当前位置:文档之家› 材料力学课件弯曲变形

材料力学课件弯曲变形

材料力学课件弯曲变形

材料力学课件弯曲变形

材料力学习题弯曲应力

弯 曲 应 力 基 本 概 念 题 一、择题(如果题目有5个备选答案,选出2~5个正确答案,有4个备选答案选出一个正确答案。) 1. 弯曲正应力的计算公式y I M z = σ的适用条件是( ) 。 A . 粱材料是均匀连续、各向同性的 B .粱内最大应力不超过材料的比例极限 C .粱必须是纯弯曲变形 D .粱的变形是平面弯曲 E .中性轴必须是截面的对称轴 2. 在梁的正应力公式y I M z = σ中,I z 为粱的横截面对( )轴的惯性矩。 A . 形心轴 B .对称轴 C .中性轴 D .形心主惯性轴 3. 梁的截面为空心圆截面,如图所示,则梁的抗弯截面模量W 为( )。 A . 32 3 D π B . )1(32 4 3 απ-D C . 32 3 d π D . 32 32 3 3 d D ππ- E .2 6464 44 D d D ππ- 题3图 题4图 4. 欲求图示工字形截面梁上A 点剪应力τ,那么在剪应力公式z z S bI S F *=τ中,S *z 表示 的是( )对中性轴的静矩。 A .面积I B .面积Ⅱ C .面积I 和Ⅱ D .面积Ⅱ和Ⅲ E .整个截面面积 -21-

5.欲求题4图所示工字形截面梁上A 点剪应力τ,那么在剪应力公式z z S bI S F *=τ中,b 应取( )。 A .上翼缘宽度 B .下翼缘宽度 C .腹板宽度 D .上翼缘和腹板宽度的平均值 6.图为梁的横截面形状。那么,梁的抗弯截面模量W z =( )。 A . 6 2 bh B .32632d bh π- C .2641243h d bh ? ??? ??-π D .??? ? ?-???? ??-22641243d h d bh π 7.两根矩形截面的木梁叠合在一起(拼接面上无粘胶无摩擦),如图所示。那么该组合梁的抗弯截面模量W 为( ) A . 62bh B .??? ? ??622 bh C .)2(612 h b D .h bh 21222???? ?? 8.T 形截面的简支梁受集中力作用(如图),若材料的[σ]- >[σ]+,则梁截面位置的合理放置为( )。 -22-

材料力学基本公式

材料力学基本公式 (1)外力偶矩计算公式(P功率,n转速) (2)弯矩、剪力和荷载集度之间的关系式 (3)轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力,横截面面积A,拉应力为正) (4)轴向拉压杆斜截面上的正应力与切应力计算公式(夹角α从x轴正方向逆时针转至外法线的方位角为正) (5)纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1) (6)纵向线应变和横向线应变,

(7)泊松比 (8)胡克定律 (9)受多个力作用的杆件纵向变形计算公式 (10)承受轴向分布力或变截面的杆件,纵向变形计算公式 (11)轴向拉压杆的强度计算公式 (12)延伸率 (13)截面收缩率 (14)剪切胡克定律(切变模量G,切应变g )

(15)拉压弹性模量E、泊松比和切变模量G之间关系式 (16)圆截面对圆心的极惯性矩() (17)圆轴扭转时横截面上任一点切应力计算公式(扭矩,所求点到圆心距离) (18)圆截面周边各点处最大切应力计算公式 (19)扭转截面系数,(a)实心圆(b)空心圆 (20)圆轴扭转角与扭矩、杆长l、扭转刚度的关系式 (21)等直圆轴强度条件 (22)扭转圆轴的刚度条件:或

(23)平面应力状态下斜截面应力的一般公式 (24)平面应力状态的三个主应力 (25)主平面方位的计算公式 (26)平面内剪应力最大值和最小值 (27)三向应力状态最大与最小正应力, (28)三向应力状态最大切应力 (29)广义胡克定律

(30)四种强度理论的相当应力 (31)一种常见的应力状态的强度条件, (32)组合图形的形心坐标计算公式 , , (33)平面图形对x轴,y轴,z轴的静矩 , , (34)任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩 之和的关系式 (35)截面图形对z轴和y轴的惯性半径, (36)矩形、圆形、空心圆形对中性轴的惯性矩 , , (37)平行移轴公式(形心轴zc与平行轴z1的距离为a,图形面积为A) (38)纯弯曲梁的正应力计算公式

材料力学常用公式

材料力学常用公式 1.外力偶矩计算公式(P功 率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式(杆件 横截面轴力F N,横截面面积A,拉应力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x 轴正方向逆时针转至外法线的方位角为正) 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标 距l1;拉伸前试样直径d,拉伸后试样直径d1) 6.纵向线应变和横向线应变 7.泊松比 8.胡克定律 9.受多个力作用的杆件纵向变形计算公式 ? 10.承受轴向分布力或变截面的杆件,纵向变形计算公式 11.轴向拉压杆的强度计算公式 12.许用应力 ,脆性材料 ,塑 性材料 13.延伸率 14.截面收缩率 15.剪切胡克定律(切变模量G,切应变g ) 16.拉压弹性模量E、泊松比和切变模量G之间关系式 17.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所 求点到圆心距离r) 19.圆截面周边各点处最大切应力计算公式

20.扭转截面系数,(a)实心圆 (b)空心圆 21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径) 扭转切应力计算公式 22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式 23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不 同(如阶梯轴)时 或 24.等直圆轴强度条件 25.塑性材料 ;脆性材料 26.扭转圆轴的刚度条件? 或 27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公 式, 28. 平面应力状态下斜截面应力的一般公式 , 29.平面应力状态的三个主应力 , , 30.主平面方位的计算公式 31.面内最大切应力 32.受扭圆轴表面某点的三个主应力, ,33.三向应力状态最大与最小正应力 , 34.三向应力状态最大切应力 35.广义胡克定律

材料力学基本公式

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类:表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dF A F p A = ??=→?lim 正应力σ、切应力τ。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲; 静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。 动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。二者统 称为极限应力理想情形。塑性材料、脆性材料的许用应力分别为: []s s n σσ=,[]b b n σσ= ,强度条件:[]σσ≤??? ??=max max A F N ,等截面杆 []σ≤A F max 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为: l l ?= ε, A F N =σ。横向应变为: b b b b b -=?= 1'ε,横向应变与轴

向应变的关系为:μεε-=',μ为横向变形系数或泊松比。 胡克定律:当应力低于材料的比例极限P σ时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量(GPa 1= pa MPa 931010=)。将应力与应变的表达式带入得:EA Fl l = ?EA 为抗拉或抗压刚度。 静不定(超静定):对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。需要由几何关系构造变形协调方程。 扭转变形时的应力,薄壁圆筒扭转 δ πτ202R M e = 其中 )min () (9549 )(r n kw p m N M e =? 420d D r R R +=+=为圆筒的平均半径。剪切胡克定律:当剪切应力不超过材料的剪切比例极限时,切应力 τ 与切应变γ成正比。γ τ G =. 变形几何关系—圆轴扭转的平面假设 dx d φ ρ γρ=。物理关系——剪切胡克定律 dx d G G φρ γτρρ==。力学关系P A A A I dx d G dA dx d G dx d G dA T ?ρ?φρρτρ====???2 2 圆轴扭转时的应力 : t p W T I TR == max τ, t W = R I p 称为抗弯截面系数;强度条件: ][max ττ≤= t W T ,可以进行强度 校核、截面设计和确定许可载荷。 圆截面对圆心的极惯性矩(a )实心圆 32 4 D I P π= ; 16 3 D W t π= (b )空心圆,() 4 4 44132 32 ) (αππ-= -= D d D I P ; () 43 116 απ-= D W t (D,d 分别是外,内径; D d = α) 圆轴扭转时的变形: ?? ==l p l p dx GI T dx GI T ?;等直杆: p GI Tl = ?其中为圆轴的抗弯刚度P GI

材料力学公式汇总

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类: 表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A = ??=→?lim 0正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限 b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应 力理想情形。塑性材料、脆性材料的许用应力分别为: []3 n s σσ=, []b b n σσ=,强度条件: []σσ≤??? ??=max max A N ,等截面杆 []σ≤A N m a x 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为:l l ?= ε,A P A N ==σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-=' 。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l = ? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φ ρ γρ=。物理关系——胡克定律dx d G G φρ γτρρ==。力学关系dA dx d G dx d G dA T A A A ???===2 2ρφφρρτρ 圆轴扭转时的应力:t p W T R I T == max τ;圆轴扭转的强度条件: ][max ττ≤=t W T ,可以进行强度校核、截面设计和确

6材料力学习题解答(弯曲应力)

6.1. 矩形截面悬臂梁如图所示,已知l =4 m , b / h =2/3,q =10 kN/m ,[σ]=10 MPa ,试确 定此梁横截面的尺寸。 解:(1) 画梁的弯矩图 由弯矩图知: 2max 2 ql M = (2) 计算抗弯截面系数 32 323669 h bh h W === (3) 强度计算 2 2max max 33912[]29 416 277ql M ql h W h h mm b mm σσ= ==?≤∴≥==≥ 6.2. 20a 工字钢梁的支承和受力情况如图所示,若[σ]=160 MPa ,试求许可载荷。 解:(1) 画梁的弯矩图 由弯矩图知: No20a x ql 2 x

max 23 P M = (2) 查表得抗弯截面系数 6323710W m -=? (3) 强度计算 max max 66 223[] 33[]3237101601056.8822 P M P W W W W P kN σσσ-===?≤????∴≤== 取许可载荷 []57P kN = 6.3. 图示圆轴的外伸部分系空心轴。试作轴弯矩图,并求轴内最大正应力。 解:(1) 画梁的弯矩图 由弯矩图知:可能危险截面是C 和B 截面 (2) 计算危险截面上的最大正应力值 C 截面: 3max 33 32 1.341063.20.0632 C C C C C M M MPa d W σππ??====? B 截面: 3max 34 3444 0.91062.10.060.045(1)(1)32320.06B B B B B B B M M MPa D d W D σππ?====?-- (3) 轴内的最大正应力值 MPa C 2.63max max ==σσ x

材料力学习题弯曲变形

弯曲变形 基本概念题 一、选择题 1.梁的受力情况如图所示,该梁变形后的 挠曲线如图()所示(图中挠曲线的虚线部 分表示直线,实线部分表示曲线)。 2. 如图所示悬臂梁,若分别采用两种坐标 系,则由积分法求得的挠度和转角的正负号为 ()。 题2图题1图 A.两组结果的正负号完全一致 B.两组结果的正负号完全相反 C.挠度的正负号相反,转角正负号一致 D.挠度正负号一致,转角的正负号相反 3.已知挠曲线方程y = q0x(l3 - 3lx2 +2 x3)∕(48EI),如图所示,则两端点的约束可能为下列约束中的()。 题3图 4. 等截面梁如图所示,若用积分法求解梁的转角、挠度,则以下结论中( )是错误的。 A.该梁应分为AB、BC两段进行积分 B.挠度积分表达式中,会出现4个积分常数 -26-

题4图 题5图 C .积分常数由边界条件和连续条件来确定 D .边界条件和连续条件表达式为x = 0,y = 0;x = l ,0==右左y y ,0='y 5. 用积分法计算图所示梁的位移,边界条件和连续条件为( ) A .x = 0,y = 0;x = a + l ,y = 0;x = a ,右左y y =,右左 y y '=' B .x = 0,y = 0;x = a + l ,0='y ;x = a ,右左y y =,右左 y y '=' C .x = 0,y = 0;x = a + l ,y = 0,0='y ;x = a ,右左y y = D .x = 0,y = 0;x = a + l ,y = 0,0='y ;x = a ,右左 y y '=' 6. 材料相同的悬臂梁I 、Ⅱ,所受荷载及截面尺寸如图所示。关于它们的最大挠度有如 下结论,正确的是( )。 A . I 梁最大挠度是Ⅱ梁的 41倍 B .I 梁最大挠度是Ⅱ梁的2 1 倍 C . I 梁最大挠度与Ⅱ梁的相等 D .I 梁最大挠度是Ⅱ梁的2倍 题6图 题7图 7. 如图所示等截面梁,用叠加法求得外伸端C 截面的挠度为( )。 A . EI Pa 323 B . EI Pa 33 C .EI Pa 3 D .EI Pa 233 8. 已知简支梁,跨度为l ,EI 为常数,挠曲线方程为)24)2(323EI x lx l qx y +-=, -27-

材料力学的基本计算公式-材料力学弯曲公式

1.弯矩、剪力和荷载集度之间的关系式 2?轴向拉压杆横截面上正应力的计算公式Cr=杆件横截面轴力刊,横截面面积仏拉应力为正) 3. 轴向拉压杆斜截面上的正应力与切应力计算公式(夹 角a从X轴正方向逆时针转至外法线的方位角为正) 4. 纵向变形和横向变形(拉伸前试样标距1,拉伸后试样 标距11;拉伸前试样直径d,拉伸后试样直径dl) M = I l-I M = d l-d 5. 纵向线应变和横向线应变 6.泊松比 外力偶 KI N 血矩计箕公式(P功率,n转 速) T a = P a Sinaf= CrCDSafailIa= —siπ2α 2 Cr= EE 7.胡克定律

17? &受多个力作用的杆件纵向变形计算公式? 9?承受轴向分布力或变截面的杆件,纵向变形计算公式 14.剪切胡克定律(切变模量G 9切应变g ) T =G ^ 15. 拉压弹性模量E 泊松比"和切变模量G 之间关系 T 9所求点到 11. 许用应力 H=? 脆性材料血=还,塑性材 料氐=还 12.延伸率 L -I 5- 1 X100% 1 10. 轴向拉压杆的强度计算公式 13. 截面收缩率 A A-A I Ψ= X100% 圆截面对 心的极惯性矩(a )实心圆 (b )空心 轴扭转时横截面上任一点切应力计算公式(扭矩 32 T

18.圆截面周边各点处最大切应力计算公式 19? 扭转截面系数 Wrr= ≠, (a )实心圆 Wl= ^ (b )空心圆I 鲁(I F 20. 薄壁圆管(壁厚δ ≤ R o /10 , R o 为圆管的平均半 21.圆轴扭转角炉与扭矩7;杆长人 扭转刚度GHP 的关 径不同(如阶梯轴)时 23.等直圆轴强度条件 24.塑性材料E = (WA)I 叫脆性材料I T l = (°?8 ~ Io )I er l Gi I TT 26. 受压圆筒形薄壁容器横截面和纵截面上的应力计 径)扭转切应力计算公式 T ~2τ^δ TL 系式"瓯 22 同一材料制成的圆轴各段的扭矩不同或各段的直 扭转圆轴的刚度条件?乳 ≤l^l Z 或

材料力学公式汇总

材料力学常用公式 1.外力偶 矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的 关系式 3.轴向拉压杆横截面上正应力的 计算公式(杆件横截面轴力F N,横截面面积A,拉应 力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线 的方位角为正) 5. 6.纵向变形和横向变形(拉伸前 试样标距l,拉伸后试样标距l1; 拉伸前试样直径d,拉伸后试样 直径d1)7. 8.纵向线应变和横向线应变 9. 10.泊松比 11.胡克定律 12.受多个力作用的杆件纵向变形 计算公式? 13.承受轴向分布力或变截面的杆 件,纵向变形计算公式 14.轴向拉压杆的强度计算公式 15.许用应力,脆性 材料,塑性材料 16.延伸率 17.截面收缩率

18.剪切胡克定律(切变模量G,切应变g ) 19.拉压弹性模量E 、泊松比和切变模量G之间关系式 20.圆截面对圆心的极惯性矩(a) 实心圆 21.(b)空 心圆 22.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点 到圆心距离r) 23.圆截面周边各点处最大切应力 计算公式 24.扭转截面系数,(a) 实心圆 25.(b)空心圆26.薄壁圆管(壁厚δ≤ R0 /10 , R0为圆管的平均半径)扭转切 应力计算公式 27.圆轴扭转角与扭矩T、杆长l、 扭转刚度GH p的关系式 28.同一材料制成的圆轴各段内的 扭矩不同或各段的直径不同(如 阶梯轴)时或 29.等直圆轴强度条件 30.塑性材料;脆 性材料 31.扭转圆轴的刚度条件? 或

32.受内压圆筒形薄壁容器横截面 和纵截面上的应力计算公式 , 33.平面应力状态下斜截面应力的 一般公式 , 34.平面应力状态的三个主应力 , , 35.主平面方位的计算公式 36.面内最大切应力 37.受扭圆轴表面某点的三个主应 力,,38.三向应力状态最大与最小正应 力, 39.三向应力状态最大切应力 40.广义胡克定律 41. 42. 43.四种强度理论的相当应力 44.一种常见的应力状态的强度条 件,45.组合图形的形心坐标计算公式 , 46.任意截面图形对一点的极惯性 矩与以该点为原点的任意两正

材料力学的基本计算公式-材料力学弯曲公式

材料力学得基本计算公式外力偶矩计算公式(P功率,n转速) 1.弯矩、剪力与荷载集度之间得关系式 2.轴向拉压杆横截面上正应力得计算公式 (杆件横截面 轴力F N,横截面面积A,拉应力为正) 3.轴向拉压杆斜截面上得正应力与切应力计算公式(夹角 a 从x轴正方向逆时针转至外法线得方位角为正) 4.纵向变形与横向变形(拉伸前试样标距l,拉伸后试样 标距l1;拉伸前试样直径d,拉伸后试样直径d1) 5.纵向线应变与横向线应变 6.泊松比 7.胡克定律 8.受多个力作用得杆件纵向变形计算公式? 9.承受轴向分布力或变截面得杆件,纵向变形计算公式 10.轴向拉压杆得强度计算公式 11.许用应力, 脆性材料,塑性材料 12.延伸率 13.截面收缩率 14.剪切胡克定律(切变模量G,切应变g )

15.拉压弹性模量E、泊松比与切变模量G之间关系式 16.圆截面对圆心得极惯性矩(a)实心圆 (b)空心圆 17.圆轴扭转时横截面上任一点切应力计算公式(扭矩 T,所求点到圆心距离r ) 18.圆截面周边各点处最大切应力计算公式 19.扭转截面系数 ,(a)实心圆? (b)空心圆 20.薄壁圆管(壁厚δ≤R0/10 ,R0为圆管得平 均半径)扭转切应力计算公式 21.圆轴扭转角与扭矩T、杆长l、扭转刚度GHp得 关系式 22.同一材料制成得圆轴各段内得扭矩不同或各段得 直径不同(如阶梯轴)时或 23.等直圆轴强度条件 24.塑性材料;脆性材料 25.扭转圆轴得刚度条件? 或 26.受内压圆筒形薄壁容器横截面与纵截面上得应力 计算公式, 27.平面应力状态下斜截面应力得一般公式 , 28.平面应力状态得三个主应力 , , 29.主平面方位得计算公式

材料力学常用基本公式

材料力学常用基本公式 Prepared on 24 November 2020

1.外力偶矩计算公式(P功率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积 A,拉应力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至 外法线的方位角为正) 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径 d,拉伸后试样直径d1) 6. 7.纵向线应变和横向线应变 8. 9.泊松比 10.胡克定律

11.受多个力作用的杆件纵向变形计算公式 12.承受轴向分布力或变截面的杆件,纵向变形计算公式 13.轴向拉压杆的强度计算公式 14.许用应力,脆性材料,塑性材料 15.延伸率 16.截面收缩率 17.剪切胡克定律(切变模量G,切应变g ) 18.拉压弹性模量E、泊松比和切变模量G之间关系式 19.圆截面对圆心的极惯性矩(a)实心圆 20.(b)空心圆 21.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)

22.圆截面周边各点处最大切应力计算公式 23.扭转截面系数,(a)实心圆 (b)空心圆 24.薄壁圆管(壁厚δ≤ R /10 ,R 为圆管的平均半径)扭转切应力计算公式 25.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式 26.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时 或 27.等直圆轴强度条件 28.塑性材料;脆性材料

29.扭转圆轴的刚度条件或 30.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 31.平面应力状态下斜截面应力的一般公式 , 32.平面应力状态的三个主应力, , 33.主平面方位的计算公式 34.面内最大切应力 35.受扭圆轴表面某点的三个主应力,, 36.三向应力状态最大与最小正应力 , 37.三向应力状态最大切应力

材料力学公式最全总汇

外力偶矩计算公式(P功率,n转速) 弯矩、剪力和荷载集度之间的关系式 轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力FN,横 截面面积A,拉应力为正) 轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正) 纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1) 纵向线应变和横向线应变 泊松比 胡克定律 受多个力作用的杆件纵向变形计算公式? 承受轴向分布力或变截面的杆件,纵向变形计算公式

轴向拉压杆的强度计算公式 许用应力,脆性材料,塑性材料 延伸率 截面收缩率 剪切胡克定律(切变模量G,切应变g ) 拉压弹性模量E、泊松比和切变模量G之间关系式 圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r ) 圆截面周边各点处最大切应力计算公式 扭转截面系数,(a)实心圆 (b)空心圆 薄壁圆管(壁厚δ≤ R0 /10 ,R0 为圆管的平均半径)扭转切应力计算公式

圆轴扭转角与扭矩T、杆长l、扭转刚度GHp的关系式 同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时 或 等直圆轴强度条件 塑性材料;脆性材料 扭转圆轴的刚度条件? 或 受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 平面应力状态下斜截面应力的一般公式 , 平面应力状态的三个主应力, ,

主平面方位的计算公式 面内最大切应力 受扭圆轴表面某点的三个主应力,, 三向应力状态最大与最小正应力, 三向应力状态最大切应力 广义胡克定律 四种强度理论的相当应力 一种常见的应力状态的强度条件, 组合图形的形心坐标计算公式, 任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯

材料力学重点及公式(期末复习)

1、材料力学的任务: 强度、刚度和稳定性; 应力单位面积上的内力。 平均应力(1.1) 全应力(1.2) 正应力垂直于截面的应力分量,用符号表示。 切应力相切于截面的应力分量,用符号表示。 应力的量纲: 线应变单位长度上的变形量,无量纲,其物理意义是构件上一点沿某一方向变形量的大小。 外力偶矩 传动轴所受的外力偶矩通常不是直接给出,而是根据轴的转速n与传递的功率P 来计算。 当功率P单位为千瓦(kW),转速为n(r/min)时,外力偶矩为 当功率P单位为马力(PS),转速为n(r/min)时,外力偶矩为 拉(压)杆横截面上的正应力

拉压杆件横截面上只有正应力,且为平均分布,其计算公式为 (3 -1) 式中为该横截面的轴力,A为横截面面积。 正负号规定拉应力为正,压应力为负。 公式(3-1)的适用条件: (1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件; (2)适用于离杆件受力区域稍远处的横截面; (3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀; (4)截面连续变化的直杆,杆件两侧棱边的夹角时 拉压杆件任意斜截面(a图)上的应力为平均分布,其计算公式为 全应力 (3-2) 正应力(3-3) 切应力(3-4) 式中为横截面上的应力。 正负号规定: 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。 拉应力为正,压应力为负。 对脱离体内一点产生顺时针力矩的为正,反之为负。 两点结论: (1)当时,即横截面上,达到最大值,即。当=时,即纵截面上,==0。 (2)当时,即与杆轴成的斜截面上,达到最大值,即 1.2 拉(压)杆的应变和胡克定律 (1)变形及应变 杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。如图3-2。

材料力学B试题6弯曲变形

弯曲变形 1. 已知梁的弯曲刚度EI 为常数,今欲使梁的挠曲线在x =l /3处出现一拐点,则比值M e1/M e2为: (A) M e1/M e2=2; (B) M e1/M e2=3; (C) M e1/M e2=1/2; (D) M e1/M e2=1/3。 答:(C) 2. 外伸梁受载荷如 致形状有下列(A)(B)、(C),(D)答:(B) 3. 简支梁受载荷并取坐标系如图示,则弯矩M 、剪力F S 与分布载荷q 之间的关系以及挠曲线近似微分方程为: (A)EI x M x w q x F F x M ) (d d ,d d , d d 2 2S S ===; (B)EI x M x w q x F F x M )(d d ,d d , d d 2 2 S S =-=-=; (C)EI x M x w q x F F x M )(d d ,d d , d d 2 2S S -==-=; (D)EI x M x w q x F F x M )(d d ,d d , d d 2 2S S -=-==。 答:(B) 4. 弯曲刚度为EI 的悬臂梁受载荷如图示,自由端的挠度EI l M EI Fl w B 232 e 3 +=

(↓) 则截面C 处挠度为: (A)2 e 3 322323??? ??+??? ??l EI M l EI F (↓); (B)2 3 3223/323??? ??+??? ??l EI Fl l EI F (↓) ; (C)2 e 3 322)3/(323??? ??++??? ??l EI Fl M l EI F (↓);(D)2 e 3 322)3/(323? ? ? ??-+??? ??l EI Fl M l EI F (↓)。 答:(C) 5. 画出(a)、(b)、(c)三种梁的挠曲线大致形状。 答: 6. 7. (a)、(b) 刚度关系为下列中的哪一种: (A) (a)>(b); (B) (a)<(b); (C) (a)=(b); (D) 不一定。 答:(C) 8. 试写出图示等截面梁的位移边界条件,并定性地画出梁的挠曲线大致形状。 答:x =0, w 1=0, 1w '=0;x =2a ,w 2=0 =2a , 32 w w '='。 9. 试画出图示静定组合梁在集中力F 作用下挠曲线的大致形状。 (a) (b) (c) w ===θw w

材料力学的基本计算公式-材料力学弯曲公式

材料力学的基本计算公式 外力偶矩计算公式(P功率,n转速) 1.弯矩、剪力和荷载集度之间的关系式 2.轴向拉压杆横截面上正应力的计算公式(杆件横 截面轴力F N,横截面面积A,拉应力为正) 3.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角 a 从x轴正方向逆时针转至外法线的方位角为正) 4.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样 标距l1;拉伸前试样直径d,拉伸后试样直径d1) 5.纵向线应变和横向线应变 6.泊松比 7.胡克定律

8.受多个力作用的杆件纵向变形计算公式? 9.承受轴向分布力或变截面的杆件,纵向变形计算公式 10.轴向拉压杆的强度计算公式 11.许用应力,脆性材料,塑性材料 12.延伸率 13.截面收缩率 14.剪切胡克定律(切变模量G,切应变g ) 15.拉压弹性模量E、泊松比和切变模量G之间关系 式 16.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 17.圆轴扭转时横截面上任一点切应力计算公式(扭矩 T,所求点到圆心距离r)

18.圆截面周边各点处最大切应力计算公式 19.扭转截面系数,(a)实心圆 (b)空心圆 20.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径) 扭转切应力计算公式 21.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的 关系式 22.同一材料制成的圆轴各段内的扭矩不同或各段的 直径不同(如阶梯轴)时或 23.等直圆轴强度条件 24.塑性材料;脆性材料 25.扭转圆轴的刚度条件? 或 26.受内压圆筒形薄壁容器横截面和纵截面上的应力 计算公式,

27.平面应力状态下斜截面应力的一般公式 , 28.平面应力状态的三个主应力 , , 29.主平面方位的计算公式 30.面内最大切应力 31.受扭圆轴表面某点的三个主应力,, 32.三向应力状态最大与最小正应力, 33.三向应力状态最大切应力 34.广义胡克定律

材料力学常用公式

材料力学常用公式 1外力偶矩计算公式(P功率,n转速) 2弯矩、剪力和荷载集度之间的关系式 3轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正) 4轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a从x 轴正方向逆时针转至外法线的方位角为正) 5纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1) 6纵向线应变和横向线应变 7泊松比 8胡克定律 9受多个力作用的杆件纵向变形计算公式? 10承受轴向分布力或变截面的杆件,纵向变形计算公式

11轴向拉压杆的强度计算公式 12许用应力,脆性材料,塑性材料 13延伸率 14截面收缩率 15剪切胡克定律(切变模量G,切应变g) 16拉压弹性模量E、泊松比和切变模量G之间关系式 17圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r) 19圆截面周边各点处最大切应力计算公式 20扭转截面系数,(a)实心圆 (b)空心圆 21薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应

力计算公式 22圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式 23同一材料制成的圆轴各段的扭矩不同或各段的直径不同(如阶梯轴)时或 24等直圆轴强度条件 25塑性材料;脆性材料 26扭转圆轴的刚度条件? 或 27受压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 28平面应力状态下斜截面应力的一般公式 , 29平面应力状态的三个主应力, ,

30主平面方位的计算公式 31面最大切应力 32受扭圆轴表面某点的三个主应力,, 33三向应力状态最大与最小正应力, 34三向应力状态最大切应力 35广义胡克定律 36四种强度理论的相当应力 37一种常见的应力状态的强度条件, 38组合图形的形心坐标计算公式, 39任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式 40截面图形对轴z和轴y的惯性半径? , 41平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为

材料力学习题册答案弯曲变形

第六章弯曲变形 一、是非判断题 1.梁的挠曲线近似微分方程为EIy’’=M(x)。(√)梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角为 零。(×) 两根几何尺寸、支撑条件完全相同的静定梁,只要所受载荷相 同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是 否相同无关。(×) 等截面直梁在弯曲变形时,挠曲线的曲率最大值发生在转角等 于零的截面处。(×) 若梁上中间铰链处无集中力偶作用,则中间铰链左右两侧截面 的挠度相等,转角不等。(√) 简支梁的抗弯刚度EI相同,在梁中间受载荷F相同,当梁的跨 度增大一倍后,其最大挠度增加四倍。(×) 当一个梁同时受几个力作用时,某截面的挠度和转角就等于每 一个单独作用下该截面的挠度和转角的代数和。(√) 8.弯矩突变的截面转角也有突变。(×) 二、选择题 1. 梁的挠度是(D)

A 横截面上任一点沿梁轴线方向的位移 B 横截面形心沿梁轴方向的位移 C横截面形心沿梁轴方向的线位移 D 横截面形心的位移 2. 在下列关于挠度、转角正负号的概念中,(B)是正确的。 A 转角的正负号与坐标系有关,挠度的正负号与坐标系无关 B 转角的正负号与坐标系无关,挠度的正负号与坐标系有关 C 转角和挠度的正负号均与坐标系有关 D 转角和挠度的正负号均与坐标系无关 3. 挠曲线近似微分方程在(D)条件下成立。 A 梁的变形属于小变形 B 材料服从胡克定律 C 挠曲线在xoy平面内 D 同时满足A、B、C 4. 等截面直梁在弯曲变形时,挠曲线的最大曲率发生在(D)处。 A 挠度最大 B 转角最大 C 剪力最大 D 弯矩最大 5. 两简支梁,一根为刚,一根为铜,已知它们的抗弯刚度相同。跨中作用有相同的力F,二者的(B)不同。 A支反力 B 最大正应力 C 最大挠度D最大转角6. 某悬臂梁其刚度为EI,跨度为l,自由端作用有力F。为减小最大挠度,则下列方案中最佳方案是(B) A 梁长改为l /2,惯性矩改为I/8 B 梁长改为3 l /4,惯性矩改为I/2 C 梁长改为5 l /4,惯性矩改为3I/2

材料力学公式.pdf

材料力学公式汇总
第二章:拉伸、压缩与剪切


名称
1 正应力
σ = FN A
公式
备注
页码
应用条件:外力合力作用线沿杆
的轴线
P12
2
斜截面上的 正应力与切 应力
σα
=
σ cos2
α
=
σ 2
(1 +
cos 2α)
τα
=
σ 2
sin

胡克定律
σ = Εε
3 剪 切 胡 克 定 τ = Gγ

4
拉压杆轴向 变形
Δ
l
=
±
FN L EA
(σ ≤ σ p时)
P16
P19
式中: γ --切应变; γ = r?
l
P53
式中: EA --抗拉(压)刚度
P18
泊松比(横向 变形系数)
ν
=
ε′ ε
= ? ε ′ ε ′ = ε
?νε
= ?νσ Ε
式中: ε ′ --横向正应变 ε --轴向正应变
P19
5
G、E、μ
关系
G=
E (2 1+
μ)?
? ? ? ? ?
εx=ε y=0
γ
xy
=τ G
????ε
??
450
σ1=τ σ3=?τ
????ε
??
450
=
γ =?
xy
=
?
τ
...( a )
2 2G
1 E

3
?
μσ1
)=?
(1+μ
G

...(b)
式中:G --切变模量 E—弹性模量 μ--泊松比
杆件轴向拉 压应变能

=W
=
1 2
FΔl
=
FN2l 2EA
6
应变能密度 (单位体积
v = 1 σε = 1 Eε 2 = σ 2
22
2E
应变能)
???Q Δl
=
FN L EA
? ??
P23
单位:
J m3
;总应变能
∫ Vε = V vε dv
P23
杆 件 温 度 变 ΔlT = αl ? ΔT ? l
式中:αl 为材料线胀系数
7 形量
ΔlT
= Δl
=
FRBl EA
? αl ? ΔT ?l
=
FRBl EA
?FRB = E?αl ?ΔT? A? σT (热应力)
=
FRB A
= αl ? E ? ΔT
P188 P188
附录 I:截面的几何性质
∫ 1
静矩
SZ =
ydA
A
2 形心
∫ yc =
A ydA = SZ
A
A
3
组合截 面形心
n
n
∑ ∑ yc = Ai yi
Ai
i =1
i =1
∫ 惯性矩
yx =
x2dA
A
惯性积
∫ 实心圆轴: I p =
d 2
ρ 2 2πρ d ρ
=
πd4
0
32
4
极惯 性矩
∫ I p =
ρ 2dA
A
空心圆轴: I p
=
π 32
(D 4
? d 4)
=
π D4 32
(1 ? α
4)
薄壁圆截面: I p = 2π R03δ
∫ y xy =
xydA
A
P322 P323
-1-

2021年材料力学的基本计算公式-材料力学弯曲公式

材料力学的基本计算公式 欧阳光明(2021.03.07) 外力偶矩计算公式(P功率,n转速) 1.弯矩、剪力和荷载集度之间的关系式 2.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴 力FN,横截面面积A,拉应力为正) 3.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x 轴正方向逆时针转至外法线的方位角为正) 4.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1; 拉伸前试样直径d,拉伸后试样直径d1) 5.纵向线应变和横向线应变 6.泊松比 7.胡克定律 8.受多个力作用的杆件纵向变形计算公式?

9.承受轴向分布力或变截面的杆件,纵向变形计算公式 10.轴向拉压杆的强度计算公式 11.许用应力,脆性材料,塑性材料 12.延伸率 13.截面收缩率 14.剪切胡克定律(切变模量G,切应变g ) 15.拉压弹性模量E、泊松比和切变模量G之间关系式 16.圆截面对圆心的极惯性矩(a)实心圆(b)空 心圆 17.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所 求点到圆心距离r ) 18.圆截面周边各点处最大切应力计算公式 19.扭转截面系数,(a)实心圆(b)空心 圆

20.薄壁圆管(壁厚δ≤ R0 /10 ,R0 为圆管的平均半径)扭转 切应力计算公式 21.圆轴扭转角与扭矩T、杆长l、扭转刚度GHp的关系式 22.同一材料制成的圆轴各段内的扭矩不同或各段的直径不 同(如阶梯轴)时或 23.等直圆轴强度条件 24.塑性材料;脆性材料 25.扭转圆轴的刚度条件? 或 26.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公 式, 27.平面应力状态下斜截面应力的一般公式 , 28.平面应力状态的三个主应力, ,

相关主题
文本预览
相关文档 最新文档