排渣量大,含水率高, 含油泥多,后续脱水困 难 无反洗,渣量小,渣处理 容易。 投资费用综合总投资高综合投资较高综合总投资节约10% 以上 运行费用运行费用较高药剂用量较大,运行费 用较高药剂用量节省三分之一,运行费用低。

超导磁分离污水处理系统研制取得进展

玉米收割机知识 近日,由中国科学院理化技术研究所低温材料及应用超导研究中心研制的“超导磁分离水处理系统”取得新进展,以超导磁体为核心的超导磁分离水处理系统成功运行,实现了磁分离水处理设备从无到有的突破,系统能够自动化、长时间稳定运行。通过调试、测试,该水处理系统已能高效、快速地进行污水处理实验,对照试验表明,污水处理效果显著。目前,工业废水处理方法主要有化学法和生物化学法。然而,实用的化学法和生物化学法存在投资大、运行成本高、反应时间长、占地面积大、效率低、能耗高等问题。对于小型造纸厂废水处理,这些问题更加突出,厂家因建立污水处理设施投资过高,大多采取直排,给环境造成危害。因此开展新型、高效、低成本超导磁分离工业废水处理技术的研究对我国节能减排具有重要意义。中科院理化所的工作克服了以上难题,在磁种子材料和超导磁体冷却技术上取得创新进展。采用等离子有机覆膜技术在Fe3O4磁性颗粒表面生长带活性基团的有机薄膜,这层纳米厚度的薄膜可以有效地捕捉污水中的有机物、无机离子,代替了有机絮凝剂的加入,而且由于有机膜与Fe3O4有很强的结合力,使得这种新型复合"磁种子"材料可以重复使用,较单纯的Fe3O4磁种子材料有明显优势,采用这种"磁种子"材料对造纸厂废水处理实验表明经磁分离处理的集水池废水COD值由起始的1780mg/L降到147mg/L,去除率超过90%%,净化效果良好。另一个技术创新点是采用制冷机直接冷却超导磁体,从而摆脱超导磁体采用昂贵液氦的束缚,这样将使得超导磁分离污水处理系统可以方便地用于缺少液氦的地区,特别适合于规模小、分散的中小企业。是未来极具潜

在应用价值的技术。据了解,磁分离技术最早应用于选矿和瓷土工业,1960年前苏联首次用磁凝聚法处理钢厂除尘废水。但是永久磁铁或电磁铁的磁场强度有限,对于弱磁性颗粒处理效果不理想。近年来国内外研究人员尝试采用超导磁分离技术分离磁性杂质,超导磁分离法与传统的化学法、生物法以及普通电磁体磁分离相比,具有投资小、占地少、耗电量小等优点。占地方面,场强可达3~5特斯拉的超导磁体,加上相应的制冷设备等,占地不超过20m2。能耗方面,由于超导材料无电阻,超导磁体几乎不消耗电能,仅维持低温的制冷机耗电,一天耗电量不超过100kW〃h。成本方面,3~5特斯拉的超导磁体大约150万元,对于每天千吨级处理规模的设备,投资小于200万元。因此超导磁分离技术,对于污水处理来说,是一种极具潜在应用前景的技术。研究结果表明超导磁分离技术对于富含氧化铁杂质的钢厂废水磁分离净化的效果明显,然而该技术只能分离水中的磁性污染物,对于石油采出水、造纸、化工、制药、食品等工业废水以及城镇生活污水,由于这些废水中的有毒有害物质大多为有机物,本身没有磁性,用磁分离无法有效分离。中国科学院理化技术研究所李来风研究员提出了等离子镀膜改性磁种用于超导磁分离技术,可有效解决以上问题。首先设计一种外置线圈、由射频电源供电的等离子体有机聚合装置,通过该装置对磁种颗粒材料进行表面等离子有机聚合改性,改性后的磁种形成各种所需的表面官能团,这些活性基团可与污水中非磁性有害物质絮团,再通过超导磁体的强磁场来实现分离废水中污染物,实现工业污水的达标排放。李来风研究员及其研究小组对絮团机制进行了初步探讨,认为磁种作为电解质削弱了污染物表面的双电层,通过静电吸附作用以及架桥、网捕作用使污染物形成絮团。经过调整磁种表面

基于水处理的磁分离技术研究进展

基于水处理的磁分离技术研究进展 班云霄1,李得花2 (1. 兰州交通大学环境与市政工程学院,甘肃兰州730030; 2. 唐山轨道客车有限责任公司,河北唐山063035) [摘要]磁分离技术具有独特的分离原理,在水处理领域中具有较好的经济性和实用价值。随着超导磁材、等离 子体技术、催化改性技术、生物技术等的发展,磁分离技术已在水处理领域获得广泛应用。对磁种、磁分离工艺的研究现状进行综述,并简述其在水处理行业的应用情况,探讨了磁分离技术未来的应用前景。 [关键词]磁种;磁分离;吸附 [中图分类号]X703;TQ028.8 [文献标识码]A [文章编号]1005-829X(2012)09-0010-03 Progress in magnetic separation technology research for water treatment Ban Yunxiao1,Li Dehua2 (1. School of Environmental and Municipal Engineering,Lanzhou Jiaotong University,Lanzhou730030,China; 2. Tangshan Railway Vehicle Co.,Ltd.,Tangshan 063035,China) Abstract:Magnetic separation technology has particular separation principles,having good economical and practical value in water treatment field. With the development of superconducting magnetic materials,plasma technology, catalytic modification technology,bio-technology,etc.,magnetic separation technology has widely been applied to water treatment. The research status quo about magnetic seeds and magnetic separation technology is reviewed,its application to water treatment is summarized briefly,and the prospect of magnetic separation technology is discussed. Key words:magnetic seed;magnetic separation;adsorption 磁分离技术主要通过独特的磁分离原理对水中 的污染物进行去除。磁分离时强磁性污染物被直接 分离去除,弱磁性污染物或非磁性污染物则通过提 高磁场强度或投加磁种而被去除。悬浮于水中的稳 定污染物胶体颗粒符合DLVO 理论,由于势能壁垒 而不能发生絮凝(见图1)。而磁分离技术可利用磁 场力使得吸附状态处于势能的极小值点处(见图2) 图1 粒子间距离与势能的关系

磁分离技术在污水处理中的应用

磁分离技术在污水处理 中的应用 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

磁分离技术在污水处理中的应用 严邦鹏1330240050 摘要:介绍了磁分离技术应用于污水处理的基本原理、分离方法、设备以及特点,简要讨论了该技术的应用情况并展望了该技术的发展前景。 1引言 水是一种不可再生的资源,它在社会循环中,不可避免地会混入许多杂质,从而丧失了使用价值,导致地球上的水资源日益减少。为了把这种危害降到最低程度,人类采取了种种措施,其中磁力分离法就是比较先进的一种方法。 2 磁分离技术简介 磁分离技术是将物质进行磁场处理的一种技术,该技术的应用已经渗透到各个领域,该技术是利用元素或组分磁敏感性的差异,借助外磁场将物质进行磁场处理,从而达到强化分离过程的一种新兴技术。着强磁场、高梯度磁分离技术的问世,磁分离技术的应用已经从分离强磁性大颗粒到去除弱磁性及反磁性的细小颗粒,从最初的矿物分选、煤脱硫发展到工业水处理,从磁性与非磁性元素的分离发展到抗磁性流体均相混合物组分间的分离。作为洁净、节能的新兴技术,磁分离将显示出诱人的开发前景。 3磁分离技术在水处理中的研究与应用 近几年磁力分离法已成为一门新兴的水处理技术。磁分离作为物理处理技术在水处理中获得了许多成功应用,显示出许多优点。磁分离利用废水中杂质颗粒的磁性进行分离,对于水中非磁性或弱磁性的颗粒,利用磁性接种技术可使它们具有磁性。 借助外力磁场的作用,将废水中有磁性的悬浮固体分离出来,从而达到净化水的目的。与沉降、过滤等常规方法相比较,磁力分离法具有处理能力大、效率高、能量消耗少、设备简单紧凑等一系列优点,它不但已成功应用于高炉煤气洗涤水、炼钢烟尘净化废水,轧钢废水和烧结废水的净化,而且在其它工业废水、城市污水和地皮水的净化方面也很有发展前途。 磁分离法按装置原理可分为磁凝聚分离、磁盘分离和高梯度磁分离法三种,按产生磁场的方法可分为永磁分离和电磁分离(包括超导电磁分离)。按工作方式可分为连续式磁分离和间断式磁分离。按颗粒物去除方式可分为磁凝聚沉降分离和磁力吸着分离。 这里主要介绍的是高梯度分离法,废水中原有的、具有一定磁性的悬浮固体颗粒在通过磁分离器时很容易地被磁场所捕获。典型的应用磁分离技术处理污水的工艺流程见图 3.1高梯度磁分离技术处理废水的机理 废水中的污染物种类很多,对于具有较强磁性的污染物,可直接用高梯度磁分离技术分离;对于磁性较弱的污染物,可先投加磁种(如铁粉、磁铁矿、赤铁矿微粒等)和混凝剂,使磁种与污染物结合,然后用高梯度磁分离技术除去。

超磁分离水体净化技术

超磁分离水体净化技术 超磁分离水体净化技术是永磁和电磁两条思路发展下来的技术。从传统沉淀板、管的分离,到超磁分离技术,都是属于沉淀分离的一种技术进步,或者是一种平行的技术。 一、超磁分离水体净化技术的原理超磁分离水体净化技术是永磁和电磁两条思路发展下来的技术。磁能够吸引导磁性物质,在非导磁的水里面增加磁粉成为载体,就可以达到处理废水的目的,磁粉可以循环利用,磁力可以达到普通重力的600多倍。磁分离的方法是借助磁力使悬浮物成为磁性载体,实现循环分离和打捞。从传统沉淀板、管的分离,到超磁分离技术,都是属于沉淀分离的一种技术进步,或者是一种平行的技术。 二、超磁分离水体净化技术与传统分离的区别通过重力沉淀去除水中污染物,主要由旋流井、平流沉淀池来实现,水力停留时间大于1小时;斜板/斜管(加砂、加磁粉沉淀):同样通过重力沉淀去除水中污染物,由于形成浅层或通过加砂絮凝增加悬浮物比重,水力时间停留时间大于30分钟;稀土磁盘:采用大于重力640余倍的磁力吸附,不依靠重力,全套工艺水力停留时间小于3分钟。 三、超磁分离水体净化技术的发展趋势超磁分离水体净化技术的原理是靠加载沉淀的分离原理,在该基础上用磁分离设备来取代磁沉淀和高磁度的电磁剥离系统,即加磁粉在这种状态下进行直接磁分离。其占地面积小,处理流程短的特点,对市政污水的提标改造有一定价值。 四、超磁分离水体净化技术在城市污水处理中的应用通过加载磁种,

将磁性物质与非磁性物质充分混凝,再通过聚磁组合的磁盘流道实现泥水分离的,泥渣中的磁种又经磁鼓再分离,打捞回收,重复循环使用。泥水分离速度快、占地省、处理水量大、运行成本低等优势。

磁分离技术

磁分离技术及其在水处理上的应用 张和烽 (武汉理工大学) 摘要:文介绍了磁分离技术的基本原理、分离方法,设备以及特点, 综述了该技术在水处理中的应用现状。它已经应用于食品废水处理、含油废水处理、城市污水处理、印染废水处理等工业废水的处理。简要讨论了该技术的应用情况并展望了该技术的发展前景。 关键词:磁分离技术;磁性物质;高梯度磁分离器;废水 Application of Magnetic Separation Technology in Water Treatment HeFeng Zhang (WuHan University of Technology) Abstract: Fundamental principle, separating method and equipment of magnetic separation technology are introduced1 Development and application of treatment of some industrial wastewaters are summarized. Applications are discussed and foreground is prospected in magnetic separating treatment of industrial polluted waters. Key words: Magnetic separation technology; magnetic material; high gradient magnetic separation; wastewater 1 磁分离技术简介 磁场本身是一种具有特殊能量的场,经磁场处理过的水或水溶液,其光学性质、导电率、介电常数、粘度、化学反应及表面张力和吸附、凝聚作用及电化学效应等方面的特性都产生了可测量的变化[1],并且当撤掉磁场后,这种变化能保持数小时或数天,具有记忆效应[2]。由于这些现象的存在,多年来磁技术一直是研究热点。 磁分离技术是将物质进行磁场处理的一种技术,该技术的应用已经渗透到各个领域,该技术是利用元素或组分磁敏感性的差异,借助外磁场将物质进行磁场处理,从而达到强化分离过程的一种新兴技术。随着强磁场、高梯度磁分离技术的问世,磁分离技术的应用已经从分离强磁性大颗粒到去除弱磁性及反磁性的细小颗粒,从最初的矿物分选、煤脱硫发展到工业水处理,从磁性与非磁性元素的分离发展到抗磁性流体均相混合物组分间的分离。作为洁净、节能的新兴技术,磁分离将显示出诱人的开发前景[3]。 近几年磁力分离法已成为一门新兴的水处理技术。磁分离作为物理处理技术在水处理中获得了许多成功应用,显示出许多优点。磁分离利用废水中杂质颗粒的磁性进行分离,对于水中非磁性或弱磁性的颗粒,利用磁性接种技术可使它们

HRMD磁分离水处理技术

HRMD磁分离水处理技术 HRMD磁分离水处理技术是获得国家发明专利授权的新一代磁分离净化技术。 ①HRMD磁盘机构成 第三代磁盘机 结构类型:径向流/平流 技术特点: 复合聚磁,全新的磁盘加工工艺,精度更高; 解决了第一、第二代平流式磁盘机运行过程中跑渣漏渣难题,净化效果更好; 运行噪音低 环境友好。

②HRMD磁盘机工作原理 磁盘以一定间距组合在一起,构成多个磁分离径向流道(注:平流式磁分离进出水方向为从磁盘一侧到另一侧); 含磁性悬浮物或磁性微絮团的污水进入磁分离流道,磁性微絮团被磁力吸附于磁盘表面,污水净化后经出水管排出; 磁性污泥随磁盘的转动被刮渣机构刮离磁盘表面,随后被卸渣机构带离磁场作用区;磁性污泥被输渣机构带出磁分离设备; 磁性污泥经磁介循环系统处理后,磁性介质循环使用; 非磁性悬浮物污泥经脱水后回收利用或外运处置。 ③设备选型 本表提供磁分离净化主设备(磁盘机)系列参数,供选型参考。磁盘机结构形式、磁盘直径、磁盘数量、磁体种类、磁体数量、电机类型等具体技术参数,根据项目条件要求确定,以双方技术协议为准。 MDI磁介循环系统构成 工作原理: 磁盘机的卸渣机构为机械(刨条)卸渣和磁力卸渣之一种。如为后者,则磁性污泥和非磁性污泥在卸渣过程中已实现一定程度的分散。 污泥进入磁介循环系统后,首先被高速分散器分散(机械力、水力分散),进入磁分离磁鼓,实现磁性介质(磁种)和非磁性污泥的分离;非磁性污泥从磁鼓下方排出,输送到压滤脱水

机进行脱水处理;磁种进入搅拌箱,配置成一定浓度的磁种液,经磁种输送泵输送至混凝反应器,循环使用。 向原水中投加专用磁性介质(或称为磁性载体、磁种、磁粉),使磁种在凝聚剂和絮凝剂的作用下与原水中的非磁性悬浮物结合在一起形成磁性絮团。形成的磁性絮团是以磁种作为核的磁种与非磁性悬浮物的混合体,磁种粒度小,絮凝效果较好;磁种粒度大,絮凝效果较差,且药剂用量大。当含有磁性絮团的污水流经磁分离机时,梯度聚磁磁盘能在2秒内快速捕捉和吸附磁性微絮团,实现悬浮物与水体的分离,从而达到净化水体的目的。 ④系统构成: 磁分离设备(磁盘机)、磁介循环系统、混凝反应系统、磁介质(磁种)自动投加装置、自动加药装置、电控柜; 脱水机(选配)、液晶视频控制柜(选配)、远程控制(选配)。 获得国家发明专利授权的新一代磁力压榨脱水整机技术。 技术参数: 型号主机功率(kW) 处理量 (m3) 出渣含水率设备尺寸(mm) MDID-8 0.55 3~5 ≤40% 2013×1029×1281 MDID-8L 0.75 5~8 ≤40% 2860×1029×1281

相关主题
文本预览
相关文档 最新文档