当前位置:文档之家› 线性代数第二章习题答案复习课程

线性代数第二章习题答案复习课程

线性代数第二章习题答案复习课程
线性代数第二章习题答案复习课程

线性代数第二章习题

答案

习 题 2-1

1.由6名选手参加乒乓球比赛,成绩如下:选手1胜选手2、4、5、6而负于选手3;选手2胜选手4、5、6而负于选手1、3;选手3胜选手1、2、4而负于选手5、6;选手4胜选手5、6而负于选手1、2、3;选手5胜选手3、6而负于选手1、2、4;选手6胜选手2而负于选手1、3、4、5.若胜一场得1分,负一场得0分,使用矩阵表示输赢状况,并排序.

解: ?????

??

?

?

?

??000010

100100110000001011

1110001110106543216

54321,选手按胜多负少排序为:6,5,4,3,2,1.

2.设矩阵???

? ??-=???? ??+-=2521

,03231z x y x B A ,已知B A =,求z y x ,,. 解:由于B A =得?????=-=+=-0253223z x y x ,解得:??

?

??===211

z y x 。

习 题 2-2

1.设???? ??=0112A ,???

?

??-=4021B ,求 (1)B A 52-; (2)BA AB -; (3)22B A -.

解:(1)???

?

??--=???? ??--???? ??=???? ??--???? ??=-202892001050224402150112252B A ;

(2)

???

?

??--=???? ??--???? ??--=???? ?????? ??--???? ??-???? ??=-2592041021820112402140210112BA AB ;

(3)???

?

??--=???? ??-???? ??=???? ??-???? ??--???? ?????? ??=-152441606112254021402101120112B A 22.

2.已知????? ??--=230412301321A ,???

?

? ??---=052110

35123

4B ,求B A 23-. 解:???

?

? ??----?????

??--=052110351234223041230

13

2

1323B -A

???

??

??----=????? ??----????? ?

?--=61941016151055011010422061024686901236903963

3.设???

?

? ??----=????? ??=101012121234

,432112122121B A ,求

(1)B A -3; (2)B A 32+; (3)若X 满足B X A =-,求X ;

(4)若Y 满足()()O Y B Y A =-+-22,求Y .

解:(1)???

?

? ??-----????? ??=-101012121234

43211212212133B A

????

? ??-=????? ??-----????? ??=1397328285131101012121234

1296336366363; (2)???

?? ??----+????? ??=+101012121234

3432112122121232B A

?????

?

?--=????? ??----+????? ??=561

2525278

13143030363636912864224244242; (3)由B X A =-得,

???

?

?

?

?---=????? ??-----????? ??=-=53310404

1113101012121234

432112122121B A X ; (4)由()()O Y B Y A =-+-22得,

????

?

??

?

??=????? ??=+=2232

32340

3402231031033112020335532)(32B A Y 。 4.计算下列矩阵的乘积:

(1)????

? ??=????? ???+?+??+?-+??+?+?=????? ??????? ??-49635102775132)2(71112374127075321134;

(2)()???

?

?

??12332110132231=?+?+?=;

(3)???

?

? ??---=????? ???-??-??-?=-????? ??63224223)1(321)1(122)1(2)21(312;

(4)??

???

?

? ??---???? ??-20413121023

143110412

???? ??-?+?+?-+??+-?+-?-+??+?+?-+?-?+?+?+??+-?+-?+??+?+?+?=)2(4132)1(2104)3(3)1()1(3144130)1(11)2(014212200)3(4)1(1324

0140112???

? ??---=55201076; (5)()???

?

? ??????? ??321333231232221131211321x x x a a a a a a a a a x x x

()???

?

? ??++++++=3213332231133

322221123

31221111x x x x a x a x a x a x a x a x a x a x a

333322311323322221121331221111)()()(x x a x a x a x x a x a x a x x a x a x a ++++++++=

2

33332322322223131132121122111)()()(x a x x a a x a x x a a x x a a x a ++++++++=。

(6)??

?

?

?

?

?

??---=

???????

??---???????

??9000

3400

4210

25

21

30003200

121013

01

3000120010100121。

5.设???

?

?

??=λλλ001001A ,求3A .

解:????

?

?

?=????? ??????? ??=2λλλλλλλλλλλA 0020

120010010010012

22

????

? ??=????? ?

?????? ??==32

32

3

22

2

2

30

030

330010010020

12λλλλλλλλλλλλλλA A A 。 6.设?

??? ??=021032A ,????? ??=032001B ,?

???

? ??=542001C , (1)求AB 及AC ;

(2)如果AC AB =,是否必有C B =? (3)求T T A B .

解:(1)???? ??=????? ?????? ??=4162032001021032AB ,???

? ??=????

?

?????? ??=4162542001021032AC ; (2)由(1)知AC AB =,而C B ≠;

(3)???

? ??=???? ??==16424162T

T (AB)A B T T 。 7.已知1)(2--=x x x f ,???

?

?

??-=011213113A ,求)(A f .

解:????? ??-????? ??--????? ??-????? ??-=--=100010001011213113011213113011213113)(E A A A 2

f

????

?

??--=????? ??-????? ??--????? ??-=211301142910001000101121311310052145313。 8.举反例说明下列命题是错误的: (1)若O A =2,则O A =;

(2)若A A =2,则O A =或E A =;

(3)若AY AX =,且O A ≠,则Y X =.

解:(1)举例若01111≠???? ??--=A ,而02

=A ;

(2)举例若???? ??=0011A ,A A =2

而0≠A 且E A ≠; (3)举例若???? ??--=1111A ,???

?

??=0011X ,????

??=1100Y ,AY AX =,且O A ≠而Y X ≠。

9.证明: 如果BC CB AC CA ==, ,则有

(1))()(B A C C B A +=+;(2))()(AB C C AB =.

证明:(1))()(B A C CB CA BC AC C B A +=+=+=+; (2))()(AB C (CA)B (AC)B A(CB)A(BC)C AB ===== 10.设B A ,均为n 阶矩阵,证明下列命题是等价的: (1)BA AB =;

(2)2222)(B AB A B A ++=+; (3)2222)(B AB A B A +-=-;

(4)22))(())((B A B A B A B A B A -=+-=-+. 证明:(1)?(2)因为BA AB =,所以222222)(B AB A B BA AB A B A ++=+++=+;

(2)?(1)222222)(B AB A B BA AB A B A ++=+++=+,所以BA AB =;

(1)?(3)因为BA AB =,所以222222)(B AB A B BA AB A B A +-=+--=- (3)?(1)222222)(B BA AB A B AB A B A +--=+-=-,所以BA AB =; (1)?(4)因为BA AB =,所以2222))((B A B BA AB A B A B A -=-+-=-+ (4)?(1)2222))((B A B BA AB A B A B A -=-+-=-+,所以BA AB =。 11.设A 与B 是两个n 阶反对称矩阵,证明:当且仅当BA AB -=时,AB 是反对称矩阵.

证明:先证当BA AB -=时,AB 是反对称矩阵。

因为AB BA A B (AB)T T T -===,所以AB 是反对称矩阵。 反之,若AB 是反对称矩阵,即AB (AB)T -=,则BA A B AB AB T T T -=-=-=)(。

习 题 2-3

1.判别下列方阵是否可逆,若可逆,求它们的逆矩阵:

(1)???? ??-3411; (2)?

???

??-θθθθcos sin sin cos ; (3)?

???

? ??--523012101; (4)????? ??343122321; (5)?????

??987654321; (6)??

??

?

?

?

?

?1000210032104321. 解:(1)073

4

11≠=-=

A ,故1-A 存在,141322122111=-===A A A A

从而?????

?

??-=???? ??-==-71747173

1413711*1

A A A (2)01cos sin sin cos ≠=-=

θ

θ

θθA ,故1-A 存在,

θθ

θ

θ

cos sin sin cos 22122111=-===A A A A

从而*1

1A A A

=-???

?

??-=θθθθcos sin sin cos (3)025

230121

01≠=--=A ,故1-A 存在,

2,2,7,10,52221131211-====-=A A A A A , 1,2,1,5233323123==-=-=A A A A

从而*1

1A A

A =-??????? ?

?----=211

27115211

25

(4)023

431223

21≠==A ,故1-A 存在,

6,6,2,3,22221131211-===-==A A A A A , 2,5,4,233323123-==-==A A A A

从而*

11A A

A =

-?????

? ??----=11125323231

(5)09

87

654

3

21

==A ,故1-A 不存在。 (6)011

000210032104321≠==A ,故1-A 存在,

2,0,0,0,12114131211-=====A A A A A ,

1

,0,0,131242322====A A A A 1,2,1,0,0,1,244434241343332=-=====-=A A A A A A A

从而

??

?

?

?

?

?

??---==-100

021********

211*1

A A

A 。

2.设????

? ??=????

??=?????

?

?=130231,3512,34312

2321C B A ,求矩阵X 使满足C AXB =. 解:由1题中的(4)小题知 1

-A ?????? ?

?----=11125323231,又知???? ??--=-25131B 所以

==--11CB A X ?????? ?

?----11125323231?????

??130231???? ??--2513????? ??---=???? ??--????? ??-=410410122513202011。 3.设???? ??=3152A ,???? ??-=1264B ,???

?

??-=1242C ,解下列矩阵方程: (1)B AX =; (2)B XA =; (3)C AXB =.

解:???? ??--=-21531A ,???

? ??-=-42611611

B

(1)B AX ===?-B A X 1???? ??--2153????

?

?-=???? ??-802321264 (2)B XA ===?-1

BA X ???

? ??--=???? ??--???? ??-85321821531264

(3)==?=--11CB A X C AXB ???? ??--2153 ???? ??-1242???? ??-4261161?

????? ??--=478

5417815

4.利用逆矩阵解下列线性方程组:

(1)?????=+-=-+=--114231124342321321321x x x x x x x x x ; (2)???

??=++=++=++3

532522132321

321321x x x x x x x x x .

解:(1)取????? ??----=423243112A ,X ????? ??=321x x x ,???

?? ??=11114B ,则原方程组为B AX =

604232431

1

2

=----=A ,????? ??--=-111181111866126011A ∴?????

??==-1131

B A X ,即?????===1133

21x x x 。

(2)取????? ??=153522321A ,X ????? ??=321x x x ,???

?

?

??=321B ,则原方程组为B AX =

151535223

21==A ,????? ??---=-2141813413231511A ∴?????

??==-0011B A X ,即???

??===0013

21x x x 。

5.设O A =k (k 为正整数),证明121)(--++++=-k A A A E A E .

证明:因为))((12-++++-k A A A E A E

E )A A A (A A A A E k k k =++++-++++=--1212 (由O A =k )

所以121)(--++++=-k A A A E A E 。

6.设方阵A 满足O E A A =--22,证明A 和E A 2+都可逆,并求1-A 和1)2(-+E A .

证明:因为O E A A =--22可知E E)(A A =-?2

1

,所以A 可逆且

)(2

1

1E A A -=-;

又有O E A A =--22得E A)E E A =-?+3(4

1

)2(,所以E A 2+可逆且

)3(4

1

)2(1A E E A -=+-。

7.设B A AB A 2,321011330+=???

?? ??-=,求B .

解:因为B A AB 2+=,所以A B E A =-)2(,而???

?

?

??---=-1210113322E A ,

22=-E A ,

????

?

??---=--11131133121)2(1E A ,所以

????

?

??-=????? ??-?????

??---=-=-01132133032101133011131133121)2(1A E A B 。

8.设B A E AB A +=+???

?

? ??=2,101020101,求矩阵B .

解:由于B A E AB +=+2,有))(()(2E A E A E A B E A +-=-=- 而???

?? ??=-001010100E A 且01≠-=-E A ,可知E A -可逆,所以

???

?

? ??=+=201030102E A B 。

9.设*A 是n 阶方阵A 的伴随矩阵,证明:

(1)若A 可逆,则1||*-=A A A ; (2)若0||=A ,则0|*|=A ; (3)1|||*|-=n A A ;

(4)若A 可逆,则A A A A ||1

*)()*(11==--; (5)若A 可逆,则T T *)()*(A A =.

证明:(1)∵E A AA =*,而A 可逆,∴11||*--==A A E A A A

(2)0||=A ,当0=A ,则O A =*,∴0=*A

当0≠A ,则由E A AA =*0=,∴0=A 矛盾。∴0=*A 故当0=A 时,有0=*A 。

(3)若0=A 由(2)知0=*A 此时命题也成立,故有1

-*=n A A 。

若0≠A ,则由?=*E A AA n

A E A A A ==*,∴1

-*=n A A

综上有1

-*=n A

A 。

(4)∵E A AA =*,而A 可逆,∴A A

A 1)(1*=- 又E A E A A A 1)(1*11=

=---,∴A A A 1)(*1=-,即A A A A |

|1*)()*(11==-- (5)∵A 可逆,∴T A 可逆

又E A E A A A T T T ==*)(, E A E A A A A A T T T T ===)()()(** 即T T *)()*(A A A A T T =, ∴T T *)()*(A A = 10.设A 的伴随矩阵??????

? ??-=80300

10100100001*A ,且E BA ABA 31

1+=--, 求矩阵B .

解:由E BA ABA 311+=--A A B A AB A A B AB ***33+=?+=?

E B A E E A B A B A 6)2(3**=-?+=?

而??????

? ?

?-=--6102100

10100

1

00001

)2(1*A E ,∴??????? ??-=-=-1030060600600006)2(61

*A E B 。 11.设ΛAP P =-1,其中???

? ??-=???? ??--=2001,1141ΛP ,求11

A . 解:∵Λ=-AP P 1故1-=P P A Λ,所以11111-=P P A Λ

而3=P , ???? ??-=*1141P , ???

? ??--=-1141311

P , ???? ??-=????

??-=1111

1120012001Λ 故??????

??--???? ??-???? ??--=313

13431

200111411111A ???

?

??--=???? ??----++=68468327322731242124213111111313

12.设P ΛAP =,其中???

?

?

??-=????? ??--=511,111201111ΛP , 求)65()(28A A E A A +-=?.

解:∵61112011

11-=--=P ,????? ??------=121303222*P ,∴???????

? ??--=-61316121021313

131

1*1

P

P

P

又???

?

?

??=????? ??-=0000000012)5()1()1()(????Λ

故????

? ??????? ??--==-000000001211120111

1)()(1

P A P A ????????

?

? ??--61316121

021313

131

?????

??=444444444。

13.设矩阵A 、B 及B A +都可逆,证明:

(1)11--+B A 也可逆,并且()

B B A A B A 11

11)(----+=+; (2)A B A B B B A A 11)()(--+=+.

证明:(1)∵B B A A B E B B A A B A 11111))(())()((-----++=++

E B B B B A B A B B B A A B B B ==++=++=------111111))(())((

∴11--+B A 可逆且()

B B A A B A 11

11)(----+=+

(2)∵)()()()()()(11111111-------++++=++AB BB B A B AB E B A B B A A B A B -

E BB B B A B A B ==++=---111)()(

∴A B A B B A --1111)()(--+=+,又有(1)知()

B B A A B A 11

11)(----+=+

由逆矩阵的唯一性知,A B A B B B A A 11)()(--+=+。

习 题 2-4

1.设矩阵???????

?

?--=100

001004210

3101A ,????

??

?

??-=1020013600020021B ,用分块矩阵计算:(1)A k ;(2)B A +.

解:先对B A ,进行分块???

?

??-=E A E A 01,????

??=E B B B 210, 其中???? ??=42311A ,???? ??=02211B ,???

?

??-=20362B

线性代数测试试卷及答案

线性代数(A 卷) 一﹑选择题(每小题3分,共15分) 1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+ 2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( ) (A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶方阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8-- 4. 设实二次型11212222(,)(,)41x f x x x x x ?? ??= ? ?-???? 的矩阵为A ,那么( ) (A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ? -?? (D) 1001A ?? = ??? 5. 若方阵A 的行列式0A =,则( ) (A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关,列向量组线性无关 (C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分) 1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ; 2. 设100210341A -?? ? =- ? ?-?? ,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5. 设A 为正交矩阵,则A = ;

线性代数第二章答案

第二章 矩阵及其运算 1 已知线性变换 ?????++=++=++=3 213321232113235322y y y x y y y x y y y x 求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换 解 由已知 ? ??? ?????? ? ?=???? ??221321323513122y y y x x x 故 ???? ?????? ? ?=???? ??-3211 221323513122x x x y y y ? ??? ?????? ??----=321423736 947y y y ?????-+=-+=+--=3 21332123 211423736947x x x y x x x y x x x y 2 已知两个线性变换 ?????++=++-=+=321332123 11542322y y y x y y y x y y x ?????+-=+=+-=3 233122 11323z z y z z y z z y 求从z 1 z 2 z 3到x 1 x 2 x 3的线性变换 解 由已知 ???? ?????? ? ?-=???? ??221321514232102y y y x x x ??? ? ?????? ??--???? ??-=32131 010 2013514232102z z z ??? ? ?????? ??----=321161109412316z z z

所以有?????+--=+-=++-=3 21332123 2111610941236z z z x z z z x z z z x 3 设???? ??--=111111111A ??? ? ??--=150421321B 求3AB 2A 及A T B 解 ??? ? ??---???? ??--???? ??--=-1111111112150421321111111111323A AB ???? ??----=???? ??---???? ??-=2294201722213211111111120926508503 ??? ? ??-=???? ??--???? ??--=092650850150421321111111111B A T 4 计算下列乘积 (1)??? ? ?????? ??-127075321134 解 ???? ?????? ??-127075321134???? ???+?+??+?-+??+?+?=102775132)2(71112374??? ? ??=49635 (2)???? ??123)321( 解 ??? ? ??123)321((132231)(10)

最新大学线性代数练习试题及答案

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λ s αs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

线性代数考试题库及答案(六)

线性代数考试题库及答案 第一部分 客观题(共30分) 一、单项选择题(共 10小题,每小题2分,共20分) 1. 若行列式11 121321 222331 32 33 a a a a a a d a a a =,则212223 11 121331 32 33 232323a a a a a a a a a 等于 ( ) (A) 2d (B) 3d (C) 6d (D) 6d - 2. 设123010111A ?? ? =- ? ??? ,ij M 是A 中元素ij a 的余子式,则313233M M M -+=( ) (A) 0 (B) 1 (C) 2 (D) 3 3. 设A 为n 阶可逆矩阵,则下列各式恒成立的是( ) (A) |2|2||T A A = (B) 11(2)2A A --= (C) *1A A -= (D) 11[()][()]T T T T A A --= 4. 初等矩阵满足( ) (A) 任两个之乘积仍是初等矩阵 (B) 任两个之和仍是初等矩阵 (C) 都是可逆矩阵 (D) 所对应的行列式的值为1 5. 下列不是..n 阶矩阵A 可逆的充要条件为( ) (A) 0≠A (B) A 可以表示成有限个初等阵的乘积 (C) 伴随矩阵存在 (D) A 的等价标准型为单位矩阵 6. 设A 为m n ?矩阵,C 为n 阶可逆矩阵,B AC =,则 ( )。 (A) 秩(A )> 秩(B ) (B) 秩(A )= 秩(B )

(C) 秩(A )< 秩(B ) (D) 秩(A )与秩(B )的关系依C 而定 7. 如果向量β可由向量组12,, ,s ααα线性表示,则下列结论中正确的是( ) (A) 存在一组不全为零的数12,,s k k k ,使得1122s s k k k βααα=+++ 成立 (B) 存在一组全为零的数12,,s k k k ,使得1122s s k k k βααα=++ + 成立 (C) 存在一组数12,, s k k k ,使得1122s s k k k βααα=+++ 成立 (D) 对β的线性表达式唯一 8. 设12,ξξ是齐次线性方程组0AX =的解,12,ηη是非齐次线性方程组AX b =的解,则( ) (A) 112ξη+为0AX =的解 (B) 12ηη+为AX b =的解 (C) 12ξξ+为0AX =的解 (D) 12ηη-为AX b =的解 9. 设110101011A ?? ? = ? ??? ,则A 的特征值是( )。 (A) 0,1,1 (B) 1,1,2 (C) 1,1,2- (D) 1,1,1- 10. 若n 阶方阵A 与某对角阵相似,则 ( )。 (A) ()r A n = (B) A 有n 个互不相同的特征值 (C) A 有n 个线性无关的特征向量 (D) A 必为对称矩阵 二、判断题(共 10小题,每小题1分,共10分 )注:正确选择A,错误选择B. 11. 设A 和B 为n 阶方阵,则有22()()A B A B A B +-=-。( ) 12. 当n 为奇数时,n 阶反对称矩阵A 是奇异矩阵。( )

线性代数第二章矩阵试题及答案

第二章矩阵 一、知识点复习 1、矩阵的定义 由m n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m n型矩阵。例如 2 -1 0 1 1 1 1 1 0 2 2 5 4 -2 9 3 3 3 -1 8 是一个45矩阵. 一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素。 元素全为0的矩阵称为零矩阵,通常就记作0。 两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等。 2、 n阶矩阵与几个特殊矩阵 行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵。 n阶矩阵的从左上角到右下角的对角线称为主对角线。 下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的. 对角矩阵: 对角线外的的元素都为0的n阶矩阵. 单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I). 数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E. 上三角矩阵: 对角线下的的元素都为0的n阶矩阵. 下三角矩阵: 对角线上的的元素都为0的n阶矩阵. 对称矩阵: 满足A T=A矩阵,也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵. 反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.) 正交矩阵:若AA T=A T A=E,则称矩阵A是正交矩阵。 (1)A是正交矩阵?A T=A-1 (2)A是正交矩阵?2 A=1 阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足: ①如果它有零行,则都出现在下面。 ②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严 格单调递增。 把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角。 每个矩阵都可以用初等行变换化为阶梯形矩阵,这种运算是在线性代数的各类 计算题中频繁运用的基本运算,必须十分熟练。 请注意:一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零 行数和台角位置是确定的。 3、矩阵的线形运算 (1)加(减)法:两个m n的矩阵A和B可以相加(减),得到的和(差)仍是m n 矩阵,记作A+B (A-B),运算法则为对应元素相加(减). (2)数乘: 一个m n的矩阵A与一个数c可以相乘,乘积仍为m n的矩阵, 记作c A,运算法则为A的每个元素乘c. 这两种运算统称为线性运算,它们满足以下规律: ①加法交换律:A+B=B+A. 2加法结合律:(A+B)+C=A+(B+C). ③加乘分配律:c(A+B)=c A+c B.(c+d)A=c A+d A. ④数乘结合律: c(d)A=(cd)A. ⑤ c A=0 c=0 或A=0. 4、矩阵乘法的定义和性质 (1)当矩阵A的列数和B的行数相等时,则A和B可以相乘,乘积记作AB. AB的行数和A相等,列数和B相等. AB的(i,j)位元素等于A的第i个行向量 和B的第j个列向量(维数相同)对应分量乘积之和.

西安交通大学2019年春季《线性代数》在线作业

2019年春季《线性代数》在线作业 一、单选题(共35 道试题,共70 分。)V 1. 若三阶行列式D的第三行的元素依次为3,它们的余子式分别为4,则D=() A. -8 B. 8 C. -20 D. 20 正确答案:B 满分:2 分 2. 用一初等矩阵左乘一矩阵B,等于对B施行相应的( )变换 A. 行变换 B. 列变换 C. 既不是行变换也不是列变换 正确答案:A 满分:2 分 3. 设a1a2a3a4a5是四维向量,则() A. a1a2a3a4a5一定线性无关 B. a1a2a3a4a5一定线性相关 C. a5一定可以由a1a2a3a4线性表示 D. a1一定可以由a2a3a4a5线性表出 正确答案:B 满分:2 分 4. 设二阶矩阵A与B相似,A的特征值为-1,2,则|B|= A. -1 B. 1 C. -2 D. 2 正确答案:C 满分:2 分 5. 设A,B,C均为n阶非零方阵,下列选项正确的是( ). A. 若AB=AC,则B=C B. (A-C)2 = A2-2AC+C2 C. ABC= BCA D. |ABC| = |A| |B| |C| 正确答案:D 满分:2 分 6. 设A为三阶方阵,|A|=2,则|2A-1| = . A. 1 B. 2 C. 3 D. 4 正确答案:D 满分:2 分 7. 设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则() A. A=0 B. A=E C. r(A)=n D. 0

A. A=0 B. A=E C. r(A)=n D. 00 B. 存在n阶矩阵P,使得A=PTP C. 负惯性指数为0 D. 各阶顺序主子式均为正数 正确答案:D 满分:2 分 15. 设A,B均为n阶非零方阵,下列选项正确的是

2010-2011-2线性代数试卷及答案

东 北 大 学 考 试 试 卷(A 卷) 2010 — 2011学年 第二学期 课程名称:线性代数 (共2页) ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ (15分) 设三阶矩阵()321,,ααα=A , ()3323214,3,32αααααα+-+=B , 且A 的行列式1||=A ,求矩阵B 的行列式||B . 解 因为()3323214,3,32αααααα+-+=B =? ???? ??-413031002),,(321ααα, 所以,24413031002||||=-=A B 分) 设向量组????? ??-=2111α,????? ??=1122α,????? ??=a 213α线性相关,向量 ???? ? ??=b 13β可由向量组321,,ααα线性表示,求b a ,的值。 解 由于 ????? ??-=b a 1212113121),,,(321βααα????? ??---→62304330312 1b a ? ???? ??-+→210043303121b a 所以,.2,1=-=b a 三分) 证明所有二阶实对称矩阵组成的集合V 是R 2? 2 的子空间,试在 V 上定义内积运算,使V 成为欧几里得空间,并给出V 的一组正交基. 解 由于任意两个二阶实对称矩阵的和还是二阶实对称矩阵,数乘二阶实对称矩阵还是 二阶实对称矩阵,即V 对线性运算封闭,所以V 是R 2? 2 的子空间。 对任意V b b b b B a a a a A ∈??? ? ??=???? ??=2212121122121211,,定义内积:[A,B]=222212121111b a b a b a ++, 显然满足:[A,B]=[B,A], [kA,B]=k[A,B], [A,A]≥0且[A,A]=0当且仅当A=0. ???? ??=00011A ,???? ??=01102A ,???? ??=10003A 就是V 的一组正交基. 注:内积和正交基都是不唯一的. 2-1

线性代数课后习题答案(陈维新)

第一章 行列式 习题1.1 1. 证明:(1)首先证明)3(Q 是数域。 因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。 任给两个复数)3(3,32211Q b a b a ∈++,我们有 3 )()3()3)(3(3)()()3()3(3)()()3()3(2121212122112121221121212211b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。 因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以 ) 3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。 如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。 又因为有理数的和、差、积、商仍为有理数,所以 )3(33) (3)3() 3)(3()3)(3(3 32 2 22212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--= -+-+= ++。 综上所述,我们有)3(Q 是数域。 (2)类似可证明)(p Q 是数域,这儿p 是一个素数。 (3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。 (反证法)如果)()(q Q p Q ?,则q b a p Q b a +=? ∈?,,从而有 q ab qb a p p 2)()(222++==。 由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。 所以有0=a 或0=b 。 如果0=a ,则2 qb p =,这与q p ,是互异素数矛盾。 如果0=b ,则有 a p =,从而有“有理数=无理数”成立,此为矛盾。 所以假设不成立,从而有)()(q Q p Q ?。

2013春西南大学《线性代数》第三次作业答案

《线性代数》模拟试题八 一、填空题(每小题3分,共15分) 1.设矩阵A = ??? ? ? ??100012021,B = ??? ? ? ??310120001,则A + 2B = .2.设向量????? ??=1111α,????? ??=0112α,????? ??=0013α,??? ? ? ??=110β,则β由α1,α2,α3线性表出的表示式为 ( ). 3.设α1,α2是非齐次线性方程组Ax = b 的解,k 1,k 2为常数,若k 1α1+ k 2α2也是Ax = b 的一 个解,则k 1+k 2 = ( ). 4.设A 为n 阶可逆矩阵,已知A 有一个特征值为2,则(2A )-1必有一个特征值为( ). 5.若实对称矩阵A = ??? ? ? ??a a a 000103为正定矩阵,则a 的取值应满足( ). 二、单选题(每小题3分,共15分) 1.设行列式 2 2 11b a b a = 1, 2 2 11c a c a = 2,则 2 22 111c b a c b a ++ = ( D ). (A) -3 (B) -1 (C) 1 (D) 3 2.设A 为2阶可逆矩阵,且已知(2A )-1 =??? ? ??4321,则A = ( D ). (A) 2???? ??4321 (B) 21 4321-???? ?? (C) ??? ? ??432121 (D) 1 432121-??? ? ?? 3.设向量组α1,α2,…,αs 线性相关,则必可推出( C ). (A) α1,α2,…,αs 中至少有一个向量为零向量 (B) α1,α2,…,αs 中至少有两个向量成比例 (C) α1,α2,…,αs 中至少有一个向量可以表示为其余向量的线性组合 (D) α1,α2,…,αs 中每一个向量都可以表示为其余向量的线性组合

2013年春-西南大学《线性代数》作业及答案

2013年春 西南大学《线性代数》作业及答案(共5次,已整理) 第一次作业 【单选题】9.下列n 阶(n>2)行列式的值必为0的有: B:行列式非零元素的个数小于n 个。 【单选题】1.有二阶行列式,其第一行元素是(1,3),第二行元素是(1,4),该行列式的值是: B:1 【单选题】2.有二阶行列式,其第一行元素是(2,3),第二行元素是(3,-1),则该行列式的值是:A:-11 【单选题】3.有三阶行列式,其第一行元素是(0,1,2),第二行元素是(-1,-1,0),第三行元素是(2,0,-5),则该行列式的值是:B:-1 【单选题】4.有三阶行列式,其第一行元素是(1,1,1),第二行元素是(3,1,4),第三行元素是(8,9,5),则该行列式的值是:C:5 【单选题】5. 行列式A 的第一行元素是(k,3,4),第二行元素是(-1,k,0),第三行元素是(0,k,1),如果行列式A 的值等于0,则k 的取值应是:C:k=3或k=1 【单选题】6. 6.排列3721456的逆序数是:C:8 【单选题】7. .行列式A 的第一行元素是(-3,0,4),第二行元素是(2,a ,1),第三行元素是(5,0,3),则其中元素a 的代数余子式是:B:-29 【单选题】8.已知四阶行列式D 中第三行元素为(-1,2,0,1),它们的余子式依次分别为5,3,-7,4,则D 的值等于. C:-15 【论述题】行列式部分主观题 行列式部分的填空题 1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符号应取 + 号。 2.排列45312的逆序数为 5 。 3.行列式25 1 122 1 4---x 中元素x 的代数余子式是 8 . 4.行列式1 02325 4 3 --中元素-2的代数余子式是 —11 。

线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解

线性代数第二章答案

第二章 矩阵及其运算 1 已知线性变换 ?????++=++=++=3 21332123 2113235322y y y x y y y x y y y x , 求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换 解 由已知 ? ??? ?????? ? ?=???? ??22 1321323513122y y y x x x 故 ???? ?????? ? ?=???? ??-3211 221323513122x x x y y y ? ??? ?????? ??----=321423736 947y y y ?????-+=-+=+--=3 21332123 211423736947x x x y x x x y x x x y 2 已知两个线性变换 ?????++=++-=+=3 2133 2123 11542322y y y x y y y x y y x ?????+-=+=+-=3 233122 11323z z y z z y z z y 求从z 1 z 2 z 3到x 1 x 2 x 3的线性变换 解 由已知 ???? ?????? ? ?-=???? ??221321514232102y y y x x x ??? ? ?????? ??--???? ??-=32131 010 2013514232102z z z ??? ? ?????? ??----=32 1161109412316z z z

所以有?????+--=+-=++-=3 2133 2123 2111610941236z z z x z z z x z z z x 3 设???? ??--=111111111A ??? ? ??--=150421321B 求3AB 2A 及A T B 解 ??? ? ??---???? ??--???? ??--=-1111111112150421321111111111323A AB ???? ??----=???? ??---???? ??-=2294201722213211111111120926508503 ??? ? ??-=???? ??--???? ??--=092650850150421321111111111B A T 4 计算下列乘积 (1)??? ? ?????? ??-127075321134 解 ???? ?????? ??-127075321134???? ???+?+??+?-+??+?+?=102775132)2(71112374?? ? ? ??=49635 (2)???? ??123)321( 解 ??? ? ??123)321((132231)(10)

西南大学《线性代数》网上作业及参考答案

=================================================================================================== 1:[论述题]线性代数模拟试题三 参考答案:线性代数模拟试题三参考答案 1:[论述题]线性代数模拟试题四 参考答案:线性代数模拟试题四参考答案 1:[论述题]线性代数模拟试题五 参考答案:线性代数模拟试题五参考答案 1:[论述题]线性代数模拟试题六 一、填空题(每小题3分,共15分) 1. 行列式3 32 31 332221 23 1211 1b a b a b a b a b a b a b a b a b a = ( ). 2. 设A 是4×3矩阵,R (A ) = 2,若B = ??? ?? ??300020201,则R (AB ) = ( ). 3. 设矩阵A = ??? ? ? ??54332221t ,若齐次线性方程组Ax = 0有非零解,则数t = ( ). 4. 已知向量,121,3012???? ?? ? ??-=??????? ??=k βαα与β的内积为2,则数k = ( ). 5. 已知二次型2 3 2221321)2()1()1(),,(x k x k x k x x x f -+-++=正定,则数k 的取值范围为( ). 二、单项选择题(每小题3分,共15分) 1. 设A 为m ×n 矩阵,B 为n ×m 矩阵,m ≠n , 则下列矩阵中为n 阶矩阵的是( ). (A) B T A T (B) A T B T (C) ABA (D) BAB 2. 向量组α1,α2,…,αS (s >2)线性无关的充分必要条件是( ). (A) α1,α2,…,αS 均不为零向量 (B) α1,α2,…,αS 中任意两个向量不成比例 (C) α1,α2,…,αS 中任意s -1个向量线性无关 (D) α1,α2,…,αS 中任意一个向量均不能由其余s -1个向量线性表示

线性代数第二章习题答案

习 题 2-1 1.由6名选手参加乒乓球比赛,成绩如下:选手1胜选手2、4、5、6而负于选手3;选手2胜选手4、5、6而负于选手1、3;选手3胜选手1、2、4而负于选手5、6;选手4胜选手5、6而负于选手1、2、3;选手5胜选手3、6而负于选手1、2、4;选手6胜选手2而负于选手1、3、4、5.若胜一场得1分,负一场得0分,使用矩阵表示输赢状况,并排序. 解: ????? ?? ? ? ? ??000010 100100110000001011 1110001110106543216 54321,选手按胜多负少排序为:6,5,4,3,2,1. 2.设矩阵???? ??-=???? ?? +-=2521 ,03231 z x y x B A ,已知B A =,求z y x ,,. 解:由于B A =得?????=-=+=-0253223z x y x ,解得:?? ? ??===211 z y x 。 习 题 2-2 1.设???? ??=0112A ,??? ? ??-=4021B ,求 (1)B A 52-; (2)BA AB -; (3)2 2B A -. 解:(1)??? ? ??--=???? ??--???? ??=???? ??--???? ??=-202892001050224402150112252B A ; (2)???? ??--=???? ??--???? ??--=???? ?????? ??--???? ??-???? ??=-2592041021820112402140210112BA AB ; (3)??? ? ??--=???? ??-???? ??=???? ??-???? ??--???? ?????? ??=-152441606112254021402101120112B A 22. 2.已知????? ??--=230412301321A ,??? ? ? ??---=052110 35123 4B ,求B A 23-. 解:??? ? ? ??----????? ??--=052110351234223041230 13 21 323B -A ??? ? ? ??----=????? ??----????? ??--=61941016151055011010422061024686901236903963 3.设??? ? ? ??----=????? ??=101012121234,432112 122121B A ,求

线性代数试卷及答案

《 线性代数A 》试题(A 卷) 试卷类别:闭卷 考试时间:120分钟 考试科目:线性代数 考试时间: 学号: 姓名: 题号 一 二 三 四 五 六 七 总 分 得分 阅卷人 一.单项选择题(每小题3分,共30分) 1.设A 经过初等行变换变为B ,则( ).(下面的(),()r A r B 分别表示矩阵,A B 的秩)。 () A ()()r A r B <; () B ()()r A r B =; ()C ()()r A r B >; () D 无法判定()r A 与()r B 之间的关系。 2.设A 为 (2)n n ≥阶方阵且||0A =,则( )。 () A A 中有一行元素全为零; () B A 有两行(列)元素对应成比例; () C A 中必有一行为其余行的线性组合; () D A 的任一行为其余行的线性组合。 3. 设,A B 是n 阶矩阵(2n ≥), AB O =,则下列结论一定正确的是: ( ) () ;A A O B O ==或 ()AX B B 的每个行向量都是齐次线性方程组=O 的解. ();C BA O = ()()().D R A R B n +≤ 4.下列不是n 维向量组12,,...,s ααα线性无关的充分必要条件是( ) () A 存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++≠;

() B 不存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++= 12(),,...,s C ααα的秩等于s ; 12(),,...,s D ααα中任意一个向量都不能用其余向量线性表示 5.设n 阶矩阵(3)n ≥1...1................1a a a a a a A a a a ?? ? ? ?= ? ? ???,若矩阵A 的秩为1n -,则a 必为( )。 ()A 1; () B 11n -; () C 1-; () D 11 n -. 6.四阶行列式 1 1 2 2334 4 0000 000 a b a b b a b a 的值等于( )。 ()A 12341234a a a a b b b b -; ()B 12341234a a a a b b b b +; () C 12123434()()a a b b a a b b --; () D 23231414()()a a b b a a b b --. 7.设A 为四阶矩阵且A b =,则A 的伴随矩阵* A 的行列式为( )。 ()A b ; () B 2b ; () C 3b ; () D 4b 8.设A 为n 阶矩阵满足23n A A I O ++=,n I 为n 阶单位矩阵,则1 A -=( ) () n A I ; ()3n B A I +; ()3n C A I --; ()D 3n A I + 9.设A ,B 是两个相似的矩阵,则下列结论不正确的是( )。 ()A A 与B 的秩相同; ()B A 与B 的特征值相同; () C A 与B 的特征矩阵相同; () D A 与B 的行列式相同;

标准答案 北京大学2016年春季学期线性代数作业

2016年春季学期线性代数作业 一、选择题(每题2分,共36分) 1.(教材§1.1)行列式(B)。 A.6 B.5 C.10 D.7 2.(教材§1.1)行列式(A)。 A. B. C.0 D. 3.(教材§1.2)行列式(D)。 A.40 B.-40 C.10 D.-10 4.(教材§1.3)下列对行列式做的变换中,(A)会改变行列式的值。 A.将行列式的某一行乘以3 B.对行列式取转置 C.将行列式的某一行加到另外一行 D.将行列式的某一行乘以3后加到另外一行 5.(教材§1.3)行列式(2/9)。 (提示:参考教材P32例1.3.3) A.2/9 B.2/3 C.2/9 D. 3/4 6.(教材§1.4)若线性方程组有唯一解,那么(B)。 A.2/3 B.1 C.-2/3 D.1/3

7.(教材§2.2)矩阵 2110 2311 3441 1132 ?? ?? ?? ?? ?? - ?? 的秩是(D)。 A.1 B.2 C.3 D.4 8.(教材§2.2)若线性方程组无解,则a的值为(C)。 A.-1 B.-2 C.-3 D.0 9.(教材§3.1)已知向量,, ,则向量(B)。 A. B. C. D. 10.(教材§3.3)已知向量组线性相关,下面说法正确的是(C)。 A.如果,则必有; B. 矩阵的秩等于向量的个数; C.元齐次线性方程组有非零解; D.向量组A 中任何一个向量都不能由其余的个向量线性表示。 11.(教材§3.3)下列向量组中,线性无关的是(C)。 A. B. C. D. 12.(教材§3.3)下列向量组中,线性相关的是(D)。 A. B. C.

(完整版)线性代数(经管类)考试试卷及答案(一)

高等教育自学考试全国统一命题考试 线性代数(经管类)优化试卷(一) 说明:在本卷中,A T表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式. 一、单项选择题(本大题共10小题。每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分. 1.设A为3阶方阵,且|A|=2,则| 2A-l | ( ) A.-4 B.-1 C.1 D.4 2.设矩阵A=(1,2),B=,C=,下列矩阵运算中有意义的是( ) A.ACB B.ABC C.BAC D.CBA 3.设A为任意n阶矩阵,下列矩阵中为反对称矩阵的是( ) A.A+A T B.A - A T C.A A T D.A T A 4.设2阶矩阵A= ,则A*= ( ) 5.矩阵的逆矩阵是()

6.设矩阵A=,则A中( ) A.所有2阶子式都不为零 B.所有2阶子式都为零 C.所有3阶子式都不为零 D.存在一个3阶子式不为零 7.设A为m×n矩阵,齐次线性方程组Ax=0有非零解的充分必要条件是( ) A.A的列向量组线性相关 B.A的列向量组线性无关 C.A的行向量组线性相关 D.A的行向量组线性无关 8.设3元非齐次线性方程组Ax=b的两个解为,且系数矩阵A的秩r(A)=2,则对于任意常数k,k1,k2,方程组的通解可表为( ) 9.矩阵的非零特征值为( ) A.4 B.3 C.2 D.l

10.4元二次型的秩为( ) A.4 B.3 C.2 D.l 二、填空题(本大题共10小题.每小题2分.共20分) 请在每小题的空格中填上正确答案.错填、不填均无分. 11.若i=1,2,3,则行列式=_________________。 12.设矩阵A= ,则行列式|A T A|=_______________。 13.若齐次线性方程组有非零解,则其系数行列式的值为__________________。 14.设矩阵A= ,矩阵B=A – E,则矩阵B的秩r(B)=______________。15.向量空间的维数为_______________。 16.设向量,则向量的内积=_______________。 17.设A是4×3矩阵,若齐次线性方程组Ax=0只有零解,则矩阵A的秩r(A)=____________。 18.已知某个3元非齐次线性方程组Ax=b 的增广矩阵经初等行变换化为: ,若方程组无解,则a的取值为___________。19.设3元实二次型f ( x1 , x2 , x3 ) 的秩为3,正惯性指数为2,则此二次型的规范形式_____________。 20.设矩阵A= 为正定矩阵,则a的取值范围是_______________。三、计算题(本大题共6小题,每小题9分.共54分)

西南大学网络教育线性代数作业

1、矩阵的伴随矩阵是() . . . . 2、矩阵A适合条件[ ]时,它的秩为r. . A中任何r+1列线性相关; . A中任何r列线性相关; . A中有r列线性无关; . A中线性无关的列向量最多有r个. 3、若齐次线性方程组有非零解,则必须满足[ ] . k=4 . k=-1 .k≠-1且k≠4 . k=-1或k=4 4、下列n(n>2)阶行列式的值必为零的是[ ] .行列式主对角线上的元素全为零 .该行列式为三角行列式 .行列式中零元素的个数多于n个 .行列式中非零元素的个数少于n个 5、下列各矩阵中,初等矩阵是[ ]。 .

. . . 6、n阶矩阵A与对角矩阵相似的充分必要条件是[ ]。 . A有n个特征值 . A有n个线性无关的特征向量 . A的行列式不等于零 . A的特征多项式没有重根 7、A,B是n阶矩阵,则的充分必要条件是[ ] . AB=BA . A=0 . B=0 . A=B 8、设n元齐次线性方程组Ax=0,若R(A)=r<n,则基础解系[ ]。 .惟一存在 .共有n-r个 .含有n-r个向量 .含有无穷多个向量 9、设A,B均为n阶可逆矩阵,则[ ]。 . A+B可逆 . kA可逆(k为常数) . AB可逆 . (AB)-1=A-1B-1 10、行列式D=0的必要条件是[ ]。 . D中有两行(列)元素对应成比例 . D中至少有一行各元素可用行列式的性质化为0 . D中存在一行元素全为0 . D中任意一行各元素可用行列式的性质化为0.

11、的充分必要条件是() . . . . 12、A与B是两个相似的n阶矩阵,则() .存在非奇异矩阵P,使 . .存在对角矩阵D,使A与B都相似于D . 13、一个n维向量组(s>1)线性相关的充要条件是() .含有零向量; .有一个向量是其余向量的线性组合; .有两个向量的对应分量成比例; .每一个向量是其余向量的线性组合. 14、设A ,B均为n阶可逆矩阵,则() . A+B可逆 . kA可逆(k为常数) . AB可逆 . 15、两个n阶初等矩阵的乘积为() .初等矩阵 .单位矩阵 .不可逆矩阵 .可逆矩阵 16、若A=,B=,其中是的代数余子式,则()。

相关主题
文本预览
相关文档 最新文档