当前位置:文档之家› 【ZLG微信文档精选】DC-DC开关电源PCB布板注意事项

【ZLG微信文档精选】DC-DC开关电源PCB布板注意事项

【ZLG微信文档精选】DC-DC开关电源PCB布板注意事项
【ZLG微信文档精选】DC-DC开关电源PCB布板注意事项

广州周立功单片机科技有限公司

DC-DC 开关电源PCB 布板注意事项

DC-DC开关电源PCB布板注意事项

摘要:开关性稳压电源的效率高,但输出纹波电压较高,噪声较大,电压调整率等性能也较差,特别是对模拟电路供电时,将产生较大的影响,在器件选项和布板时需要特别注意。

推送目的:DC-DC开关电源与其他电源器件对比分析,选择器件及PCB布板注意事项

是否原创:是

关键字:DC-DC、MMPQ2128、LDO、电荷泵、PCB布板

正文:

1.1.1 DC-DC电源分类

DC-DC开关电源分为三类:BUCK、BUOOST、BUCK-BOOST

Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。如图1,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比D=Ton/Ts。其中BUCK型DC-DC只能降压,降压公式:V o=Vi*D。

图1 BUCK开关电源模型

Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。开关管Q也为PWM控制方式,但最大占空比D必须限制,不允许在D=1的状态下工作。电感Lf在输入侧,称为升压电感。Boost变换器也有CCM和DCM两种工作方式。BOOST型DC-DC只能升压,升压公式:V o=Vi/(1-D)。如图2

图2 BOOST开关电源模型

Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。BUCK-BOOST型DC-DC,即可升压也可降压,公式:Vo=(-Vi)*D/(1-D),D为充电占空比,既MOSFET导通时间。Buck/Boost

变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。如图3

图3 BUCK-BOOST开关电源模型

1.1.2 DCDC开关电源的局限性

开关性稳压电源的效率很高,但输出纹波电压较高,噪声较大,电压调整率等性能也较差,特别是对模拟电路供电时,将产生较大的影响。参见表1

表1 开关电源与稳压器、LDO、电荷泵比较

1.1.3 MPQ2128

本文主要以高转换效率MPQ2128为例,对开关电源进行分析。

MPQ2128是MPS(美国芯源系统有限公司)推出的3MHz同步降压开关稳压器,输出电流可以达到1A,输入电压范围(2.5V~6V)、输出电压低至0.6V,内部有软启动控制以及短路保护功能。极低的静态工作电流使得它适合电池供电的应用。MPQ2128的应用原理电路如图4所示,其中EN为电源的使能端,高电平使能电源模块。

图4 MPQ2128应用原理图

1.1.4 电子元器件的选择及PCB设计注意事项

电路元器件的选择,需要根据手册提供的参考公式进行计算,并预留一定的余量。反馈电阻的精度,一定程度上决定了输出电压的精度,在选择的时候尽量选择精度高的电阻。在电路设计的时候时,预留备用电阻R4的位置,方便调试时调整输出电压的值。由于制作工艺等原因,市面上多说电容存在虚标的行为,在选择输入输出电容时,选择其额定电压是实际工作电压的1.5-2倍为宜。电感的选择同样需要保留余量,电感允许通过的最大电流应大于电路实际最大工作电流的1.2倍以上,若对EMI有较高要求可采用包磁电感。另外在选择电容器件的时候需要根据不同的场合选择不同的电容器:

●在高温条件下使用的电容器应选用工作温度高的电容器;

●在潮湿环境中工作的电路,应选用抗湿性好的密封电容器;

●在低温条件下使用的电容器,应选用耐寒的电容器,这对电解电容器来说尤为重要,

因为普通的电解电容器在低温条件下会使电解液结冰而失效。

同时PCB的绘制对设计工作的稳定性很重要,一定要注意一下几点:

●要保证SW的电流回路(即续流二极管、电感、输出电容组成的回路)尽量小并且

要靠近电源芯片;

●输入旁路电容要尽量靠近电源芯片的Vin引脚;

●反馈电阻要尽量靠近芯片并且反馈要直接连接到输出端并且要尽量短;

●SW信号要尽量远离敏感的模拟区域,如FB信号;

●连接输入短Vin和SW的区域要留有足够的区域来提高电源芯片的散热。

免责声明

广州周立功单片机科技有限公司随附提供的软件或文档资料旨在提供给您(本公司的客户)使用,仅限于且只能在本公司制造或销售的产品上使用。

该软件或文档资料为本公司和/或其供应商所有,并受适用的版权法保护,版权所有。如有违反,将面临相关适用法律的刑事制裁,并承担违背此许可的条款和条件的民事责任。

本公司保留在不通知读者的情况下,有修改文档或软件相关内容的权利,对于使用中所出现的任何效果,本公司不承担任何责任。

该软件或文档资料“按现状”提供,不提供保证,无论是明示的、暗示的还是法定的保证。这些保证包括(但不限于)对出于某一特定目的应用此软件的适销性和适用性默示的保证。在任何情况下,公司不会对任何原因造成的特别的、偶然的或间接的损害负责。

开关电源设计的一般注意事项

开关电源设计的一般注意事项 1、布局: 【1】脉冲电压连线尽可能短; 【2】其中输入开关管到变压器连线,输出变压器到整流管连接线.脉冲电流环路尽可能小;【3】如输入滤波电容正到变压器到开关管返回电容负.输出部分变压器出端到整流管到输出电感到输出电容返回变压器; 【4】电路中X电容要尽量接近开关电源输入端; 【6】输入线应避免与其他电路平行,应避开。Y电容应放置在机壳接地端子或FG连接端;【7】共摸电感应与变压器保持一定距离,以避免磁偶合,如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大; 【8】输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标; 【9】两只小容量电容并联效果应优于用一只大容量电容. 发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口;【10】控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外,其中有一些技巧,现以3843电路举例见图(1)图一效果要好于图二,图二在满载时用示波器观测电流波形上明显叠加尖刺,由于干扰限流点比设计值偏低,图一则没有这种现象、还有开关管驱动信号电路; 【11】开关管驱动电阻要靠近开关管,可提高开关管工作可靠性,这和功率MOSFET高直流阻抗电压驱动特性有关; 【12】关于反激电源的占空比,原则上反激电源的最大占空比应该小于0.5,否则环路不容易补偿。 3、线间距:随着印制线路板制造工艺的不断完善和提高,一般加工厂制造出线间距等于甚至小于0.1mm已经不存在什么问题,完全能够满足大多数应用场合。考虑到开关电源所采用的元器件及生产工艺,一般双面板最小线间距设为0.3mm,单面板最小线间距设为0.5mm,焊盘与焊盘、焊盘与过孔或过孔与过孔,最小间距设为0.5mm,可避免在焊接操作过程中出现“桥接”现象,这样大多数制板厂都能够很轻松满足生产要求,并可以把成品率控制得非常高,亦可实现合理的布线密度及有一个较经济的成本。

开关电源PCB设计流程及布线技巧

开关电源PCB设计流程及布线技巧在任何开关电源设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析: 一、从原理图到PCB的设计流程 建立元件参数-》输入原理网表-》设计参数设置-》手工布局-》手工布线-》验证设计-》复查-》cam输出。 二、参数设置 相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。 如图:

三、元器件布局 实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。每一个开关电源都有四个电流回路: (1)电源开关交流回路 (2)输出整流交流回路 (3)输入信号源电流回路 (4)输出负载电流回路输入回路 通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回

开关电源常见四大故障及检修方法

开关电源常见四大故障及检修方法 开关电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于深圳开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。 1. 无输出,保险管正常这种现象说明开关电源未工作或进入了保护状态。首先要测量电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则要检查启动电阻和启动脚外接的元件是否漏电,此时如电源控制芯片正常,则经上述检查可以迅速查到故障。若有启动电压,则测量控制芯片的输出端在开机瞬间是否有高、低电平的跳变,若无跳变,说明控制芯片坏、外围振荡电路元件或保护电路有问题,可先代换控制芯片,再检查外围元件;若有跳变,一般为开关管不良或损坏。 2. 保险烧或炸主要检查300V上的大滤波电容、整流桥各二极管及开关管等部位,抗干扰电路出问题也会导致保险

烧、发黑。需要注意的是:因开关管击穿导致保险烧一般会把电流检测电阻和电源控制芯片烧坏。负温度系数热敏电阻也很容易和保险一起被烧坏。 3. 有输出电压,但输出电压过高这种故障一般来自于稳压取样和稳压控制电路。在直流输出、取样电阻、误差取样放大器如TL431、光耦、电源控制芯片等电路共同构成一个闭合的控制环路,任何一处出问题就会导致输出电压升高。 4. 输出电压过低除稳压控制电路会引起输出电压低,还有下面一些原因也会引起输出电压低: a. 开关电源负载有短路故障(特别是DC/DC变换器短路或性能不良等),此时,应该断开开关电源电路的所有负载,以区分是开关电源电路还是负载电路有故障。若断开负载电路电压输出正常,说明是负载过重;或仍不正常说明开关电源电路有故障。 b. 输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。 c. 开关管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能力下降。 12v开关电源维修分析 一.开关电源不启振,出现这种情况,我们首先要查看开关频率是否正确、保护电路是否封锁、电压反馈电路、电流反馈电路又没问题以及开关管是否击穿等。

介绍一下开关电源布板注意事项

介绍一下开关电源布板注意事项 来源:开关电源时间:2016-05-20 09:27 浏览:163 次

作为PCB工程师,在Lay PCB,应重点注意那些事项? 1、电源进来之后,先到滤波电容,从滤波电容出来之后,才送给后面的设备。因为PCB上面的走线,不是理想的导线,存在着电阻以及分布电感,如果从滤波电容前面取电,纹波就会比较大,滤波效果就不好了。 2、线条有讲究:有条件做宽的线决不做细,不得有尖锐的倒角,拐弯也不得采用直角。地线应尽量宽,最好使用大面积敷铜,这对接地点问题有相当大的改善。 3、电容是为开关器件(门电路)或其它需要滤波/退耦的部件而设置的,布置这些电容就应尽量靠近这些元部件,离得太远就没有作用了。 Lay PCB(电源板)时,结合安规要求,重点注意那些事项? 1、交流电源进线,保险丝之前两线最小安全距离不小于6MM,两线与机壳或机内接地最小安全距离不小于8MM。 2、保险丝后的走线要求:零、火线最小爬电距离不小于3MM。 3、高压区与低压区的最小爬电距离不小于8MM,不足8MM或等于8MM的。须开2MM的安全槽。 4、高压区须有高压示警标识的丝印,即有感叹号在内的三角形符号;高压区须用丝印框住,框条丝印须不小于3MM 5、高压整流滤波的正负之间的最小安全距离不小于2MM 简述设计、开发流程。 1、根据设计制作原理图 2、在原理图编译通过后,就可以产生相应的网络表了 3、制作物理边框(Keepout Layer) 4、元件和网络的引入 5、元件的布局 元件的布局与走线对产品的寿命、稳定性、电磁兼容都有很大的影响,是应该特别注意的地方。一般来说应该有以下一些原则:⑴放置顺序先放置与结构有关的固定位置的元器件,如电源插座、指示灯、开关、连接件之类,这些器件放置好后用软件的LOCK功能将其锁定,使之以后不会被误移动。再放置线路上的特殊元件和大的元器件,如发热元件、变压器、IC等。最后放置小器件。⑵注意散热元件布局还要特别注意散热问题。对于大功率电路,应该将那些发热元件

开关电源的维修-通俗易懂篇很实用

开关电源维修 开关电源在工业自动化时代,已经被用于到所有行业,其精密电路板和对电流电源的严格要求,使得开关电源电路板维修成为PCB维修行业中难度比较大的一中常见故障设备。 在开关电源维修之前,我们必须了解开关电源的工作原理,电源先将高电压交流电通过全桥二极管整流以后成为高电压的波动直流电,再经过电容滤波以后成为较为平滑的高压直流电。这时,控制电路控制大功率开关管将高压直流电按照一定的高频频率分批送到高频变压器的初级。接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使负载工作的低电压强电流的直流电。其中,控制电路是必不可少的部分。它能有效的监控输出端的电压值,并向功率开关管发出信号控制电压上下调整的幅度。在开关电源中,由于电源输入部分工作在高电压、大电流的状态下,故障率最高;其次输出直流部分的整流二极管、保护二极管、大功率开关三极管较易损坏,再就是脉宽调制器的反馈和保护部分。 一、在断电情况下 首先,在开关电源没通电前,先用万用表测一下高压电容两端的电压先。如果是开关电源不起振或开关管开路引起的故障,则大多数情况下,高压滤波电容两端的电压未泄放掉,此电压有300多伏,如果不小心被阁下玉手摸到,一定让你留下难忘的记忆! 由于检修电源要接触到220V高压电,人体一旦接触36V以上的电压就有生命危险。因此,在有可能的条件下,尽量先检查一下在断电状态下有无明显的短路、元器件损坏故障。首先,打开电源的外壳,检查保险丝是否熔断,再观察电源的内部情况,如果发现电源的

PCB板上元件破裂,则应重点检查此元件,一般来讲这是出现故障的主要原因;闻一下电源内部是否有糊味,检查是否有烧焦的元器件;问一下电源损坏的经过,是否对电源进行违规的操作,这一点对于维修任何设备都是必须的。在初步检查以后,还要对电源进行更深入地检测。 用万用表测量AC电源线两端的正反向电阻及电容器充电情况,如果电阻值过低,说明电源内部存在短路,正常时其阻值应能达到100千欧以上;电容器应能够充放电,如果损坏,则表现为AC电源线两端阻值低,呈短路状态,否则可能是开关管击穿。然后检查直流输出部分脱开负载,分别测量各组输出端的对地电阻,正常时,表针应有电容器充放电摆动,最后指示的应为该路的泄放电阻的阻值。否则多数是整流二极管反向击穿所致。 二、加电检测 在通过以上检测后,就可以进行加电测试。这时候才是关键所在,需要有一定的经验、电子基础及维修技巧。一般来讲应重点检查一下电源的输入端,开关三极管,电源保护电路以及电源的输出电压电流等。如果电源启动一下就停止,则该电源处于保护状态下,可直接测量PWM芯片保护输入脚的电压,如果电压超出规定值,则说明电源的处于保护状态下,应重点检查产生保护的原因。由于接触到高电压,建议没有电子基础的朋友需要小心操作。 三、常见故障 1.保险丝熔断 一般情况下,保险丝熔断说明电源的内部线路有问题。由于电源工作在高电压、大电流

反激式开关电源PCB设计要点

反激式开关电源PCB设计要点 反激电源整体原理图如图1所示。 图1开关电源从市电火线L和零线N进来后,有一个电流较大的保险管,如图1所示。这是因为板子上有其他市电交流负载,如交流电机等,当负载电流过大时,保护电路。该保险管电流参数需要根据实际负载功率计算选择。保险管后有一个压敏电阻(如图2所示),用于抑制浪涌和瞬时尖峰电压,当其两端电压高于其阈值时,压敏电阻值迅速下降,从而流过大电流,保护后级电路。在压敏电阻后又有一个电流较小的保险管(如图2所示),这才是真正针对板子开关电源的过流保护,防止电源电流过大,保护电路。保险管后的NTC电阻(如图2所示),用于抑制开机时的浪涌电流,因为刚开机时,NTC温度较低,电阻值很大,抑制电流过大;当在电流作用下,NTC电阻温度升高,电阻值下降到很小,不影响正常工作电流。安规X电容(如图2所示)用于滤除市电的差模干扰,其后的3个电阻主要用于给X电容放电,以符合安规要求,防止在切断市电输入时,人手触摸到金属

端子有触电感。使用多个电阻的原因是分散承受电压和功率。共模电感(如图2所示)用于滤除共模干扰电流。 图2输入电容EC1在行业上有个3uF/W的通用原则,但需要注意的是该功率是输入功率而非输出功率,假设输出功率12W,效率为80%,则输入功率为15W,则输入电容至少为45uF,如图8所示。由于反激电源演变自Buck-Boost,其输入回路和输出回路均是电流不连续路径,因此均要控制回路面积越小越好。输入电容EC1要靠近电源芯片,如图3所示。同理,输出整流二极管和输出电容也应该靠近变压器。

图3RCD钳位电路用于吸收开关管关断时的Vds高压,防止损坏MOS 管(电源芯片)。Layout时需将电容靠近变压器,电阻次之,如图4所示。

解析开关电源电压输出低的原因和检修方法

解析开关电源电压输出 低的原因和检修方法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

解析开关电源电压输出低的原因和 检修方法 1、开关电源电压输出低的原因 (1)220V交流电压输入和整流滤波电路对开关管提供的工作电压不够,超出脉宽调整电路控制范围。 (2)负载电路存在过流引起开关电源负载加重而导致输出电压下降。 (3)开/关机切换错误,行扫描电路刚开始工作瞬间,开关电源即处于待机状态,此类故障适用于无预备电源的机器,CPu电源取自同一个电源,非副电源提供。 (4)开/关机接口电路末端因故障处于开机与待机之间的状态,从而导致开关电源输出电压低于正常值高于待机值。 (5)保护电路末端因故障进入导通状态,使电源进入弱振状态,引起开关电源输出电压下降。 (6)整流输出电路中二极管和滤波电容、限流电阻损坏引起输出电压低。 (7)脉宽调制电路故障,不能对开关电源输出电压的变化作出正确的响应,对开关管基极电压调整方向不对,从而造成开关电源输出电压低。 (8)正反馈电路中的正反馈电阻值变化,续流二极管性能变质或恒流源故障,使正反馈量不足,导致振荡周期变长,振荡频率下降,从而引起开关电源输出电压低。 (9)它激式开关电源因未得到行逆程脉冲而工作于低频状态,造成输出电压低。 2、判断故障的方法与步骤 从上述分析的原因看出,引起电压低的原因涉及到了开关电源自身的各个部分和与开关电源相关的所有电路,在检修时应先缩小故障范围。 (1)先测开关管c极电压,确认开关管供电正常。 (2)根据开关电源各个输出端电压判断故障。 开关电源有的输出端电压正常,有的低于正常值。故障在输出电压低的这个整流输出电路,应对电路中的限流电阻、整流二极管、滤波电容进行检查代换,若限流电阻发烫,说明负载过流,查负载。 开关电源各路输出均低。这种情况说明负载和整流输出电路均正常,故障在开关电源的正反馈电路、脉宽调整、开/待机电路、保护电路。 输出电压有的下降比例大,有的输出电压下降比例小。测量结果说明故障在输出电压下降比例大的电路。此时可断开此路负载,如果断开的是行电路,应接假负载。在断开负载后,再测开关电源各输出端电压,若恢复正常,可判断所断电路的负载有过流现象。若仍不正常,说明故障在该整流滤波电路。 3、断开主负载、接上灯泡,判断是否负载故障

开关电源布线注意事项

上期我们谈到了布局方面的注意事项,对于layout 工程师来说电源模块布局完成时,布线也就基本已经规划好,布局做好,布线自然水到渠成。 如下图1所示原理图: 图1 从原理图中我们可以看到a:主电流通道(红色)b:地的区别(电源地、信号地、其他信号地)c:反馈通道(蓝色)d:续流回路。 对于上述开关电源的布线的处理时,我们还是有以下事项需要注意: 开关管部分: 尽量粗短,一般用铺铜实现,考虑大电流通道。 输入输出滤波:注意到电源平面的过孔数目和位置,在滤波电容之后。 输入输出的地:用大铜皮连接到一起,多打地孔到平面(开关管特殊要求除外)。

控制电路的地:模拟地,与大电流地分开,单点接地。 控制电路的采样:模拟信号,采样点在输出滤波之后,如果有电流采样和电压采样,布成差分线的紧耦合形式,采样线尽量短,减小受干扰的空间。 控制电路的调制输出:模拟信号,不要在开关管下走长线,远离大电流的电源和地等区域。 下面我们还是借用芯片的datasheet图例来一起看一下开关电源布线的一些注意事项,如下图2所示: 图2:某电源芯片layout guide 从datasheet要求来看主要需要我们注意: 1.输入输出回路尽量小满足载流且满足共地。 2.模拟地与大电流地分开,单点接地。 3.反馈信号处理以及芯片散热等。 在我们的实际设计应用中对于上述开关电源电路可能会进行优化调整如图3所示原理图,其主要核心部分还是一致,如图3所示是该模块原理图和布线展示的示例:

图3.1:SCH 图3.2:布线展示 我们可以从布线展示图中可以看到基本按照layout guide设计,但我们还需要注意以下细节:大电流通道滤波电路孔的位置和数量;输入输出地的铺铜共地连接;采样电路避免受干扰;芯片模拟地与大电流地的区分与单点相连,以及芯片的散热! 接着上期的“IPC”PCB设计大赛的开关电源,如下图4原理图和布线展示: 图4-1:原理图

【三圈两地】开关电源PCB布板要领

三圈两地,开关电源PCB布板要领 Ref 【作者nc965】 有人说关电源的布板反正很麻烦,我同意,因为它是开关电源,不是其他 题目是讲“要领”,因此不讲细节,也不是教材,与教材或者他人的理解相左、我也不做过多解释 有人说否!细节很重要,决定成败, 我说,要领最重要,基本的东西最重要,关键的地方没整对,大方向都错了,谈何细节? 因此只捡最重要的讲,其余的自己去琢磨了。 要领就6个字:布局,地线,间距。 其实前4各字基本上是一层意思,后两个字是另外一层意思,这些是要领,其余的都是细节了。 优化图示 第一的好与不好,是电容及电感的位置不一样,“C-L-C”π型滤波器 不好好(大电流开窗)

第二背面的好与不好,就是回路有分割与没分割的区别! 不好好(电感后电容开口) 第一张图的π型滤波器的电容在电感之后, 第二张图的电容管脚铜皮开缺口(保证电流尽量通过电感上方的电容)。滤波效果差异 其实在图中已经标注出来了的; 【nc965】仔细看图,没有说输入输出电流流过电容,正因为输入输出是直流,不能流过电容,那么高频开关电路的高频脉冲交流就只能走电容了,因此电容上的脉冲电流特别大。 恩,这个图例子举的不错,一要遵循电流的流向,二要出线尽量从电容的根部出来。

输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口 其他讨论 是不是太宽了也容易被干扰到,最近做一个案子,把IC地线加粗后低压高温烧机时会出现工作不正常。 比如说有些动点(电感与开关管之间)就不宜布的过大 【lclbf】 看看我画的这个板子,怎么优化自己感觉IT回来面积太大,有没有想到其他好的方法,还有接地和其他回路有没有问题。

开关电源的检修思路和检修方法

开关电源的检修思路和检修方法 开关电源简化电路图 变频器的开关电源电路完全可以简化为上图电路模型,电路中的关键要素都包含在内了。而任何复杂的开关电源,剔除枝蔓后,也会剩下上图这样的主干。其实在检修中,要具备对复杂电路的“化简”的能力,要在看似杂乱无章的电路伸展中,拈出这几条主要的脉络。要向解牛的庖丁学习,训练自己的眼前不存在什么整体的开关电源电路,只有各部分脉络和脉络的走向——振荡回路、稳压回路、保护回路和负载回路等。 看一下电路中有几路脉络。 1、振荡回路:开关变压器的主绕组N1、Q1的漏--源极、R4为电源工作电流的通路;R1提供了启动电流;自供电绕组N 2、D1、C1形成振荡芯片的供电电压。这三个环节的正常运行,是电源能够振荡起来的先决条件。 当然,PC1的4脚外接定时元件R2、C2和PC1芯片本身,也构成了振荡回路的一部分。 2、稳压回路:N 3、D3、C4等的+5V电源,R7—R10、PC3、R5、R6等元件构成了稳压控制回路。 当然,PC1芯片和1、2脚外围元件R3、C3,也是稳压回路的一部分。 3、保护回路:PC1芯片本身和3脚外围元件R4构成过流保护回路;N1绕组上并联的D2、R6、C4元件构成了IGBT的保护电路;实质上稳压回路的电压反馈信号——稳压信号,也可看作是一路电压保护信号。但保护电路的内容并不仅是局限于保护电路本身,保护电路的起控往往是由于负载电路的异常所引起。 4、负载回路:N3、N4次级绕组及后续电路,均为负载回路。负载回路的异常,会牵涉到保护回路和稳压回路,使两个回路做出相应的保护和调整动作。 振荡芯片本身参与和构成了前三个回路,芯片损坏,三个回路都会一齐罢工。对三个或四个回路的检修,是在芯片本身正常的前提下进行的。另外,要像下象棋一样,用全局观念和系统思路来进行故障判断,透过现象看本质。如停振故障,也许并非由振荡回路元件损坏所引起,有可能是稳压回路故障或负载回路异常,导致了芯片内部保护电路起控,而停止了PWM脉冲的输出。并不能将和各个回路完全孤立起来进行检修,某一故障元件的出现很可能表现出“牵一发而全身动”的效果。 开关电源电路常表现为以下三种典型故障现象(结合图3、9): 一、次级负载供电电压都为0V。变频器上电后无反应,操作显示面板无指

开关电源选型注意事项有哪些

开关电源选型注意事项 在进行电器电路模块设计或给新产品定型时,有时极少认真考虑配套开关电源的选择,直到发现问题出在开关电源部分,才重新评估这个问题。 一、选择开关电源的基本依据 电压和电流范围,这是两个最容易确定的指标,只要根据电路的功耗计算出即可。也应考虑测试高、低供电电压极值。 大多数固定电源允许输出电压±10%的范围内变化,如果这还不能满足电路要求,可选用输出可调的或允许更大变化范围的电源。 如果用该电源给组合式装置供电,则装置所需最大的电流的75%到90%由一个电源提供,不够部分可并接两个或更多电源。 二、开关电源的扩展和安全性 1、并联或串联工作 当一个电源不能满足所需的电压或电流范围时,可将两个或多个电源(或将同一电源的不同输出)并联或串联起来使用。在这种工作模式下,各电源模块间的稳压和控制电路之间的联系仍然存在,只不过一个电源作为主控方另一个电源作为受控方使用。 2、过载保护 因为一个电源要供给不同的电路使用,这些电路的电流的流量可能是未知的,为了避免对电源的损坏,需设置保护电路的范围。 几乎所有的电源都具有以下特点:在超出输出范围时,要么输出保持在最大输出值,要么就自行关闭电源。某些程控电源除可用程序

设定输出范围外,还能自动设置电源稳定输出的类型。也就是说,当外电路需要的电压或电流超过设置极限时,电源可自动地由恒压源变成恒流源或由值流源变成恒压源。 为电源加上保护二极管可以防止误接外接电源的极性造成的损坏。热传感器也可用于防止由于电源持续工作在过载状态或冷却无效而烧坏电源。 三、开关电源内部潜在的造成损害的根源 1、脉动与噪声 理想的直流电源应提供纯净的直流,然而总有一些干扰存在,比如在开关电源输出端口叠加的脉动电流和高频振荡。这两种干扰再加上电源本身产生的尖峰噪声使电源出现断续和随意的漂移。 2、稳定度 当线电压或负载电流变化肘,直流电源的输出电压也会有所起伏。稳压程度由稳压电路的参数决定,参数是指滤波电容的容量和能量释放的速率。 如果给电源供电的一个相对恒定的电源,那么只需基本的负载稳压。稳定度的大小一般定义为空载或满载时输出电压的百分比,或电压的变化值。 3、内部阻抗 相对较大的电源内阻对负载来讲有两点不利,首先是不利于负载稳压电路工作,更为不利的是负载电流的任何变化都会导致直流电源输出的起伏,这种起伏对测试结果的影响同脉冲与噪声对测试结果造

开关电源操作规程

开关电源操作规程 一、开机方法: 1、启动前,将面板开关置"待机/时控关"位置,输出调节旋钮逆时针旋 到最小;稳压/稳流"开关根据用户所需功能置稳压或稳流档。 2、合上空气开关,此时面板上数显表显示.将"待机"开关置"工作"状 态,然后顺时针转动输出调节旋钮.电压和电流显示出相应的数字. 二、开关功能: 1、本机具有稳压和稳流功能.当用户置"稳压"档时,输出电压在机器额定 电流范围内不会有变化,电流会根据负载大小做相应的显示.当用户置"稳流"档时输出电流在机器额定电压范围内不会有任何变化,电压表会根据负载大小做出相应显示。 2、当开关置“时控关”“工作”状态时,顺时针旋转输出调节旋钮,电压和电流 有相应的显示,此时电源输出:“+”标识为阳极,“—”标识为阴极。 3、当开关置“时控开”“工作”状态时,时间继电器工作。第一时间段为待机时 间,此时输出电压电流为零,第一段时间设定值需大于2S,第一段时间到,第二段时间开始工作;第二段时间为反向工作时间,此时输出“+”标识为阴 极,“—”标识为阳极,第二段时间到,第三段时间开始工作;第三时间为 待机时间,此时输出电压电流为零,第三段时间设定值需大于2S,第三段时间到,第四段时间开始工作;第四段时间为正向工作时间,此时输出“+” 标识为阳极,“—”标识为阴极;第四段时间到报警,输出电压电流为零。 4、将“工作/待机”开关置“待机”后再置“工作”,时间继电器复位;但时间继电 器工作时,“工作/待机”开关起暂停作用。 三、时间继电器设定步骤

1、将开关置“时控开”“待机” J0= J1+J2+J3+J4(J0为总时间,J1、J2、J3、J4为分段时间) 2、按二下设置键LOCK指示灯熄灭进入设置状态,程序代码显示0按增 加键减少键设置1至4路总延时时间数值,再按启动键选择时基M或S (见表一)。 3、按一下设置键程序代码显示1按增加键减少键设置第1路延时时间, 再按启动键选择时基M,S,(见表一),同样步骤在按设置键分别 设定2 3 4 路延时时间。(注:第四路无接点输出,数值设置(0000)) 4、设置完毕再按一下设置键储存新设定,将开关置“工作”档。 表一: M: 1分--------9999分 S: 1秒--------9999秒 :秒秒 (程序代码0无此时基) 四、注意事项 1、当时间继电器工作时勿将“工作/待机”开关置“待机”后再置“工作”,此动作 会造成时间继电器暂停,机器无输出或不换向。将时控开关置“时控关”后 再置“时控开”即可,但会影响电镀效果。 2、保护指示灯亮时: ①、检查输入220V交流是否缺相,电压是否高于440V或低于200V; ②、检查风扇是否完好,痛风是否良好; ③、检查正负极是否短路; ④、长时间没用机器时,打开面板,用热吹风吹干(控制板)或把主机放在 烘箱烘干(温度≤80℃即可); 3、当检查一切正常时,关机后重新开机,保护指示灯再次亮时,必须与厂方 联系。 4、发现电流很大,电压很低时,检查输出铜牌与槽子之间有无短路现象,若

开关电源的PCB布局走线

首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变 压器电路中X电容要尽量接近开关电源输入端,输入线应避 免与其他电路平行,应避开。 Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免 磁偶合。如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大。 输出电容一般可采用两只一只靠近整流管另一只应 靠近输出端子,可影响电源输出纹波指标,两只小容量电容 并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口控制部分要注意:高阻抗弱信号电路连线要尽量短 如取样反馈环路,在处理时要尽量避免其受干扰、电流取样

信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外,其中有一些技巧 现以3843电路举例见图(1)图一效果要好于图二,图二在满载时用示波器观测电流波形上明显叠加尖刺,由于干扰限流点比设计值偏低,图一则没有这种现象、还有开关管驱动信号电路,开关管驱动电阻要靠近开关管,可提高开关管工作可靠性,这和功率 MOSFET高直流阻抗电压驱动特性有关。 下面谈一谈印制板布线的一些原则。 线间距:随着印制线路板制造工艺的不断完善和提高,一般加工厂制造出线间距等于甚至小于0.1mm已经不存在什么问题,完全能够满足大多数应用场合。考虑到开关电源所采用的元器件及生产工艺,一般双面板最小线间距设

开关电源维修技巧

开关电源的检修技巧 开关电源中保险熔断的直接原因:开关管\电源厚模块\整流二极管击穿\100uf/400v大电容击穿漏电,消磁电阻内部碎裂. 开关电源各输出端始终无电压输出的最常见原因:交流220v整流滤波电路中的保险电阻开路;开关管基极到100uf/400v大滤波电容正极之间的电阻开路. 开关电源只在开机瞬间有小电压输出的常见原因:行输出管击穿,开关电源中开关变压器一左的2.2uf~100uf电解电容失效`漏电 开关电源输出电压低的最常见原因:行输出变压器局部短路`脉宽调制电路中的三极管和二极管击穿`漏电`光耦合器件中的三极管漏电等. 造成光栅与图象S扭曲和有两条垂直方向移动黑带的原因:100UF?400V大滤波电容失效和容量下降. 造成光栅局部有彩斑的和图象局部彩色不对的原因:是开关电源交流220V输入电路中的消兹电阻开路. 开关电源无输出的检修技巧 1开关电源始终无电压输出的原因 开关电源始终无电压输出是指开关电源各输出端,在按电源开关开机后始终为0V,这种情况是由于开关电源未产生震荡所致.进一步证实的方法是测开关电源100UF/400V电容关机后的电压,若300V之后慢慢下降,则说明开关电源未产生振荡.开关电源未产生振荡的原因有: (1)开关管集电极未得到足够的工作电压 (2)开关管基极未得到启动电压和相关电路漏电 (3)开关管正反馈元件失效 2判断故障的方法和步骤 检修这类故障的首要任务是判断鼓障在上述三个部位中的哪个部位,具体方法是测开关管集电极,基极电压,可能有以下几种情况: (1)开关管集电极电压为0V和低于市电1.4倍,开关管没有正常的工作电压,如果有1.4倍的 电压,说明开关管集电极具备了正常的工作电压,说明AC220V及整流滤波电路工作正常. (2)开关管的基极电压为0V(包括开机瞬间)这种情况说明启动电路对开关管基极未提供启 动(导通)电压,或基极与发射极之间相关元件击穿,应对启动电路和开关管发射极及相关元件进行检查,若电压为0.6~0.7(包括开几瞬间),说明启动电路和开关管发射极元件正常,若在0.7V以上说明启动电路正常,但开关管发射结或其元件断路或阻值变大. (3)开关管具备导通条件:开关管基极电压为0.6~0.7V,集电极电压大于250V,说明开关管具 备了工作条件,故障在正反馈电路,包括正反馈电阻,电容,续流二极管及开关变压器正反馈绕组及其之间的连接应制板. 开关电源瞬间有电压出检修技巧 1瞬间电压输出故障原因 这种故障在按下启动开关的瞬间,开关电源某个或各个输出端电压有一个小的电压输出,然后降为0V,这种情况说明开关电源在加电的初始产生了振荡,但后由于过压,过流保护引起停振,或开关机接口电路加电初始为开机状态,但随CPU清零的结束而转入待机状态,引发这种情况的原因有: (1)开关电源因故输出电压比标准值高10V而引起过压保护 (2)负载过流引起保护动作

开关电源PCB制版布线基本要求详解

开关电源PCB排版基本要点 作者:瑞士商升特股份有限公司上海代表处 周琛 发布时间:2006-10-14 10:50 出处:https://www.doczj.com/doc/ca351538.html, 摘要:开关电源PCB排版是开发电源产品中的一个重要过程。许多情况下,一个在纸上设计得非常完美的电源可能在初次调试时无法正常工作,原因是该电源的PCB排版存在着许多问题.详细讨论了开关电源PC B排版的基本要点,并描述了一些实用的PCB排版例子。 关键词:PCB排版;开关电源 引言 为了适应电子产品飞快的更新换代节奏,产品设计工程师更倾向于选择在市场上很容易采购到的AC/DC适配器,并把多组直流电源直接安装在系统的线路板上。由于开关电源产生的电磁干扰会影响到其电子产品的正常工作,正确的电源PCB排版就变得非常重要。开关电源PCB排版与数字电路PCB排版完全不一样。在数字电路排版中,许多数字芯片可以通过PCB软件来自动排列,且芯片之间的连接线可以通过PCB软件来自动连接。用自动排版方式排出的开关电源肯定无法正常工作。所以,没计人员需要对开关电源PCB排版基本规则和开关电源工作原理有一定的了解。 1 开关电源PCB排版基本要点 l.1 电容高频滤波特性 图1是电容器基本结构和高频等效模型。 电容的基本公式是 式(1)显示,减小电容器极板之间的距离(d)和增加极板的截面积(A)将增加电容器的电容量。

电容通常存在等效串联电阻(ESR)和等效串联电感(ESL)二个寄生参数。图2是电容器在不同工作频率下的阻抗(Zc)。 一个电容器的谐振频率(fo)可以从它自身电容量(C)和等效串联电感量(LESL)得到,即 当一个电容器工作频率在fo以下时,其阻抗随频率的上升而减小,即 当电容器工作频率在fo以上时,其阻抗会随频率的上升而增加,即 当电容器工作频率接近fo时,电容阻抗就等于它的等效串联电阻(RESR)。 电解电容器一般都有很大的电容量和很大的等效串联电感。由于它的谐振频率很低,所以只能使用在低频滤波上。钽电容器一般都有较大电容量和较小等效串联电感,因而它的谐振频率会高于电解电容器,并能使用在中高频滤波上。瓷片电容器电容量和等效串联电感一般都很小,因而它的谐振频率远高于电解电容器和钽电容器,所以能使用在高频滤波和旁路电路上。由于小电容量瓷片电容器的谐振频率会比大电容量瓷片电容器的谐振频率要高,因此,在选择旁路电容时不能光选用电容值过高的瓷片电容器。为了改善电容的高频特性,多个不同特性的电容器可以并联起来使用。图3是多个不同特性的电容器并联后阻抗改善的效果。

开关电源的PCB布线要求

开关电源的PCB布线设计 开关电源PCB排版是开发电源产品中的一个重要过程。许多情况下,一个在纸上设计得非常完美的电源可能在初次调试时无法正常工作,原因是该电源的PCB排版存在着许多问题. 0、引言 为了适应电子产品飞快的更新换代节奏,产品设计工程师更倾向于选择在市场上很容易采购到的AC/DC适配器,并把多组直流电源直接安装在系统的线路板上。由于开关电源产生的电磁干扰会影响到其电子产品的正常工作,正确的电源PCB排版就变得非常重要。开关电源PCB排版与数字电路PCB排版完全不一样。在数字电路排版中,许多数字芯片可以通过PCB软件来自动排列,且芯片之间的连接线可以通过PCB软件来自动连接。用自动排版方式排出的开关电源肯定无法正常工作。所以,没计人员需要对开关电源PCB排版基本规则和开关电源工作原理有一定的了解。 1、开关电源PCB排版基本要点 1.1 电容高频滤波特性 图1是电容器基本结构和高频等效模型。 电容的基本公式是 式(1)显示,减小电容器极板之间的距离(d)和增加极板的截面积(A)将增加电容器的电容量。 电容通常存在等效串联电阻(ESR)和等效串联电感(ESL)二个寄生参数。图2是电容器在不同工作频率下的阻抗(Zc)。

一个电容器的谐振频率(fo)可以从它自身电容量(C)和等效串联电感量(LESL)得到,即 当一个电容器工作频率在fo以下时,其阻抗随频率的上升而减小,即 当电容器工作频率在fo以上时,其阻抗会随频率的上升而增加,即 当电容器工作频率接近fo时,电容阻抗就等于它的等效串联电阻(RESR)。 电解电容器一般都有很大的电容量和很大的等效串联电感。由于它的谐振频率很低,所以只能使用在低频滤波上。钽电容器一般都有较大电容量和较小等效串联电感,因而它的谐振频率会高于电解电容器,并能使用在中高频滤波上。瓷片电容器电容量和等效串联电感一般都很小,因而它的谐振频率远高于电解电容器和钽电容器,所以能使用在高频滤波和旁路电路上。由于小电容量瓷片电容器的谐振频率会比大电容量瓷片电容器的谐振频率要高,因此,在选择旁路电容时不能光选用电容值过高的瓷片电容器。为了改善电容的高频特性,多个不同特性的电容器可以并联起来使用。图3是多个不同特性的电容器并联后阻抗改善的效果。

开关电源维修步骤及常见故障分析-电源

开关电源维修步骤及常见故障分析- 电源 1、修理开关电源时,首先用万用表检测各功率部件是否击穿短路,如电源整流桥堆,开关管,高频大功率整流管;抑制浪涌电流的大功率电阻是否烧断。再检测各输出电压端口电阻是否异常,上述部件如有损坏则需更换。 2、第一步完成后,接通电源后还不能正常工作,接着要检测功率因数模块(PFC)和脉宽调制组件(PWM),查阅相关资料,熟悉PFC和PWM模块每个脚的功能及其模块正常工作的必备条件。 3、然后,对于具有PFC电路的电源则需测量滤波电容两端电压是否为380VDC左右,如有380VDC左右电压,说明PFC模块工作正常,接着检测PWM组件的工作状态,测量其电源输入端VC ,参考电压输出端VR ,启动控制Vstart/Vcontrol端电压是否正常,利用220VAC/220VAC隔离变压器给开关电源供电,用示波器观测PWM模块CT端对地的波形是否为线性良好的锯齿波或三角形,如TL494 CT端为锯齿波,FA5310其CT端为三角波。输出端V0的波形是否为有序的窄脉冲信号。 4、在开关电源维修实践中,有许多开关电源采用UC38××系列8脚PWM组件,大多数电源不能工作都是因为电源启动电阻损坏,或芯片性能下降。当R断路后无VC,PWM 组件无法工作,需更换与原来功率阻值相同的电阻。当PWM组件启动电流增加后,可减小R值到PWM组件能正常工作为止。在修一台GE DR电源时,PWM模块为UC3843,检测未发现其他异常,在R(220K)上并接一个220K的电阻后,PWM组件工作,输出电压均正常。有时候由于外围电路故障,致使VR端5V电压为0V,PWM组件也不工作,在修柯达8900相机电源时,遇到此情况,把与VR端相连的外电路断开,VR从0V变为5V,PWM 组件正常工作,输出电压均正常。 5、当滤波电容上无380VDC左右电压时,说明PFC电路没有正常工作,PFC模块关键检测脚为电源输入脚VC,启动脚Vstart/control,CT和RT脚及V0脚。修理一台富士3000相机时,测试一板上滤波电容上无380VDC电压。VC,Vstart/control,CT和RT波形以及V0波形均正常,测量场效应功率开关管G极无V0 波形,由于FA5331(PFC)为贴片元件,机器用久后出现V0端与板之间虚焊,V0信号没有送到场效应管G极。将V0端与板上焊点焊好,用万用表测量滤波电容有380VDC电压。当Vstart/control 端为低电平时,PFC亦不能工作,则要检测其端点与外围相连的有关电路。

开关电源EMI设计-电源PCB设计要点

开关电源EMI设计-电源PCB设计要点 摘要:由于开关电源的开关特性,容易使得开关电源产生极大的电磁兼容方面的干扰,作为一个电磁兼容工程师,或则一个PCB layout 工程师必须了解电磁兼容问题的原因已经解决措施,特别是layout 工程师,需要了解如何避免脏点的扩大,本文主要介绍了电源PCB 设计的要点。 1,几个基本原理:任何导线都是有阻抗的;电流总是自动选择阻抗最小的路径;辐射强度和电流、频率、回路面积有关;共模干扰和大dv/dt 信号对地互容有关;降低EMI 和增强抗干扰能力的原理是相似的。 2,布局要按电源、模拟、高速数字及各功能块进行分区。 3,尽量减小大di/dt 回路面积,减小大dv/dt 信号线长度(或面积,宽度也不宜太宽,走线面积增大使分布电容增大,一般的做法是:走线的宽度尽量大,但要去掉多余的部分),并尽量走直线,降低其隐含包围区域,以减小辐射。 4,感性串扰主要由大di/dt 环路(环形天线),感应强度和互感成正比,所以减小和这些信号的互感(主要途径是减小环路面积、增大距离)比较关键;容性串扰主要由大dv/dt 信号产生,感应强度和互容成正比,所有减小和这些信号的互容(主要途径是减小耦合有效面积、增大距离,互容随距离的增大降低较快)比较关键。 5,尽量利用环路对消的原则来布线,进一步降低大di/dt 回路的面积,如图1 所示(类似双绞线利用环路对消原理提高抗干扰能力,增大传输距离):

图1 ,环路对消(boost 电路的续流环) 6,降低环路面积不仅降低了辐射,同时还降低了环路电感,使电路性能更佳。 7,降低环路面积要求我们精确设计各走线的回流路径。 8,当多个PCB 通过接插件进行连接时,也需要考虑使环路面积达到最小,尤其是大di/dt 信号、高频信号或敏感信号。最好一个信号线对应一条地线,两条线尽量靠近,必要时可以用双绞线进行连接(双绞线每一圈的长度对应于噪声半波长的整数倍)。如果大家打开电脑机箱,就可以看到主板到前面板USB 接口就是用双绞线进行连接,可见双绞线连接对于抗干扰和降低辐射的重要性。 9,对于数据排线,尽量在排线中多安排一些地线,并使这些地线均匀分布在排线中,这样可以有效降低环路面积。 10,有些板间连接线虽然是低频信号,但由于这些低频信号中含有大量的高频噪声(通过传导和辐射),如果没有处理好,也很容易将这些噪声辐射出去。 11,布线时首先考虑大电流走线和容易产生辐射的走线。 12,开关电源通常有4 个电流环:输入、输出、开关、续流,(如图2 )。其中输入、输出两个电流环几乎为直流,几乎不产生emi ,但容易受干扰;开关、续流两个电流环有较大的di/dt ,需要注意。如果输入、输出两个电容用多

开关电源常见故障维修方法

开关电源常见故障及维修方法: 1.保险烧或炸 主要检查300V上的大滤波电容、整流桥各二极管及开关管等部位,抗干扰电路出问题也会导致保险烧、发黑。需要注意的是:因开关管击穿导致保险烧一般会把电流检测电阻和电源控制芯片烧坏。负温度系数热敏电阻也很容易和保险一起被烧坏。 2.无输出,保险管正常 这种现象说明开关电源未工作或进入了保护状态。首先要测量电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则要检查启动电阻和启动脚外接的元件是否漏电,此时如电源控制芯片正常,则经上述检查可以迅速查到故障。若有启动电压,则测量控制芯片的输出端在开机瞬间是否有高、低电平的跳变,若无跳变,说明控制芯片坏、外围振荡电路元件或保护电路有问题,可先代换控制芯片,再检查外围元件;若有跳变,一般为开关管不良或损坏。 3.有输出电压,但输出电压过高 这种故障一般来自于稳压取样和稳压控制电路。在直流输出、取样电阻、误差取样放大器如TL431、光耦、电源控制芯片等电路共同构成一个闭合的控制环路,任何一处出问题就会导致输出电压升高。 4.输出电压过低 除稳压控制电路会引起输出电压低,还有下面一些原因也会引起输出电压低: a.开关电源负载有短路故障(特别是DC/DC变换器短路或性能不良等),此时,应该 断开开关电源电路的所有负载,以区分是开关电源电路还是负载电路有故障。若断 开负载电路电压输出正常,说明是负载过重;或仍不正常说明开关电源电路有故障。 b.输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。 c.开关管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能 力下降。 d.开关变压器不良,不但造成输出电压下降,还会造成开关管激励不足从而屡损开关 管 e.300V滤波电容不良,造成电源带负载能力差,一接负载输出电压便会下降。

相关主题
文本预览
相关文档 最新文档