当前位置:文档之家› 超磁分离技术设计要点

超磁分离技术设计要点

超磁分离技术设计要点
超磁分离技术设计要点

一,工程说明

超磁分离技术设计要点

一、超磁分离技术的特点

超磁分离水体净化技术是一项新颖的水处理技术,其成套设备与普通的沉淀和过滤相比,具有无反冲洗,分离悬浮物效率高,工艺流程短,占地少,投资省,运行费用低等特点。针对城市污水、工业废水、矿井水、油田采出水、河道水、景观水等不同种类的废水,长期的净化试验和工程实例表明该技术具有以下显著特点:

1、处理时间短、速度快、处理量大,磁盘瞬间产生大于重力640 倍的磁力,处理效率高,流程短,总的处理时间大约3 min,可多台并联运行,满足大流量处理要求;

2、占地少,出水稳定,占地面积约为传统絮凝沉淀的1 /8,混凝时间1min,絮凝时间2min,过水平均流速320m/h。(占地面积:600m3/d,2.4×4.0;3000 m3/d,9.6×6.0;10000 m3/d,磁盘机外形尺寸6.0×3.0×1.9,磁分离磁鼓外形尺寸,3.3×2.0×1.45)

3、排泥浓度高,磁盘直接强磁吸附污泥,连续打捞提升出水面,通过卸渣系统得到高浓度污泥;

4、运行费用低,采用微磁絮凝技术,投加药量少,且磁种循环利用率高,运行费用低;

5、日常维护方便,设备无需反洗,自动化程度高,运行稳定可靠。

二、超磁分离技术的原理

直接磁选技术在分离污水(如钢厂废水)中的铁磁性杂质方面效果明显,但对于造纸、化工、制药、食品、石油等工业废水,由于废水中的有毒有害

物质大多为酸碱离子、有机物、油等,主要是非磁性或弱磁性物质,因此采用直接磁分离方法很难将这些有害物质有效分离,必须通过预先加入磁种的方法,使本身无磁性的有害物质带上磁性,然后在高梯度磁场中实现磁分离。磁种—絮凝分选法主要包括磁种絮凝、磁分离和磁种回收三大主要步骤。具体方法是在一定的化学条件下,向污水中添加专用磁种和絮凝剂,或铁磁性絮凝剂(如表面处理过的三价铁盐),水中有害物质通过氢键、范德瓦尔斯力或静电力与经表面官能团修饰的磁种絮接,从而使非磁性物质具有磁性或使弱磁性物质的磁性增强,与污染物结合的磁絮凝剂可以被高梯度磁滤网或磁盘捕获,从而实现污染物的去除。磁分离设备分离出的废渣(磁种和悬浮物的混合体)经输送装臵进入高速搅拌剪切环节,实现磁种和悬浮物的分离,再经由磁鼓回收装臵,就可将其中的磁种分选出来,磁种回收率可达99.4 %以上。回收的磁种可循环利用,既节约了生产成本,又减少了环境负荷。

图:超磁分离水体净化技术工艺流程

三、设计要点

1、混凝反应设计

(1)停留时间:磁分离设备的分离方式不同于沉淀池,无需形成大颗粒的密实絮体,属于微絮凝技术,其混凝反应停留时间约3min,同时投加混凝剂和助凝剂,前段投加混凝剂,通常为聚合氯化铝(PAC)或硫酸铝,反应时间1min,后段投加助凝剂,通常为聚丙烯酰胺(PAM),反应时间2min。在SS=200mg/L~450mg/L,磁种200目(44μm)投加量为200 mg/L~300mg/L,PAC:40 mg/L,PAM:1 mg/L.

(2)药剂投加设计:混凝剂和助凝剂采用隔膜或柱塞计量泵以溶液的形式定比自动投加,不同水体药剂投加量需要根据混凝试验确定,在缺乏混凝试验资料时,混凝剂的投加量一般采用10mg/L~15mg/L,助凝剂投加量为1mg/L~2mg/L。混凝剂配臵浓度一般为5%~10%,助凝剂配制浓度一般为0.5‰~1‰。混凝剂需要定期配臵,溶药池容积保证每天溶药次数不多于两次,

储药箱容积至少保证每天24 小时连续运行所需的药剂量;助凝剂溶解需要较长的时间,特别是在冬季气温较低的情况下,但不易吸潮,目前大型水处理或污泥处理均采用自动溶解投加一体机,极大的减轻了劳动强度。

(3)混凝工艺设计

在分析超磁分离设备工艺的基础上,选择机械混合,用电动机驱动搅拌器,使水和药剂混合。机械搅拌机一般采用立式安装,搅拌机轴中心适当偏离混合池的中心,可减少共同旋流。机械混合搅拌器有:桨板式、螺旋式和透平式。桨板式搅拌器结构简单,加工制造容易,适用于容积较小的混合池,其他两种适用于容积较大的混合池。桨板式搅拌器的直径D0=(1/3~2/3)D (D为混合池直径),搅拌器宽度B=(0.1~0.25)D,搅拌器离池底(0.5~0.75)D。当H︰D≤1.2~1.3 时(H为池深),搅拌器设计成1 层,当H ︰D≥1.3 时,搅拌器可以设成两层或多层。

2、强磁分离机系统:磁盘表面场强大于4000Gs,流道中心磁场场强大于800Gs;过水流速一般取0.08m/s~0.1m/s,在设计范围内过水流速越低,处理效果越好,但是过水流速过低,单位面积磁盘上将吸附过多的絮团,导致磁盘磁场强度衰减,影响处理效果;目前采用的磁盘直径一般为1200mm 和1500mm,水体与磁盘的最大有效接触时间为12s~18.75s,磁场强度随离开磁盘表面的距离增大而减小,超过30mm,磁场强度将大幅降低,所以一般磁盘间距控制在10mm~30mm;磁盘转速0.1r/min ~1.0r/min,磁盘转速过低单位面积磁盘接触絮团的量将增加,造成吸附不充分;磁盘转速过高将会导致吸附絮体中的水份来不及脱出,造成污泥含水率升高。根据处理水体污染物浓度和出水水质要求不同,设备参数会有所变化。超磁分离设备多为非标准设备,设计单位提处理水质水量和要求,设备厂家根据相应要求进行加工,

目前市场上超磁分离设备的磁盘强度、磁盘直径和间距一般都是固定的,设备加工中根据水质水量不同改变磁盘的数量来增加或减少吸附面积来适应处理水量和水质的变化。

3、磁种回收投加系统:磁种回收投加系统中的回收用磁分离磁鼓的表面场强大于6000Gs,吨水处理磁种耗损率小于3g /m3;磁回收及投加设备的作用是实现磁粉的回收并将其二次投加到混凝反应工艺单元,同时将产生的污泥排出系统。从超磁分离设备分离出的絮团是磁粉和污泥的混合物,首先需要对磁粉进行消磁,使絮团之间得以分散,然后自流排入磁分散装臵,内部设臵高速搅拌机和退磁装臵,通过高速搅拌,将单个絮团打散,使磁粉和污泥分离,在装臵的溢流口设臵磁回收磁鼓,磁粉和污泥的混合物在溢流到磁鼓表面时,磁粉被磁鼓吸附回收,污泥无法被磁鼓吸附,通过在磁鼓底部设臵的污泥管排出系统。被回收的磁粉通过刮板将其从磁鼓上刮离,再次退磁后返回磁粉投加装臵,然后通过计量泵再次加入到混凝反应单元。由于磁粉重力比水大得多,且不溶于水,在水体中极易沉淀,向混凝反应单元投加的是磁粉和水的混合悬浊液,要通过不断搅拌保证磁粉始终处于悬浮状态,磁粉浓度相对均匀,才能保证相对准确的磁粉投加量,磁粉投加量需要根据试验确定,在缺乏试验数据的情况下,一般景观水体磁粉的投加量是悬浮物

的1.5 倍。随着磁粉悬浊液的投加,磁粉投加装臵的液位将逐步降低,需要根据液位的变化自动补充自来水,保持磁粉浓度基本不变。

磁铁粉的回收再应用问题。

国外采用三种方法。一是用大离心力的旋流分离器可回收7 5 ~9 8 % 的磁铁粉,二是利用超声装臵,用强剪力使磁铁粉与絮凝体分离,但运转费用高,三是用泵使反洗水高速送入另一套高磁分离装臵,磁铁粉即被捕捉与

反洗水分离,使磁铁粉能循环使用。该系统包括絮凝、磁分离、反洗、浓缩、磁种回收等,可全部自动化。

4、磁种微絮凝系统:Fe3O4含量大于95%,粒径小于44 μm 的占80% 以上,剩磁小于8Gs,易于分散药剂投加量: PAC 投加15mg /L,PAM 投加0. 5mg /L;

麦秸秆磁种材料制备

麦秸秆磁种是通过在无磁性的麦秸杆中植入Fe3O4磁性颗粒来实现的过程如下,将物质的量比2:1 的FeCl3〃6H2O和FeSO4〃7H2O 溶于纯水,将机械粉碎得到的麦秸杆粉末分散在该溶液中在氮气保护和磁力搅拌下将25%的氨水缓慢滴入上述混合溶液中,然后70 度反应4h 所得反应产物洗涤后磁性分离、烘干。

创新点:增加悬浮物测定仪,根据悬浮物多少控制磁盘转速;采用推流、折流板、管道混合器方式,提高混合率,防止磁种和絮凝体沉淀;采用齿轮抓手,用于磁鼓分离含磁种污泥;磁种和絮凝剂的开发。

四、机械加工要点

1、混凝剂投加系统加工要点

投加系统分为:螺杆式固体絮凝剂投加装臵,搅拌溶解池,计量泵投加及管路系统。

2、磁盘机械加工要点

圆盘磁分离器的工作原理是在非磁性的圆板上嵌进永久磁铁,将数块同样的圆板以一定间隔装在同一轴上。当废水进入装臵时,废水中的磁性颗粒被圆盘板边上的磁铁所吸附而被捕。随着圆盘的旋转,被捕集的磁性颗粒从水中进入空间,再由刮板刮下来。

磁盘是磁分离装臵的核心,也是该装臵的设计关键所在。根据磁分离装臵基本设计要求:合理的表面磁场、高的磁场梯度、高的作用深度、宽的工作间隙、尽可能长的磁化流程、适当的工作温度、适合的转速、方便刮泥、节能、安全、操作简单等。提出磁盘的主要设计步骤:(1)磁性材料的选用;(2)磁系的设计;(3)磁块的性能的选择;(4)磁盘间隙大小和磁场分布。磁盘的磁系设计要考虑多种因素,既有磁体经济利用的要求,又有磁体产生足够的场强和合理的磁场特性等要求。磁系设计时应着重解决主要矛盾,首先考虑磁系,保证它有足够的场强和合理的磁场特性,在此基础上再很好地考虑磁体的经济利用问题,并使磁体的工作点尽量靠近最大磁能积点。

磁盘直径取1.6米,磁铁外侧为圆弧形状,覆板厚度4毫米,中间用8

毫米厚加强肋,覆板用铆钉连接,钕铁硼为易腐蚀材料,必须保证磁块密封在磁盘中,所有接口处均采用用橡胶圈密封,磁块放臵好后灌胶固定和密封。装配流程示意图与实体图如下所示。

5 个磁盘的总重为5×500=2500Kg,轴的材料选用45#优质中碳钢,采用调质表面处理。由于5 个磁盘均匀分布在轴的中间部分500mm 内,轴径为d=80mm,轴承受径向载荷为转速范围0~

6 r/min。

其他部件设计

(1)动密封:在工作过程中,承载磁盘部分的轴段需要沉浸在水中,其他部件是不需要浸没在水中,因此轴的两端需要采用动密封,根据设计手册查得,对于低速、常温、常压的液体密封使用普通的接触式毛毡密封就可以满足使用要求。而磁盘转速小于3m/s,因此选用接触式粗毛毡密封。

(2)水泵助卸及卸料刮片:为了快速去除磁盘表面吸附的絮体,使用聚四氟乙烯材料制成了“V”字形的刮片,用螺钉紧固在钢架结构上其大小刚好可以装配在磁盘间隙中起到刮的作用。由于刮下的絮体缺乏流动性,短时

间内会填满“V”形槽,因此设计了助卸水泵,四个分管以一定压力的水流冲走槽内的絮体。刮片是损耗件,使用一段时间后需要对其更换以保证卸料稳定。

(3)电器部分:主要由配电柜、变频器和操作按钮,动力由额定功率为4Kw的小型三相异步电机提供。根据被处理污水的水质和絮凝的状况需要使用变频器控制磁盘的转动速度,从而达到最佳的分离效果。

3、污泥输送装臵加工要点

被磁盘分离出来的渣经螺旋输送装臵输送到磁种回收系统中,磁性絮团通过高速分散机(高剪切机)后再流经磁分离磁鼓机,磁种被筛选出来,剩余污泥从磁鼓的底部排污阀流出,排出的污泥被收集送至污泥处理系统中筛选出来的磁种被再次配制成一定浓度的溶液,配制磁种所需的补充水由补水电磁阀根据磁种液位的高低,自动控制补充; 磁种溶液通过磁种计量泵泵组以一定的量投加到混凝系统中,磁种在此完成循环回收及再利用。

磁分离处理法

水工程与工艺新技术期末小论文 学生姓名: _ 李静 学号: 6002208016 专业班级:给排水081班 时间: 2011-12-6

磁分离技术简析 班级:给排水081班 姓名:李静 学号:6002208016 文章摘要: 本文章主要研究了磁分离技术在水处理中的应用以及其现阶段存在的问题。除此之外,本文还对磁分离技术的基本原理、优点、分类等做了简单介绍。对于磁分离技术的应用及存在问题作了简单的分析和探讨,以及对磁分离技术的应用前景做了简单概括和总结。还对磁分离技术的优缺点做了简略剖析等。 文章关键词: 磁分离技术 水处理 分离原理 外加磁场 应用前景 正文 (一)磁分离处理法 磁分离法又称电磁吸附法,是近年来发展的一种水处理技术。利用现代磁化技术能实现磁性微粒粗粒化,弱磁性颗粒强磁化,非磁性颗粒磁性化。磁分离作为物理处理技术在水处理中获得了许多成功应用,显示出许多优点。该法不仅能直接处理水体中各种微粒的弱磁性、顺磁性物质,而且还能分离不具磁性的细菌、病毒、藻类悬浮物、有机和无机化合物、油脂类、重金属类等,应用范围非常广。如磁分离法已用于含油废水治理,包括磁性粉末法,被覆油膜磁粉法,磁流体法,油层悬浮磁粉过滤法,43O Fe 超微粒子破乳净化法等除油技术。 磁分离的基本原理就是通过外加磁场产生磁力,把废水中具有磁性的悬浮颗粒吸出,使之与废水分离,达到去除或回收的目的。对于水中非磁性或弱磁性的颗粒,利用接种技术可使他们具有磁性。目前具有代表性的磁分离设备是圆盘磁分离器和高梯度磁过滤器。 (二)磁分离技术的分类 磁分离按装置的原理可分为磁凝聚分离、高梯度磁分离和磁盘分离法,其中磁盘分离法中按使用磁铁类型的不同可分为铁氧体磁盘法和稀土磁盘法。 按磁场的产生方法可分为永磁分离和电磁分离(含超导电磁分离)。 按工作方式可分为连续式磁分离方法和间歇式磁分离法。 按颗粒的去除方式可分为磁处理技术的优点磁凝聚沉降分离和磁力吸着分离。 (三)磁分离技术的磁力分离原理 物质在外磁场的作用下会被磁化而产生附加磁场,其磁场强度'H 与磁场强度H 的向量和即为磁介质内部的磁场强度或称磁感应强度,'H 的方向与H 相

免疫磁珠分离技术及应用

免疫磁珠分离技术及应用 一、前沿 免疫磁珠分离技术(Immunomagnetic beads sep—aration techniques,IMB) 是将免疫学反应的高度特异性与磁珠特有的磁响应性相结合的一种新的免疫学技术;是一种特异性强、灵质纯化敏度高的免疫学检测方法和抗原纯化手段。是近年来国内外研究较多的一种新的免疫学技术。 目前该项技术在细胞分离、蛋白、免疫学及微生物学检测等方面均取得了较大的进展,是目前最有推广价值的技术之一。 二、免疫磁珠分离技术介绍 1、免疫磁珠分离技术原理 利用人工合成的内含铁成分,可被磁铁磁力所吸引,外有功能基团,可结合活性蛋白质(抗体)的磁珠,作为抗体的载体。当磁珠上的抗体与相应的微生物或特异性抗原物质结合后,则形成抗原-抗体-磁珠免疫复合物,这种复合物具有较高的磁响应性,在磁铁磁力的作用下定向移动,使复合物与其他物质分离,而达到分离、浓缩、纯化微生物或特异性抗原物质的目的。 2、免疫磁珠法分类 ⑴、阳性分离法 磁珠结合的细胞就是所要分离获得的细胞 ⑵、阴性分离法 磁珠结合不需要的细胞,游离于磁场的细胞为所需细胞。一般而言,阴性分离法的磁珠用量比阳性分离法的大,阳性分离法用的更多。磁性微珠是以金属离子为核心,外层均匀包裹高分子聚合体的固相颗粒。磁性微珠上既可标记针对某种细胞表面抗原的特异性抗体(直接法); 也可标记羊抗鼠IgG抗体(间接法),使分离细胞的范围大大扩大。 3、免疫磁性微球的制备 基本技术路线:制成磁性材料的微球,再在微球表面引入活性基团,通过载体表面偶联反应可将抗体结合到载体上,形成免疫磁性微球。 优质微载体的性能:合适且均一的磁响应强度,较小且均一的粒径,稳定均一、特异吸附的表面性能。 4、该技术的主要优点 ⑴、细小而均一的微球为配基与受体的反应提供了较大的接触面积 ⑵、磁珠的磁性使其可以用磁力收集器方便快速地获得分离,且对被分离物无损伤 ⑶、检测复杂的生物样本和食品样本等时受到颗粒性杂质等的影响较小

新我国生物分离纯化技术现状及发展

我国生物工程产业发展及展望—分离技术方面 班级:B1403 学号:0514140304 姓名:李妙凤

引言 近十几年来,生物工程取得了高速的发展,在解决人类面临的诸如人口、疾病、食品、能源及环境等重太难题方面正发挥着越来越太的作用随着生物工程的飞速发展,作为生物工程学科中必不可缺的“下游技术”——生物分离工程,也得到了迅猛发展。分离纯化技术以研究和解决生物技术产业化过程中特殊问题,把生物技术初级制品的进一步分离、纯化、精制,进而制成最终产品的过程统称为下游技术。与上游过程相比,下游处理过程是一个多步骤、高能量低效率的过程。本文主要概括了在我国生物工程产业中分离技术方面的发展及展望。 关键字:生物工程;分离技术;发展及展望 一、生物工程产业中分离技术的发展 1、我国生物产业发展中分离技术方面的研究成果 不少生物产品,由于没有开发出技术上先进、经济上可行的提取方法或提取收率太低、成本过高而不能投产。事实上,分离纯化技术已成为生物技术产品能否符台质量标准、能否产业化进入市场的关键技术环节。分离纯化技术的发展现状生化产品的分离纯化步骤很多,非常繁杂,通常包括: 细胞工程:细胞收集一细胞破碎一产品粗分离一产品精制等。发酵工程:发酵液一提取产品一澄清液一浓缩液一大规模色谱精制一产品等。根据产品的质和量的显著差别,生物分离过程从总体上分为两类。一类是大宗的小分子物质的分离,其特点是处理量大,对分离条件的要求较低,过程中借鉴化学工业的手段较多,如沉淀、过滤、蒸发、萃取、离子交换等。另一类是大分子,特别是蛋白质类物质的分离。其特点是处理量小(年产量常不足Ikg),产值大,具有生物活性,对分离条件要求苛刻,常用生物化学中的特殊手段,如层析、膜过滤、凝胶过滤、电泳等进行分离。 多年来,我国生物技术的上游技术得到了长足的发展,积累了一大批的科研成果(如干扰素、白细胞介素、乙肝疫苗、链激酶、尿激酶原、葡萄糖、单克隆抗体、人生长因子等),与世界先进水平相差不大,平均实验室水平只差3~ 5年。下游技术也取得了可喜的进展。60年代以前,我国生物制品的分离纯化基本上套用传统的化工单元操作。70年代之后,随着生物技术的高速发展,新的后处理技术不断涌现:在原有基础上,发展了多级连续萃取、双水相萃取、超临界萃取等新技术;絮凝分离技术采用絮凝剂,使细胞或溶解的大分子聚结成较大的颗粒,加大沉降速率易于过滤,强化菌体分离;膜分离新技术发展迅速,高强度、抗污染的各种膜不断出现,其中又以超滤膜发展较快,可根据膜孔度将分子量大小不同的分子进行分离,推出了平板、板框、中空纤维和螺旋型等多种型式的成套超滤器;无机膜微滤(平均孔径一般为0.2~ 2 m)也已开发出成套膜组件,以管式居多,成功地用于分离微小细胞、酒类、饮料、口服液的澄清过滤,生化产品的错流过滤及空气除菌净化等;反渗透装置也日益增多;粗分离技术中使用球磨、压力释放及冷冻加压释放等细胞破碎方法以分离脆内产物;盐析、溶剂革取、离子交换色谱用于分离目的产物或使其浓缩富集;离子交换树脂用以纯化蛋白质及恬性物质等等。针对生物制品的干燥技术如喷雾干燥、气流或流化床干燥、冷冻干燥等也取得了相当的进展。此外,离子交换树脂、凝胶过滤介质、新型琼脂糖系列介质等均已实现规模生产。 2、我国生物工程产业中分离技术发展的阻碍

生物分离技术题库(带答案)

题库名称:生物分离技术 一、名词解释 1.质量作用定律:化学反应得速率与参加反应得物质得有效质量成正比。 2.凝聚:在电解质作用下,破坏细胞菌体与蛋白质等胶体粒子得分散状态,使胶体粒子聚集得过程。 3.分配系数:在一定温度、压力下,溶质分子分布在两个互不相溶得溶剂里,达到平衡后,它在两相得浓度为一常数叫分配系数。 4.干燥速率:干燥时单位干燥面积,单位时间内漆画得水量。 5.CMSephadex C50:羧甲基纤维素、弱酸性阳离子交换剂,吸水量为每克干胶吸水五克。 6.絮凝:指在某些高分子絮凝剂存在下,在悬浮粒子之间发生架桥作用而使胶粒形成粗大得絮凝团得过程 7.过滤:就是在某一支撑物上放过滤介质,注入含固体颗粒得溶液,使液体通过,固体颗粒留下,就是固液分离得常用方法之一。 8.萃取过程:利用在两个互不相溶得液相中各种组分(包括目得产物)溶解度得不同,从而达到分离得目得 9.吸附:就是利用吸附剂对液体或气体中某一组分具有选择性吸附得能力,使其富集在吸附剂表面得过程。 10.反渗析:当外加压力大于渗透压时,水将从溶液一侧向纯水一侧移动,此种渗透称之为反渗透。 11.离心沉降:利用悬浮液或乳浊液中密度不同得组分在离心力场中迅速沉降分层,实现固液分离 12.离心过滤:使悬浮液在离心力场作用下产生得离心力压力,作用在过滤介质上,使液体通过过滤介质成为滤液,而固体颗粒被截留在过滤介质表面,从而实现固液分离,就是离心与过滤单元操作得集成,分离效率更高 13.离子交换:利用离子交换树脂作为吸附剂,将溶液中得待分离组分,依据其电荷差异,依靠库仑力吸附在树脂上,然后利用合适得洗脱剂将吸附质从树脂上洗脱下来,达到分离得目得。 14.固相析出技术:利用沉析剂(precipitator)使所需提取得生化物质或杂质在溶液中得溶解度降低而形成无定形固体沉淀得过程。 15.助滤剂:助滤剂就是一种具有特殊性能得细粉或纤维,它能使某些难以过滤得物料变得容易过滤 16.沉降:就是指当悬浮液静置时,密度较大得固体颗粒在重力得作用下逐渐下沉,这一过程成为沉降 17.色谱技术:就是一组相关分离方法得总称,色谱柱得一般结构含有固定相(多孔介质)与流动相,根据物质在两相间得分配行为不同(由于亲与力差异),经过多次分配(吸附解吸吸附解吸…),达到分离得目得。 18.有机溶剂沉淀:在含有溶质得水溶液中加入一定量亲水得有机溶剂,降低溶质得溶解度,使其沉淀析出。 19.等电点沉淀:调节体系pH值,使两性电解质得溶解度下降,析出得操作称为等电点沉淀。 20.膜分离:利用膜得选择性(孔径大小),以膜得两侧存在得能量差作为推动力,由于溶液中各组分透过膜得迁 移率不同而实现分离得一种技术。 21.化学渗透破壁法:某些化学试剂,如有机溶剂、变性剂、表面活性剂、抗生素、金属螯合剂等,可以改变细胞壁或细胞膜得通透性,从而使胞内物质有选择地渗透出来。 22.超临界流体:超临界流体就是状态超过气液共存时得最高压力与最高温度下物质特有得点——临界点后得流体。 23.临界胶团浓度:将表面活性剂在非极性有机溶剂相中能形成反胶团得最小浓度称为临界胶团浓度,它与表面活性剂种类有关。 24.反渗透:在只有溶剂能通过得渗透膜得两侧,形成大于渗透压得压力差,就可以使溶剂发生倒流,使溶液达到浓缩得效果,这种操作成为反渗透。 25.乳化液膜系统:乳化液膜系统由膜相、外相与内相三相组成,膜相由烷烃物质组成,最常见得外相就是水相,内相一般就是微水滴。 26.树脂工作交换容量:单位质量干树脂或单位体积湿树脂所能吸附得一价离子得毫摩尔数称为树脂交换容量,在充填柱上操作达到漏出点时,树脂所吸附得量称为树脂工作交换容量。 27.色谱阻滞因数:溶质在色谱柱(纸、板)中得移动速率与流动相移动速率之比称为阻滞因数,以Rf表示。 28.胶团:两性表面活性剂在非极性有机溶剂中亲水性基团自发地向内聚集而成得,内含微小水滴得,空间尺度仅为纳米级得集合型胶体。 29.膜得浓差极化:就是指但溶剂透过膜,而溶质留在膜上,因而使膜面浓度增大,并高于主体中浓度。 30.超滤:凡就是能截留相对分子量在500以上得高分子膜分离过程称为超滤,它主要就是用于从溶剂或小分子溶质中将大分子筛分出来。 31、生物分离技术:就是指从动植物与微生物得有机体或器官、生物工程产物(发酵液、培养液)及其生物化学产品中提取、分离、纯化有用物质得技术过程。 32、离心分离技术:就是基于固体颗粒与周围液体密度存在差异,在离心场中使不同密度得固体颗粒加速沉降得分离过程。 33.物理萃取:即溶质根据相似相溶得原理在两相间达到分配平衡,萃取剂与溶质之间不发生化学反应。 34.化学萃取:则利用脂溶性萃取剂与溶质之间得化学反应生成脂溶性复合分子实现溶质向有机相得分配。 35.盐析:就是利用不同物质在高浓度得盐溶液中溶解度得差异,向溶液中加入一定量得中性盐,使原溶解得物质沉淀析出得分离技术。

超磁分离技术设计要点

一,工程说明 超磁分离技术设计要点 一、超磁分离技术的特点 超磁分离水体净化技术是一项新颖的水处理技术,其成套设备与普通的沉淀和过滤相比,具有无反冲洗,分离悬浮物效率高,工艺流程短,占地少,投资省,运行费用低等特点。针对城市污水、工业废水、矿井水、油田采出水、河道水、景观水等不同种类的废水,长期的净化试验和工程实例表明该技术具有以下显著特点: 1、处理时间短、速度快、处理量大,磁盘瞬间产生大于重力640 倍的磁力,处理效率高,流程短,总的处理时间大约3 min,可多台并联运行,满足大流量处理要求; 2、占地少,出水稳定,占地面积约为传统絮凝沉淀的1 /8,混凝时间1min,絮凝时间2min,过水平均流速320m/h。(占地面积:600m3/d,2.4×4.0;3000 m3/d,9.6×6.0;10000 m3/d,磁盘机外形尺寸6.0×3.0×1.9,磁分离磁鼓外形尺寸,3.3×2.0×1.45) 3、排泥浓度高,磁盘直接强磁吸附污泥,连续打捞提升出水面,通过卸渣系统得到高浓度污泥; 4、运行费用低,采用微磁絮凝技术,投加药量少,且磁种循环利用率高,运行费用低; 5、日常维护方便,设备无需反洗,自动化程度高,运行稳定可靠。 二、超磁分离技术的原理 直接磁选技术在分离污水(如钢厂废水)中的铁磁性杂质方面效果明显,但对于造纸、化工、制药、食品、石油等工业废水,由于废水中的有毒有害

物质大多为酸碱离子、有机物、油等,主要是非磁性或弱磁性物质,因此采用直接磁分离方法很难将这些有害物质有效分离,必须通过预先加入磁种的方法,使本身无磁性的有害物质带上磁性,然后在高梯度磁场中实现磁分离。磁种—絮凝分选法主要包括磁种絮凝、磁分离和磁种回收三大主要步骤。具体方法是在一定的化学条件下,向污水中添加专用磁种和絮凝剂,或铁磁性絮凝剂(如表面处理过的三价铁盐),水中有害物质通过氢键、范德瓦尔斯力或静电力与经表面官能团修饰的磁种絮接,从而使非磁性物质具有磁性或使弱磁性物质的磁性增强,与污染物结合的磁絮凝剂可以被高梯度磁滤网或磁盘捕获,从而实现污染物的去除。磁分离设备分离出的废渣(磁种和悬浮物的混合体)经输送装臵进入高速搅拌剪切环节,实现磁种和悬浮物的分离,再经由磁鼓回收装臵,就可将其中的磁种分选出来,磁种回收率可达99.4 %以上。回收的磁种可循环利用,既节约了生产成本,又减少了环境负荷。 图:超磁分离水体净化技术工艺流程

生物分离工程计算

三、问答题 1、什么是生物技术下游加工过程? 从发酵液或酶反应液或动植物细胞培养液中提取、分离、纯化、富集生物产品的过程。 2、针对分离对象而言,生物分离过程有何特点 (1)发酵液或培养液是产物浓度很低的水溶液:发酵液中生物产品的浓度很低,而杂质含量却很高,如发酵液 (0.1-10g/L) 或培养液(5-50mg/L),青霉素(4.2%)、庆大霉素(0.2%)、干扰素(<50ug/ml,0.005%)胰岛素0.002%。这使分离所需能量以及产品价格大大提高。 (2)培养液是多组分的混合物:培养液是一个复杂的多相体系,含有菌体、未消耗尽的固体培养基等固体成分和大量的液相;未消耗完的培养基成分,包括各种无机盐和有机物;除所需产物外,还含有其他副产物以及色素等杂质,有些杂质的性质与产物很接近。很难通过单一手段将产物分离和纯化。 (3)生化产品的稳定性差:许多发酵产品具有生理活性,很容易变性失活,如原料液中常存在降解目标产物的蛋白酶、菌体也可能自溶、容易被杂菌污染:遇热、极端pH 值、有机溶剂会引起失活或分解,特别是蛋白质的生物活性与一些辅因子、金属离子的存在和分子的空间构型有关。甚至剪切力也会影响空间构型和使分子降解,对蛋白质的活性有很大影响,因此,分离过程中的pH值、温度和搅拌等条件必须特别注意。发酵液放罐后,应及时快速操作,要求采用快速的分离纯化方法除去影响目标产物稳定性的杂质。 (4)对最终产品的质量要求高:对产物的要求:保持生物产物的活性、纯度要求高,当生物技术产品是食品或药物时,要求无污染物、无对映体、无病毒、无热原、无致敏原等。 3、生物分离工程的一般步骤是什么?各步骤中的单元操作主要有哪些? 一般包含四个步骤,如图所示。 预处理中有加热、调pH、絮凝等单元操作;细胞分 离中有沉降、离心、过滤、错流过滤等操作步骤;细胞破 碎中有均质化、研磨、溶胞等单元操作;细胞碎片分离中 有离心、萃取、过滤、错流过滤等单元操作;初步纯化中 有沉淀、吸附、萃取、超滤等单元操作;高度纯化中有层 析、离子交换、亲和、疏水、吸附、电泳等单元操作;成 品加工中有无菌过滤、超滤、冷冻干燥、喷雾干燥、结晶等单元操作。 4、生物分离过程的选择准则是什么?

生物分离技术复习题

选择题: 1.HPLC是哪种色谱的简称()。 A.离子交换色谱 B.气相色谱 C.高效液相色谱 D.凝胶色谱 2.针对配基的生物学特异性的蛋白质分离方法是()。 A.凝胶过滤 B.离子交换层析 C.亲和层析 D.纸层析 3.盐析法沉淀蛋白质的原理是() A.降低蛋白质溶液的介电常数 B.中和电荷,破坏水膜 C.与蛋白质结合成不溶性蛋白 D.调节蛋白质溶液pH到等电点 4.从组织中提取酶时,最理想的结果是() A.蛋白产量最高 B.酶活力单位数值很大 C.比活力最高 D.Km最小 5.适合于亲脂性物质的分离的吸附剂是()。 A.活性炭 B.氧化铝 C.硅胶 D.磷酸钙 6.下列哪项酶的特性对利用酶作为亲和层析固定相的分析工具是必需的?() A.该酶的活力高 B.对底物有高度特异亲合性 C.酶能被抑制剂抑制 D.最适温度高 E.酶具有多个亚基 7.用于蛋白质分离过程中的脱盐和更换缓冲液的色谱是() A.离子交换色谱 B.亲和色谱 C.凝胶过滤色谱 D.反相色谱 8.适合小量细胞破碎的方法是() 高压匀浆法 B.超声破碎法 C.高速珠磨法 D.高压挤压法 9.盐析法沉淀蛋白质的原理是() A.降低蛋白质溶液的介电常数 B.中和电荷,破坏水膜 C.与蛋白质结合成不溶性蛋白 D.调节蛋白质溶液pH 到等电点 10.蛋白质分子量的测定可采用()方法。 A.离子交换层析 B.亲和层析 C.凝胶层析 D.聚酰胺层析 11.基因工程药物分离纯化过程中,细胞收集常采用的方法() A.盐析 B.超声波 C.膜过滤 D.层析 12.离子交换剂不适用于提取()物质。 A.抗生素 B.氨基酸 C.有机酸 D.蛋白质 13.人血清清蛋白的等电点为4.64,在PH为7的溶液中将血清蛋白质溶液通电,清蛋白质分子向() A :正极移动;B:负极移动;C:不移动;D:不确定。 14.蛋白质具有两性性质主要原因是() A:蛋白质分子有一个羧基和一个氨基;B:蛋白质分子有多个羧基和氨基;C:蛋白质分子有苯环和羟基;D:以上都对 15.使蛋白质盐析可加入试剂() A.氯化钠; B.硫酸; C.硝酸汞; D.硫酸铵 16.凝胶色谱分离的依据是()。 A、固定相对各物质的吸附力不同 B、各物质分子大小不同 C、各物质在流动相和固定相中的分配系数不同 D、各物质与专一分子的亲和力不同 17.非对称膜的支撑层()。 A、与分离层材料不同 B、影响膜的分离性能 C、只起支撑作用 D、与分离层孔径相同 18.下列哪一项是强酸性阳离子交换树脂的活性交换基团() A 磺酸基团(-SO3 H) B 羧基-COOH C 酚羟基C6H5OH D 氧乙酸基-OCH2COOH 19.依离子价或水化半径不同,离子交换树脂对不同离子亲和能力不同。树脂对下列离子亲和力排列顺序正确的有()。 A、Fe3+﹥Ca2+﹥Na+ B、Na+﹥Ca2+﹥Fe3+ C、Na+﹥Rb+﹥Cs+ D、Rb+﹥Cs+﹥Na+ 20.乳化液膜的制备中强烈搅拌()。

磁分离技术在水处理中的运用

磁分离技术在水处理中的运用 【摘要】磁分离技术具有分离速度快、效率高等特点,它已经应用于食品废水处理、含油废水处理、城市污水处理、印染废水处理等工业废水的处理,随着发展进步,该技术不断拓宽应用领域,如固体废弃物矿渣、粉煤灰。 【关键词】磁分离技术;高梯度磁分离技术;水处理 Magnetic separation technology in water treatment Li Sa-li (Taiyuan University of Technology Shanxi taiyuan 030024) 【Abstract】Magnetic separation technology has higher separate speed and efficiency. It is widely used in the food waste water treatment,oily wastewater treatment,the urban sewage treatment,printing and dyeing wastewater treatment of industrial waste water treatment.Along with the development of society,this technology is widening its fields in application,such as solid waste slag and fly ash. 【Key words】Magnetic separation technology;High gradient magnetic separation technology;Water treatment 1.磁分离技术简介 磁分离技术是借助磁场力的作用,对磁性不同的物质进行分离的一种物理分离方法。 废水中的污染物种类很多,对于具有较强磁性的污染物,可直接用高梯度磁分离技术分离;对于磁性较弱的污染物可先投加磁种(如铁粉、磁铁矿、赤铁矿微粒等)和混凝剂,使磁种与污染物结合,然后用高梯度磁分离技术除去。磁分离的物理作用基本原理就是通过外加磁场产生磁力,把废水中具有磁性的悬浮颗粒吸出,使之与废水分离,达到去除或回收的目的。 2.磁分离技术的研究进展 磁分离技术用于水处理工程,它又可以称得上是一门新兴技术。从上世纪60年代开始,苏联用磁凝聚法处理钢厂除尘废水,60年代末,美国MIT教授科姆发明高梯度磁过滤器,70年代美国应用磁絮凝法和高梯度磁分离法处理钢铁、食品、化工、造纸等废水。1974年瑞典开始用磁盘法处理轧钢废水,随后的75年日本开发盘式“两秒分离机”。我国从70年代中期到80年代初,将磁聚凝法、磁盘法、高梯度磁分离法用于炼钢、轧钢废水的处理。近年来,磁分离技术在电镀废水、含酚废水、湖泊水、食品发酵废水、市政废水、钢铁废水、厨房污水、

Anti-DYKDDDDK Magarose beads

Anti-DYKDDDDK Magarose Beads 目录 1.产品介绍 (1) 2.试剂准备 (1) 3.样品纯化 (2) 4.试剂兼容性 (3) 5.问题及解决方案 (3) 6.订购信息及相关产品 (4) 1.产品介绍 Flag标签是一个由八个亲水氨基酸组成的多肽片段,定位在融合蛋白表面,因此更易与抗体结合以及被肠激酶分解。Magarose Beads系列产品具有超顺磁性、快速磁响应性、丰富羟基官能团和相对集中的粒径等特点,是医学与分子生物学研究中重要的载体工具。Anti-DYKDDDDK Magarose Beads是以抗flag(DYKDDDDK)抗体为亲和配体,一步纯化原核、酵母或哺乳动物细胞表达的flag标签融合蛋白。 表1.Anti-DYKDDDDK Magarose Beads产品性能 性能指标 基质磁性琼脂糖微球 配体Anti-DYKDDDDK Antibody 结合能力(/ml磁珠)>1mg DYKDDDDK标签蛋白 粒径(μm)30-100 储存缓冲液PBS,0.01%Tween-20,0.02%NaN3 磁珠体积磁珠体积占悬浮液体积的20% 储存温度2°C-8°C 2.试剂准备 2.1样品准备 上柱之前要确保样品溶液有合适的离子强度和pH值,可以用平衡液对样品或细胞培养液稀释,或者用平衡液透析。 样品在上样前建议离心或用0.22μm或0.45μm滤膜过滤,减少杂质,提高蛋白纯化效率和防止堵塞柱子。 2.2缓冲液的准备 所用水和缓冲液在使用之前建议用0.22μm或0.45μm滤膜过滤。 平衡/洗杂液:50mM Tris,0.15M NaCl,pH7.4 洗脱液:0.1M glycine HCl,pH3.0

(设备管理)稀土磁盘分离净化废水技术及成套设备

稀土磁盘分离净化废水技术及成套设备 一、成果名称:稀土磁盘分离净化废水技术 二、应用领域 稀土磁盘分离净化废水技术的应用从广义上讲,凡含有铁磁性物质的介质,均可将铁磁性物质从中吸附出来,达到分离的目的。目前应用的领域主要有:轧钢浊环水净化、连铸浊环水净化、转炉污泥富集金属铁、铁矿尾矿洗选提高TFe 品位、金属研磨废液净化和过滤器过滤铁磁性悬浮物后的反冲水净化。 稀土磁盘分离净化废水技术优势: 1、该设备结构紧凑、占地面积小; 2、运行稳定可靠,耗电少; 3、去除铁磁性悬浮物效果好,去除率可达80~95%; 4、回收铁磁性悬浮物含水率90%,若增加磁力压榨脱水机,含水率可降到35%; 5、稀土永磁材料使用寿命长、10年衰减5~10%; 6、进水压力无特殊要求,一般为0.05Mpa。 四、技术原理 在冶金过程中产生的废水多含有铁磁性及顺磁性物质,利用稀土磁盘的高强磁场将废水中的磁性、弱磁性的悬浮物打捞分离出来,从而达到水质净化和磁性物回收的目的。 五、稀土磁盘分离净化废水技术工艺介绍

稀土磁盘分离净化技术是专注于冶金过程中的连铸和轧钢的浊环水处理过程,其工艺为铁皮沟――旋流沉淀池――稀土磁盘净化(主要作用去除悬浮物及油)――冷却塔,该设备利用稀土永磁材料的高强磁能积,通过稀土磁盘的聚磁组合,实现工作空间的高磁场强度和高磁场梯度,产生的磁力是重力的600多倍。在该磁场力作用下,连铸、热轧浊循环水中的铁磁性物质微粒和通过药磁絮凝吸附在铁磁性物质微粒上面的非磁性物质微粒和乳化油,可克服流体阻力和重力等机械外力,产生快速定向运动,吸附在稀土磁盘表面,从而将废水中的悬浮物和油吸附分离出来,再通过隔磁卸渣装置将稀土磁盘表面的吸附物卸下,刨入螺旋槽,经输渣装置输出,实现连铸、热轧浊循环水的净化和循环使用。后续采用与之配套的磁力压榨脱水机,最终渣含水率≤35%,从而可省去浓缩池,降低投资。 稀土磁盘分离净化技术成套设备主要包括:稀土磁盘机、磁力压榨脱水机、圆盘式除油机和加药装置四部分。 稀土磁盘分离净化废水技术工艺流程简述: 1、当流体流经磁盘之间的流道时,流体中所含的磁性悬浮絮团,受到强磁场力的作用,吸附在磁盘上,逐渐从流体中分离出来; 2、磁盘以每分钟0.1~1转的速度旋转,让悬浮物脱去大部份水份,运转到刮渣条时,形成隔磁卸渣带,由刮渣轮刮入“螺旋输送机”,渣被输入渣池; 3、卸渣后磁盘重新转入流体,形成周而复始的废水处理过程,达到废水净化、悬浮物回收、循环水回用的目的; 渣通过磁力压榨机脱水后含水率可达35%。 六、稀土磁盘分离净化技术成套设备

《生物分离与纯化技术》授课教案

《生物分离与纯化技术》授课教案 第一章绪论 教学目的:熟悉生物物质的概念、种类和来源;了解分离纯化技术及其基本原理;熟悉分离纯化工艺的优化、放大和验证工作;掌握分离纯化的特点与一般步骤;了解生物分离纯化技术的发展历史;熟悉生物分离纯化技术的发展趋势。 教学重点:生物物质的概念、种类和来源;分离纯化工艺的优化、放大和验证工作;分离纯化的特点与一般步骤;生物分离纯化技术的发展趋势。 教学难点:分离纯化技术及其基本原理;分离纯化工艺的优化、放大和验证工作。教学课时:4 学时 教学方法:多媒体教学 教学内容: 第一节生物分离与纯化的概念与原理 一、生物物质的概念、种类和来源 1. 生物物质:氨基酸及其衍生物类、活性多肽类、蛋白质、酶类、核酸及其降解 物、糖、脂类、动物器官或组织制剂、小动物制剂、菌体制剂 2. 生物物质来源:动物器官与组织、植物器官与组织、微生物及其代谢产物、细胞培养产物、血液、分泌物及其代谢物 二、生物分离纯化概念 指从发酵液、动植物细胞培养液、酶反应液或动植物组织细胞与体液等中分离、纯化生物产品的过程。 三、生物分离纯化技术

生物技术 上游:基因工程、细胞工程、酶工程、发酵工程及组织工程;下游:生物产品的回收——生物分离与纯化技术,主要包括离心技术、细胞破碎技术、萃取技术、固相析出技术、色谱技术和膜分离技术等。 四、分离纯化基本原理 有效识别混合物中不同组分间物理、化学和生物学性质的差别,利用能够识别这些差别的分离介质或扩大这些差别的分离设备来实现组分间的分离或目标产物的纯化。

第二节分离纯化策略 一、生物分离纯化技术的特点 1. 环境复杂、分离纯化困难 2. 含量低、工艺复杂

磁分离技术的基本原理

磁分离技术的基本原理 磁分离技术应用于废水处理有三种方法:直接磁分离法、间接磁分离法和微生物—磁分离法。利用磁技术处理废水主要利用污染物的凝聚性和对污染物的加种性。凝聚性是指具有铁磁性或顺磁性的污染物,在磁场作用下由于磁力作用凝聚成表面直径增大的粒子而后除去。加种性是指借助于外加磁性种子以增强弱顺磁性或非磁性污染物的磁性而便于用磁分离法除去;或借助外加微生物来吸附废水中顺磁性离子,再用磁分离法除去离子态顺磁性污染物。 磁分离技术是借助磁场力的作用,对不同磁性的物质进行分离的一种技术。一切宏观的物体,在某种程度上都具有磁性,但按其在外磁场作用下的特性,可分为三类:铁磁性物质、顺磁性物质和反磁性物质。其中铁磁性物质是我们通常可利用的磁种。各种物质磁性差异正是磁分离技术的基础。 磁分离法按装置原理可分为磁凝聚分离、磁盘分离和高梯度磁分离法三种。按产生磁场的方法可分为永磁分离和电磁分离(包括超导电磁分离)。按工作方式可分为连续式磁分离和间断式磁分离。按颗粒物去除方式可分为磁凝聚沉降分离和磁力吸着分离。 磁分离技术分类 1磁凝聚法 磁凝聚法是促使固液分离的一种手段,是提高沉淀池或磁盘工作效率的一种预处理方法。根据斯托克斯定律,利用磁盘吸引磁性颗粒,颗粒越大所受到的磁力越大,越易被磁盘吸着去除。废水通过磁场,水中磁性颗粒被磁化,形成如同具有南北极的小磁体。由于磁场梯度为零,因此它受到的大小相等方向相反的力的作用,合力为零,颗粒不被磁场捕集,但颗粒之间却相互吸引,聚集成大颗粒。当废水通过磁场以后,由于磁性颗粒具有一定的矫顽力,因此能继续产生凝聚作用。对于钢铁废水,通过预磁处理,一般沉降效率可提高40%—80%。 磁凝聚法的特点是: (1)可节省大量用于化学絮凝的药剂以及相应的贮存、制备和投加设备。 (2)用永久磁铁时,只需一次投资,不需日常管理费用,不消耗能源。用电磁处理每m3废水也只需0.001—0.003 kWh,电耗甚少。 (3)效果稳定,不需要复杂的操作管理。

天然产物提取分离新技术

天然产物提取分离新技术 ■常温超高压技术 高压生物化学研究已经证明:压力达到一定值,蛋白质、多糖(淀粉、纤维素)等有机大分子会发生变性,但生物碱、低聚糖、甾、萜、苷、挥发油、维生素等小分子物质则不发生任何变化。 在高压生物化学的研究中还证明了:高压灭菌的机理是,压力作用于微生物,使细胞壁变性、破裂,细胞内容物外泄,从而使微生物致死。在肉、鱼、水果、蔬菜的高压加工中也证实了细胞的这种变化。 超高压提取就是利用了超高压对生物材料的这种作用实现有效成分提取的。植物细胞壁上有很多微孔,因此我们可以把植物细胞壁看作是由许多微孔组成的薄膜。当植物细胞处于溶剂中时,溶剂将通过这些微孔进入细胞内部。 1.升压时: 通过渗透作用,溶剂进入细胞内部;由于我们施加的压力非常大,因此通量很大,细胞内部在短时间内就会充满溶剂。 细胞内部充满溶剂后,细胞壁两侧压力平衡。 2.保压时: 细胞内容物与进入细胞内部的溶剂接触,经过一段时间,有效成分溶于这些溶剂中。 3.泄压时: 细胞外部的压力减小为零,细胞内部的压力仍然保持平衡时的压力,此时压力差与施加压力时方向相反。由于我们施加的是超高压,因此这种反方向的压力差仍然是很大的。 4.在反方向压力作用下,细胞壁变形;如果变形超过了其反向变形极限,细胞壁破坏;于是,溶解了有效成分的溶剂泄出,与其它溶剂汇合。 5.如果在反方向压力作用下细胞壁的变形仍然没有超过其反向变形极限,细胞内部已经溶解了有效成分的溶剂将通过渗透作用排出,与其它溶剂汇合。由于反方向压力差非常大,因此溶解了有效成分的溶剂快速且完全地泄出。

常温超高压提取技术可以使用多种溶剂,包括水、不同浓度的醇和其它有机溶剂,可以从不同的天然产物中提取不同性质(如生物碱、黄酮、皂甙、多糖、挥发油)的有效成分。 ■超声波提取技术 超声波是一种高频率的机械波。超声场主要通过超声空化向体系提供能量。频率范围在15-60kHz的超声,常被用于过程强化和引发化学反应,超声波在天然产物有效成分提取等方面已有了一定作用。其原理主要是利用超声的空化作用对细胞膜的破坏,有助于有效成分的溶出与释放,超声波使提取液不断震荡,有助于溶质扩散,同时超声波的热效应使水温基本在57℃,对原料有水浴作用。超声波提取与传统的回流提取、索氏提取发比较,具有提取速度快、时间短、收率高、无需加热等优点。已被许多天然产物分析过程选为供试样处理的手段。 ■微波辅助提取技术 微波是一种非电离的电磁辐射。微波辅助提取(Microwave Assisted Extract ion,MAE)是利用微波能来提高萃取率的新发展起来的技术。被提取的极性分子在微波电磁场中快速转向及定向排列,从而产生撕裂和相互摩擦引起发热,可以保证能量的快速传递和充分利用,易于溶出和释放。微波辅助提取(以下简称微波提取)的研究表明,微波辐射诱导萃取技术具有选择性高、操作时间短、溶剂耗量少、有效成分收率高的特点,已被成功应用在药材的浸出、中药活性成分的提取方面。它的原理是利用磁控管所产生的每秒24.5亿次超高频率的快速震动,使药材内分子间相互碰撞、挤压,这样有利于有效成分的浸出,提取过程中,药材不凝聚,不糊化,克服了热水提取易凝聚、易糊化的缺点。 微波萃取技术有一定的局限性,只适宜于对热稳定的产物。 ■酶法提取技术 天然植物的细胞壁由纤维素构成,其中的有效成分往往是包裹在细胞壁内。酶法就是利用纤维素酶、果胶酶、蛋白酶等(主要是纤维素酶),破坏植物的细胞壁,以利于有效成分最大限度溶出的一种方法。酶反应可以较温和的将植物组织分解,从而大幅度提高提取效率。 ■分子蒸馏技术

现代生物分离技术及其应用举例

现代生物分离技术及其应用举例生物物质的分离(Bioseparation)是生物工程的一个重要部分。国外文献中,常称之为下游过程(Downstream Process),国内则称之为产品的分离或回收。其目的是把生物反应液,如发酵液或酶反应液内的有用物质分离出来,获得所需的目标成品。 不同的生物产物,其溶解度、分子大小、形状、极性、电荷性质、专一结合位点等理化和生物学性质有或大或小的差异,所以采用适当的分离技术可将其分离纯化。 根据分离过程的基本原理,分离可分机械分离和传质分离两大类。机械分离的对象是非均相物系,是依据物质相态的不同(例如液体、固体),以及依据物质大小、密度的差异进行分离,如过滤、重力沉淀和离心降解等。传质分离的对象主要是均相物系,通常是溶液,可分为速度分离和平衡分离两种。速度分离根据物质溶质在外力作用下产生的移动速度的差异实现分离,亦可称为输送分离,其传质推动力主要有压力差、电位梯度和磁场梯度等,如滤超、反渗透、电渗析、电泳和磁泳等;平衡分离则根据溶质在两相中分配平衡状态的差异实现分离,又称扩散分离法,其传质推动力为偏离平衡态的活度差或浓度差,如蒸馏、蒸发、吸收、萃取、结晶、吸附和离子交换等。对于特定的目标产物,应根据其自身的性质以及共存杂质的特性,选择适宜的分离方法,以

获得最佳分离效果。即在保证目标产物的生物活性不受(或少受)损伤的同时,达到所需的纯度和对回收率的要求,并使回收过程成本最小,以适应大规模工业生产需求。 生物工艺中目前常用的生物分离提纯原理及方法如下表所示: 分离提纯原理分离纯化方法分离对象举例 溶解度的差异 分配系数的差异 分子大小和形状的差异 电荷性质的差异盐析法、等电点沉淀 法、有机溶剂沉淀法、 PEG沉淀法 有机溶剂萃取法、双水 相萃取法、反胶束萃取 法、液膜萃取法、超临 界流体萃取法 离心过滤法、离心沉降 法、超离心法、微滤法、 超滤法、纳滤法、透析 法、凝胶过滤法 离子交换层析法、电泳 法、色谱聚焦法、等电 聚焦法 蛋白质 有机酸、氨基酸、 抗生素、蛋白质、 香料、脂质 菌体、菌体碎片、 细胞、细胞碎片、 蛋白质、核酸、 糖类 蛋白质、氨基酸、 核酸

高梯度磁分离应用研究进展

高梯度磁分离技术研究进展 摘要:本文介绍了高梯度磁分离技术的发展历史,及其应用领域。 关键词:高梯度磁分离技术;磁选机;水处理; Abstract: The essay briefly introduces the history of high gradient magnetic separation technique, and it’s application rage. Key words: high gradient magnetic separation technique;magnetic separation; water treatment 1 引言 磁分离技术是一门新兴的环境保护技术。国外自70年代开始进行研究以来,磁分离技术作为物理处理技术已在高岭土的脱色增白、煤的脱硫、矿石的精选、生物工程、酶反应工程等领域得到了广泛的应用[1],并成功地应用于城市工业废水和生活污水、废料、污染的河水、湖水以及饮用水[2]的处理。 高梯度磁分离技术(High Gradient Magnetic Separation, HGMS)是利用不同物质在磁场中具有不同的磁性的特点来分离混合物的技术[3]。一般的做法是:在电磁线圈产生的磁场中加入高磁化强度的聚磁感应介质,形成磁力线的非均匀分布,从而产生高梯度磁场,得到强大的磁场力(见表1),促使弱磁性物质向聚磁感应介质移动,并吸附于介质之上,使其与非磁性物质分离[4]。 表1 各种磁分离机的磁场强度、磁场梯度和磁场力

2.高梯度磁分离技术发展历史 1967年 8月 ,美国的 Ianncelli J博士将 Frantz磁选机的早期高梯度与Jones磁选机的强磁场结合起来 ,形成第一台高梯度磁选机的雏形[5]。1972年 ,太平洋电机公司 ( PEMC )制成第一台 PEM84周期式高梯度磁选机。美国治亚洲和英国康沃尔郡曾用这种磁选机提纯高岭土[6]。1975年 ,萨拉磁力公司制造了第一台周期式高梯度磁滤机 SALA214 - 14 - 5用于处理钢厂废水[7]。1976年,美国环保局投入19万美元来研制开发用于工业烟气除尘的高梯度磁分离器。当时Gooding估计这种除尘技术比起传统的过滤技术、湿式除尘器以及静电除尘器要灵活、经济[8]。1979 Gooding等发表了高梯度磁分离技术除尘的小规模实验室结果[9],随后又进行了半工业性的实验[10]。为了使高梯度磁分离器进一步节省能耗和提高效率,可以用高温度超导体代替铁芯。Selvaqqi. J. A.研究了用铌-钛超导体代替铁芯,在相同的激磁电流下,产生的磁强度要大的多[11]。荷兰 Smit - Nymegen公司专门开发了一种污水处理用高梯度磁过滤器,并成功地进行了工业试验[12]。Lua. A. C.应用高梯度磁分离对BOF粉尘进行实验[13],在试验中研究了钢毛负荷量并考虑了钢毛的物理参数对除尘效率的影响。1995年Waston. J. H. P设计了用于核工业排放的烟气处理的高梯度磁分离器[14]。Mattias Franzred 等人针对电磁高梯度过滤器能耗高的问题,开发出了一种专用于污水处理的Carousel 永磁型 HGMF,连续试验表明, 在最优工艺条件下,含磷废水经该设备处理后,出水中磷含量可降至0.5mg/L以下,去除率达80%以上[15]。 自1972年到现在,萨拉磁力公司研制了Mark Ⅱ、Mark Ⅲ、SALA- HGMS120、SALA-HGMS185和SALA-HGMS480型等多种转环式磁选机。国内长沙矿冶研究院等单位根据Jones式平环高梯度磁选机也设计出更先进的SHP平环高梯度磁选机。选择性差和介质易堵塞等原因,使平环高梯度磁选机在工业应用上受到较大的限制。为了获得更好的分选效果,第十五届国际选矿会议上出现了两种连续作业的立换高梯度磁选机[16,17]:一种是美国制造的永磁立环高梯度磁选机,称为铁轮磁选机(Ferrours Wheel Magnetic Separation);另一种是捷克布拉格选矿所研制的VMS双立环高梯度磁选机。第十六届国际选矿会议上介绍了另一种在VMS型上发展而成的VMKS-1立环高梯度磁选机[18]。这类磁选机采用了反冲磁性颗粒的方法,使粗颗粒不必穿过磁介质就能被冲洗出来,因而具有不易堵塞的优点。但是

赵官能源矿井水处理超磁分离净化工艺的应用

赵官能源矿井水处理超磁分离净化工艺的应用 刘孝利,刘德春,李云志 (山东能源新矿集团赵官能源有限责任公司,山东齐河251113) 摘要针对煤炭开采活动对地下含水系统造成的局部破坏和污染,应用矿井水处理超磁分离净化工艺,妥善处理、处置生产活动产生的污水,合理解决污水处理处理过程中产生的煤泥,实现矿井水清水直排升井,降低水处理费用,达到保护环境的要求。 关键词矿井水超磁分离工艺应用实践 中图分类号X703文献标识码B 赵官能源公司是山东能源新矿集团的全资子公司,位于黄河北煤田中西部,井田面积59.21km2,地质储量3.47亿t,可采煤层中以薄煤层为主,设计年生产能力90万t。矿井正常涌水量1413m3/h。赵官能源应用超磁水处理工艺,将水处理工艺由地面搬到了井下,每小时600m3的处理能力,满足了矿井水的清水升井要求,降低了水处理费用,保护了环境。 1超磁分离水处理工艺原理及技术优势 1.1超磁分离水处理的工艺原理 超磁分离净化设备是由一组强磁力稀土磁盘打捞分离机械组成。流体流经磁盘之间的流道时,流体中所含的磁性悬浮絮团受到强磁场力的作用,吸附在磁盘盘面上,随着磁盘的转动,逐渐从水体中分离出来。磁盘转速为1 3r/min,待悬浮物脱去大部份水份,运转到刮渣条时,形成隔磁卸渣带,由刮渣刨轮刮入“螺旋输送机”,产生的废渣输入渣池。被刮去渣的磁盘又重新转入水体,形成周而复始的超磁分离净化水体的全过程。 1.2微磁凝聚技术和磁种回收技术 1.2.1微磁凝聚技术 超磁分离技术的关键是利用磁盘吸附具有磁性的悬浮物,而矿井水中的悬浮物本身是不带磁性的,如果要利用超磁分离净化设备净化矿井水,就必须让非磁性悬浮物带上磁性。微磁凝聚技术就是解决这一问题的关键。该技术通过向原水中投加专用磁种(磁粉),使磁种在混凝剂和助凝剂的作用下与原水中的悬浮物形成以磁种为核的混合体絮团。因磁种带有微磁性,当絮团沿着水流经过超磁分离机时,聚磁组合磁盘能快速捕捉吸附絮团,实现悬浮物与水体的机械分离,从而达到净化水体的目的。 1.2.2磁种回收技术 微磁凝聚技术解决了超磁水处理的第一个难题,同时带来另一个难题,就是磁种的连续投加增加了运行费用。为了节约资源同时也考虑吨水处理的运行成 *收稿日期:2011-08-10 作者简介:刘孝利(1982-),男,山东泰安人,2006年7月毕业于山东大学(威海)中文系,现为山东能源新矿集团赵官能源有限责任公司行政办公室副主任。本,超磁处理工艺开发了磁种回收技术。将超磁分离净化设备分离出的废渣(磁种和悬浮物的混合体)经螺旋输送装置进入脱磁和高速搅拌环节,实现磁种和悬浮物的分离,能将投加入废水中的磁种回收再利用,磁鼓磁场强度高,回收效率可达99%,剩余的非磁性物质作为污泥集中处理。 1.3超磁分离水处理技术的特点及优势 (1)采用稀土磁钢构造分离磁场,技术稳定成熟。超磁分离水体净化技术在国内市场应用已有10多年的历史。目前,冶金行业在线运行的成套设备达240多个工程项目,处理能力超过940万t/d,是自主创新的国际先进技术,其超磁分离技术在设备的布磁、聚磁组合、微磁絮凝、脱磁、分散等工艺技术上实现了突破,设备不断改进与完善,已发展到了第五代超磁分离机,技术稳定而成熟。 (2)分离时间短。磁分离工艺与传统的絮凝沉降最主要的区别在于:采用磁分离技术不需要沉降时间。传统的絮凝沉降工艺是在加药絮凝后形成大絮团,靠重力沉降。磁分离技术因采用稀土磁钢,其表面产生磁力是重力的640倍以上,能快速地捕捉到微磁性絮团,整个分离过程仅需3 5s,分离时间远远小于沉降分离时间。 (3)水处理药剂用量少。磁分离依靠强磁力进行吸附分离,不需要大量的药剂形成大的絮团,仅需微凝絮团即可。与常规的混凝沉降系统比较,可大大节约系统的药剂使用量(仅为常规水处理加药量的1/3 1/2),节省药剂费用。 (4)设备占地少,处理量大。由于磁分离实现了悬浮物与水体的快速分离,大大提高了单位时间的处理效率,设备的占地面积也相应地大大节省。与传统处理方法相比,处理12000m3/d的超磁分离机长?宽?高≈3.3?3.0?2.2m。设备处理能力取决于磁盘数量的多少,水量增加,相应的磁盘数量增加即可,其单台设备最大处理能力可达36000m3/d。 (5)出渣污泥浓度高。磁分离设备分离悬浮物的方法是靠磁力把絮团吸出水面,完全实现渣与水的分离,出渣含量大于70000mg/L,含水率约93%,可不经过浓缩直接进入脱水设备。经过常规的压滤脱水后,污泥含水率小于45%,便于装卸外运。(下转第44页) 2 42012年第4期

相关主题
文本预览
相关文档 最新文档