2013年江苏省南通市中考数学试题及答案
- 格式:doc
- 大小:543.50 KB
- 文档页数:18
江苏省南通市如东县2013年八校联考中考模拟考试数 学 试 题一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.下列运算正确的是( ▲ )A .{ EMBED Equation.DSMT4 |236·a a aB .C .D .2.如图,BC ∥DE ,∠1=105°,∠AED =65°,则∠A 的度数是( ▲ )A .25°B .35°C .40°D .60°3.一个一元一次不等式组的解集在数轴上的表示如图所示,则该不等 式组的解集是( ▲ )A .B .C .D .4.由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( ▲ ) A .正视图的面积最大 B .俯视图的面积最大C .左视图的面积最大D .三个视图的面积一样大5.为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了l5户家庭的日用电量,结果如下表:1DCA FE则关于这l5户家庭的日用电量,下列说法错误的是( ▲ )A .众数是6度B .平均数是6.8度C .极差是5度D .中位数是6度 6.菱形OACB 在平面直角坐标系中的位置如图所示,点C 的坐标是(6,0),点A 的纵坐标是1,则点B 的坐标是( ▲ )A .(3,1)B .(3,—1)C .(1,—3)D .(1,3)7.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率是 ( ▲ )A .1 3 |B .512|C .112|D .1 2|8.如图,从一张圆形纸板剪出一个小圆形和一个扇形,分别作为圆锥体的底面和侧面,下列的剪法恰好能配成一个圆锥体的是( ▲ )A .B .C .9.根据图象,判断下列说法错误的是( ▲ ) A .函数的最大值等于4 B .当x >2 时, > C .当-1<x <3时,> D .当x 为-1或2时,=10. 如图,点E 、F 是以线段BC 为公共弦的两条圆弧的中点,BC =6,点A 、D 分别为线段EF 、BC 上的动点.连结AB 、AD ,设BD =x ,,下列能表示y 与x 的函数关系的图象是( ▲ )二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为 ▲ . 12.分解因式:= ▲.13.在坡度为1:2的山坡上种树,要求株距(相邻两树间的水平距离)是6m ,斜坡上相邻两树间的坡面距离是 ▲ m .A B C D0 1 2n则被遮盖的数据是 ▲ .15.已知a ,b 为一元二次方程x 2+2x -9=0的两根,那么a 2+a -b 的值为 ▲ . 16.如图,在Rt ABC △中,9068C AC BC O ∠===°,,,⊙为ABC △的内切圆,点D 是斜边AB 的中点,则tan ODA ∠= ▲ .17.如图,直线y =k 和双曲线y =(k >0)相交于点P ,过点P 作P A 0垂直于x 轴,垂足为A 0,x 轴上的点A 0,A 1,A 2,…,A n 的横坐标是连续整数,过点A 1,A 2,…,A n 分别作x 轴的垂线,与双曲线y =(k >0)及直线y =k 分别交于点B 1,B 2,…,B n 和点C 1,C 2,…,C n ,则的值为 ▲ .(n 为正整数)18.在平面直角坐标系中,点O 为坐标原点,点A 的坐标为(3,4),点B 的坐标为(7,0), D ,E 分别是线段AO ,AB 上的点,以DE 所在直线为对称轴,把△ADE 作轴对称变换得,点恰好在轴上,若与△OAB 相似,则O 的长为 ▲ .(结果保留2个有效数字)三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本小题满分10分) (1)化简; (2)解方程:.20.(本小题满分8分)如图,已知E 、F 分别为矩形ABCD 的边BA 、DC 的延长线BEDAxyGE DA电视机月销量扇形统计图第一个月 15% 第二个月30% 第三个月 25%第四个月图①上的点,且AE =12 |AB ,CF =12 |CD ,连结EF 分别交AD 、BC 于点G 、H .请你找出图中与DG 相等的线段,并加以证明. 21.(本小题满分8分)某超市将某品牌书包的售价从原来80元/个经两次调价后调至64.8元/个. (1)若该超市两次调价的降价率相同,求这个降价率;(2)经调查,该书包每降价4元,即可多销售5个,若该超市原来每月可销售书包120个, 那么两次调价后,每月可销售这种品牌的书包多少个? 22.(本小题满分9分)如图,已知AB 是⊙O 的直径,C 、D 为⊙O 上两点,CF ⊥AB 于点F ,CE ⊥AD 的延长线于点E ,且 CE =CF . (1)求证:CE 是⊙O 的切线;(2)若AD =CD =6,求四边形ABCD 的面积. 23.(本小题满分8分)某商店在四个月的试销期内,只销售A ,B 两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图①和如图②.(1)第四个月销量占总销量的百分比是 ; (2)在图②中补全表示B 品牌电视机月销量的折线;(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求抽到B 品牌电视机的概率;(4)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.时间/月图②第一 第二 第三 第四 电视机月销量折线统计图分24. (本小题满分9分)如图,平面直角坐标系中,OB 在x 轴上,∠ABO =90º,点A 的坐标为(1,2).将△AOB 绕点A 逆时针旋转90º,点O 的对应点C 恰好落在双曲线y = kx |的一个分支上,(1)求双曲线的解析式;(2)过点C 的直线与双曲线的另一个交点为E ,求点E 的坐标和△EOC 的面积. 25.(本小题满分8分)某厂家新开发一种摩托车如图所示,它的大灯A 射出的光线AB 、AC 与地面MN 的夹角分别为8°和10°,大灯A 与地面距离1 m . (1)该车大灯照亮地面的宽度BC 约是多少m ?(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2 s ,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km /h 的速度驾驶该车,突然遇到危险情况,立即刹车直到摩托车停止,在这过程中刹车距离是m ,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:,,,) 26.(本小题满分10分)邮递员小王从县城出发,骑自行车到A 村投递,途中遇到县城中学的学生李明从A 村步行返校.小王在A 村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离S (千米)和小王从县城出发后所用的时间t (分)之间的函数关系如图所示,假设二人之间交流的时间忽略不计,求:(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案;(2)小王从县城出发到返回县城所用的时间; (3)李明从A 村到县城共用多长时间? 27.(本小题满分12分)M B C N A如图,已知直角梯形ABCD中,AD//BC,DC⊥BC,AB=5,BC=6,∠B=53°.点O为BC边上的一个点,连结OD,以O为圆心,BO为半径的⊙O分别交边AB于点P,结MN.(1)当BO=AD时,求BP的长;(2)在点O运动的过程中,线段BP与MN能否相等?若能,请求出当BO为多长时BP=MN;若不能,请说明理由;(3)在点O运动的过程中,以点C为圆心,CN为半径作⊙C,请直接写出....当⊙C存在时,⊙O与⊙C的位置关系,以及相应的⊙C半径CN的取值范围.(参考数据:cos53°≈0.6;sin53°≈0.8;tan74°3.5)Array 28.(本小题满分14分)如图,平面直角坐标系中,抛物线交轴于A、B两点(点B在点A的右侧),交轴于点C,以OC、OB为两边作矩形OBDC,CD交抛物线于G.(1)求OC和OB的长;(2)抛物线的对称轴在边OB(不包括O、B两点)上作平行移动,交轴于点E,交CD于点F,交BC于点M,交抛物线于点P.设OE=m,PM=h,求h与m的函数关系式,并求出PM的最大值;(3)连接PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△BEM相似?若存在,直接求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.。
南通中考数学试题及答案南通市中考数学试题一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. 0.33333…(无限循环)B. πC. √2D. 0.52. 已知一个直角三角形的两直角边分别为3和4,求斜边长度。
A. 5B. 7C. 8D. 93. 一个数的平方根是它本身,这个数可能是:A. 1B. -1C. 0D. 44. 以下哪个代数式是二次根式?A. √xB. √(x+1)C. √(x-1)/xD. x√y5. 一个圆的半径为5,求圆的周长。
A. 10πB. 15πC. 20πD. 25π二、填空题(每题2分,共20分)6. 一个数的绝对值是其本身,这个数是非负数,即x ≥ _______。
7. 一个数的相反数是-3,这个数是 _______。
8. 一个二次方程ax² + bx + c = 0的判别式是b² - 4ac,当判别式小于0时,方程 _______ 实数根。
9. 一个多项式f(x) = 3x³ - 2x² + x - 4,求f(1)的值是_______。
10. 一个等差数列的首项是2,公差是3,求第5项的值是 _______。
三、解答题(共60分)11. 已知一个长方体的长、宽、高分别为l、w、h,求其体积。
(5分)12. 解一元二次方程:2x² - 5x + 3 = 0。
(10分)13. 某工厂生产一批零件,每生产一个零件的成本是5元,销售价格是10元,求工厂在生产100个零件时的利润。
(10分)14. 已知一个等比数列的首项是2,公比是3,求第10项的值。
(10分)15. 已知一个圆与x轴相切,圆心在直线y=2x上,求圆的方程。
(10分)16. 已知一个三角形的三边长分别为a、b、c,且满足a² + b² = c²,求证这是一个直角三角形。
(15分)参考答案:1. C2. A3. C4. B5. C6. 07. 38. 无9. 010. 17解答题部分需要根据题目要求进行详细解答,这里给出的是部分选择题和填空题的答案,具体解答题的解答需要根据题目的具体要求进行分析和解答。
2013年江苏省南京市中考数学试卷(详细解析版)D2013年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)(2013•南京)计算:12﹣7×(﹣4)+8÷(﹣2)的结果是( )A .﹣24B . ﹣20C . 6D .36考点:有理数的混合运算. 专题:计算题.分析: 根据运算顺序先计算乘除运算,最后算加减运算,即可得到结果.解答: 解:原式=12+28﹣4=36.故选D点评:此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时利用利用运算律来简化运算.考点: 估算无理数的大小;算术平方根;无理数;实数与数轴;正方形的性质.分析:先利用勾股定理求出a=3,再根据无理数的定义判断①;根据实数与数轴的关系判断②;利用估算无理数大小的方法判断③;利用算术平方根的定义判断④. 解答: 解:∵边长为3的正方形的对角线长为a ,∴a===3.①a=3是无理数,说法正确;②a 可以用数轴上的一个点来表示,说法正确;③∵16<18<25,4<<5,即4<a <5,说法错误; ④a 是18的算术平方根,说法正确.所以说法正确的有①②④.故选C .点评:本题主要考查了勾股定理,实数中无理数的概念,算术平方根的概念,实数与数轴的关系,估算无理数大小,有一定的综合性.4.(2分)(2013•南京)如图,⊙O 1,⊙O 2的圆心在直线l上,⊙O 1的半径为2cm ,⊙O 2的半径为3cm .O 1O 2=8cm ,⊙O 1以1m/s 的速度沿直线l 向右运动,7s 后停止运动.在此过程中,⊙O 1和⊙O 2没有出现的位置关系是( )A .外切B . 相交C . 内切D .内含 考点:圆与圆的位置关系.分析: 根据两圆的半径和移动的速度确定两圆的圆心距的最小值,从而确定两圆可能出现的位置关系,找到答案. 解答: 解:∵O 1O 2=8cm ,⊙O 1以1m/s 的速度沿直线l 向右运动,7s 后停止运动,∴7s 后两圆的圆心距为:1cm ,此时两圆的半径的差为:3﹣2=1cm ,∴此时内切,∴移动过程中没有内含这种位置关系,故选D .点评:本题考查了圆与圆的位置关系,解题的关键是根据圆的移动速度确定两圆的圆心距,然后根据圆心距和两圆的半径确定答案.5.(2分)(2013•南京)在同一直角坐标系中,若正比例函数y=k 1x 的图象与反比例函数y=的图象没有公共点,则( )A .k 1+k 2<0B . k 1+k 2>0C . k 1k 2<0D .k 1k 2>0 考点:反比例函数与一次函数的交点问题.专题:压轴题;探究型.分析:根据反比例函数与一次函数的交点问题进行解答即可. 解答: 解:∵正比例函数y=k 1x 的图象与反比例函数y=的图象没有公共点,∴k 1与k 2异号,即k 1•k 2<0.故选C .点评:本题考查的是反比例函数与一次函数的交点问题,熟知反比例函数与一次函数的图象与系数的关系是解答此题的关键.6.(2分)(2013•南京)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.下列图形中,是该几何体的表面展开图的是( )A .B .C .D .考点:几何体的展开图.专题:压轴题.分析: 由平面图形的折叠及几何体的展开图解题,注意带图案的一个面不是底面.解答: 解:选项A 和C 带图案的一个面是底面,不能折叠成原几何体的形式;选项B 能折叠成原几何体的形式;选项D 折叠后下面带三角形的面与原几何体中的位置不同.故选B .点评:本题主要考查了几何体的展开图.解题时勿忘记正四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力.二、填空题(本大题共10小题,每小题2分,共20分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)(2013•南京)﹣3的相反数是 3 ;﹣3的倒数是 ﹣ .考点:倒数;相反数.分析:根据倒数以及相反数的定义即可求解.解答:解:﹣3的相反数是3;﹣3的倒数是﹣.故答案是:3,﹣. 点评: 主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.8.(2分)(2013•南京)计算:的结果是 .考点:二次根式的加减法. 分析:先进行二次根式的化简,然后合并同类二次根式即可. 解答: 解:原式=﹣=.故答案为:.点评: 本题考查了二次根式的加减运算,属于基础题,关键是掌握二次根式的化简及同类二次根式的合并.9.(2分)(2013•南京)使式子1+有意义的x 的取值范围是 x ≠1 .考点:分式有意义的条件.分析:分式有意义,分母不等于零.解答: 解:由题意知,分母x ﹣1≠0,即x ≠1时,式子1+有意义.故填:x ≠1.点评: 本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.10.(2分)(2013•南京)第二届亚洲青年运动会将于2013年8月16日至24日在南京举办,在此期间约有13000名青少年志愿者提供服务.将13000用科学记数法表示为1.3×104 .考点:科学记数法—表示较大的数. 分析: 科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答: 解:13000=1.3×104.故答案是:1.3×104.点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.(2分)(2013•南京)如图,将矩形ABCD 绕点A 顺时针旋转到矩形A ′B ′C ′D ′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α= 20° .考点:旋转的性质.专题:计算题.分析: 根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D ′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数. 解解:如图,答: ∵四边形ABCD 为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD 绕点A 顺时针旋转得到矩形A ′B ′C ′D ′,∴∠D ′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案为20°.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的性质.12.(2分)(2013•南京)如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF ,若菱形ABCD 的边长为2cm ,∠A=120°,则EF=cm .考点:菱形的性质;翻折变换(折叠问题).分析: 根据菱形性质得出AC ⊥BD ,AC 平分∠BAD ,求出∠ABO=30°,求出AO ,BO 、DO ,根据折叠得出EF ⊥AC ,EF 平分AO ,推出EF ∥BD ,推出,EF 为△ABD 的中位线,根据三角形中位线定理求出即可.解答: 解:连接BD 、AC ,∵四边形ABCD 是菱形,∴AC ⊥BD ,AC 平分∠BAD ,∵∠BAD=120°,∴∠BAC=60°,∴∠ABO=90°﹣60°=30°,∵∠AOB=90°,∴AO=AB=×2=1,由勾股定理得:BO=DO=,∵A 沿EF 折叠与O 重合,∴EF ⊥AC ,EF 平分AO ,∵AC ⊥BD ,∴EF ∥BD ,∴EF 为△ABD 的中位线,∴EF=BD=(+)=,故答案为:.点评:本题考查了折叠性质,菱形性质,含30度角的直角三角形性质,勾股定理,平行线分线段成比例定理等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力.13.(2分)(2013•南京)△OAB 是以正多边形相邻的两个顶点A ,B 与它的中心O 为顶点的三角形,若△OAB 的一个内角为70°,则该正多边形的边数为 9 .考点:正多边形和圆.分析: 分∠OAB=70°和∠AOB=70°两种情况进行讨论即可求解.解答: 解:当∠OAB=70°时,∠AOB=40°,则多边形的边数是:360÷40=9;当∠AOB=70°时,360÷70结果不是整数,故不符合条件.故答案是:9.点评:此题主要考查正多边形的计算问题,属于常规题.14.(2分)(2013•南京)已知如图所示的图形的面积为24,根据图中的条件,可列出方程: (x+1)2=25 .考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析: 此图形的面积等于两个正方形的面积的差,据此可以列出方程.解答: 解:根据题意得:(x+1)2﹣1=24,即:(x+1)2=25.故答案为:(x+1)2=25.点评: 本题考查了由实际问题抽象出一元二次方程,解题的关键是明确题目中的不规则图形的面积计算方法.15.(2分)(2013•南京)如图,在梯形ABCD 中,AD ∥BC ,AB=DC ,AC 与BD 相交于P .已知A (2,3),B (1,1),D (4,3),则点P 的坐标为(3 , ).考点:等腰梯形的性质;两条直线相交或平行问题. 专题:压轴题.分析: 过A 作AM ⊥x 轴与M ,交BC 于N ,过P 作PE ⊥x 轴与E ,交BC 于F ,根据点的坐标求出各个线段的长,根据△APD ∽△CPB 和△CPF ∽△CAN 得出比例式,即可求出答案.解答:解:过A 作AM ⊥x 轴与M ,交BC 于N ,过P 作PE ⊥x 轴与E ,交BC 于F ,∵AD ∥BC ,A (2,3),B (1,1),D (4,3),∴AD ∥BC ∥x 轴,AM=3,MN=EF=1,AN=3﹣1=2,AD=4﹣2=2,BN=2﹣1=1,∴C 的坐标是(5,1),BC=5﹣1=4,CN=4﹣1=3, ∵AD ∥BC ,∴△APD ∽△CPB , ∴===, ∴=∵AM ⊥x 轴,PE ⊥x 轴,∴AN ∥PF ,∴△CPF ∽△CAN , ∴===,∵AN=2,CN=3,∴PF=,PE=+1=,CF=2,BF=2,∴P 的坐标是(3,),故答案为:3,.点评:本题考查了坐标与图形性质,梯形的性质,相似三角形的性质和判定的应用,主要是考查学生综合运用知识进行计算的能力.16.(2分)(2013•南京)计算(1﹣)()﹣(1﹣﹣)()的结果是 .考点: 整式的混合运算. 专题:压轴题;换元法.分析: 设a=1﹣﹣﹣﹣,b=+++,然后根据整式的乘法与加减混合运算进行计算即可得解. 解答:解:设a=1﹣﹣﹣﹣,b=+++, 则原式=a (b+)﹣(a ﹣)•b =ab+a ﹣ab+b=(a+b ),∵a+b=1﹣﹣﹣﹣++++=1,∴原式=. 故答案为:.点评: 本题考查了整式的混合运算,利用换元法可以使书写更简便且形象直观.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤)17.(6分)(2013•南京)化简()÷.考点:分式的混合运算. 专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果.解答: 解:原式=•=•=.点评:此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.18.(6分)(2013•南京)解方程:=1﹣.考点:解分式方程.专题:计算题.分析: 分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 解答: 解:去分母得:2x=x ﹣2+1,解得:x=﹣1,经检验x=﹣1是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(8分)(2013•南京)如图,在四边形ABCD 中,AB=BC ,对角线BD 平分∠ABC ,P 是BD 上一点,过点P 作PM ⊥AD ,PN ⊥CD ,垂足分别为M ,N .(1)求证:∠ADB=∠CDB ;(2)若∠ADC=90°,求证:四边形MPND 是正方形.考点:正方形的判定;全等三角形的判定与性质.专题:证明题.分析: (1)根据角平分线的性质和全等三角形的判定方法证明△ABD ≌△CBD ,由全等三角形的性质即可得到:∠ADB=∠CDB ;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND 是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND 是正方形.解答: 证明:(1)∵对角线BD 平分∠ABC ,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,,∴△ABD ≌△CBD ,∴∠ADB=∠CDB ;(2)∵PM ⊥AD ,PN ⊥CD ,对角线BD 平分∠ABC , ∴∠PMD=∠PND=90°,PM=PN ,∵∠ADC=90°,∴四边形MPND 是矩形,∵PM=PN ,∴四边形MPND 是正方形.点评:本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.20.(8分)(2013•南京)(1)一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各1个.这些球除颜色外都相同.求下列事件的概率:①搅匀后从中任意摸出1个球,恰好是红球;②搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,两次都是红球;(2)某次考试共有6道选择题,每道题所给出的4个选项中,恰有一个是正确的.如果小明从每道题的4个选项中随机地选择1个,那么他6道选择题全部正确的概率是 B . A. B. C.1﹣ D.1﹣.考点:列表法与树状图法;概率公式.专题:计算题.分(1)①搅匀后从4个球中任意摸出1个球,求出恰好是析: 红球的概率即可;②列表得出所有等可能的情况数,找出两次都是红球的情况数,即可求出所求的概率;(2)求出每一道题选择正确的概率,利用乘法法则即可求出全部正确的概率.解答:解:(1)①搅匀后从中任意摸出1个球,恰好是红球的概率为; ②列表如下: 红 黄 蓝 绿 红 (红,红) (黄,红) (蓝,红) (绿,红) 黄 (红,黄) (黄,黄) (蓝,黄) (绿,黄) 蓝 (红,蓝) (黄,蓝) (蓝,蓝) (绿,蓝) 绿(红,绿)(黄,绿)(蓝,绿)(绿,绿)所有等可能的情况数有16种,其中两次都为红球的情况数有1种,则P=;(2)每道题所给出的4个选项中,恰有一个是正确的概率为,则他6道选择题全部正确的概率是()6.故选B .点评: 此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(9分)(2013•南京)某校有2000名学生,为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了150名学生进行抽样调查.整理样本数据,得到下列图表:(1)理解划线语句的含义,回答问题:如果150名学生全部在同一个年级抽取,这样的抽样是否合理?请说明理由;(2)根据抽样调查的结果,将估计出的全校2000名学生上学方式的情况绘制成条形统计图;(3)该校数学兴趣小组结合调查获取信息,向学校提出了一些建议,如:骑车上学的学生约占全校的34%,建议学校合理安排自行车停车场地,请你结合上述统计的全过程,再提出一条合理化的建议: 为了节约和保护环境请同学们尽量不要乘坐私家车(答案不唯一) .考点: 频数(率)分布表;抽样调查的可靠性;用样本估计总体;扇形统计图;条形统计图.分析: (1)根据抽样调查必须具有随机性,分析得出即可; (2)根据扇形统计图分别求出各种乘车的人数,进而画出条形图即可.(3)利用节能减排角度分析得出答案即可. 解答: 解:(1)不合理,因为如果150名学生全部在同一个年级抽取,这样抽取的学生不具有随机性,比较片面,所以这样的抽样不合理;(2)步行人数为:2000×10%=200(人),骑车的人数为:2000×34%=680(人),乘公共汽车人数为:2000×30%=600(人),乘私家车的人数为:2000×20%=400(人),乘其它交通工具得人数为:2000×6%=120(人),如图所示:;(3)为了节约和保护环境请同学们尽量不要乘坐私家车(答案不唯一).点评:此题主要考查了扇形图与条形图的综合应用以及抽样调查的随机性,根据扇形图得出各部分所占比例是解题关键.22.(8分)(2013•南京)已知不等臂跷跷板AB 长4m .如图①,当AB 的一端A 碰到地面上时,AB 与地面的夹角为α;如图②,当AB 的另一端B 碰到地面时,AB 与地面的夹角为β.求跷跷板AB 的支撑点O 到地面的高度OH .(用含α,β的式子表示)考点:解直角三角形的应用.分析: 根据三角函数的知识分别用OH 表示出AO ,BO 的长,再根据不等臂跷跷板AB 长4m ,即可列出方程求解即可. 解答: 解:依题意有:AO=OH ÷sin α,BO=OH ÷sin β, AO+BO=OH ÷sin α+OH ÷sin β,即OH ÷4+OH ÷sin β=4m ,则OH=m .故跷跷板AB 的支撑点O 到地面的高度OH 是(m ).点评: 本题考查的是解直角三角形的应用,根据题意利用锐角三角函数的定义求解是解答此题的关键.23.(8分)(2013•南京)某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额.消费金额(元) 300﹣400 400﹣500 500﹣600 600﹣700 700﹣900 … 返还金额(元)30 60 100 130 150 …根据上述促销方案,顾客在该商场购物可以获得双重优惠,例如:若够买标价为400元的商品,则消费金额为320元,获得的优惠额为400×(1﹣80%)+30=110(元). (1)购买一件标价为1000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠不少于226元,那么该商品的标记至少为多少元?考点:一元一次不等式组的应用.分析: (1)根据标价为1000元的商品按80%的价格出售,求出消费金额,再根据消费金额所在的范围,求出优惠额,从而得出顾客获得的优惠额;(2)先设该商品的标价为x 元,根据购买标价不超过800元的商品,要使获得的优惠不少于226元,列出不等式,求出x 的取值范围,从而得出答案.解答: 解:(1)标价为1000元的商品按80%的价格出售,消费金额为800元,消费金额800元在700﹣900之间,优惠额为150元, 顾客获得的优惠额是:1000×(1﹣80%)+150=350(元);(2)设该商品的标价为x 元,根据题意得: 100+20%x ≥226, 解得x ≥630.答:该商品的标价至少为630元.点评:此题考查了一元一次不等式组的应用,解题的关键是读懂题意,求出消费金额,再根据所给的范围可解得优惠金额.24.(8分)(2013•南京)小丽驾车从甲地到乙地.设她出发第xmin 时的速度为ykm/h ,图中的折线表示她在整个驾车过程中y 与x 之间的函数关系.(1)小丽驾车的最高速度是 60 km/h ;(2)当20≤x ≤30时,求y 与x 之间的函数关系式,并求出小丽出发第22min 时的速度;(3)如果汽车每行驶100km 耗油10L ,那么小丽驾车从甲地到乙地共耗油多少升?考点:一次函数的应用.分析: (1)观察图象可知,第10min 到20min 之间的速度最高;(2)设y=kx+b (k ≠0),利用待定系数法求一次函数解析式解答,再把x=22代入函数关系式进行计算即可得解;(3)用各时间段的平均速度乘以时间,求出行驶的总路程,再乘以每千米消耗的油量即可.解答: 解:(1)由图可知,第10min 到20min 之间的速度最高,为60km/h ;(2)设y=kx+b (k ≠0),∵函数图象经过点(20,60),(30,24), ∴, 解得,所以,y 与x 的关系式为y=﹣x+132, 当x=22时,y=﹣×22+132=52.8km/h ;(3)行驶的总路程=×(12+0)×+×(12+60)×+60×+×(60+24)×+×(24+48)×+48×+×(48+0)×,=+3+10+7+3+8+2, =33.5km ,∵汽车每行驶100km 耗油10L ,∴小丽驾车从甲地到乙地共耗油:33.5×=3.35升. 点评: 本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,路程=速度×时间,从图形中准确获取信息是解题的关键.25.(8分)(2013•南京)如图,AD 是⊙O 的切线,切点为A ,AB 是⊙O 的弦.过点B 作BC ∥AD ,交⊙O 于点C ,连接AC ,过点C 作CD ∥AB ,交AD 于点D .连接AO 并延长交BC 于点M ,交过点C 的直线于点P ,且∠BCP=∠ACD .(1)判断直线PC 与⊙O 的位置关系,并说明理由; (2)若AB=9,BC=6.求PC 的长.考点:切线的判定与性质.分析: (1)过C 点作直径CE ,连接EB ,由CE 为直径得∠E+∠BCE=90°,由AB ∥DC 得∠ACD=∠BAC ,而∠BAC=∠E ,∠BCP=∠ACD ,所以∠E=∠BCP ,于是∠BCP+∠BCE=90°,然后根据切线的判断得到结论; (2)根据切线的性质得到OA ⊥AD ,而BC ∥AD ,则AM ⊥BC ,根据垂径定理有BM=CM=BC=3,根据等腰三角形性质有AC=AB=9,在Rt △AMC 中根据勾股定理计算出AM=6;设⊙O 的半径为r ,则OC=r ,OM=AM ﹣r=6﹣r ,在Rt △OCM 中,根据勾股定理计算出r=,则CE=2r=,OM=6﹣=,利用中位线性质得BE=2OM=,然后判断Rt △PCM ∽Rt △CEB ,根据相似比可计算出PC .解答: 解:(1)PC 与圆O 相切,理由为: 过C 点作直径CE ,连接EB ,如图,∵CE 为直径,∴∠EBC=90°,即∠E+∠BCE=90°, ∵AB ∥DC , ∴∠ACD=∠BAC ,∵∠BAC=∠E ,∠BCP=∠ACD . ∴∠E=∠BCP ,∴∠BCP+∠BCE=90°,即∠PCE=90°, ∴CE ⊥PC , ∴PC 与圆O 相切;(2)∵AD 是⊙O 的切线,切点为A , ∴OA ⊥AD , ∵BC ∥AD , ∴AM ⊥BC ,∴BM=CM=BC=3, ∴AC=AB=9, 在Rt △AMC 中,AM==6,设⊙O 的半径为r ,则OC=r ,OM=AM ﹣r=6﹣r , 在Rt △OCM 中,OM 2+CM 2=OC 2,即32+(6﹣r )2=r 2,解得r=,∴CE=2r=,OM=6﹣=,∴BE=2OM=,∵∠E=∠MCP , ∴Rt △PCM ∽Rt △CEB , ∴=,即=, ∴PC=.点评:本题考查了切线的判定与性质:过半径的外端点与半径垂直的直线为圆的切线;圆的切线垂直于过切点的半径.也考查了勾股定理、圆周角定理的推论、三角形相似的判定与性质.26.(9分)(2013•南京)已知二次函数y=a (x ﹣m )2﹣a (x ﹣m )(a ,m 为常数,且a ≠0).(1)求证:不论a 与m 为何值,该函数的图象与x 轴总有两个公共点;(2)设该函数的图象的顶点为C ,与x 轴交于A ,B 两点,与y 轴交于点D .①当△ABC 的面积等于1时,求a 的值;②当△ABC 的面积与△ABD 的面积相等时,求m 的值.考点:二次函数综合题.专题:压轴题. 分析: (1)把(x ﹣m )看作一个整体,令y=0,利用根的判别式进行判断即可;(2)①令y=0,利用因式分解法解方程求出点A 、B 的坐标,然后求出AB ,再把抛物线转化为顶点式形式求出顶点坐标,再利用三角形的面积公式列式进行计算即可得解;②令x=0求出点D 的坐标,然后利用三角形的面积列式计算即可得解.解答: (1)证明:令y=0,a (x ﹣m )2﹣a (x ﹣m )=0, △=(﹣a )2﹣4a ×0=a 2,∵a ≠0, ∴a 2>0,∴不论a 与m 为何值,该函数的图象与x 轴总有两个公共点;(2)解:①y=0,则a (x ﹣m )2﹣a (x ﹣m )=a (x ﹣m )(x ﹣m ﹣1)=0, 解得x 1=m ,x 2=m+1,∴AB=(m+1)﹣m=1,y=a (x ﹣m )2﹣a (x ﹣m )=a (x ﹣m ﹣)2﹣,△ABC 的面积=×1×||=1, 解得a=±8;②x=0时,y=a (0﹣m )2﹣a (0﹣m )=am 2+am , 所以,点D 的坐标为(0,am 2+am ), △ABD 的面积=×1×|am 2+am|, ∵△ABC 的面积与△ABD 的面积相等, ∴×1×|am 2+am|=×1×||, 整理得,m 2+m ﹣=0或m 2+m+=0, 解得m=或m=﹣.点评: 本题是对二次函数的综合考查,主要利用了根的判别式,三角形的面积,把(x ﹣m )看作一个整体求解更加简便.27.(10分)(2013•南京)对于两个相似三角形,如果沿周界按对应点顺序环绕的方向相同,那么称这两个三角形互为顺相似;如果沿周界按对应点顺序环绕的方向相反,那么称这两个三角形互为逆相似.例如,如图①,△ABC ∽△A ′B ′C ′,且沿周界ABCA 与A ′B ′C ′A ′环绕的方向相同,因此△ACB 和△A ′B ′C ′互为顺相似;如图②,△ABC ∽△A ′B ′C ′,且沿周界ABCA 与A ′B ′C ′A ′环绕的方向相反,因此△ACB 和△A ′B ′C ′互为逆相似.(1)根据图Ⅰ,图Ⅱ和图Ⅲ满足的条件.可得下列三对相似三角形:①△ADE 与△ABC ;②△GHO 与△KFO ;③△NQP 与△NMQ ;其中,互为顺相似的是① ;互为逆相似的是 ②③ .(填写所有符合要求的序号).(2)如图③,在锐角△ABC 中,∠A <∠B <∠C ,点P 在△ABC 的边上(不与点A ,B ,C 重合).过点P 画直线截△ABC ,使截得的一个三角形与△ABC 互为逆相似.请根据点P 的不同位置,探索过点P 的截线的情形,画出图形并说明截线满足的条件,不必说明理由.考点:相似形综合题.专题:压轴题. 分析: (1)根据互为顺相似和互为逆相似的定义即可作出判断;(2)根据点P 在△ABC 边上的位置分为三种情况,需要分类讨论,逐一分析求解.解解:(1)互为顺相似的是①;互为逆相似的是②③;答:(2)根据点P在△ABC边上的位置分为以下三种情况:第一种情况:如图①,点P在BC(不含点B、C)上,过点P只能画出2条截线PQ1、PQ2,分别使∠CPQ1=∠A,∠BPQ2=∠A,此时△PQ1C、△PBQ2都与△ABC互为逆相似.第二种情况:如图②,点P在AC(不含点A、C)上,过点B作∠CBM=∠A,BM交AC于点M.当点P在AM(不含点M)上时,过点P1只能画出1条截线P1Q,使∠AP1Q=∠ABC,此时△AP1Q与△ABC互为逆相似;当点P在CM上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使∠AP2Q1=∠ABC,∠CP2Q2=∠ABC,此时△AP2Q1、△Q2P2C都与△ABC互为逆相似.第三种情况:如图③,点P在AB(不含点A、B)上,过点C作∠BCD=∠A,∠ACE=∠B,CD、CE分别交AC于点D、E.当点P在AD(不含点D)上时,过点P只能画出1条截线P1Q,使∠AP1Q=∠ABC,此时△AQP1与△ABC互为逆相似;当点P在DE上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使∠AP2Q1=∠ACB,∠BP2Q2=∠BCA,此时△AQ 1P 2、△Q 2BP 2 都与△ABC 互为逆相似;当点P 在BE (不含点E )上时,过点P 3只能画出1条截线P 3Q ′,使∠BP 3Q ′=∠BCA ,此时△Q ′BP 3与△ABC 互为逆相似.点评:本题是创新型中考压轴题,主要考查了相似三角形的知识点、分类讨论的数学思想以及接受与理解新生事物的能力.准确理解题设条件中“顺相似”“逆相似”的定义是正确解题的先决条件,在分析与解决问题的过程中,要考虑全面,进行分类讨论,避免漏解.参与本试卷答题和审题的老师有:zhjh;yangwy;lantin;CJX;星期八;HLing;gsls;dbz1018;zjx111;sd2011;ZJX;sks;sjzx;HJJ;caicl(排名不分先后)菁优网2013年8月2日。
2013年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)(2013•南京)计算:12﹣7×(﹣4)+8÷(﹣2)的结果是()A.﹣24 B.﹣20 C.6 D.362.(2分)(2013•南京)计算a3•()2的结果是()A.a B.a3C.a6D.a93.(2分)(2013•南京)设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④B.②③C.①②④D.①③④4.(2分)(2013•南京)如图,⊙O1,⊙O2的圆心在直线l上,⊙O1的半径为2cm,⊙O2的半径为3cm.O1O2=8cm,⊙O1以1m/s的速度沿直线l向右运动,7s后停止运动.在此过程中,⊙O1和⊙O2没有出现的位置关系是()A.外切B.相交C.内切D.内含5.(2分)(2013•南京)在同一直角坐标系中,若正比例函数y=k1x的图象与反比例函数y=的图象没有公共点,则()A.k1+k2<0 B.k1+k2>0 C.k1k2<0 D.k1k2>06.(2分)(2013•南京)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.下列图形中,是该几何体的表面展开图的是()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)(2013•南京)﹣3的相反数是3;﹣3的倒数是﹣.8.(2分)(2013•南京)计算:的结果是.9.(2分)(2013•南京)使式子1+有意义的x的取值范围是x≠1.10.(2分)(2013•南京)第二届亚洲青年运动会将于2013年8月16日至24日在南京举办,在此期间约有13000名青少年志愿者提供服务.将13000用科学记数法表示为 1.3×104.11.(2分)(2013•南京)如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=20°.12.(2分)(2013•南京)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=cm.13.(2分)(2013•南京)△OAB是以正多边形相邻的两个顶点A,B与它的中心O为顶点的三角形,若△OAB的一个内角为70°,则该正多边形的边数为9.14.(2分)(2013•南京)已知如图所示的图形的面积为24,根据图中的条件,可列出方程:(x+1)2=25.15.(2分)(2013•南京)如图,在梯形ABCD中,AD∥BC,AB=DC,AC与BD相交于P.已知A(2,3),B(1,1),D(4,3),则点P的坐标为(3,).16.(2分)(2013•南京)计算(1﹣)()﹣(1﹣﹣)()的结果是.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤)17.(6分)(2013•南京)化简()÷.18.(6分)(2013•南京)解方程:=1﹣.19.(8分)(2013•南京)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P 作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.20.(8分)(2013•南京)(1)一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各1个.这些球除颜色外都相同.求下列事件的概率:①搅匀后从中任意摸出1个球,恰好是红球;②搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,两次都是红球;(2)某次考试共有6道选择题,每道题所给出的4个选项中,恰有一个是正确的.如果小明从每道题的4个选项中随机地选择1个,那么他6道选择题全部正确的概率是B.A. B. C.1﹣ D.1﹣.21.(9分)(2013•南京)某校有2000名学生,为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了150名学生进行抽样调查.整理样本数据,得到下列图表:(1)理解划线语句的含义,回答问题:如果150名学生全部在同一个年级抽取,这样的抽样是否合理?请说明理由;(2)根据抽样调查的结果,将估计出的全校2000名学生上学方式的情况绘制成条形统计图;(3)该校数学兴趣小组结合调查获取信息,向学校提出了一些建议,如:骑车上学的学生约占全校的34%,建议学校合理安排自行车停车场地,请你结合上述统计的全过程,再提出一条合理化的建议:为了节约和保护环境请同学们尽量不要乘坐私家车(答案不唯一).22.(8分)(2013•南京)已知不等臂跷跷板AB长4m.如图①,当AB的一端A碰到地面上时,AB与地面的夹角为α;如图②,当AB的另一端B碰到地面时,AB与地面的夹角为β.求跷跷板AB的支撑点O到地面的高度OH.(用含α,β的式子表示)23.(8分)(2013•南京)某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额.消费金额(元) 300﹣400 400﹣500 500﹣600 600﹣700 700﹣900 …返还金额(元) 30 60 100 130 150 …根据上述促销方案,顾客在该商场购物可以获得双重优惠,例如:若够买标价为400元的商品,则消费金额为320元,获得的优惠额为400×(1﹣80%)+30=110(元).(1)购买一件标价为1000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠不少于226元,那么该商品的标记至少为多少元?24.(8分)(2013•南京)小丽驾车从甲地到乙地.设她出发第xmin时的速度为ykm/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系.(1)小丽驾车的最高速度是60km/h;(2)当20≤x≤30时,求y与x之间的函数关系式,并求出小丽出发第22min时的速度;(3)如果汽车每行驶100km耗油10L,那么小丽驾车从甲地到乙地共耗油多少升?25.(8分)(2013•南京)如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.26.(9分)(2013•南京)已知二次函数y=a(x﹣m)2﹣a(x﹣m)(a,m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)设该函数的图象的顶点为C,与x轴交于A,B两点,与y轴交于点D.①当△ABC的面积等于1时,求a的值;②当△ABC的面积与△ABD的面积相等时,求m的值.27.(10分)(2013•南京)对于两个相似三角形,如果沿周界按对应点顺序环绕的方向相同,那么称这两个三角形互为顺相似;如果沿周界按对应点顺序环绕的方向相反,那么称这两个三角形互为逆相似.例如,如图①,△ABC∽△A′B′C′,且沿周界ABCA与A′B′C′A′环绕的方向相同,因此△ACB和△A′B′C′互为顺相似;如图②,△ABC∽△A′B′C′,且沿周界ABCA与A′B′C′A′环绕的方向相反,因此△ACB和△A′B′C′互为逆相似.(1)根据图Ⅰ,图Ⅱ和图Ⅲ满足的条件.可得下列三对相似三角形:①△ADE与△ABC;②△GHO与△KFO;③△NQP与△NMQ;其中,互为顺相似的是①;互为逆相似的是②③.(填写所有符合要求的序号).(2)如图③,在锐角△ABC中,∠A<∠B<∠C,点P在△ABC的边上(不与点A,B,C重合).过点P画直线截△ABC,使截得的一个三角形与△ABC互为逆相似.请根据点P的不同位置,探索过点P的截线的情形,画出图形并说明截线满足的条件,不必说明理由.2013年江苏省南京市中考数学试卷答案及解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1、考点:有理数的混合运算.专题:计算题.分析:根据运算顺序先计算乘除运算,最后算加减运算,即可得到结果.解答:解:原式=12+28﹣4=36.故选D点评:此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时利用利用运算律来简化运算.2、考点:分式的乘除法.专题:计算题.分析:先算出分式的乘方,再约分.解答:解:原式=a3•=a,故选A.点评:本题考查了分式的乘除法,分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.3、考点:估算无理数的大小;算术平方根;无理数;实数与数轴;正方形的性质.分析:先利用勾股定理求出a=3,再根据无理数的定义判断①;根据实数与数轴的关系判断②;利用估算无理数大小的方法判断③;利用算术平方根的定义判断④.解答:解:∵边长为3的正方形的对角线长为a,∴a===3.①a=3是无理数,说法正确;②a可以用数轴上的一个点来表示,说法正确;③∵16<18<25,4<<5,即4<a<5,说法错误;④a是18的算术平方根,说法正确.所以说法正确的有①②④.故选C.点评:本题主要考查了勾股定理,实数中无理数的概念,算术平方根的概念,实数与数轴的关系,估算无理数大小,有一定的综合性.4、考点:圆与圆的位置关系.分析:根据两圆的半径和移动的速度确定两圆的圆心距的最小值,从而确定两圆可能出现的位置关系,找到答案.解答:解:∵O1O2=8cm,⊙O1以1m/s的速度沿直线l向右运动,7s后停止运动,∴7s后两圆的圆心距为:1cm,此时两圆的半径的差为:3﹣2=1cm,∴此时内切,∴移动过程中没有内含这种位置关系,故选D.点评:本题考查了圆与圆的位置关系,解题的关键是根据圆的移动速度确定两圆的圆心距,然后根据圆心距和两圆的半径确定答案.5、考点:反比例函数与一次函数的交点问题.专题:压轴题;探究型.分析:根据反比例函数与一次函数的交点问题进行解答即可.解答:解:∵正比例函数y=k1x的图象与反比例函数y=的图象没有公共点,∴k1与k2异号,即k1•k2<0.故选C.点评:本题考查的是反比例函数与一次函数的交点问题,熟知反比例函数与一次函数的图象与系数的关系是解答此题的关键.6、考点:几何体的展开图.专题:压轴题.分析:由平面图形的折叠及几何体的展开图解题,注意带图案的一个面不是底面.解答:解:选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.故选B.点评:本题主要考查了几何体的展开图.解题时勿忘记正四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力.二、填空题(本大题共10小题,每小题2分,共20分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)7.考点:倒数;相反数.分析:根据倒数以及相反数的定义即可求解.解答:解:﹣3的相反数是3;﹣3的倒数是﹣.故答案是:3,﹣.点评:主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.8、考点:二次根式的加减法.分析:先进行二次根式的化简,然后合并同类二次根式即可.解答:解:原式=﹣=.故答案为:.点评:本题考查了二次根式的加减运算,属于基础题,关键是掌握二次根式的化简及同类二次根式的合并.9、考点:分式有意义的条件.分析:分式有意义,分母不等于零.解答:解:由题意知,分母x﹣1≠0,即x≠1时,式子1+有意义.故填:x≠1.点评:本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.10、考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:13000=1.3×104.故答案是:1.3×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11、考点:旋转的性质.专题:计算题.分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.解答:解:如图,∵四边形ABCD为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD绕点A顺时针旋转得到矩形A′B′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案为20°.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的性质.12、考点:菱形的性质;翻折变换(折叠问题).分析:根据菱形性质得出AC⊥BD,AC平分∠BAD,求出∠ABO=30°,求出AO,BO、DO,根据折叠得出EF⊥AC,EF平分AO,推出EF∥BD,推出,EF为△ABD的中位线,根据三角形中位线定理求出即可.解答:解:连接BD、AC,∵四边形ABCD是菱形,∴AC⊥BD,AC平分∠BAD,∵∠BAD=120°,∴∠BAC=60°,∴∠ABO=90°﹣60°=30°,∵∠AOB=90°,∴AO=AB=×2=1,由勾股定理得:BO=DO=,∵A沿EF折叠与O重合,∴EF⊥AC,EF平分AO,∵AC⊥BD,∴EF∥BD,∴EF为△ABD的中位线,∴EF=BD=(+)=,故答案为:.点评:本题考查了折叠性质,菱形性质,含30度角的直角三角形性质,勾股定理,平行线分线段成比例定理等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力.13、考点:正多边形和圆.分析:分∠OAB=70°和∠AOB=70°两种情况进行讨论即可求解.解答:解:当∠OAB=70°时,∠AOB=40°,则多边形的边数是:360÷40=9;当∠AOB=70°时,360÷70结果不是整数,故不符合条件.故答案是:9.点评:此题主要考查正多边形的计算问题,属于常规题.14、考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:此图形的面积等于两个正方形的面积的差,据此可以列出方程.解答:解:根据题意得:(x+1)2﹣1=24,即:(x+1)2=25.故答案为:(x+1)2=25.点评:本题考查了由实际问题抽象出一元二次方程,解题的关键是明确题目中的不规则图形的面积计算方法.等腰梯形的性质;两条直线相交或平行问题.15、考点:专题:压轴题.分析:过A作AM⊥x轴与M,交BC于N,过P作PE⊥x轴与E,交BC于F,根据点的坐标求出各个线段的长,根据△APD∽△CPB和△CPF∽△CAN得出比例式,即可求出答案.解答:解:过A作AM⊥x轴与M,交BC于N,过P作PE⊥x轴与E,交BC于F,∵AD∥BC,A(2,3),B(1,1),D(4,3),∴AD∥BC∥x轴,AM=3,MN=EF=1,AN=3﹣1=2,AD=4﹣2=2,BN=2﹣1=1,∴C的坐标是(5,1),BC=5﹣1=4,CN=4﹣1=3,∵AD∥BC,∴△APD∽△CPB,∴===,∴=∵AM⊥x轴,PE⊥x轴,∴AN∥PF,∴△CPF∽△CAN,∴===,∵AN=2,CN=3,∴PF=,PE=+1=,CF=2,BF=2,∴P的坐标是(3,),故答案为:3,.点评:本题考查了坐标与图形性质,梯形的性质,相似三角形的性质和判定的应用,主要是考查学生综合运用知识进行计算的能力.16、考点:整式的混合运算.专题:压轴题;换元法.分析:设a=1﹣﹣﹣﹣,b=+++,然后根据整式的乘法与加减混合运算进行计算即可得解.解答:解:设a=1﹣﹣﹣﹣,b=+++,则原式=a(b+)﹣(a﹣)•b=ab+a﹣ab+ b=(a+b),∵a+b=1﹣﹣﹣﹣++++=1,∴原式=.故答案为:.点评:本题考查了整式的混合运算,利用换元法可以使书写更简便且形象直观.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤)17.(6分)考点:分式的混合运算.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果.解答:解:原式=•=•=.点评:此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.18、考点:解分式方程.专题:计算题.分析:分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x=x﹣2+1,解得:x=﹣1,经检验x=﹣1是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19、考点:正方形的判定;全等三角形的判定与性质.专题:证明题.分析:(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.解答:证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD,∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,对角线BD平分∠ABC,∴∠PMD=∠PND=90°,PM=PN,∵∠ADC=90°,∴四边形MPND是矩形,∵PM=PN,∴四边形MPND是正方形.点评:本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.20、考点:列表法与树状图法;概率公式.专题:计算题.分析:(1)①搅匀后从4个球中任意摸出1个球,求出恰好是红球的概率即可;②列表得出所有等可能的情况数,找出两次都是红球的情况数,即可求出所求的概率;(2)求出每一道题选择正确的概率,利用乘法法则即可求出全部正确的概率.解答:解:(1)①搅匀后从中任意摸出1个球,恰好是红球的概率为;②列表如下:红黄蓝绿红(红,红)(黄,红)(蓝,红)(绿,红)黄(红,黄)(黄,黄)(蓝,黄)(绿,黄)蓝(红,蓝)(黄,蓝)(蓝,蓝)(绿,蓝)绿(红,绿)(黄,绿)(蓝,绿)(绿,绿)所有等可能的情况数有16种,其中两次都为红球的情况数有1种,则P=;(2)每道题所给出的4个选项中,恰有一个是正确的概率为,则他6道选择题全部正确的概率是()6.故选B.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21\考点:频数(率)分布表;抽样调查的可靠性;用样本估计总体;扇形统计图;条形统计图.分析:(1)根据抽样调查必须具有随机性,分析得出即可;(2)根据扇形统计图分别求出各种乘车的人数,进而画出条形图即可.(3)利用节能减排角度分析得出答案即可.解答:解:(1)不合理,因为如果150名学生全部在同一个年级抽取,这样抽取的学生不具有随机性,比较片面,所以这样的抽样不合理;(2)步行人数为:2000×10%=200(人),骑车的人数为:2000×34%=680(人),乘公共汽车人数为:2000×30%=600(人),乘私家车的人数为:2000×20%=400(人),乘其它交通工具得人数为:2000×6%=120(人),如图所示:;(3)为了节约和保护环境请同学们尽量不要乘坐私家车(答案不唯一).点评:此题主要考查了扇形图与条形图的综合应用以及抽样调查的随机性,根据扇形图得出各部分所占比例是解题关键.22\考点:解直角三角形的应用.分析:根据三角函数的知识分别用OH表示出AO,BO的长,再根据不等臂跷跷板AB长4m,即可列出方程求解即可.解答:解:依题意有:AO=OH÷sinα,BO=OH÷sinβ,AO+BO=OH÷sinα+OH÷sinβ,即OH÷4+OH÷sinβ=4m,则OH=m.故跷跷板AB的支撑点O到地面的高度OH是(m).点评:本题考查的是解直角三角形的应用,根据题意利用锐角三角函数的定义求解是解答此题的关键.23\考点:一元一次不等式组的应用.分析:(1)根据标价为1000元的商品按80%的价格出售,求出消费金额,再根据消费金额所在的范围,求出优惠额,从而得出顾客获得的优惠额;(2)先设该商品的标价为x元,根据购买标价不超过800元的商品,要使获得的优惠不少于226元,列出不等式,求出x的取值范围,从而得出答案.解答:解:(1)标价为1000元的商品按80%的价格出售,消费金额为800元,消费金额800元在700﹣900之间,优惠额为150元,顾客获得的优惠额是:1000×(1﹣80%)+150=350(元);(2)设该商品的标价为x元,根据题意得:100+20%x≥226,解得x≥630.答:该商品的标价至少为630元.点评:此题考查了一元一次不等式组的应用,解题的关键是读懂题意,求出消费金额,再根据所给的范围可解得优惠金额.24\考点:一次函数的应用.分析:(1)观察图象可知,第10min到20min之间的速度最高;(2)设y=kx+b(k≠0),利用待定系数法求一次函数解析式解答,再把x=22代入函数关系式进行计算即可得解;(3)用各时间段的平均速度乘以时间,求出行驶的总路程,再乘以每千米消耗的油量即可.解答:解:(1)由图可知,第10min到20min之间的速度最高,为60km/h;(2)设y=kx+b(k≠0),∵函数图象经过点(20,60),(30,24),∴,解得,所以,y与x的关系式为y=﹣x+132,当x=22时,y=﹣×22+132=52.8km/h;(3)行驶的总路程=×(12+0)×+×(12+60)×+60×+×(60+24)×+×(24+48)×+48×+×(48+0)×,=+3+10+7+3+8+2,=33.5km,∵汽车每行驶100km耗油10L,∴小丽驾车从甲地到乙地共耗油:33.5×=3.35升.点评:本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,路程=速度×时间,从图形中准确获取信息是解题的关键.25\考点:切线的判定与性质.分析:(1)过C点作直径CE,连接EB,由CE为直径得∠E+∠BCE=90°,由AB∥DC得∠ACD=∠BAC,而∠BAC=∠E,∠BCP=∠ACD,所以∠E=∠BCP,于是∠BCP+∠BCE=90°,然后根据切线的判断得到结论;(2)根据切线的性质得到OA⊥AD,而BC∥AD,则AM⊥BC,根据垂径定理有BM=CM=BC=3,根据等腰三角形性质有AC=AB=9,在Rt△AMC中根据勾股定理计算出AM=6;设⊙O的半径为r,则OC=r,OM=AM﹣r=6﹣r,在Rt△OCM中,根据勾股定理计算出r=,则CE=2r=,OM=6﹣=,利用中位线性质得BE=2OM=,然后判断Rt△PCM∽Rt△CEB,根据相似比可计算出PC.解答:解:(1)PC与圆O相切,理由为:过C点作直径CE,连接EB,如图,∵CE为直径,∴∠EBC=90°,即∠E+∠BCE=90°,∵AB∥DC,∴∠ACD=∠BAC,∵∠BAC=∠E,∠BCP=∠ACD.∴∠E=∠BCP,∴∠BCP+∠BCE=90°,即∠PCE=90°,∴CE⊥PC,∴PC与圆O相切;(2)∵AD是⊙O的切线,切点为A,∴OA⊥AD,∵BC∥AD,∴AM⊥BC,∴BM=CM=BC=3,∴AC=AB=9,在Rt△AMC中,AM==6,设⊙O的半径为r,则OC=r,OM=AM﹣r=6﹣r,在Rt△OCM中,OM2+CM2=OC2,即32+(6﹣r)2=r2,解得r=,∴CE=2r=,OM=6﹣=,∴BE=2OM=,∵∠E=∠MCP,∴Rt△PCM∽Rt△CEB,∴=,即=,∴PC=.点评:本题考查了切线的判定与性质:过半径的外端点与半径垂直的直线为圆的切线;圆的切线垂直于过切点的半径.也考查了勾股定理、圆周角定理的推论、三角形相似的判定与性质.26\考点:二次函数综合题.专题:压轴题.分析:(1)把(x﹣m)看作一个整体,令y=0,利用根的判别式进行判断即可;(2)①令y=0,利用因式分解法解方程求出点A、B的坐标,然后求出AB,再把抛物线转化为顶点式形式求出顶点坐标,再利用三角形的面积公式列式进行计算即可得解;②令x=0求出点D的坐标,然后利用三角形的面积列式计算即可得解.解答:(1)证明:令y=0,a(x﹣m)2﹣a(x﹣m)=0,△=(﹣a)2﹣4a×0=a2,∵a≠0,∴a2>0,∴不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)解:①y=0,则a(x﹣m)2﹣a(x﹣m)=a(x﹣m)(x﹣m﹣1)=0,解得x1=m,x2=m+1,∴AB=(m+1)﹣m=1,y=a(x﹣m)2﹣a(x﹣m)=a(x﹣m﹣)2﹣,△ABC的面积=×1×||=1,解得a=±8;②x=0时,y=a(0﹣m)2﹣a(0﹣m)=am2+am,所以,点D的坐标为(0,am2+am),△ABD的面积=×1×|am2+am|,∵△ABC的面积与△ABD的面积相等,∴×1×|am2+am|=×1×||,整理得,m2+m﹣=0或m2+m+=0,解得m=或m=﹣.点评:本题是对二次函数的综合考查,主要利用了根的判别式,三角形的面积,把(x﹣m)看作一个整体求解更加简便.27考点:相似形综合题.专题:压轴题.分析:(1)根据互为顺相似和互为逆相似的定义即可作出判断;(2)根据点P在△ABC边上的位置分为三种情况,需要分类讨论,逐一分析求解.解答:解:(1)互为顺相似的是①;互为逆相似的是②③;(2)根据点P在△ABC边上的位置分为以下三种情况:第一种情况:如图①,点P在BC(不含点B、C)上,过点P只能画出2条截线PQ1、PQ2,分别使∠CPQ1=∠A,∠BPQ2=∠A,此时△PQ1C、△PBQ2都与△ABC互为逆相似.第二种情况:如图②,点P在AC(不含点A、C)上,过点B作∠CBM=∠A,BM交AC于点M.当点P在AM(不含点M)上时,过点P1只能画出1条截线P1Q,使∠AP1Q=∠ABC,此时△AP1Q与△ABC 互为逆相似;当点P在CM上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使∠AP2Q1=∠ABC,∠CP2Q2=∠ABC,此时△AP2Q1、△Q2P2C都与△ABC互为逆相似.第三种情况:如图③,点P在AB(不含点A、B)上,过点C作∠BCD=∠A,∠ACE=∠B,CD、CE分别交AC于点D、E.当点P在AD(不含点D)上时,过点P只能画出1条截线P1Q,使∠AP1Q=∠ABC,此时△AQP1与△ABC 互为逆相似;当点P在DE上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使∠AP2Q1=∠ACB,∠BP2Q2=∠BCA,此时△AQ1P2、△Q2BP2都与△ABC互为逆相似;当点P在BE(不含点E)上时,过点P3只能画出1条截线P3Q′,使∠BP3Q′=∠BCA,此时△Q′BP3与△ABC 互为逆相似.点评:本题是创新型中考压轴题,主要考查了相似三角形的知识点、分类讨论的数学思想以及接受与理解新生事物的能力.准确理解题设条件中“顺相似”“逆相似”的定义是正确解题的先决条件,在分析与解决问题的过程中,要考虑全面,进行分类讨论,避免漏解.。
第4题l O 2O 12013年南京中考数学试题一、选择题(本大题共有6小题,共12分,每小题2分.) 1.计算12-7×(-4)+8÷(-2)的结果是A .-24B .-20C .6D .362.计算23)1·a a (的结果是A .aB .5aC .6aD .9a3.设边长为3的正方形的对角线长为a.下列关于a 的四种说法:①a 是无理数;②a 可以用数轴上的一个点来表示;③3<a <4;④a 是18的算术平方根。
其中,所有正确说法的序号是 A .①④ B .②③ C .①②④ D .①③④4.如图,⊙O 1、⊙O 2的圆心O 1、O 2在直线l 上,⊙O 1的半径为2cm ,⊙O 2的半径为3cm ,O 1O 2=8cm 。
⊙O 1以1cm/s 的速度沿直线l 向右运动,7s 后停止运动。
再此过程中,⊙O 1与⊙O 2没有出现的位置关系是A .外切B .相交C .内切D .内含5.在同一直角坐标系中,若正比例函数y=k 1x 的图像与反比例函数xk y 2=的图像没有公共点,则 A .k 1+ k 2<0 B .k 1+ k 2>0 C .k 1k 2<0 D .k 1k 2>06. 如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是二、填空题(本大题共有10小题,共20分,每小题2分.)7.-3的相反数是 ;-3的倒数是 . 8.计算2123-的结果是 . 第6题A .B .C .D .F E O D CB A 1D'B'C'D CB A 第12题第11题9.使式子111-+x 有意义的x 的取值范围是 . 10.第二节亚洲青年运动会将于2013年8月16日至24日在南京举办,在此期间约有13000名青少年志愿者提供服务,将13000用科学计数法表示为 .11.如图将矩形ABCD 绕点A 顺时针旋转到AB ’C ’D ’的位置,旋转角α(0°<α<90°).若 ∠1=110°,则∠α= °.如图,将菱形纸片12. ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为2cm ,∠A =120°,则EF = cm .13.△OAB 是以正多边形相邻的两个顶点A 、B 与它的中心O 为顶点的三角形,若△OAB 的一个内角为70°,则该正多边形的边数为 .14. 已知如图所示的图形的面积为24,根据图中的条件,可列出方程 . 15. 如图,在梯形ABCD 中,AD ∥BC ,AB =DC ,AC 与BD 相交于点P ,已知A (2,3),B (1,1), D (4,3),则点P 的坐标为( , ).16.计算⎪⎭⎫⎝⎛+++⎪⎭⎫ ⎝⎛------⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛----51413121615141312116151413121514131211的结果是.三、解答题(本大题共有11小题,共88分.)17.(6分)化简ba a ba b b a +÷⎪⎭⎫ ⎝⎛---221. 18.(6分)解方程x x x --=-2112219.(8分)如图,在四边形ABCD 中,AB =BC ,对角线BD 平分∠ABC ,P 是BD 上一点,过点P 作PM ⊥AD ,PN ⊥CD ,垂足分别为M 、N.xx +1 1+xxA DBC P y xO 第14题第15题C N PD M A B(1)求证:∠ADB =∠CDB ;(2)若∠ADC =90°,求证:四边形MPND 是正方形.20.(8分)(1)一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各1个,这些球除颜色外都相同,求下列事件的概率:①搅匀后从中任意摸出1个球,恰好是红球;②搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,两次都是是红球;(2)某次考试共有6道选择题,每道题所给出的4个选项中,恰有一项是正确的.如果小明从每道题的4个选项中随机的选择一个,那么他6道选择题全部选正确的概率是( )A .41B .641⎪⎭⎫ ⎝⎛ C .6411⎪⎭⎫ ⎝⎛- D .6431⎪⎭⎫ ⎝⎛-21.(9分)某校有2000名学生,为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了150名学生进行抽样调查,整理样本数据,得到下列图表:(1)理解画线语句的含义,回答问题:如果150名学生全部在同一个年级抽取,这样的抽样是否合理?请说明理由;(2)根据抽样调查的结果,将估计出的全校2000名学生上学方式的情况绘制成条形统计图:(3)该校数学兴趣小组结合调查获取的信息,向学校提出了一些建议,如:骑车上学的学生数约占全校的34%,建议学生合理安排自行车停车场地,请你结合上述统计的全过程,再提出一条合理化建议: .22.(8分)已知不等臂跷跷板AB 长4m ,如图①,当AB 的一端A 碰到地面时,AB 与地面的夹角为α;如图②,当AB 的另一端B 碰到地面时,AB 与地面的夹角为β.求跷跷板AB 的支撑点O 到地面的高度OH .(用含α、β的式子表示)某校2000名学生上学方式条形统计图 步行 骑车 乘公共 乘私 其它 上学方式 交通工具 家车 700 600 500 400 300 200 100 0 人数A O Bα OA B β23.(8分)某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应返回金额.消费金额(元)300~400 400~500 500~600 600~700 700~900 ··· 返还金额(元)30 60 100 130 150 ··· 注:300~400表示消费金额大于300元且小于或等于400元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠,例如,若购买标价为400元的商品,则消费金额为320元,获得的优惠额为400×(1-80%)+30=110(元) (1)购买一件标价为1000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?24.(8分)小丽驾车从甲地到乙地,设她出发第x min 时的速度为y km/h ,图中折线表示她在整个驾车过程中第y 与 x 之间的函数关系.(1)小丽驾车的最高速度是 km/h;(2)当20≤x ≤30时,求y 与 x 之间的函数关系式,并求出小丽出发第22min 时的速度; (3)如果汽车每行驶100km 耗油10L ,那么小丽驾车从甲地到乙地共耗油多少升?10 20 30 40 50 x (min) 724824 O y (km/h) A B C D E F G 方法指导 如果物体的运动速度随着时间均匀增加(或减少),那么其在某个时间段内的平均速度为该时间段开始时刻的速度与结束时刻的速度的平均数。
江苏省南通市2012年中考数学试卷数学答案解析323x x=-)+【考点】同底数幂的乘法.-=,故选32,∴∠18032148【提示】根据互为补角的和等于180列式计算即可得解.70180250+=,故选B.【提示】先利用三角形内角与外角的关系,得出12∠+∠=∠120,∴18012060∠=-,,01,903∠==B AC ,∴顺时针旋转到①,可得到点P ,此时=AP三次一循环,按此规律即可求解.【考点】旋转的性质.二、填空题11.【答案】3【解析】解:2233=x y x y ,其中数字因式为3,则单项式的系数为3.【提示】把原题单项式变为数字因式与字母因式的积,其中数字因式即为单项式的系数.【考点】单项式.12.【答案】5≠x【解析】解:根据题意得50-≠x ,解得5≠x .【提示】求函数自变量的取值范围就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0.【考点】函数自变量的取值范围,分式有意义的条件.13.【答案】165.【解析】解:数据163,165,167,164,165,166,165,164,166中165出现了3次,且次数最多,所以众数是165.【提示】根据众数是一组数据中出现次数最多的数据解答即可.【考点】众数.14.【答案】23【解析】解:∵O 中,46∠=AOB ,∴12124623∠=∠=⨯=ACB AOB .【提示】由O 中,46∠=AOB ,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠ACB 的度数.【考点】圆周角定理.15.【答案】20.【解析】解:设购买甲电影票x 张,乙电影票y 张,由题意得,40+=x y ,2015700+=x y ,解得:20 20==,x y ,即甲电影票买了20张.【提示】设购买甲电影票x 张,乙电影票y 张,则根据总共买票40张,花了700元可得出方程组,解出即可得出答案.【考点】二元一次方程组的应用.16【答案】2【解析】解:作∥DE BC 于E 点,则∠=∠DEA B ,∵90∠+∠=A B ,∴90∠+∠=A DEA ,∴⊥ED AD ∵3cm 4cm ==,BC AD ,∴5=EA ,∴752cm ==-=-=CD BE AB AE ,故答案为2.90,得到(1)(3⎤-+⎥+⎦x x x (1)(13-+⎤⎥+⎦x x x 3(1)(1)13-++x x x 25-=.906030-==,AE 100cos30503⨯=海里,=BE EP 30的角所对的直角边(2)根据从中随机抽取一张牌,接着再抽取一张,列树状图如下:【提示】(1)利用数字2,3,4,8中一共有3个偶数,总数为4,即可得出点数偶数的概率. (2)利用树状图列举出所有情况,让点数都是偶数的情况数除以总情况数即为所求的概率.【考点】列表法与树状图法,概率公式.25.【答案】解:(1)利用图象可得:线段CD 表示轿车在途中停留了2.520.5-=小时;(2)根据D 点坐标为:(2.5,80),E 点坐标为:(4.5,300),代入=+y kx b ,得:880 2.5300 4.5=+⎧⎨=+⎩k b k b ,解得:110195=⎧⎨=-⎩k b ,故线段DE 对应的函数解析式为:110195=-y x . (3)∵A 点坐标为:(5,300),代入解析式=y ax 得,3005=a ,解得:60=a ,故60=y x , 当60110195=-x x ,解得: 3.9=x 小时.【提示】(1)利用图象得出CD 这段时间为22.520.5-=,得出答案即可;(2)利用D 点坐标为:(2.5,80),E 点坐标为:(4.5,300),求出函数解析式;(3)利用OA 的解析式得出,当60110195=-x x 时,即为轿车追上货车时.【考点】一次函数的应用.26.【答案】证明:(1)如图1,连接AC ,∵菱形ABCD 中,60∠=B ,∴==AB BC CD ,180120∠=-∠=C B ,∴△ABC 是等边三角形,∵E 是BC 的中点,∴⊥AE BC ,∵60∠=AEF ,∴9030∠=-∠=FEC AEF ,∴1801803012030∠=-∠-∠=--=CFE FEC C ,∴∠=∠FEC CFE ,∴=EC CF ,∴=BE DF ;(2)如图2,连接AC ,∵四边形ABCD 是菱形,60∠=B ,∴=AB BC ,60∠=∠=D B ,∠=∠ACB ACF ,∴△ABC 是等边三角形,∴60=∠=,AB AC ACB ,∴60∠=∠=B ACF ,60+∠FAD60,∴△AEF是等边三角形.60,根据菱形的性质,易得CFE,即可得60,然后利用平=AF24∴不存在实数a,使得点P在∠ACB的平分线上.45;,即∠ONB而12∠=∠=∠BM A BM A ABN ,∴12226642===-=-=,OM OM AM OM OA .综上,AM 的长为6或2.【提示】(1)该抛物线的解析式中只有两个待定系数,只需将,A B 两点坐标代入即可得解.(2)首先根据平移条件表示出移动后的函数解析式,进而用m 表示出该函数的顶点坐标,将其代入直线,AB AC 的解析式中,即可确定P 在△ABC 内时m 的取值范围.(3)先在OA 上取点N ,使得∠=∠ONB ACB ,那么只需令∠=∠NBA OMB 即可,显然在y 轴的正负半轴上都有一个符合条件的M 点;以y 轴正半轴上的点M 为例,先证△,△ABN AMB 相似,然后通过相关比例线段求出AM 的长.【考点】二次函数综合题.。
321a a = 【提示】先算出分式的乘方,再约分.【解析】边长为③1618<<a 是18的算术平方根,说法正确.所以说法正确的有①②④.【解析】128cm O O =,此时两圆的半径的差为【解析】正比例函数120k<.【解析】如图,四边形,矩形,12∠=∠4907020∴∠=︒-︒=︒,20α∴∠=︒.110,再根据四边形的内角和为,四边形,120BAD ∠=,∴∠,AOB ∠=,由勾股定理得:BO DO =,EF AC ⊥,,AC BD ⊥3)322=.,AD BC ∥22-=,BN ,AD BC ∥,∴AD BC =23AM x ⊥∴CPF △∽△,2AN =,∴43PF =,b ⎫⎪⎭16ab =+,1a b +=11123=--1)()()a b a a b a a b a b a a b++==+--.【提示】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的)PM AD ⊥,ADC ∠=ADB CDB ∠=∠,45ADB ∴∠=︒,∴PM M D =,∴四边形MPND 是正方形.sin sin αββ+意有A O =sin m sin αββ+.故跷跷板sin sin αββ+(m )【提示】根据三角函数的知识分别用,函数图象经过点,汽,如图,CE ,AB DC ∥,BAC ∠=90BCE =︒,PC ⊥,∴)AD,BC AD∥26CM-=E MCP∠=∠44,0a≠,∴0x m=,ABC △的面积与214m ++=【提示】(1)根据互为顺相似和互为逆相似的定义即可作出判断;△边上的位置分为三种情况,需要分类讨论,逐一分析求解.(2)根据点P在ABC【考点】相似形综合题11 / 11。
江苏省南京市 2013 年中考数学试卷数学答案分析一、选择题1.【答案】 D【分析】原式12 28 4 36.【提示】依据运算次序先计算乘除运算,最后算加减运算,即可获取结果.【考点】有理数的混淆运算2.【答案】 A 【分析】原式 a31a a2【提示】先算出分式的乘方,再约分.【考点】分式的乘除法3.【答案】 C【分析】边长为 3 的正方形的对角线长为a,a3232183 2① a 3 2 是无理数,说法正确;② a 能够用数轴上的一个点来表示,说法正确;③16 18 25,418 5 ,即4 a 5,说法错误;④a 是 18 的算术平方根,说法正确.因此说法正确的有①②④.【提示】先利用勾股定理求出 a 3 2,再依据无理数的定义判断①;依据实数与数轴的关系判断②;利用估量无理数大小的方法判断③;利用算术平方根的定义判断④.【考点】估量无理数的大小,算术平方根,无理数,实数与数轴,正方形的性质4.【答案】 D【分析】O1O2 8cm ,⊙ O1以1cm/s l向右运动,7s后停止运动,7s后两圆的圆心距为的速度沿直线1cm,此时两圆的半径的差为 3 2 1cm,此时内切,挪动过程中没有内含这类地点关系.【提示】依据两圆的半径和挪动的速度确立两圆的圆心距的最小值,从而确立两圆可能出现的地点关系,找到答案.【考点】圆与圆的地点关系5.【答案】 C【分析】正比率函数y k1x 的图象与反比率函数y k2的图象没有公共点,k1与 k2异号,即 k1 k20 .x【提示】依据反比率函数与一次函数的交点问题进行解答即可.【考点】反比率函数与一次函数的交点问题6.【答案】 B【分析】选项 A 和 C 带图案的一个面是底面,不可以折叠成原几何体的形式;选项 B 能折叠成原几何体的形式;选项 D 折叠后下边带三角形的面与原几何体中的地点不一样.【提示】由平面图形的折叠及几何体的睁开图解题,注意带图案的一个面不是底面.【考点】几何体的睁开图二、填空题7.【答案】 3131【分析】3的相反数是3;3的倒数是.3【提示】依据倒数以及相反数的定义即可求解.【考点】倒数,相反数8.【答案】 2【分析】原式3 2 22 2 .2【提示】先进行二次根式的化简,而后归并同类二次根式即可.【考点】二次根式的加减法9.【答案】x 1【分析】由题意知,分母x 1 0 ,即 x 1时,式子11存心义.x 1【提示】分式存心义,分母不等于零.【考点】分式存心义的条件10.【答案】104【分析】 13000 1.3 104【提示】科学记数法的表示形式为 a 10n的形式,此中 1 | a | 10 ,n为整数.确立n 的值时,要看把原数变为 a 时,小数点挪动了多少位,n 的绝对值与小数点挪动的位数同样.当原数绝对值 1 时,n是正数;当原数的绝对值 1 时,n是负数.2/ 11【分析】如图, 四边形 ABCD 为矩形, BD BAD 90 , 矩形 ABCD 绕点 A 顺时针旋转获取 矩形 AB ′C ′D ′D D90,4,12 110,3 360 90 90 110 70 ,,4 90 70 20 ,20 .【提示】依据矩形的性质得 B D BAD 90 ,依据旋转的性质得D D 90 , 4,利用对顶角相等获取 12 110 ,再依据四边形的内角和为360 可计算出3 70 ,而后利用互余即可得到的度数.【考点】旋转的性质,矩形的性质 12. 【答案】 3【分析】连结 BD 、AC , 四边形 ABCD 是菱形, AC BD ,AC 均分 BAD , BAD 120 ,BAC 60 ,ABO 9060 30 ,AOB 90 ,AO1 1 1 ,由勾股定理得: BODO3 ,AB222A 沿 EF 折叠与 O 重合,EF AC ,EF 均分 AO , ACBD , EF ∥BD , EF 为 △ABD 的中位线,EF1BD1 ( 3 3)3 .22【提示】依据菱形性质得出AC BD , AC 均分 BAD ,求出 ABO 30 ,求出 AO 、 BO 、 DO ,依据折叠得出 EFAC ,EF 均分 AO ,推出 EF ∥BD ,推出, EF 为 △ ABD 的中位线,依据三角形中位线定理求出即可.【考点】菱形的性质,翻折变换(折叠问题)13.【答案】 9【分析】当OAB70 时, AOB 40 ,则多边形的边数是 360 409 ;当 AOB70 时, 360 70结果不是整数,故不切合条件.【提示】分OAB 70 和 AOB 70 两种状况进行议论即可求解.【考点】正多边形和圆14.【答案】 ( x 1)2 25【分析】依据题意得( x 1)2 1 24 ,即 ( x 1)2 25 .【提示】此图形的面积等于两个正方形的面积的差,据此能够列出方程.【考点】由实质问题抽象出一元二次方程15.【答案】 3,73【分析】过 A 作 AM x 轴与 M ,交 BC 于 N ,过 P 作 PEx 轴与 E ,交 BC 于 F , AD ∥BC , A(2,3) ,B(1,1),D(4,3) ,AD ∥BC ∥x 轴,AM,,3 1 2,4 2 2 ,2 1 1 ,3 MNEF1ANADBNC 的坐标是 (5,1) ,1 4 ,4 1 3 , AD ∥BC , △ APD ∽△ CPB , ADAP2 1BC 5CNBC PC 4,2CP2 AM x 轴,PEx 轴, AM ∥PE , △CPF ∽△ CAN ,PF CF CP 2AN 2,AC 3ANCNCA,3CN3 , PF4, PE4 1 7,CF2, BF2 , P 的坐标是 73, .3333【提示】过 A 作 AM x 轴与 M ,交 BC 于 N ,过 P 作 PE x 轴与 E ,交 BC 于 F ,依据点的坐标求出各个线段的长,依据 △APD ∽△ CPB 和 △ CPF ∽△ CAN 得出比率式,即可求出答案. 【考点】等腰梯形的性质,两条直线订交或平行问题116.【答案】6【分析】设 a1111 1 , b 11 1 11 a1 ab1a ab1 b,则原式a bb2 3 4 523 4 566661( a b) ,a b 1 11111111 1, 原式 1 .62 3 4 5 2 3 4 56【提示】设 a111 1 1 , b1 1 1 1 ,而后依据整式的乘法与加减混淆运算进行计算即可得2 3 4 5 2 3 4 5解.【考点】整式的混淆运算三、解答题117.【答案】baa b b a b a a b 1.【分析】原式( a b)(a b) a (a b)(a b) a a b【提示】原式括号中两项通分并利用同分母分式的减法法例计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可获取结果.【考点】分式的混淆运算18.【答案】x 1【分析】去分母得2x x 2 1 ,移项归并得x 1,经查验 x 1是分式方程的解.【提示】分式方程去分母转变为整式方程,求出整式方程的解获取x 的值,经查验即可获取分式方程的解.【考点】解分式方程AB CB【答案】(1 )∵对角线BD 均分ABC ,ABD CBD ,在△ABD 和△ CBD 中,ABD CBD ,19.BD BD△ ABD≌△ CBD (SAS) ,ADB CDB ;(2)PM AD,PN CD ,PMD PND 90 ,ADC 90 ,四边形MPND 是矩形,ADB CDB ,ADB 45 ,PM MD ,四边形 MPND 是正方形.【提示】( 1)依据角均分线的性质和全等三角形的判断方法证明△ ABD≌△ CBD,由全等三角形的性质即可获取ADB CDB ;( 2)若ADC 90 ,由(1)中的条件可得四边形MPND 是矩形,再依据两边相等的四边形是正方形即可证明四边形MPND 是正方形.【考点】正方形的判断,全等三角形的判断与性质120.【答案】(1)①4②116 (2) B【分析】( 1)①搅匀后从中随意摸出 1 个球,恰巧是红球的概率为1;4②列表以下:红黄红(红,红)(黄,红)黄(红,黄)(黄,黄)蓝(红,蓝)(黄,蓝)绿(红,绿)(黄,绿)蓝绿(蓝,红)(绿,红)(蓝,黄)(绿,黄)(蓝,蓝)(绿,蓝)(蓝,绿)(绿,绿)所有等可能的状况数有16 种,此中两次都为红球的状况数有1种,则P1;161 1 6( 2)每道题所给出的 4 个选项中,恰有一个是正确的概率为.,则他 6 道选择题所有正确的概率是44【提示】( 1)①搅匀后从 4 个球中随意摸出 1 个球,求出恰巧是红球的概率即可;②列表得出所有等可能的状况数,找出两次都是红球的状况数,即可求出所求的概率;(2)求出每一道题选择正确的概率,利用乘法法例即可求出所有正确的概率.【考点】列表法与树状图法,概率公式21.【答案】(1)不合理,由于假如150 名学生所有在同一个年级抽取,这样抽取的学生不拥有随机性,比较片面,因此这样的抽样不合理;( 2)步行人数为2000 10% 200 (人),骑车的人数为2000 34%680 (人),乘公共汽车人数为2000 30% 600(人),乘私人车的人数为 2000 20% 400(人),乘其余交通工具得人数为2000 6% 120,以下图:( 3)为了节俭和保护环境请同学们尽量不要乘坐私人车(答案不独一).【提示】( 1)依据抽样检查一定拥有随机性,剖析得出即可;(2)依据扇形统计图分别求出各样搭车的人数,从而画出条形图即可;(3)利用节能减排的角度剖析得出答案即可.【考点】频数(率)散布表,抽样检查的靠谱性,用样本预计整体,扇形统计图,条形统计图4sin sin22.【答案】sinsin【分析】依题意有AO O H s i n ,BO OH sin , AO BO OH sinOH sin ,即O H si nO H s i n ,4m则OH4sin sinm .故跷跷板AB的支撑点O 到地面的高度OH 是sin sin4sin sinsin sin(m).【提示】依据三角函数的知识分别用OH 表示出 AO、 BO 的长,再依据不等臂跷跷板AB 长 4m,即可列出方程求解即可.【考点】解直角三角形的应用23.【答案】(1) 350( 2) 630【分析】( 1)标价为1000 元的商品按80% 的价钱销售,花费金额为800 元,花费金额800 元在 700~900 之间,返还金额为150 元,顾客获取的优惠额是 1000 (1 80%) 150 350 (元);( 2)设该商品的标价为x 元.①当 80%x 500 ,即 x 625时,顾客获取的优惠额不超出625 (1 80%) 60 185 226 ;②当 500 80%x 600,即 625 x 750时,顾客获取的优惠额(1 80%) x 100 226 ,解得x 630,即630 x 750.③当 600 80%x 700,即 750 x 875时,由于顾客购置标价不超出800 元,因此750 x 800,顾客获取的优惠额 750 (1 80%) x 130 280 226 .综上,顾客购置标价不超出 800 元的商品,要使获取的优惠额许多于226 元,那么该商品的标价起码为 630 元.【提示】( 1)依据标价为1000 元的商品按80%的价钱销售,求出花费金额,再依据花费金额所在的范围,求出优惠额,从而得出顾客获取的优惠额;( 2)先设该商品的标价为x 元,依据购置标价不超出800 元的商品,要使获取的优惠许多于226 元,列出不等式,分类议论,求出x 的取值范围,从而得出答案.【考点】一元一次不等式组的应用24.【答案】(1) 60(2)(3)【分析】( 1)由图可知,第 10min 到 20min 之间的速度最高,为60km/h ;()当20 x 30 时,设 y kx b( k 0) ,函数图象经过点(20,60) , (30,24) ,20k b 60 ,解得230k b 24k 1818 x 185 ,因此, y 与 x 的关系式为y 132 ,当 x 22时,y 22 132 ;b 132 5 5( 3 )行驶的总行程 1 (12 0) 5 1 (12 60) 10 5 60 20 10 1 (60 24) 30 202 60 2 60 60 2 601(24 5 45 35 1(48 0)5 17 3 8 2 ,汽车每行驶2 48) 482 603 1060 60 2100km 耗油 10L ,小丽驾车从甲地到乙地共耗油10升.100【提示】( 1)察看图象可知,第10min 到 20min 之间的速度最高;( 2)设y kx b k( 0) ,利用待定系数法求一次函数分析式解答,再把 x 22 代入函数关系式进行计算即可得解;(3)用各时间段的均匀速度乘以时间,求出行驶的总行程,再乘以每千米耗费的油量即可.【考点】一次函数的应用25.【答案】(1) PC 与圆 O 相切,原由于:过 C 点作直径CE,连结 EB ,如图,CE 为直径,EBC 90 ,即E BCE 90 ,AB∥DC ,ACD BAC ,BAC E,BCP ACD.E BCP,BCP BCE 90,即PCE 90 ,CE PC,PC 与圆 O 相切;( 2) AD 是⊙ O 的切线,切点为 A , OAAD , BC ∥AD , AMBC , BM CM1BC 3 ,2AC AB 9 , 在 Rt △ AMC 中 , AM2CM22 ,设⊙O的半径为 r , 则 OCr ,AC6OMAM r6 2 r ,在 Rt △ OCM 中, OM 2CM 22,即 3 2(6 2 )r 2227 2 ,OCr ,解得 r8CE 2r27 2 , OM 62 27 2 21 2 , BE 2OM 21 2 , EMCP,488 4PC CM PC 3 2727 2 21 2, PCRt △ PCM ∽ Rt △CEB ,EB ,即 7 .CE 4 4【提示】( 1)过 C 点作直径 CE ,连结 EB ,由 CE 为直径得 E BCE 90 ,由 AB ∥DC得 ACD BAC ,而 BAC E , BCPACD ,因此 EBCP ,于是 BCPBCE90 ,而后依据切线的判断获取结论;( 2)依据切线的性质获取 OA AD ,而 BC ∥AD ,则 AM BC ,依据垂径定理有 BMCM1BC 3,2依据等腰三角形性质有AC AB 9,在 Rt △AMC 中依据勾股定理计算出AM 62 ;设⊙ O 的半径为 r , 则 OC r ,OM AM r6 2r ,在 Rt △ OCM 中,依据勾股定理计算出r27 2,则CE r 272 2 ,84OM6 2 27 2 212,利用中位线性质得 BE 2OM21 2,而后判断 Rt △ PCM ∽Rt △CEB ,根88 4据相像比可计算出PC .【考点】切线的判断与性质26.【答案】( 1)令 y0 , a( x m)2 a( x m) 0 ,( a)2 4a 0 a 2 ,a 0 , a20 , 无论 a与 m 为什么值,该函数的图象与x 轴总有两个公共点;( 2 ) ① y 0, 则 a( x2a( x)m( a x ) m( x,m1 )解 得0 x 1m , x 2m 1 , m)21aAB ( m1) m 1 , y a( x m)2 a(xm) ax m 1a, △ABC 的面积1 1,解2424得 a8 ;②x 0 时,y a(0 m)2 a(0 m) am2 am ,因此,点 D 的坐标为(0, am2 am) ,△ABD的面积1 1 | am2 am | ,△ABC 的面积与△ABD的面积相等, 1 1 | am2 am | 1 1 a ,整理得2 2 2 4m2 m 1 0 ,或 m2 m 1 0 ,解得 m 1 2或 m 1 .4 4 2 2【提示】( 1)把(x m)看作一个整体,令y 0 ,利用根的鉴别式进行判断即可;(2)①令y 0 ,利用因式分解法解方程求出点A、 B 的坐标,而后求出 AB ,再把抛物线转变为极点式形式求出极点坐标,再利用三角形的面积公式列式进行计算即可得解;②令 x 0 求出点D的坐标,而后利用三角形的面积列式计算即可得解.【考点】二次函数综合题27.【答案】(1)互为顺相像的是①②;互为逆相像的是③;( 2)依据点P 在△ABC边上的地点分为以下三种状况:第一种状况:如图①,点 P 在 BC(不含点 B、C)上,过点 P 只好画出 2 条截线PQ1、PQ2 ,分别使CPQ1 A ,BPQ2 A ,此时△ PQ1C 、△ PBQ2都与△ ABC 互为逆相像.第二种状况:如图②,点P在AC(不含点A、C)上,过点B作CBM A ,BM交AC于点M.当点 P 在 AM(不含点 M)上时,过点 1 1 1ABC 1P 只好画出 1 条截线PQ,使APQ ,此时△ APQ 与△ ABC 互为逆相像;当点P在CM 上时,过点 P2 只好画出 2 条截线P2Q1、P2Q2,分别使AP2 Q1 ABC ,CP2 Q2 ABC ,此时△AP2 Q1、△Q2 P2C 都与△ ABC 互为逆相像.第三种状况:如图③,点P在AB A B C作BCD A,ACE B ,CD、CE分(不含点、)上,过点别交 AB 于点 D、E.当点 P 在 AD(不含点 D )上时,过点 P 只好画出 1 条截线PQ,使APQ ACB,1 1此时△ AQP1与△ ABC 互为逆相像;当点P 在 DE 上时,过点P2 只好画出 2 条截线P2Q1、P2Q2,分别使AP2 Q1 ACB ,BP2 Q2 BCA ,此时△ AQ1P2、△Q2 BP2 都与△ ABC 互为逆相像;当点P 在 BE(不含点 E)上时,过点P 只好画出1 条截线PQ ,使 BPQ BCA ,此时△Q BP 与△ ABC互为逆相像.3 3 3 310/11【提示】( 1)依据互为顺相像和互为逆相像的定义即可作出判断;(2)依据点 P 在△ABC边上的地点分为三种状况,需要分类议论,逐个剖析求解.【考点】相像形综合题11/11。
2013年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)(2013•南京)计算:12﹣7×(﹣4)+8÷(﹣2)的结果是()A.﹣24 B.﹣20 C.6 D.362.(2分)(2013•南京)计算a3•()2的结果是()A.a B.a3C.a6D.a93.(2分)(2013•南京)设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④B.②③C.①②④D.①③④4.(2分)(2013•南京)如图,⊙O1,⊙O2的圆心在直线l上,⊙O1的半径为2cm,⊙O2的半径为3cm.O1O2=8cm,⊙O1以1m/s的速度沿直线l向右运动,7s后停止运动.在此过程中,⊙O1和⊙O2没有出现的位置关系是()A.外切B.相交C.内切D.内含5.(2分)(2013•南京)在同一直角坐标系中,若正比例函数y=k1x的图象与反比例函数y=的图象没有公共点,则()A.k1+k2<0 B.k1+k2>0 C.k1k2<0 D.k1k2>06.(2分)(2013•南京)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.下列图形中,是该几何体的表面展开图的是()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)(2013•南京)﹣3的相反数是3;﹣3的倒数是﹣.8.(2分)(2013•南京)计算:的结果是.9.(2分)(2013•南京)使式子1+有意义的x的取值范围是x≠1.10.(2分)(2013•南京)第二届亚洲青年运动会将于2013年8月16日至24日在南京举办,在此期间约有13000名青少年志愿者提供服务.将13000用科学记数法表示为 1.3×104.11.(2分)(2013•南京)如图,将矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=20°.12.(2分)(2013•南京)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=cm.13.(2分)(2013•南京)△OAB是以正多边形相邻的两个顶点A,B与它的中心O为顶点的三角形,若△OAB的一个内角为70°,则该正多边形的边数为9.14.(2分)(2013•南京)已知如图所示的图形的面积为24,根据图中的条件,可列出方程:(x+1)2=25.15.(2分)(2013•南京)如图,在梯形ABCD中,AD∥BC,AB=DC,AC与BD相交于P.已知A(2,3),B(1,1),D(4,3),则点P的坐标为(3,).16.(2分)(2013•南京)计算(1﹣)()﹣(1﹣﹣)()的结果是.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤)17.(6分)(2013•南京)化简()÷.18.(6分)(2013•南京)解方程:=1﹣.19.(8分)(2013•南京)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P 作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.20.(8分)(2013•南京)(1)一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各1个.这些球除颜色外都相同.求下列事件的概率:①搅匀后从中任意摸出1个球,恰好是红球;②搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,两次都是红球;(2)某次考试共有6道选择题,每道题所给出的4个选项中,恰有一个是正确的.如果小明从每道题的4个选项中随机地选择1个,那么他6道选择题全部正确的概率是B.A. B. C.1﹣ D.1﹣.21.(9分)(2013•南京)某校有2000名学生,为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了150名学生进行抽样调查.整理样本数据,得到下列图表:(1)理解划线语句的含义,回答问题:如果150名学生全部在同一个年级抽取,这样的抽样是否合理?请说明理由;(2)根据抽样调查的结果,将估计出的全校2000名学生上学方式的情况绘制成条形统计图;(3)该校数学兴趣小组结合调查获取信息,向学校提出了一些建议,如:骑车上学的学生约占全校的34%,建议学校合理安排自行车停车场地,请你结合上述统计的全过程,再提出一条合理化的建议:为了节约和保护环境请同学们尽量不要乘坐私家车(答案不唯一).22.(8分)(2013•南京)已知不等臂跷跷板AB长4m.如图①,当AB的一端A碰到地面上时,AB与地面的夹角为α;如图②,当AB的另一端B碰到地面时,AB与地面的夹角为β.求跷跷板AB的支撑点O到地面的高度OH.(用含α,β的式子表示)23.(8分)(2013•南京)某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额.消费金额(元) 300﹣400 400﹣500 500﹣600 600﹣700 700﹣900 …返还金额(元) 30 60 100 130 150 …根据上述促销方案,顾客在该商场购物可以获得双重优惠,例如:若够买标价为400元的商品,则消费金额为320元,获得的优惠额为400×(1﹣80%)+30=110(元).(1)购买一件标价为1000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠不少于226元,那么该商品的标记至少为多少元?24.(8分)(2013•南京)小丽驾车从甲地到乙地.设她出发第xmin时的速度为ykm/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系.(1)小丽驾车的最高速度是60km/h;(2)当20≤x≤30时,求y与x之间的函数关系式,并求出小丽出发第22min时的速度;(3)如果汽车每行驶100km耗油10L,那么小丽驾车从甲地到乙地共耗油多少升?25.(8分)(2013•南京)如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.26.(9分)(2013•南京)已知二次函数y=a(x﹣m)2﹣a(x﹣m)(a,m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)设该函数的图象的顶点为C,与x轴交于A,B两点,与y轴交于点D.①当△ABC的面积等于1时,求a的值;②当△ABC的面积与△ABD的面积相等时,求m的值.27.(10分)(2013•南京)对于两个相似三角形,如果沿周界按对应点顺序环绕的方向相同,那么称这两个三角形互为顺相似;如果沿周界按对应点顺序环绕的方向相反,那么称这两个三角形互为逆相似.例如,如图①,△ABC∽△A′B′C′,且沿周界ABCA与A′B′C′A′环绕的方向相同,因此△ACB和△A′B′C′互为顺相似;如图②,△ABC∽△A′B′C′,且沿周界ABCA与A′B′C′A′环绕的方向相反,因此△ACB和△A′B′C′互为逆相似.(1)根据图Ⅰ,图Ⅱ和图Ⅲ满足的条件.可得下列三对相似三角形:①△ADE与△ABC;②△GHO与△KFO;③△NQP与△NMQ;其中,互为顺相似的是①;互为逆相似的是②③.(填写所有符合要求的序号).(2)如图③,在锐角△ABC中,∠A<∠B<∠C,点P在△ABC的边上(不与点A,B,C重合).过点P画直线截△ABC,使截得的一个三角形与△ABC互为逆相似.请根据点P的不同位置,探索过点P的截线的情形,画出图形并说明截线满足的条件,不必说明理由.2013年江苏省南京市中考数学试卷答案及解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1、考点:有理数的混合运算.专题:计算题.分析:根据运算顺序先计算乘除运算,最后算加减运算,即可得到结果.解答:解:原式=12+28﹣4=36.故选D点评:此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时利用利用运算律来简化运算.2、考点:分式的乘除法.专题:计算题.分析:先算出分式的乘方,再约分.解答:解:原式=a3•=a,故选A.点评:本题考查了分式的乘除法,分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.3、考点:估算无理数的大小;算术平方根;无理数;实数与数轴;正方形的性质.分析:先利用勾股定理求出a=3,再根据无理数的定义判断①;根据实数与数轴的关系判断②;利用估算无理数大小的方法判断③;利用算术平方根的定义判断④.解答:解:∵边长为3的正方形的对角线长为a,∴a===3.①a=3是无理数,说法正确;②a可以用数轴上的一个点来表示,说法正确;③∵16<18<25,4<<5,即4<a<5,说法错误;④a是18的算术平方根,说法正确.所以说法正确的有①②④.故选C.点评:本题主要考查了勾股定理,实数中无理数的概念,算术平方根的概念,实数与数轴的关系,估算无理数大小,有一定的综合性.4、考点:圆与圆的位置关系.分析:根据两圆的半径和移动的速度确定两圆的圆心距的最小值,从而确定两圆可能出现的位置关系,找到答案.解答:解:∵O1O2=8cm,⊙O1以1m/s的速度沿直线l向右运动,7s后停止运动,∴7s后两圆的圆心距为:1cm,此时两圆的半径的差为:3﹣2=1cm,∴此时内切,∴移动过程中没有内含这种位置关系,故选D.点评:本题考查了圆与圆的位置关系,解题的关键是根据圆的移动速度确定两圆的圆心距,然后根据圆心距和两圆的半径确定答案.5、考点:反比例函数与一次函数的交点问题.专题:压轴题;探究型.分析:根据反比例函数与一次函数的交点问题进行解答即可.解答:解:∵正比例函数y=k1x的图象与反比例函数y=的图象没有公共点,∴k1与k2异号,即k1•k2<0.故选C.点评:本题考查的是反比例函数与一次函数的交点问题,熟知反比例函数与一次函数的图象与系数的关系是解答此题的关键.6、考点:几何体的展开图.专题:压轴题.分析:由平面图形的折叠及几何体的展开图解题,注意带图案的一个面不是底面.解答:解:选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.故选B.点评:本题主要考查了几何体的展开图.解题时勿忘记正四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力.二、填空题(本大题共10小题,每小题2分,共20分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)7.考点:倒数;相反数.分析:根据倒数以及相反数的定义即可求解.解答:解:﹣3的相反数是3;﹣3的倒数是﹣.故答案是:3,﹣.点评:主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.8、考点:二次根式的加减法.分析:先进行二次根式的化简,然后合并同类二次根式即可.解答:解:原式=﹣=.故答案为:.点评:本题考查了二次根式的加减运算,属于基础题,关键是掌握二次根式的化简及同类二次根式的合并.9、考点:分式有意义的条件.分析:分式有意义,分母不等于零.解答:解:由题意知,分母x﹣1≠0,即x≠1时,式子1+有意义.故填:x≠1.点评:本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.10、考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:13000=1.3×104.故答案是:1.3×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11、考点:旋转的性质.专题:计算题.分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.解答:解:如图,∵四边形ABCD为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD绕点A顺时针旋转得到矩形A′B′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案为20°.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的性质.12、考点:菱形的性质;翻折变换(折叠问题).分析:根据菱形性质得出AC⊥BD,AC平分∠BAD,求出∠ABO=30°,求出AO,BO、DO,根据折叠得出EF⊥AC,EF平分AO,推出EF∥BD,推出,EF为△ABD的中位线,根据三角形中位线定理求出即可.解答:解:连接BD、AC,∵四边形ABCD是菱形,∴AC⊥BD,AC平分∠BAD,∵∠BAD=120°,∴∠BAC=60°,∴∠ABO=90°﹣60°=30°,∵∠AOB=90°,∴AO=AB=×2=1,由勾股定理得:BO=DO=,∵A沿EF折叠与O重合,∴EF⊥AC,EF平分AO,∵AC⊥BD,∴EF∥BD,∴EF为△ABD的中位线,∴EF=BD=(+)=,故答案为:.点评:本题考查了折叠性质,菱形性质,含30度角的直角三角形性质,勾股定理,平行线分线段成比例定理等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力.13、考点:正多边形和圆.分析:分∠OAB=70°和∠AOB=70°两种情况进行讨论即可求解.解答:解:当∠OAB=70°时,∠AOB=40°,则多边形的边数是:360÷40=9;当∠AOB=70°时,360÷70结果不是整数,故不符合条件.故答案是:9.点评:此题主要考查正多边形的计算问题,属于常规题.14、考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:此图形的面积等于两个正方形的面积的差,据此可以列出方程.解答:解:根据题意得:(x+1)2﹣1=24,即:(x+1)2=25.故答案为:(x+1)2=25.点评:本题考查了由实际问题抽象出一元二次方程,解题的关键是明确题目中的不规则图形的面积计算方法.等腰梯形的性质;两条直线相交或平行问题.15、考点:专题:压轴题.分析:过A作AM⊥x轴与M,交BC于N,过P作PE⊥x轴与E,交BC于F,根据点的坐标求出各个线段的长,根据△APD∽△CPB和△CPF∽△CAN得出比例式,即可求出答案.解答:解:过A作AM⊥x轴与M,交BC于N,过P作PE⊥x轴与E,交BC于F,∵AD∥BC,A(2,3),B(1,1),D(4,3),∴AD∥BC∥x轴,AM=3,MN=EF=1,AN=3﹣1=2,AD=4﹣2=2,BN=2﹣1=1,∴C的坐标是(5,1),BC=5﹣1=4,CN=4﹣1=3,∵AD∥BC,∴△APD∽△CPB,∴===,∴=∵AM⊥x轴,PE⊥x轴,∴AN∥PF,∴△CPF∽△CAN,∴===,∵AN=2,CN=3,∴PF=,PE=+1=,CF=2,BF=2,∴P的坐标是(3,),故答案为:3,.点评:本题考查了坐标与图形性质,梯形的性质,相似三角形的性质和判定的应用,主要是考查学生综合运用知识进行计算的能力.16、考点:整式的混合运算.专题:压轴题;换元法.分析:设a=1﹣﹣﹣﹣,b=+++,然后根据整式的乘法与加减混合运算进行计算即可得解.解答:解:设a=1﹣﹣﹣﹣,b=+++,则原式=a(b+)﹣(a﹣)•b=ab+a﹣ab+ b=(a+b),∵a+b=1﹣﹣﹣﹣++++=1,∴原式=.故答案为:.点评:本题考查了整式的混合运算,利用换元法可以使书写更简便且形象直观.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤)17.(6分)考点:分式的混合运算.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果.解答:解:原式=•=•=.点评:此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.18、考点:解分式方程.专题:计算题.分析:分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x=x﹣2+1,解得:x=﹣1,经检验x=﹣1是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19、考点:正方形的判定;全等三角形的判定与性质.专题:证明题.分析:(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.解答:证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD,∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,对角线BD平分∠ABC,∴∠PMD=∠PND=90°,PM=PN,∵∠ADC=90°,∴四边形MPND是矩形,∵PM=PN,∴四边形MPND是正方形.点评:本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.20、考点:列表法与树状图法;概率公式.专题:计算题.分析:(1)①搅匀后从4个球中任意摸出1个球,求出恰好是红球的概率即可;②列表得出所有等可能的情况数,找出两次都是红球的情况数,即可求出所求的概率;(2)求出每一道题选择正确的概率,利用乘法法则即可求出全部正确的概率.解答:解:(1)①搅匀后从中任意摸出1个球,恰好是红球的概率为;②列表如下:红黄蓝绿红(红,红)(黄,红)(蓝,红)(绿,红)黄(红,黄)(黄,黄)(蓝,黄)(绿,黄)蓝(红,蓝)(黄,蓝)(蓝,蓝)(绿,蓝)绿(红,绿)(黄,绿)(蓝,绿)(绿,绿)所有等可能的情况数有16种,其中两次都为红球的情况数有1种,则P=;(2)每道题所给出的4个选项中,恰有一个是正确的概率为,则他6道选择题全部正确的概率是()6.故选B.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21\考点:频数(率)分布表;抽样调查的可靠性;用样本估计总体;扇形统计图;条形统计图.分析:(1)根据抽样调查必须具有随机性,分析得出即可;(2)根据扇形统计图分别求出各种乘车的人数,进而画出条形图即可.(3)利用节能减排角度分析得出答案即可.解答:解:(1)不合理,因为如果150名学生全部在同一个年级抽取,这样抽取的学生不具有随机性,比较片面,所以这样的抽样不合理;(2)步行人数为:2000×10%=200(人),骑车的人数为:2000×34%=680(人),乘公共汽车人数为:2000×30%=600(人),乘私家车的人数为:2000×20%=400(人),乘其它交通工具得人数为:2000×6%=120(人),如图所示:;(3)为了节约和保护环境请同学们尽量不要乘坐私家车(答案不唯一).点评:此题主要考查了扇形图与条形图的综合应用以及抽样调查的随机性,根据扇形图得出各部分所占比例是解题关键.22\考点:解直角三角形的应用.分析:根据三角函数的知识分别用OH表示出AO,BO的长,再根据不等臂跷跷板AB长4m,即可列出方程求解即可.解答:解:依题意有:AO=OH÷sinα,BO=OH÷sinβ,AO+BO=OH÷sinα+OH÷sinβ,即OH÷4+OH÷sinβ=4m,则OH=m.故跷跷板AB的支撑点O到地面的高度OH是(m).点评:本题考查的是解直角三角形的应用,根据题意利用锐角三角函数的定义求解是解答此题的关键.23\考点:一元一次不等式组的应用.分析:(1)根据标价为1000元的商品按80%的价格出售,求出消费金额,再根据消费金额所在的范围,求出优惠额,从而得出顾客获得的优惠额;(2)先设该商品的标价为x元,根据购买标价不超过800元的商品,要使获得的优惠不少于226元,列出不等式,求出x的取值范围,从而得出答案.解答:解:(1)标价为1000元的商品按80%的价格出售,消费金额为800元,消费金额800元在700﹣900之间,优惠额为150元,顾客获得的优惠额是:1000×(1﹣80%)+150=350(元);(2)设该商品的标价为x元,根据题意得:100+20%x≥226,解得x≥630.答:该商品的标价至少为630元.点评:此题考查了一元一次不等式组的应用,解题的关键是读懂题意,求出消费金额,再根据所给的范围可解得优惠金额.24\考点:一次函数的应用.分析:(1)观察图象可知,第10min到20min之间的速度最高;(2)设y=kx+b(k≠0),利用待定系数法求一次函数解析式解答,再把x=22代入函数关系式进行计算即可得解;(3)用各时间段的平均速度乘以时间,求出行驶的总路程,再乘以每千米消耗的油量即可.解答:解:(1)由图可知,第10min到20min之间的速度最高,为60km/h;(2)设y=kx+b(k≠0),∵函数图象经过点(20,60),(30,24),∴,解得,所以,y与x的关系式为y=﹣x+132,当x=22时,y=﹣×22+132=52.8km/h;(3)行驶的总路程=×(12+0)×+×(12+60)×+60×+×(60+24)×+×(24+48)×+48×+×(48+0)×,=+3+10+7+3+8+2,=33.5km,∵汽车每行驶100km耗油10L,∴小丽驾车从甲地到乙地共耗油:33.5×=3.35升.点评:本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,路程=速度×时间,从图形中准确获取信息是解题的关键.25\考点:切线的判定与性质.分析:(1)过C点作直径CE,连接EB,由CE为直径得∠E+∠BCE=90°,由AB∥DC得∠ACD=∠BAC,而∠BAC=∠E,∠BCP=∠ACD,所以∠E=∠BCP,于是∠BCP+∠BCE=90°,然后根据切线的判断得到结论;(2)根据切线的性质得到OA⊥AD,而BC∥AD,则AM⊥BC,根据垂径定理有BM=CM=BC=3,根据等腰三角形性质有AC=AB=9,在Rt△AMC中根据勾股定理计算出AM=6;设⊙O的半径为r,则OC=r,OM=AM﹣r=6﹣r,在Rt△OCM中,根据勾股定理计算出r=,则CE=2r=,OM=6﹣=,利用中位线性质得BE=2OM=,然后判断Rt△PCM∽Rt△CEB,根据相似比可计算出PC.解答:解:(1)PC与圆O相切,理由为:过C点作直径CE,连接EB,如图,∵CE为直径,∴∠EBC=90°,即∠E+∠BCE=90°,∵AB∥DC,∴∠ACD=∠BAC,∵∠BAC=∠E,∠BCP=∠ACD.∴∠E=∠BCP,∴∠BCP+∠BCE=90°,即∠PCE=90°,∴CE⊥PC,∴PC与圆O相切;(2)∵AD是⊙O的切线,切点为A,∴OA⊥AD,∵BC∥AD,∴AM⊥BC,∴BM=CM=BC=3,∴AC=AB=9,在Rt△AMC中,AM==6,设⊙O的半径为r,则OC=r,OM=AM﹣r=6﹣r,在Rt△OCM中,OM2+CM2=OC2,即32+(6﹣r)2=r2,解得r=,∴CE=2r=,OM=6﹣=,∴BE=2OM=,∵∠E=∠MCP,∴Rt△PCM∽Rt△CEB,∴=,即=,∴PC=.点评:本题考查了切线的判定与性质:过半径的外端点与半径垂直的直线为圆的切线;圆的切线垂直于过切点的半径.也考查了勾股定理、圆周角定理的推论、三角形相似的判定与性质.26\考点:二次函数综合题.专题:压轴题.分析:(1)把(x﹣m)看作一个整体,令y=0,利用根的判别式进行判断即可;(2)①令y=0,利用因式分解法解方程求出点A、B的坐标,然后求出AB,再把抛物线转化为顶点式形式求出顶点坐标,再利用三角形的面积公式列式进行计算即可得解;②令x=0求出点D的坐标,然后利用三角形的面积列式计算即可得解.解答:(1)证明:令y=0,a(x﹣m)2﹣a(x﹣m)=0,△=(﹣a)2﹣4a×0=a2,∵a≠0,∴a2>0,∴不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)解:①y=0,则a(x﹣m)2﹣a(x﹣m)=a(x﹣m)(x﹣m﹣1)=0,解得x1=m,x2=m+1,∴AB=(m+1)﹣m=1,y=a(x﹣m)2﹣a(x﹣m)=a(x﹣m﹣)2﹣,△ABC的面积=×1×||=1,解得a=±8;②x=0时,y=a(0﹣m)2﹣a(0﹣m)=am2+am,所以,点D的坐标为(0,am2+am),△ABD的面积=×1×|am2+am|,∵△ABC的面积与△ABD的面积相等,∴×1×|am2+am|=×1×||,整理得,m2+m﹣=0或m2+m+=0,解得m=或m=﹣.点评:本题是对二次函数的综合考查,主要利用了根的判别式,三角形的面积,把(x﹣m)看作一个整体求解更加简便.27考点:相似形综合题.专题:压轴题.分析:(1)根据互为顺相似和互为逆相似的定义即可作出判断;(2)根据点P在△ABC边上的位置分为三种情况,需要分类讨论,逐一分析求解.解答:解:(1)互为顺相似的是①;互为逆相似的是②③;(2)根据点P在△ABC边上的位置分为以下三种情况:第一种情况:如图①,点P在BC(不含点B、C)上,过点P只能画出2条截线PQ1、PQ2,分别使∠CPQ1=∠A,∠BPQ2=∠A,此时△PQ1C、△PBQ2都与△ABC互为逆相似.第二种情况:如图②,点P在AC(不含点A、C)上,过点B作∠CBM=∠A,BM交AC于点M.当点P在AM(不含点M)上时,过点P1只能画出1条截线P1Q,使∠AP1Q=∠ABC,此时△AP1Q与△ABC 互为逆相似;当点P在CM上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使∠AP2Q1=∠ABC,∠CP2Q2=∠ABC,此时△AP2Q1、△Q2P2C都与△ABC互为逆相似.第三种情况:如图③,点P在AB(不含点A、B)上,过点C作∠BCD=∠A,∠ACE=∠B,CD、CE分别交AC于点D、E.当点P在AD(不含点D)上时,过点P只能画出1条截线P1Q,使∠AP1Q=∠ABC,此时△AQP1与△ABC 互为逆相似;当点P在DE上时,过点P2只能画出2条截线P2Q1、P2Q2,分别使∠AP2Q1=∠ACB,∠BP2Q2=∠BCA,此时△AQ1P2、△Q2BP2都与△ABC互为逆相似;当点P在BE(不含点E)上时,过点P3只能画出1条截线P3Q′,使∠BP3Q′=∠BCA,此时△Q′BP3与△ABC 互为逆相似.点评:本题是创新型中考压轴题,主要考查了相似三角形的知识点、分类讨论的数学思想以及接受与理解新生事物的能力.准确理解题设条件中“顺相似”“逆相似”的定义是正确解题的先决条件,在分析与解决问题的过程中,要考虑全面,进行分类讨论,避免漏解.。
2013年中考数学试题(江苏南通卷) (本试卷满分150分,考试时间120分钟) 一、选择题(本大题共10小题,每小题3分,满分30分) 1.下列各数中,小于-3的数是【 】 A.2 B.1 C.-2 D.-4 2.某市2013年参加中考的考生人数约为85000人,将85000用科学记数法表示为【 】 A.48.510 B.58.510 C.40.8510 D.50.8510 3.下列计算,正确的是【 】 A.43xxx B.632xxx C.34xxx D.236axax 4.下面的几何体中,既是轴对称图形又是中心对称图形的个数是【 】
A.4 B.3 C.2 D.1 5.有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为【 】 A.1 B.2 C.3 D.4 6.函数x2yx1中,自变量x的取值范围是【 】 A.x>1 B.x≥1 C.x>-2 D.x≥―2 7.如图,用尺规作出∠OBF=∠AOB,所画痕迹MN是【 】 A.以点B为圆心,OD为半径的弧B.以点C为圆心,DC为半径的弧 C.以点E为圆心,OD为半径的弧D.以点E为圆心,DC为半径的弧 8.用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4 cm, 底面周长是6π cm,则扇形的半径为【 】 A.3cm B.5cm C.6cm D.8cm 9.小李和小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中的信息,有下列说法: (1)他们都行驶了20 km; (2)小陆全程共用了1.5h; (3)小李和小陆相遇后,小李的速度小于小陆的速度 (4)小李在途中停留了0.5h。其中正确的有【 】 A.4个 B.3个 C.2个 D.1个 10.如图,Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是AB的中点,CD与AB的交点为E,则CEDE
等于【 】A.4 B.3.5 C.3 D.2.5
二、填空题(本大题共8小题,每小题3分,满分24分) 11.反比例函数kyx的图象经过点(1,2),则k= ▲ 。 12.如图,直线AB、CD相交于点O,OE⊥AB,∠BOD=200,则∠COE等于 ▲ 度。 13.一个几何体的主视图、俯视图和左视图都是大小相同的圆,则这个几何体是 ▲ . 14.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是 ▲ 。
12题 14题 10题 16题 15.已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是 ▲ 。 16.如图,经过点B(-2,0)的直线ykxb与直线y4x2相交于点A(-1,-2),则不等式4x217.如图,在ABCD中,AB=6cm,AD=9cm,∠BAD 的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,
垂足为G,BG=42cm,则EF+CF的长为 ▲ cm。 18.已知x2mn2和xm2n时,多项式2x4x6
的值相等,且mn20,则当x3mn1时,多项式2x4x6的值等于 ▲ 。 三、解答题(本大题共10小题,满分96分) 19. (1)计算:082(5.3)3。
(2)先化简,再求代数式的值: 221m2m11m2m4,其中m=1。 20.在平面直角坐标系xOy中,已知A(-1,5),B(4,2),C(-1,0)三点。 (1)点A关于原点O的对称点A′的坐标为 ▲ ,点B关于 x轴对称点B′的坐标为 ▲ ,点C关于y轴对称点C′的坐标为 ▲ ; (2)求(1)中的△A′B′C′的面积。
21.某水果批发市场将一批苹果分为A,B,C,D四个等级,统计后将结果绘成条形图,已知A等级苹果的重量占这批苹果总重量的30%。回答下列问题: (1)这批苹果总重量为 ▲ kg; (2)请将条形图补充完整; (3)若用扇形图表示统计结果,则C等级苹果所对应扇形圆心角为 ▲ 度。 22.在不透明的袋子中有四张标有数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏。小明画出树形图如下: 小华列出表格如下: 第一次 第二次
1 2 3 4
1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) ① (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4 (1,4) (2,4) (3,4) (4,4) 回答下列问题: (1)根据小明画出的树形图分析,他的游戏规则是:随机抽出一张卡片后 ▲ (填“放回”或“不放回”),再随机抽出一张卡片; (2)根据小华的游戏规则,表格中①表示的有序数对为 ▲ ; (3)规定两次抽到的数字之和为奇数的获胜,你认为淮获胜的可能性大?为什么?
23.若关于x的不等式组xx1>0233x5a4>4x13a恰有三个整数解,求实数a的取值范围。 24.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE。 求证:四边形BCDE是矩形。
25.如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC=2∠B,⊙O的切线AP与OC的延长线相交于点P。若PA63cm,求AC的长。
26.某公司营销A,B两种产品,根据市场调研,发现如下信息: 信息1:销售A种产品所获利润y(万元)与所售产品x(吨)之间存在二次函数关系2y=axbx。
当x=1时,y=1.4;当x=3时,y=3.6。 信息2:销售B种产品所获利润y(万元)与所售产品x(吨)之间存在正比例函数关系y=0.3x。 根据以上信息,解答下列问题: (1)求二次函数解析式; (2)该公司准备购进A,B两种产品共10吨,请设计一个营销方案,使销售A,B两种产品获得的利润之和最大,最大利润是多少? 27.如图,在Rt△ABC中,∠ACB=900,AC=3,BC=3,△DEF是边长为a(a为小于3的常数)的等边三角形,将△DEF沿AC方向平移, 使点D在线段AC上,DE∥AB,设△DEF与△ABC重叠部分的周长为T。 (1)求证:点E到AC的距离为一常数; (2)若AD=14,当a=2时,求T的值; (3)若点D运动到AC的中点处,请用含a的代数式表示T。
28.如图,直线ykxbb>0与抛物线21yx8相交于A11x,y ,B22x,y 两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且kS320。 (1)求b的值; (2)求证:点12y,y 在反比例函数64yx的图象上; (3)求证:12xOByOA0。 2013年中考数学试题(江苏南通卷) (本试卷满分150分,考试时间120分钟) 一、选择题(本大题共10小题,每小题3分,满分30分) 1.下列各数中,小于-3的数是【 】 A.2 B.1 C.-2 D.-4 【答案】D。 2.某市2013年参加中考的考生人数约为85000人,将85000用科学记数法表示为【 】 A.48.510 B.58.510 C.40.8510 D.50.8510 【答案】A。 3.下列计算,正确的是【 】 A.43xxx B.632xxx C.34xxx D.236axax 【答案】C。 4.下面的几何体中,既是轴对称图形又是中心对称图形的个数是【 】
A.4 B.3 C.2 D.1 【答案】C。 5.有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为【 】 A.1 B.2 C.3 D.4 【答案】C。 6.函数x2yx1中,自变量x的取值范围是【 】 A.x>1 B.x≥1 C.x>-2 D.x≥―2 【答案】A。
7.如图,用尺规作出∠OBF=∠AOB,所画痕迹MN是【 】 A.以点B为圆心,OD为半径的弧 B.以点C为圆心,DC为半径的弧 C.以点E为圆心,OD为半径的弧 D.以点E为圆心,DC为半径的弧 【答案】D。 8.用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4 cm,底面周长是6π cm,则扇形的半径为【 】
A.3cm B.5cm C.6cm D.8cm 【答案】B。 9.小李和小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中的信息,有下列说法: (1)他们都行驶了20 km; (2)小陆全程共用了1.5h; (3)小李和小陆相遇后,小李的速度小于小陆的速度 (4)小李在途中停留了0.5h。 其中正确的有【 】 A.4个 B.3个 C.2个 D.1个 【答案】A。
10.如图,Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是AB的中点,CD与AB的交点为E,则CEDE等于【 】
A.4 B.3.5 C.3 D.2.5 【答案】C。 二、填空题(本大题共8小题,每小题3分,满分24分) 11.反比例函数kyx的图象经过点(1,2),则k= ▲ 。 【答案】2。 12.如图,直线AB、CD相交于点O,OE⊥AB,∠BOD=200,则∠COE等于 ▲ 度。
【答案】70。 13.一个几何体的主视图、俯视图和左视图都是大小相同的圆,则这个几何体是 ▲ . 【答案】球。