当前位置:文档之家› 空间矢量算法计算

空间矢量算法计算

空间矢量算法计算
空间矢量算法计算

啊一直以来对SVPWM原理和实现方法困惑颇多,无奈现有资料或是模糊不清,或是错误百出。经查阅众多书籍论文,长期积累总结,去伪存真,总算对其略窥门径。未敢私藏,故公之于众。其中难免有误,请大家指正,谢谢!

此文的讲解是非常清楚,但是还是存在一些错误,本人做了一些修正,为了更好的理解整个推导过程,对部分过程进行分解,并加入加入7段和5段时调制区别。

1 空间电压矢量调制 SVPWM 技术

SVPWM是近年发展的一种比较新颖的控制方法,是由三相功率逆变器的六个功率开关元件组成的特定开关模式产生的脉宽调制波,能够使输出电流波形尽可能接近于理想的正弦波形。空间电压矢量PWM与传统的正弦PWM不同,它是从三相输出电压的整体效果出发,着眼于如何使电机获得理想圆形磁链轨迹。 SVPWM技术与SPWM相比较,绕组电流波形的谐波成分小,使得电机转矩脉动降低,旋转磁场更逼近圆形,而且使直流母线电压的利用率有了很大提高,且更易于实现数字化。下面将对该算法进行详细分析阐述。

SVPWM基本原理

SVPWM 的理论基础是平均值等效原理,即在一个开关周期内通过对基本电压矢量加以组合,使其平均值与给定电压矢量相等。在某个时刻,电压矢量旋转到某个区域中,可由组成这个区域的两个相邻的非零矢量和零矢量在时间上的不同组合来得到。两个矢量的作用时间在一个采样周期内分多次施加,从而控制各个电压矢量的作用时间,使电压空间矢量接近按圆轨迹旋转,通过逆变器的不同开关状态所产生的实际磁通去逼近理想磁通圆,并由两者的比较结果来决定逆变器的开关状态,从而形成PWM 波形。逆变电路如图 2-8 示。

设直流母线侧电压为Udc,逆变器输出的三相相电压为UA、UB、UC,其分别加在空间上互差120°的三相平面静止坐标系上,可以定义三个电压空间矢量 UA(t)、UB(t)、UC(t),它们的方向始终在各相的轴线上,而大小则随时间按正弦规律做变化,时间相位互差120°。假设Um为相电压有效值,f为电源频率,则有:

(2-27)

其中,,则三相电压空间矢量相加的合成空间矢量 U(t)就可以表示为:

(2-28)

可见 U(t)是一个旋转的空间矢量,它的幅值为相电压峰值的倍,Um为相电压峰值,且以角频率ω=2πf按逆时针方向匀速旋转的空间矢量,而空间矢量 U(t)在三相坐标轴(a,b,c)上的投影就是对称的三相正弦量。

图 2-8 逆变电路

由于逆变器三相桥臂共有6个开关管,为了研究各相上下桥臂不同开关组合时逆变器输出的空间电压矢量,特定义开关函数 Sx ( x = a、b、c) 为:

(2-30)

(Sa、Sb、Sc)的全部可能组合共有八个,包括6个非零矢量 Ul(001)、U2(010)、U3(011)、U4(100)、U5(101)、U6(110)、和两个零矢量U0(000)、U7(111),下面以其中一种开关组合为例分析,假设Sx ( x= a、b、c)= (100),此时

(2-30)求解上述方程可得:Uan=2Ud /3、UbN=-U d/3、UcN=-Ud /3。同理可计算出其它各种组合下的空间电压矢量,列表如下:

表 2-1 开关状态与相电压和线电压的对应关系

Sa Sb Sc 矢量符号线电压相电压

Uab Ubc

Uca UaN UbN UcN

0 0 0 U0 0 0

0 0 0 0

1 0 0 U4 Udc 0

1 1 0 U6 Udc Udc

0 1 0 U2 0 Udc

Udc

0 1 1 U3 0 Udc

Udc

0 0 1 U1 0 0

Udc

1 0 1 U5 Udc 0

Udc

1 1 1 U7 0 0

0 0 0 0

图 2-9 给出了八个基本电压空间矢量的大小和位置。

图 2-9 电压空间矢量图

其中非零矢量的幅值相同(模长为 2Udc/3),相邻的矢量间隔60°,而两个零矢量幅值为零,位于中心。在每一个扇区,选择相邻的两个电压矢量以及零矢量,按照伏秒

平衡的原则来合成每个扇区内的任意电压矢量,即:

(2-31)

或者等效成下式:

(2-32)

其中,Uref 为期望电压矢量;T为采样周期;Tx、Ty、T0分别为对应两个非零电压矢量 Ux、Uy 和零电压矢量 U 0在一个采样周期的作用时间;其中U0包括了U0和U7两个零矢量。式(2-32)的意义是,矢量 Uref 在 T 时间内所产生的积分效果值和 Ux、Uy、U 0 分别在时间 Tx、Ty、T0内产生的积分效果相加总和值相同。

由于三相正弦波电压在电压空间向量中合成一个等效的旋转电压,其旋转速度是输入电源角频率,等效旋转电压的轨迹将是如图2-9 所示的圆形。所以要产生三相正弦波电压,可以利用以上电压向量合成的技术,在电压空间向量上,将设定的电压向量由U4(100)位置开始,每一次增加一个小增量,每一个小增量设定电压向量可以用该区中相邻的两个基本非零向量与零电压向量予以合成,如此所得到的设定电压向量就等效于一个在电压空间向量平面上平滑旋转的电压空间向量,从而达到电压空间向量脉宽调制的目的。

SVPWM 法则推导

三相电压给定所合成的电压向量旋转角速度为ω=2πf,旋转一周所需的时间为 T =1/ f ;若载波频率是 fs ,则频率比为 R = f s / f 。这样将电压旋转平面等切割成R 个小增量,亦即设定电压向量每次增量的角度是:

γ=2/ R =2πf/fs=2Ts/T。

今假设欲合成的电压向量Uref 在第Ⅰ区中第一个增量的位置,如图2-10所示,欲用U4、U6、U0 及 U7 合成,用平均值等效可得:U ref*Tz =U 4*T4 +U 6*T6 。

图 2-10 电压空间向量在第Ⅰ区的合成与分解

在两相静止参考坐标系(α,β)中,令 Uref 和 U4 间的夹角是θ,由正弦定理可得:

(2-33)

因为 |U 4 |=|U 6|=2Udc/3 ,所以可以得到各矢量的状态保持时间为:

(2-34)

式中 m 为 SVPWM 调制系数(调制比), m= |Uref|/Udc 。

而零电压向量所分配的时间为:

T7=T0=(TS-T4-T6 ) /2

(2-35)

或者T7 =(TS-T4-T6 )

(2-36)

得到以 U4、U6、U7 及 U0 合成的 Uref 的时间后,接下来就是如何产生实际的脉宽调制波形。在SVPWM 调制方案中,零矢量的选择是最具灵活性的,适当选择零矢量,可最大限度地减少开关次数,尽可能避免在负载电流较大的时刻的开关动作,最大限度地减少开关损耗。

一个开关周期中空间矢量按分时方式发生作用,在时间上构成一个空间矢量的序列,空间矢量的序列组织方式有多种,按照空间矢量的对称性分类,可分为两相开关换流与三相开关换流。下面对常用的序列做分别介绍。

1.2.1 7段式SVPWM

我们以减少开关次数为目标,将基本矢量作用顺序的分配原则选定为:在每次开关状态转换时,只改变其中一相的开关状态。并且对零矢量在时间上进行了平均分配,以使产生的 PWM 对称,从而有效地降低 PWM 的谐波分量。当 U4(100)切换至 U0(000)时,只需改变A 相上下一对切换开关,若由 U4(100)切换至 U7(111)则需改变 B、C 相上下两对切换开关,增加了一倍的切换损失。因此要改变电压向量 U4(100)、U2(010)、 U1(001)的大小,需配合零电压向量 U0(000),而要改变 U6(110)、U3(011)、U5(100),需配合零电压向量U7(111)。这样通过在不同区间内安排不同的开关切换顺序,就可以获得对称的输出波形,其它各扇区的开关切换顺序如表 2-2 所示。

表 2-2 UREF 所在的位置和开关切换顺序对照序

UREF 所在的位置开关切换顺序三相波形图Ⅰ区(0°≤θ≤60°)…0-4-6-7-7-6-4-0…

Ⅱ区(60°≤θ≤120°)…0-2-6-7-7-6-2-0…

Ⅲ区(120°≤θ≤180°)…0-2-3-7-7-3-2-0…

Ⅳ区(180°≤θ≤240°)…0-…

Ⅴ区(240°≤θ≤300°)…0-…

Ⅵ区(300°≤θ≤360°)…0-4-5-7-7-5-4-0…

以第Ⅰ扇区为例,其所产生的三相波调制波形在时间 TS 时段中如图所示,图中电压向量出现的先后顺序为 U0、U4、U6、U7、U6、U4、U0,各电压向量的三相波形则与表 2-2 中的开关表示符号相对应。再下一个 TS 时段,Uref 的角度增加一个γ,利用式(2-33)可以重新计算新的 T0、T4、T6 及 T7 值,得到新的合成三相类似(3-4)所示的三相波形;这样每一个载波周期TS就会合成一个新的矢量,随着θ的逐渐增大,Uref 将依序进入第Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ区。在电压向量旋转一周期后,就会产生 R 个合成矢量。

5段式SVPWM

对7段而言,发波对称,谐波含量较小,但是每个开关周期有6次开关切换,为了进一步减少开关次数,采用每相开关在每个扇区状态维持不变的序列安排,使得每个开关周期只有3次开关切换,但是会增大谐波含量。具体序列安排见下表。

表 2-3 UREF 所在的位置和开关切换顺序对照序

UREF 所在的位置开关切换顺序三相波形图Ⅰ区(0°≤θ≤60°)…4-6-7-7-6-4…

Ⅱ区(60°≤θ≤120°)…2-6-7-7-6-2…

Ⅲ区(120°≤θ≤180°)…2-3-7-7-3-2…

Ⅳ区(180°≤θ≤240°)……

Ⅴ区(240°≤θ≤300°)……

Ⅵ区(300°≤θ≤360°)…4-5-7-7-5-4…

SVPWM 控制算法

通过以上 SVPWM 的法则推导分析可知要实现SVPWM信号的实时调制,首先需要知道参考电压矢量 Uref 所在的区间位置,然后利用所在扇区的相邻两电压矢量和适当的零矢量来合成参考电压矢量。图2-10是在静止坐标系(α,β)中描述的电压空间矢量图,电压矢量调制的控制指令是矢量控制系统给出的矢量信号 Uref,它以某一角频率ω在空间逆时针旋转,当旋转到矢量图的某个60°扇区中时,系统计算该区间所需的基本电压空间矢量,并以此矢量所对应的状态去驱动功率开关元件动作。当控制矢量在空间旋转360°后,逆变器就能输出一个周期的正弦波电压。

合成矢量 Uref 所处扇区 N 的判断

空间矢量调制的第一步是判断由Uα 和Uβ所决定的空间电压矢量所处的扇区。假定合成的电压矢量落在第 I 扇区,可知其等价条件如下:0º

以上等价条件再结合矢量图几何关系分析,可以判断出合成电压矢量 Uref 落在第 X 扇区的充分必要条件,得出下表:

扇区落在此扇区的充要条件

I Uα>0 ,Uβ>0 且Uβ/ Uα<

ⅡUα>0 ,且Uβ/ |Uα|>

ⅢUα<0 ,Uβ>0 且-Uβ/ Uα<

ⅣUα<0 ,Uβ<0 且Uβ/ Uα<

ⅤUβ<0 且-Uβ/|Uα|>

ⅥUα>0 ,Uβ<0 且-Uβ/Uα<

若进一步分析以上的条件,有可看出参考电压矢量Uref 所在的扇区完全由Uβ,Uα- Uβ,- Uα- Uβ 三式决定,因此令:

再定义,若U1>0 ,则 A=1,否则 A=0;若U 2>0 ,则 B=1,否则 B=0;若U3>0 ,则 C=1,否则 C=0。可以看出 A,B,C 之间共有八种组合,但由判断扇区的公式可知 A,B,C 不会同时为 1 或同时为 0,所以实际的组合是六种,A,B,C 组合取不同的值对应着不同的扇区,并且是一一对应的,因此完全可以由 A,B,C 的组合判断所在的扇区。为区别六种状态,令 N=4*C+2*B+A,则可以通过下表计算参考电压矢量 Uref 所在的扇区。

表 2-3 P 值与扇区对应关系

N 3 1 5 4 6

2

扇区号ⅠⅡⅢ

ⅣⅤⅥ采用上述方法,只需经过简单的加减及逻辑运算即可确定所在的扇区,对于提高系统的

响应速度和进行仿真都是很有意义的。

基本矢量作用时间计算与三相 PWM 波形的合成

在传统 SVPWM 算法如式(2-34)中用到了空间角度及三角函数,使得直接计算基本电压矢量作用时间变得十分困难。实际上,只要充分利用Uα 和Uβ 就可以使计算大为简化。以 Uref 处在第Ⅰ扇区时进行分析,根据图 2-10 有:

经过整理后得出:

同理可求得Uref在其它扇区中各矢量的作用时间,结果如表2-4所示。由此可根据式2-36 中的U1 、U 2 、U3 判断合成矢量所在扇区,然后查表得出两非零矢量的作用时间,最后得出三相PWM波占空比,表2-4可以使SVPWM算法编程简易实现。

为了实现对算法对各种电压等级适应,一般会对电压进行标幺化处理,实际电压,为标幺值,在定点处理其中一般为Q12格式,即标幺值为1时,等于4096,假定电压基值为,Unom为系统额定电压,一般为线电压,这里看出基值为相电压的峰值。

以DSP的PWM模块为例,假设开关频率为fs,DSP的时钟为fdsp,根据PWM的设置要是想开关频率为fs时,PWM周期计数器的值为NTpwm=fdsp/fs/2,则对时间转换为计数值进行如下推导:

其中和为实际值的标幺值,令发波系数,Ksvpwm=

同理可以得到

表 2-4 各扇区基本空间矢量的作用时间

扇区时间

I

TN4=TNx

TN6=TNy

TN2=TNx

TN6=TNy

TN2=TNx

TN3=TNy

TN1=TNx

TN3=TNy

TN1=TNx

TN5=TNy

TN4=TNx

TN5=TNy

由公式(2-38)可知,当两个零电压矢量作用时间为0时,一个PWM周期内非零电压矢量的作用时间最长,此时的合成空间电压矢量幅值最大,由图2-12可知其幅值最大不会超过图中所示的正六边形边界。而当合成矢量落在该边界之外时,将发生过调制,逆变器输出电压波形将发生失真。在SVPWM调制模式下,逆变器能够输出的最大不失真圆形旋转电压矢量为图2-12所示虚线正六边形的内切圆,其幅值为:,即逆变器输出的不失真最大正弦相电压幅值为,而若采用三相SPWM调制,逆变器能输出的不失真最大正弦相电压幅值为 U dc /2 。显然SVPWM 调制模式下对直流侧电压利用率

更高,它们的直流利用率之比为,即SVPWM法比SPWM法的直流电压利用率提高了%。

图2-12 SVPWM模式下电压矢量幅值边界

如图当合成电压矢量端点落在正六边形与外接圆之间时,已发生过调制,输出电压将发生失真,必须采取过调制处理,这里采用一种比例缩小算法。定义每个扇区中先发生的矢量用为 TNx,后发生的矢量为 TNy。当Tx+Ty≤TNPWM 时,矢量端点在正六边形之内,不发生过调制;当TNx+TNy> TNPWM时,矢量端点超出正六边形,发生过调制。输出的波形会出现严重的失真,需采取以下措施:

设将电压矢量端点轨迹端点拉回至正六边形内切圆内时两非零矢量作用时间分别为TNx',TNy',则有比例关系:

(2-39)

因此可用下式求得 TNx',TNy',TN0,TN7:

(2-40)按照上述过程,就能得到每个扇区相邻两电压空间矢量和零电压矢量的作用时间。当U ref所在扇区和对应有效电压矢量的作用时间确定后,再根据PWM调制原理,计算出每一相对应比较器的值,其运算关系如下

在I扇区时如下图,

(2-41)

同理可以推出5段时,在I扇区时如式,

(2-42)

不同PWM比较方式,计数值会完全不同,两者会差180度

段数以倒三角计数,对应计数器的值以正三角计数,对应计数器的值

7

5

其他扇区以此类推,可以得到表2-5,式中 Ntaon 、Ntbon 和Ntcon 分别是相应的比较器的计数器值,而不同扇区时间分配如表 2-5 所示,并将这三个值写入相应的比较寄存器就完成了整个 SVPWM 的算法。

表 2-5 不同扇区比较器的计数值

区 1 2 3 4 5

6

Ta Ntaon Ntbon Ntcon Ntcon Ntbon Ntaon

Tb Ntbon Ntaon Ntaon Ntbon Ntcon Ntcon

Tc Ntcon Ntcon Ntbon Ntaon Ntaon Ntbon

SVPWM 物理含义

SVPWM 实质是一种对在三相正弦波中注入了零序分量的调制波进行规则采样的一种变形SPWM。但SVPWM 的调制过程是在空间中实现的,而SPWM是在 ABC 坐标系下分相实现的;SPWM 的相电压调制波是正弦波,而SVPWM没有明确的相电压调制波,是隐含的。为了揭示SVPWM 与 SPWM 的内在联系,需求出 SVPWM 在 ABC 坐标系上的等效调制波方程,也就是将SVPWM 的隐含调制波显化。

为此,本文对其调制波函数进行了详细的推导。由表 3-2 我们知道了各扇区的矢量发送顺序:

奇数区依次为:U 0 ,U k ,U k+1 ,U 7 ,U k+1 ,U k ,U 0

偶数区依次为:U 0 ,U k+1 ,U k ,U 7 ,U k ,U k+1 ,U 0

利用空间电压矢量近似原理,可总结出下式:

式中 m 仍为 SVPWM 调制系数,利用以上各式就可得到在第Ⅰ扇区的各相电压平均值:

同样可以推导出其它扇区的调制波函数,其相电压调制函数如下:

(2-44)

其线电压的调制波函数为:

(2-45)

从相电压调制波函数(2-44)来看,输出的是不规则的分段函数,为马鞍波形。从线电压调制波函数(2-45)来看其输出的则是正弦波形。

常用地一些矢量运算公式

常用的一些矢量运算公式 1.三重标量积 如a ,b 和c 是三个矢量,组合 ()a b c ??叫做他们的三重标量积。三重标量积等于这三 个矢量为棱边所作的平行六面体体积。在直角坐标系中,设坐标轴向的三个单位矢量标记为 (),,i j k ,令三个矢量的分量记为()()1 2 3 1 2 3 ,,,,,a a a a b b b b 及()1 2 3 ,,c c c c 则有 ( )() 123123123123 123123 c c c i jk a b c a a a c i c j c k a a a b b b b b b ??=?++= 因此,三重标量积必有如下关系式: ()()()a b c b c a c a b ??=??=??即有循环法则成立,这就是说不改变三重标量积中三个矢量顺序的组合,其结果相等。 2.三重矢量积 如a ,b 和c 是三个矢量,组合 ( ) a b c ??叫做他们的三重标量积,因有 ()()()a b c a c b c b a ??=-??=?? 故有中心法则成立,这就是说只有改变中间矢量时,三重标量积符号才改变。三重标量积有一个重要的性质(证略):() ()()a b c a b c a c b ??=-?+? (1-209) 将矢量作重新排列又有:()()() a b c b a c b a c ?=??+? (1-210) 3.算子( a ? ) ? 是哈密顿算子,它是一个矢量算子。( a ? )则是一个标量算子,将它作用于标量φ ,即 ()a φ?是φ在a 方向的变化速率的a 倍。如以无穷小的位置矢量 d r 代替以上矢量a ,则 ()dr φ ?是φ在位移方向 d r 的变化率的 d r 倍,即 d φ 。 () ()d dr dr φφφ=?=? 若将 () dr ?作用于矢量v ,则 ()dr v ?就是v 再位移方向 d r 变化率的 d r 倍,既为速度矢量 的全微分() dv dr v =? 应 用 三 重 矢 量 积 公 式 ( 1-209 ) ()()() 00()()()() a b a b a b b a a b b a a b ???=???+???=??-??-??+??

矢量数据空间分析

一、实验内容 利用实验数据进行缓冲区分析及叠加分析。 二、实验过程 4.1、缓冲区分析。 (1)打开数据。打开SuperMap iDesktop 8C,打开数据源,加载实验数据中的“叠加分析.udb和陕西.udb”,并将陕西数据源下的银行、市界_R和省界_R数据集依次添加到同一图层上,并依据“点线面,由小及大”的原则叠放,如下图所示; (2)建立缓冲区-单重缓冲区-多重缓冲区。 1)单重缓冲区-点数据。选择分析->矢量分析->缓冲区->缓冲区,如下图所 示;

在弹出的面板中选择缓冲数据“陕西数据源-银行数据集”,缓冲半径设置为字段型,设置为缓冲区距离,设置一下结果数据,具体如下图所示,点击确定; 得到结果,如下图所示,生成的缓冲区半径都是不一样的;

2)线数据。将陕西数据源中的水系数据集加载到同一个图层中,点击分析-> 矢量分析->缓冲区->缓冲区,在弹出的面板中,数据类型变为线数据,缓冲类型设置为圆头缓冲,数值型半径设置为5000,将结果数据设置一下,具体如下图所示,点击确定; 调整一下图层顺序,可以看到其结果,如下图所示;

在进行一下分析,将缓冲类型改为平头缓冲,将数值型中的左半径设置为10000,右半径设置为5000,设置一下结果数据,如下图所示,点击确定; 其结果如下图所示,可以看到其缓冲类型与上一个结果的明显不同,左半径明显大于右半径;

3)多重缓冲区。选择分析->矢量分析->缓冲区->多重缓冲区,在弹出的面板 中,数据集选择之前以水系数据集生成的结果数据,在缓冲半径列表部分 选择->批量添加,在弹出的面板中 设置其起始值为500,结束值为5000,步长为500,如下图所示,点击确定;

中科院信号与系统

中国科学院大学硕士研究生入学考试 《信号与系统》考试大纲 一、考试科目基本要求及适用范围 本《信号与系统》考试大纲适用于中国科学院大学信号与信息处理等专业的硕士研究生入学考试。信号与系统是电子通信、控制科学与工程等许多学科专业的基础理论课程,它主要研究信号与系统理论的基本概念和基本分析方法。认识如何建立信号与系统的数学模型,通过时间域与变换域的数学分析对系统本身和系统输出信号进行求解与分析,对所得结果给以物理解释、赋予物理意义。要求考生熟练掌握《信号与系统》课程的基本概念与基本运算,并能加以灵活应用。 二、考试形式和试卷结构 考试采取闭卷笔试形式,考试时间180分钟,总分150分。试卷分为填空、选择及计算题几个部分。 三、考试内容 (一)概论 1.信号的定义及其分类; 2.信号的运算; 3.系统的定义与分类; 4.线性时不变系统的定义及特征; 5.系统分析方法。 (二)连续时间系统的时域分析 1.微分方程的建立与求解; 2.零输入响应与零状态响应的定义和求解; 3.冲激响应与阶跃响应; 4.卷积的定义,性质,计算等。 (三)傅里叶变换 1.周期信号的傅里叶级数和典型周期信号频谱; 2.傅里叶变换及典型非周期信号的频谱密度函数; 3.傅里叶变换的性质与运算; 4.周期信号的傅里叶变换; 5.抽样定理;抽样信号的傅里叶变换; 6.能量信号,功率信号,相关等基本概念;以及能量谱,功率谱,维纳-欣钦公式。

(四)拉普拉斯变换 1.拉普拉斯变换及逆变换; 2.拉普拉斯变换的性质与运算; 3.线性系统拉普拉斯变换求解; 4.系统函数与冲激响应; 5.周期信号与抽样信号的拉普拉斯变换。 (五)S域分析、极点与零点 1.系统零、极点分布与其时域特征的关系; 2.自由响应与强迫响应,暂态响应与稳态响应和零、极点的关系; 3.系统零、极点分布与系统的频率响应; 4.系统稳定性的定义与判断。 (六)连续时间系统的傅里叶分析 1.周期、非周期信号激励下的系统响应; 2.无失真传输; 3.理想低通滤波器; 4.佩利-维纳准则; 5.希尔伯特变换; 6.调制与解调。 (七)离散时间系统的时域分析 1.离散时间信号的分类与运算; 2.离散时间系统的数学模型及求解; 3.单位样值响应; 4.离散卷积和的定义,性质与运算等。 (八)离散时间信号与系统的Z变换分析 1.Z变换的定义与收敛域; 2.典型序列的Z变换;逆Z变换; 3.Z变换的性质; 4.Z变换与拉普拉斯变换的关系; 5.差分方程的Z变换求解; 6.离散系统的系统函数; 7.离散系统的频率响应; 8.数字滤波器的基本原理与构成。 (九)系统的状态方程分析 1.系统状态方程的建立与求解; 2.S域流图的建立、求解与性能分析; 3. Z域流图的建立、求解与性能分析; 四、考试要求 2

3.0 空间分析基本操作

实验五、空间分析基本操作 一、实验目的 1. 了解基于矢量数据和栅格数据基本空间分析的原理和操作。 2. 掌握矢量数据与栅格数据间的相互转换、栅格重分类(Raster Reclassify)、栅格计算-查询符合条件的栅格(Raster Calculator)、采样数据的空间内插(Interpolate)、邻域统计(Neighborhood)等空间分析基本操作和用途。 3. 为选择合适的空间分析工具求解复杂的实际问题打下基础。 二、实验准备 实验数据: 实验数据包括:Slope1(栅格数据),Landuse (栅格数据) 街道图层:AIOStreets和城市地籍图层:AIOZonecov 气温.shp,YNBoundary.shp (云南省的边界) 三、实验内容及步骤 空间分析模块 要使用“空间分析模块”,首先要在ArcMap中执行菜单命令<工具>-<扩展>,在扩展模块管理窗口中,将“空间分析”前的检查框打勾。 然后,在ArcMap 菜单栏的空白区域点右键,在出现的右键菜单中找到“空间分析”项,点击该项,在ArcMap中显示“空间分析”工具栏。

空间分析工具栏 1. 了解栅格数据 在ArcMap中,新建一个地图文档,加载栅格数据:Slope1,在TOC 中右键点击图层Slope1,查看属性 在图层属性对话框中,点击“数据源”选项,查看此栅格图层的相关属性及统计信息。 打开“空间分析”工具栏,点击图标,查看栅格数据的统计直方图:

新建ArcMap地图文档:加载离散栅格数据(属于专题地图):Landuse ,在TOC中右键点击Landuse ,“打开属性表” 查看字段“Count”可以看到每种地类所占栅格单元的数目 2. 用任意多边形剪切栅格数据(矢量数据转换为栅格数据) 在ArcCatalog下新建一个要素类(要素类型为:多边形),命名为:ClipPoly.shp 在ArcMap中,加载栅格数据:Landuse、和ClipPoly.shp 打开编辑器工具栏,开始编辑ClipPoly ,根据要剪切的区域,绘制一个任意形状的多边形。打开属性表,修改多边形的字段“ID”的值为1,保存修改,停止编辑。 打开空间分析工具栏

新型无扇区空间矢量脉宽调制算法的研究概要

新型无扇区空间矢量脉宽调制算法的研究 李丹 周波 黄佳佳 方斯琛 (南京航空航天大学航空电源航空科技重点实验室, 南京, 210016) 摘要:传统的空间矢量脉宽调制(SVPWM )算法需要进行扇区判断,编程实现复杂。本文提出了一种基于新坐标系下的电压空间矢量脉宽调制的新算法。该算法无需扇区判断即可直接求解三相桥臂开关的占空比;实现了对开关信号的直接求解。与传统调制方法相比,大大简化了数字实现,提高了实时性。仿真及实验结果表明了该方法的正确性和可行性。 关键词:空间矢量脉宽调制;三相逆变器;坐标系;新型调制算法; 1 引 言 在控制电机的三相逆变器中,空间矢量脉宽调制(SVPWM )和正弦脉宽调制(SPWM )为两种常用调制方式。与SPWM 近似正弦的输出电压不同,SVPWM 的调制方法将逆变器和电机视为一个整体,着眼于使电机实现幅值恒定的旋转磁场。与SPWM 相比,功率器件的开关次数可以减少1/3,直流电压利用率可提高15%,能获得较好的谐波抑制效果,具有快速的响应等特点;并且,SVPWM 调制方式更适合数字实现。 SVPWM 的一系列优点使其得到了广泛应用,但缺点是数字控制复杂,因此许多文献致力于寻找SVPWM 的简化算法[1]~[3]。文献[1] 改变了扇区划分方式,减少了一定的运算步骤;文献[2]使用新的扇区标号判别方法减少了三角运算,提高了运算速度。 以上这些改进一定程度上简化了SVPWM 的数字实现,但由于简化都是针对传统调制算法的具体运算步骤进行的,因此改进有限。本文通过对SVPWM 的本质分析,提出了一种无扇区的全新实现方法。该方法改变了SVPWM 调制算法的实现思想,将整个向量空间视为整体,省略扇区的概念来达到算法的简化,与传统调制方法相比减小了编程难度,提高了运算实时性,有利于数字实现。 2 传统电压空间矢量脉宽调制方法 三相全桥逆变器共八种开关模式,分别对应八个基本电压空间矢量U 0~U 7,如图1所示。两个零矢量U 0、U 7幅值为0,位于原点。其余六个非零矢量幅值相同,相邻矢量间隔60o 。根据非零矢量所在位置将空间划分为六个扇区。空间矢量脉宽调制就是利用U 0~U 7的不同组合,组成幅值相同、相位不同的参考电压矢量U ref ,从而使矢量轨迹尽可能逼进基准圆, U 456Ⅴ T 1/T pwm *U 1 U 1O

空间矢量脉宽调制仿真及其谐波分析

文章编号:1005—7277(2005)01—0011—03 V ol.27,N o.12005,27(1):11~13 电气传动自动化 E L ECTRIC D RIVE AUTOMATI O N 2005年第27卷第1期第11页 空间矢量脉宽调制仿真及其谐波分析 康现伟,于克训,刘志华 (华中科技大学电气与电子工程学院,湖北武汉430074) 摘要:在深入分析空间矢量脉宽调制机理的基础上,通过SIMU LINK 给出了其仿真波形,重点对SVPWM 的仿真结果进行了谐波分析,得到了SVPWM 谐波分布的主要特点及影响其谐波分布的几个主要因素,为更有效消除SVPWM 谐波污染提供了理论基础和指导。关键词:空间矢量脉宽调制;谐波;仿真中图分类号:T M921.52 文献标识码:A Simulation and harmonic anal y sis of SVPWM K ANG Xian-wei ,Y U K e-xun ,LIU Zhi-hua (Huazhon g Univ er sit y o f Science and T echnolo gy ,Wuhan 430074,China ) Abstract :Based on the anal y sis of the characteristics of s p ace vector p ulse w idth m odulation (SVPWM ),a series of sim 2ulation w aveforms are illustrated b y the use of S imulink.T he foundational features of the harm onic distributions of SVPWM and the dom inant factors affectin g the distributions are obtained throu g h the anal y sis on the harm onics of the w aveforms ,which p rov ides us theoretical foundation to elim inate the harm onic p ollution.K e y w ords :SVPWM;harm onic ;simulation 1引言 空间矢量脉宽调制(SVPWM )具有线性调制范围宽,直流电压利用率高,易于微处理器实现等优点,它目前被广泛应用于变频器、UPS 、无功补偿器、有源滤波器、储能系统电力变换器等领域。当控制精度要求较高时,必须考虑其谐波问题。 本文首先阐述了空间矢量调制(SVPWM )的基本原理,然后给出了仿真波形,针对空间矢量调制中出现的谐波问题,文章进行了较为详细的分析和论述,得到了影响SVPWM 谐波分布的几个主要因素,从而为其在实际应用中消除谐波污染提供了可靠的理论依据。 2电压空间矢量脉宽调制(SVPWM )原理 对于理想三相正弦系统,电压空间矢量的定义为: V =2/3(V a +V b e j 2π/3+V c e j 4π/3) (1) 对于三相电压源型逆变桥的6个开关,如图1 所示。假设“1”代表上桥臂导通,“0”代表下桥臂导 通,则一共有8种开关模式,分别为V 0(000),V 1(100),V 2(110),V 3(010),V 4(011),V 5(001),V 6(101), V 7(111)。由变换式(1)可得,这8种开关模式在复 平面上分别产生8种电压矢量,其中V 1~V 66个开关模式产生输出电压,而V 0、V 72个开关模式不产生输出电压,称为零矢量。这8个电压矢量将复平 面分为6个区域,如图2所示,按照平行四边形法则,利用这8个空间矢量可以合成在六变形区域内的任何输出电压矢量 。

矢量信号分析仪计量中的evm指标研究

矢量信号分析仪计量中的EVM 指标研究 周峰,郭隆庆,张睿,张小雨 信息产业部通信计量中心 矢量调制信号是现代通信的基础,矢量信号分析仪(VSA)是信号分析的重要仪表,目前,我国技术监督部门还没有制定VSA 的校准和鉴定规程,相关研究也并不完善。所谓对VSA 的鉴定,就是通过测试测量来确定VSA 测量结果的残留误差。而误差矢量幅度EVM ,是VSA 测量的核心指标之一,从EVM 入手进行研究,是比较合理的。本研究报告以QPSK 信号为典型,建立了数学模型并且使用Matlab 语言编程搭建了简单算法平台,并且使用了PSA 频谱分析仪(包括VSA 选件)和SMU200矢量信号源进行了实验研究。报告主要包含三个部分。 第一部分 EVM 计算中参考信号幅度输出算法研究 VSA 可以分为两个模块:变频器、滤波器和放大器序列构成的模拟部分,和由数字处理芯片及其算法构成的数字模块。本部分主要研究数字模块中的参考信号幅度生成算法。 图 1 VSA 的模块化构成 中频信号被抽样量化后成为数字信号,N 个码片的抽样信号进入数字信号处理模块后, 其幅度和相位就确定了,经过判决,重新生成了码字序列,然后计算EVM 指标。EVM 指标是抽样信号和“标准参考信号”的矢量做差得出的结果。而这个“标准参考信号”的幅度,则是N 个码片的抽样值决定的。传统上我们定义参考信号幅度s M 为: 我们假设一个码片的归一化幅度误差是M ?,而相位误差是P ?,根据三角关系,矢量幅度误差可以表示为:

在调制方式确定后,星座图基本点的相位是确定的,所以是不依赖于参考信号幅度的,所以P ?是确定的,但是M ?是依赖参考信号幅度的,进而EVM 也是依赖参考信号幅度的。经典理论指出:参考信号幅度s M 的选择算法,应当使EVM 尽可能小。但是我们的研究显示,从理论上讲,(1)式的算法不是使EVM 最小化的最优算法,以下我们将简要说明我们对最优算法的研究: VSA 输出的EVM 值,并不是单个码片的EVM 值,而是N 个码片EVM 的均方根值,即: rms EVM = = (3) 前文已经说明,i P ?是不可选择的,而 1i i s M M M ?=- (4) 而这个标准的s M 就是我们要求取的量。设定函数 ()()2 2221141sin 411sin 122N N i i i i s i i i i s s P M P M f M M M M M ==???? ??????=+?+?=+-+- ? ? ? ? ???????? ? ∑∑ (5) ()s f M 越小,则rms EVM 越小,通过偏导法来求函数()s f M 的极值,通过分析,认为一定存在 这样一个极小值存在在可导区间上:

矢量计算题

矢量的基本知识和运算法则 1.矢量和标量的不同点在于:矢量除了有大小之外,还有方向,矢量A 记做A ,其大小等于A 矢量的图示:通常用一条带有箭头的线段来表示,(线段的长度表示大小,箭头表示方向)如图5-1所示。 两个矢量相等的条件是:大小相等,方向相同。如图5-2所示。两矢量的夹角定义为两矢量所构成的小于或等于1800的角。在一般问题中(除非特别指明),矢量的始点位置不关重要的,在进行矢量运算时可将矢量平移。 2.矢量的加减法运算遵从平行四边形法则或三角形法则。 对三个以上的矢量相加,通常使用多边形法则。 3.矢量A 与数量K 相乘时,其结果仍是一个矢量。所得矢量的大小等于原矢量大小乘以,所得矢量的方向:当K >0时,与原矢量方向相同;当K<0 时,与原矢量方向相反 如动量()mV 、冲量()F t ??都是矢量,其方向分别与矢量V 和F 矢量相同。动量的变化量()m V ?也是矢量,其方向与V ?相同。 矢量A 与数量K 相除,可以看成A 矢量乘以数量 1K ,如加速度1F a F m m ==?,方向与F 相同。 4.矢量A 与矢量B 相乘 一种乘法叫做两矢量的数量积(又叫点积),用AB ?表示,乘得的积是标量,大小等于两矢量的大小与两矢量夹角余弦的积。即:c o s A B A B θ?=。如:功是力F 与位移S 的数量积,是标量。c o s W F S F S θ=?= 另一种乘法运算是两矢量的矢量积(又叫叉积),用A B ?表示,矢量积A B C ?=还是一个矢量,其大小等于两矢量的大小和两矢量夹角的正弦的乘积。sin C A B θ=?,即矢量C 的大小等于两矢量A 和B 为邻边的平行四边形的面积,矢量C 的方向垂直于矢量A 和B 所决定的平面,指向用“右手螺旋法则”来确定,如图5-5(甲)或(乙)所示。 A B B A ?≠?,A B ?与B A ?大小相等,方向相反。 如力矩M 等于力F 和矢径r 两矢量的矢量积,力矩M r F =?,大小为sin M Fr θ=。带电粒子所受的磁场力(即洛仑兹力)F qV B =?,大小为sin F q vB θ=?(若是负电荷受力方向与此相反) 例5-1为什么说匀速园周运动既不是匀速运动,也不是匀变速运动?物体在运动过程中合外力是否做功? 解:因为速度和加速度都是矢量,在图5-6所示的圆周上任意取两点A 、B ,虽然,A B A B v v a a ==,但方向不同,由矢量相等的条件可知:A B v v ≠,A B a a ≠,因此匀速园周运动既不是匀速运动,也不是匀变速运动。

空间矢量PWM算法的理解_Revise

空间矢量PWM算法的理解 姜淑忠 上海交通大学电气工程系(上海200030) 摘要:继正弦波PWM(SPWM)开关算法之后,空间矢量(Space Vector)PWM (SVPWM)已成为三相或多相逆变器的开关算法。本文以SVPWM的基本原理为基础,计算开关时间,讨论开关向量的选择原则,并用数字信号处理器(DSP)实现SVPWM算法。最后根据电压综合向量,推导相电压有效值与交流输入电压有效值的关系。 关键词:SVPWM,开关向量,开关时间,相电压有效值 Understanding of Space Vector PWM Algorithm S.Z. Jiang Department of Electrical Engineering, Shanghai Jiao Tong University (Shanghai 200030) Abstract: Following the SPWM algorithm, SVPWM algorithm has been adopted in three-phase and multi-phase inverters. Based on the principle of SVPWM, the calculation of switch time, the selection of switch vector and the realization on DSP are presented in this paper. Finally the relation between the rms of phase voltage and the rms of ac source is derived from the complex voltage vector. Keywords: SVPWM, Switch vector, Switch time, RMS of phase voltage 1、前言 无论是一般的变频调速,还是磁场定向控制,当计算出静止直角坐标系中的电压综合向量后,都要采用SVPWM算法获得三相逆变器六个开关器件的开关信号。早期

SVPWM算法程序

第6章空间矢量脉宽调制技术 例1、CLARK变换的DSP实现 图CLARK变换实现波形图 /*---------------------------------------------------------------------------------------------------------------------------------------- CLARKE变换相关变量定义 ----------------------------------------------------------------------------------------------------------------------------------------*/ typedef struct { float32 As; // 输入:A相定子电流 float32 Bs; // 输入:B相定子电流 float32 Alpha; // 输出:静止坐标系d轴定子电流 float32 Beta; // 输出:静止坐标系q轴定子电流 void (*calc)(); // 计算函数指针 } CLARKE; typedef CLARKE *CLARKE_handle; /*---------------------------------------------------------------------------------------------------------------------------------------- 定义CLARKE变换初始化参数 ----------------------------------------------------------------------------------------------------------------------------------------*/ #define CLARKE_DEFAULTS { 0, \ 0, \ 0, \ 0, \ (void (*)(Uint32))clarke_calc } /*---------------------------------------------------------------------------------------------------------------------------------------- CLARKE变换函数原型CLARKE.C ----------------------------------------------------------------------------------------------------------------------------------------*/ void clarke_calc(CLARKE_handle); #include "dmctype.h"

栅格数据结构和矢量数据结构空间分析

一、矢量、栅格数据结构的优缺点 矢量数据结构可具体分为点、线、面,可以构成现实世界中各种复杂的实体,当问题可描述成线或边界时,特别有效。矢量数据的结构紧凑,冗余度低,并具有空间实体的拓扑信息,容易定义和操作单个空间实体,便于网络分析。矢量数据的输出质量好、精度高。 矢量数据结构的复杂性,导致了操作和算法的复杂化,作为一种基于线和边界的编码方法,不能有效地支持影像代数运算,如不能有效地进行点集的集合运算(如叠加),运算效率低而复杂。由于矢量数据结构的存贮比较复杂,导致空间实体的查询十分费时,需要逐点、逐线、逐面地查询。矢量数据和栅格表示的影像数据不能直接运算(如联合查询和空间分析),交互时必须进行矢量和栅格转换。矢量数据与DEM数字高程模型)的交互是通过等高线来实现的,不能与DEM 直接进行联合空间分析。 栅格数据结构是通过空间点的密集而规则的排列表示整体的空间现象的。其数据结构简单,定位存取性能好,可以与影像和DEM数据进行联合空间分析,数据共享容易实现,对栅格数据的操作比较容易。 栅格数据的数据量与格网间距的平方成反比,较高的几何精度的代价是数据量的极大增加。因为只使用行和列来作为空间实体的位置标识,故难以获取空间实体的拓扑信息,难以进行网络分析等操作。栅格数据结构不是面向实体的,各种实体往往是叠加在一起反映出来的,因而难以识别和分离。对点实体的识别需要采用匹配技术,对线实体的识别需采用边缘检测技术,对面实体的识别则需采用影像分类技术,这些技术不仅费时,而且不能保证完全正确。

通过以上的分析可以看出,矢量数据结构和栅格数据结构的优缺点是互补的(图2-4-1 ),为了有效地实现GIS中的各项功能(如与遥感数据的结合,有效的空间分析等)需要同时使用两种数据结构,并在GIS中实现两种数据结构的高效转换。 在GIS建立过程中,应根据应用目的和应用特点、可能获得的数据精度以及地理信息系统软件和硬件配置情况,选择合适的数据结构。一般来讲,栅格结构可用于大范围小比例尺的自然资源、环境、农林业等

基于空间矢量PWM算法的全数字化调速系统_詹长江

基于空间矢量PWM算法的全数字化调速系统 A Fully Digitalized AC Speed Regulation System Based on Space Vector PWM Control Algorithem 华中理工大学 詹长江 陈 坚 康 勇 段善旭 (武汉 430074) 摘要:提出一种基于空间矢量PWM算法的全数字化交流调速系统。该系统采用双80C196K C单片机控制结构,双机之间数据并行通讯由双口RAM来完成。此外,还提出了一种新颖的定子电流检测方法,该方法基于空间矢量P WM算法,在逆变器零开关矢量作用时间内进行电流采样,采样值波动性小。实验结果表明该系统具有优良的性能。 Abstract:A fully dig italized A C speed regulation system based on space vector PWM control algorit hm is descr ibed in detail.T he control structure composed by double80C196K C chips is adopted.T he par allel commu-nicatio n can be fulfilled with the dua-l po rt-RAM.F uthermore,a new method for testing the stator current based on space vector PWM algor ithm i s proposed.T he good performance of the system is verified by ex per-i mental r esults. 叙词:调速系统 脉宽调制 数字化/空间矢量 Keywords:speed regulation system;PWM;digitalization/space vector 1 引 言 近年来,采用PWM技术的交流变频调速系统逐渐应用于工业领域中[1]。就PWM而言,本质在于优化开关函数,使得逆变器按一定规律输出电压或电流。德国学者H.W.Vander Broek等提出的基于电压空间矢量控制,不仅使得电机转矩脉动降低、电流波形畸变减小,而且与常规SPWM技术相比直流电压利用率亦有很大提高[3]。 由于交流电机本身具有非线性和强耦合性,故其控制方式复杂,用常规的模拟和数字电路难以完成复杂的控制功能,而且系统实时性的要求往往使得用一个单片机很难达到较好的控制效果[5]。而采用双单片机控制结构,既兼顾了成本方面的要求,又得以实现如矢量控制一类复杂的控制方式[6、7、8]。 交流调速系统数字化控制的另一个关键是定子电流的有效、快速、可靠的检测。通常的采样办法的最大缺点在于易受逆变器开关噪声的影响,这样采样值易受干扰而偏离原值,且波动性很大。 本文提出的基于电压空间矢量PWM算法的双80C196KC单片机控制的交流调速系统,双机之间的通讯由双口RAM芯片IDT7130硬件实现,既加快了数据传送率,又提高了系统的可靠性。另外,文中介绍的基于电压空间矢量PWM算法的定子电流检测方式可在逆变器零开关矢量作用时间内完成定子电流的检测和采样,理论上避免了开关器件开通和关断引起的开关噪声,这样采样值波动性小,增加了系统动态响应性能。 2 电压空间矢量PWM算法 图1所示主电路中,忽略电机定子绕组电阻R s,当定子绕组施加三相理想正弦电压时,由于电压合成空间矢量为等幅旋转矢量,故气隙磁通以恒定角速度旋转,轨迹为园形。实际运行中,逆变器只有六个有效开关矢量V 1~V 6和两个零开关矢量V 和V 7 ,其输出电压只可能有八种状态,因此,只能用V 0~V 7八个矢量的线性组合去近似模拟等幅旋转矢量,这时实际的电机气隙磁通轨迹近似圆形。 由文献[2、3、4]可知,逆变器输出参考电压合成空间矢量落在第I扇区时,有效开关矢量工 /3- )/2 sin /2 (1)

SVPWM空间矢量脉宽调制

SVPWM 空间矢量脉宽调制(Space Vector Pulse Width Modulation) SVPWM的主要思想是:以三相对称正弦波电压供电时三相对称电动机定子理想磁链圆为参考标准,以三相逆变器不同开关模式作适当的切换,从而形成PWM波,以所形成的实际磁链矢量来追踪其准确磁链圆。传统的SPWM方法从电源的角度出发,以生成一个可调频调压的正弦波电源,而SVPWM方法将逆变系统和异步电机看作一个整体来考虑,模型比较简单,也便于微处理器的实时控制。 普通的三相全桥是由六个开关器件构成的三个半桥。这六个开关器件组合起来(同一个桥臂的上下半桥的信号相反)共有8种安全的开关状态. 其中000、111(这里是表示三个上桥臂的开关状态)这两种开关状态在电机驱动中都不会产生有效的电流。因此称其为零矢量。另外6种开关状态分别是六个有效矢量。它们将360度的电压空间分为60度一个扇区,共六个扇区,利用这六个基本有效矢量和两个零量,可以合成360度内的任何矢量。 当要合成某一矢量时先将这一矢量分解到离它最近的两个基本矢量,而后用这两个基本矢量矢量去表示,而每个基本矢量的作用大小就利用作用时间长短去代表。用电压矢量按照不同的时间比例去合成所需要的电压矢量。从而保证生成电压波形近似于正弦波。 在变频电机驱动时,矢量方向是连续变化的,因此我们需要不断的计算矢量作用时间。为了计算机处理的方便,在合成时一般是定时去计算(如每0.1ms计算一次)。这样我们只要算出在0.1ms内两个基本矢量作用的时间就可以了。由于计算出的两个时间的总合可能并不是0.1ms(比这小),而那剩下的时间就按情况插入合适零矢量。由于在这样的处量时,合成的驱动波形和PWM很类似。因此我们还叫它PWM,又因这种PWM是基于电压空间矢量去合成的,所以就叫它SVPWM了。 需要明白的是,SVPWM本身的产生原理与PWM没有任何关系,只是像罢了。SVPWM的合成原理是个很重要的东东,它并不只用在SVPWM,在其它一些应用中也很有用的。当你见到时就明白了。具体可以参看IEEE的很多论文。 当然,SVPWM与SPWM的原理和来源有很大不同,但是他们确实殊途同归的。SPWM由三角波与正弦波调制而成,而SVPWM却可以看作由三角波与有一定三次谐波含量的正弦基波调制而成,这点可以从数学上证明。 SVPWM特点: 1.在每个小区间虽有多次开关切换,但每次开关切换只涉及一个器件,所以开关损耗小。 2.利用电压空间矢量直接生成三相PWM波,计算简单。 3.逆变器输出线电压基波最大值为直流侧电压,比一般的SPWM逆变器输出电压高15%

空间矢量脉宽调制SVPWM控制法

第三节空间矢量脉宽调制SVPWM控制法 1.3.1 电压空间矢量SVPWM技术背景 我们先来回顾一下交流异步电机的工作机理:三相平衡的交流电压在电机定子绕组上产生三相平衡的交流电流;三相平衡的交流电流在定子内腔产生一个幅值恒定的磁链,该磁链在定子内腔旋转,旋转的角速度与电源(电流)的角速度相同;旋转的轨迹形成一个圆形的空间旋转磁场;旋转磁场通过电磁力矩带动转子旋转,在电动机状态下,转子旋转的角速度低于旋转磁场的角速度:转差,转差提交流异步电机产生力矩的根本原因。 前面所讨论的SPWM技术是从电源的角度出发,来合成电机的激励源。由交流异步电机的工作机理我们想到:可不可以直接从动力源出发,来直接合成一个圆形的旋转磁场呢?如果可以,这样的控制方法显然更直接,效果应更好。 如何直接合成一个圆形的旋转磁场呢? 对于交流电机,我们注意到以下的事实: 电机定子是固定的,不旋转的; 施加在定子上的电压是三相平衡的交流电:幅度相同,相位上彼此偏差120o; 自然地,我们想到:定义异步电机的三相定子绕组上的电压为平面上的一静止坐标系的三个轴,电机的相电压在各自的轴向上依正弦规律变化。见图2-1-10。 图2-1-10:相电压空间矢量图 由图2-1-10知,三个电压轴向量不同线性组合可以合成该平面上的任一个电压矢量u,即:

ππ34332201***j j j e A e A e A ++= 当三个电压轴向量对应于三相平衡交流电时,即:t U A m ωsin 1=, )32sin(2πω+=t U A m ,)3 4sin(3πω+=t U A m ,不难得到,所合成的电压矢量为: )sin (cos 2 3t j t U m ωω+= jwt m e U 2 3= 式(2-3-1) 由式(2-3-2)知,所合成的电压空间矢量具有以下特征: 电压矢量模(幅值)恒定; 电压矢量绕中性点旋转,旋转的轨迹是一个圆; 电压矢量绕中性点匀速旋转,旋转的角速度为ω; 电压矢量旋转的角速度与交流电源(电流)的角速度相同。 我们来看看电压空间矢量与空间旋转磁链之间的关系。 根据电机学理论,空间电流矢量,空间磁通矢量,电压空间矢量之间的关系为: dt d r i u ψ+=* 其中r *是电机绕组上的阻抗压降,在电机转速不是很低的情况下,通常可以忽略。于是上式可以写成: dt d ≈ 我们知道是一个空间旋转磁场:jwt m e ψ=, 于是=ψ=ψ≈+ππωωωω21)21(***)(j t j m t j m e e dt e d 式(2-3-2) 很明显,电压空间矢量,空间磁通矢量存在一维的线性关系,电压空间矢量的幅值(模)只与电机的角速度ω(转速)有关;相位上超前 π2 1。不难理解,这是由电机的电感属性引起的。 于是空间旋转磁场的特性可以用空间电压矢量的特性来等效。

电压空间矢量PWM控制

文章编号:1009-0193(1999)04-0086-05 电压空间矢量(磁链追踪)PWM控制 研究与仿真 翁颖钧,吴守箴 (上海铁道大学电气工程系,上海200331) 摘要:为了提高电机的功率因数,降低开关损耗,基于气隙磁通控制原理,以电压矢量组合来逼近圆形磁链轨迹,而电压矢量的选择对应不同开关模式,因此构成电压矢量控制PWM逆变器。利用C语言仿真,该法输出电压较一般SPWM 逆变器提高15%,每次状态切换只涉及一个元件,开关损耗降低,且模型简单,适用于各种PWM调速装置。 关键词:电机;空间矢量;PWM控制 中图分类号:TM301.2 文献标识码:A 1 基本原理 由电机学可知,在由三相对称正弦电压供电时,电机的定子磁链的幅值是恒定的,并以恒速ω 1 旋转。磁链矢量顶端运动轨迹形成圆形的空间旋转磁场(简称磁链圆),我们可以用定子磁链的矢量式来表述: 式中,λ m 为的幅值,ω 1 为旋转角速度。当转速不是很低时,定子电阻压降较 小,可以忽略不计,则定子电压与磁链的近似关系可表示成:

上式表明,电压矢量V 1的大小等于λ 1 的变化率,而其方向则与λ 1 的运动方向一 致。由式(1),(2) 可得: 由(3)式可见,当磁链幅值λ m 在运动过程中一定时,的大小与ω 1 (或供电电压 频率f 1 )成正比,其方向为磁链圆轨迹的切线方向。当磁链矢量在空间旋转一周时,电压空间矢量也连续地按磁链圆的切线方向运动经过2π弧度,其轨迹与磁链圆是重合的。这时,我们就把气隙旋转磁场的轨迹与电压空间矢量联系起来。从三相逆变器—异步电机原理图(见图1)可知,为了使电动机对称工作,必须三 相同时供电,从逆变器的拓扑结构以及式(2)来看,每个输出电势V ao ,V bo ,V co 都具有二个值,例如±V d /2,如此线性组合即可得到矢量23=8种电压类型。图(2) 表示了电压空间矢量的放射状分布。每个矢量标注了 0(000)~ 7 (111),0表 示同一桥臂的二个晶闸管的下面一个导通,1表示上侧的导通,k表示对应二进制数的十进制数。一旦开关方式确定,那么对应的k也就唯一确定。由式(4)可知: λ 为磁链矢量的初始值(4) 图1 三相逆变器—异步电动机原理图图2 电压空间矢量的分布 利用逆变器的这8种电压矢量的线性组合,就可获得更多的与V 1~V 8 相位不同的 新的电压空间矢量,最终构成一组等幅不同相的电压空间矢量,由式(4)知最终迭加形成尽可能逼近圆形旋转磁场的磁链圆,这就形成了电压空间矢量控制的PWM逆变器。由于它间接控制了电机的旋转磁场,所以也可称为磁链追踪控制的PWM逆变器。

空间矢量脉宽调制(SVPWM)的开环讲解

采用空间矢量脉宽调制(SVPWM )的开环 VVVF 调速系统的综合实训 一、实验目的 1、理解电压空间矢量脉宽调制(SVPWM )控制的基本原理。 2、熟悉MCKV 电机控制系统的CPU 模块、IPM 模块和机组各部分硬件模块,并确认工作正常。 3、了解SVPWM 变频器运行参数和特性。 二、实验内容: 1、熟悉CCS 编程环境,并在CCS 下编译、下载、运行DSP 软件工程。 2、观察并记录定子磁链周期和频率,并分析他们之间的关系。 3、观测并记录启动时电机定子电流和电机速度波形)(t f i v =与)(t f n =; 三、实验预习要求 1、阅读并掌握三相交流异步电机VVVF 调速系统工作原理。 2、了解电压空间矢量脉宽调制(SVPWM )控制的基本原理。 3、阅读本次实验指导书和实验程序,写好实验预习报告。 4、在MATLAB/Simulinlk 环境中搭好仿真模型,结合本程序LEVEL1功能框图,完成电流速度双闭环系统交流异步电机矢量控制仿真。 四、实验原理 当用三相平衡的正弦电压向交流电动机供电时,电动机的定子磁链空间矢量幅值恒定,并以恒速旋转,磁链矢量的运动轨迹形成圆形的空间旋转矢量(磁链圆)。SVPWM 就是着眼于使形成的磁链轨迹跟踪由理想三相平衡正弦波电压源供电时所形成的基准磁链圆,使逆变电路能向交流电动机提供可变频电源,实现交流电动机的变频调速。 现在以实验系统中用的电压源型逆变器为例说明SVPWM 的工作原理。三相逆变器由直流电源和6个开关元件( MOSFET) 组成。图1是电压源型逆变器的示意图。 图1 电压源型逆变器示意图

对于每个桥臂而言,它的上下开关元件不能同时打开,否则会因短路而烧毁元器件。其中A 、B 、C 代表3 个桥臂的开关状态,当上桥臂开关元件为开而下桥臂开关元件为关时定义其状态为1 ,当下桥臂开关元件为开而上桥臂开关元件为关时定义其状态为0。这样A 、 B 、 C 有000 、001 、010 、011 、100 、101 、110 、111共 8种状态。逆变器每种开关状态对应不同的电压矢量,根据相位角不同分别命名为U 0(000)、U 1(100)、U 2(110)、U 3(010)、U 4(011)、U 5(001)、U 6(101)、U 7(111)如图2所示。 图2 基本电压空间矢量 其中U 0(000)和U 7(111)称为零矢量,位于坐标的原点,其他的称为非零矢量,它们幅值相等,相邻的矢量之间相隔60°。如果按照一定顺序选择这六个非零矢量的电压空间矢量进行输出,会形成正六边形的定子磁链,距离要求的圆形磁链还有很大差距,只有选择更多的非零矢量才会使磁链更接近圆形。 SVPWM 的关键在于用8个基本电压空间矢量的不同时间组合来逼近所给定的参考空间电压矢量。在图3中对于给定的输出电压U ,用它所在扇区的一对相邻基本电压x U 和60 x U 来等效。此外当逆变器单独输出零矢量时,电动机的定子磁链矢量是不动的。根据这个特点,可以在载波周期内插入零矢量,调整角频率,从而达到变频目的。 图3 电压空间的线性组合

相关主题
文本预览
相关文档 最新文档