当前位置:文档之家› 双界面液位

双界面液位

双界面液位
双界面液位

1简介与性能 (2)

1. 1.1主要性能: (2)

2. 1.2结构特点 (3)

3. 1.3工作原理 (3)

2传感器安装 (4)

3变送器接线与调试 (5)

3.1 接线说明 (5)

3.1.1 变送器接线 (5)

3.1.2 变送器与安全栅的接线 (6)

3.2 变送器调试 (7)

3.2.1 调试部位介绍 (7)

3.2.2 调试内容概述 (8)

3.2.2.1 调试探极检测电压,使之具备测量条件 (8)

3.2.2.2 设置测量参数 (9)

3.2.2.3 设置油位电流输出参数参数 (9)

3.2.2.4 设置水位电流输出参数参数 (11)

4设置参数流程图 (12)

5质量保证书 (15)

本产品是应用分段电容式物位检测的原理,结合独特微电容检测传送技术及大规模高速单片机数字处理技术研制而成的智能化、自校正、多相物位检测分析仪,其在油田原油罐中对原油油位与水位的测量具有其它传感器无可比拟的优越性。其主要用于油田及石油化工行业进行油水双界面的高精度测量。

JDR 型油水界面分析仪是采用微电容

串组合,断层扫描检测技术研制的一种检测容器中油、水、空气多相界面的产品。 分析仪由多段检测高度为100mm 的微电容串组合而成的检测探极(传感器)与装在探极顶部的在线自校正式双界面液位变送器共同组成。其检测的水面与油面高度以两组(4~20)mA 信号分别输出,可远传至微机或二次显示仪表进行显示和控制。(见图一) 1. 1.1主要性能: ·防爆标志:Ex(ib)IIBT4; ·防爆编号:

·外壳使用防腐材料,防腐性能强; ·密钥保护功能; ·在线自校正功能; ·基准电压自适应功能

·智能信号处理技术,可适应多种工况环境; ·探极长度根据现场情况灵活确定。

·2×8字符高亮、高清晰、低功耗液晶显示;

·大规模集成电路与模块化设计相结合,减少分离元件,提高设备可靠性;·直管螺纹结构,安装连接方便。

·传感器采用钢构件制作,无机械活动部分,经久耐用。

2. 1.2结构特点

本分析仪由多段微电容串组合探极和逐段扫描自校正式界面液位变送器组成。其传感探极安装在液罐中,变送器由单片机构成,完成检测和自校正功能,将检测的水面、油面高度以两路(4~20)mA恒流信号分别输出。

3. 1.3工作原理

其工作原理示意图见图二。

备注: ( 安全栅型号:FB-A 防暴标志:[Exib]IIB )

由于位于液罐下层的水,中层的油,和上层的空气,各自的介电常数ε有较

对检测结果进行分析、判断、比较、计算,分别计算出油与空气之间界面——油面高度和油、水之间界面——水面高度,并由光电隔离双D/A-mA 变换模块以两路各自(4~20)mA 恒流信号输出。

实际应用中,油和水之间界面不是一个清晰的界面,油水之间在不同情况下是不同状态的油水混合层,其介电常数在水和油之间变化,其大小是与这一层面中油水混合比例有关,含水越多,ε越大。因此,判断油水界面的ε阀值是一个相对值。使用中通过调整放大倍数,即可改变这个阀值。为了在安装时可以检查调整个层面的检测值,变送器设置调零、放大两只电位器,通过按键即可检查从上至下第一至最末段检测值,通过两电位器可以进行空段调零和油段、水段、混合段的调整,退出按键操作即可输出油面、水面的(4~20)mA 信号。

2传感器安装

探极 见图三 特点:

■ 多段100mm 微电容串组合电极,聚四氟乙烯护管。可任意弯曲,便于运输和安装。 ■ 安装方便,可带料安装。 主要性能:

■ 量程:(0~25)m(任意可选) ■ 适用介质:各种液体 ■ 工作温度:(-40~+70)℃ ■ 安装部位螺纹:G2″ ■ 安装方式:法兰盘吊装

■ 探极与罐壁距离:(0.4~1)m(过大应考虑加辅助电极)

注:探极与罐壁距离过大,检测电容太小会影响检测分辨率。

安装注意:1、保证探极垂直不弯曲,探极不与罐

3变送器接线与调试

3.1 接线说明 3.1.1 变送器接线

旋开变送器接线盒(顶盖),可见到接线端子板,如下图所示。

Menu 键

! 键 " 键 Ent 键

JDR 系列油水界面分析仪端子接线图

+ 24VDC 电源正 - 24VDC 电源负 O1 油电流输出 O2 水电流输出 GB 测量端探极

3.1.2 变送器与安全栅的接线

本分析仪的调试不需要人工用尺测量进行比对标定,只要调整变送器工作参数,使各段检测电容值符合一定范围,即可由单片机自动计算出检测结果。

3.2.1 调试部位介绍

按键

电源开关

灵敏度拨码开关

本变送器主要包含3方面的调试内容。

3.2.2.1 调试探极检测电压,使之具备测量条件

a、按Ent键,进入查看各段电压工作模式

b、检查各段电压是否达到下述测量值,若不符合要求,进行C步骤,

直到合适为止

1)空气段(上部)检测为0.160V左右

2)纯水段(下部)检测为1.800V左右

c、调试电容测量硬件

1)变送器的调试应在油罐中油面、水面均在探极量程以内,空气和纯油段高度在50cm以上时进行。

2)若检测空气段电压过大,将电容检测量程开关(灵敏度)加大拨码开关数值。

3)若检测空气段电压过小,将电容检测量程开关(灵敏度)减小拨

3.2.2.2 设置测量参数

a、设定空气段电压是否在0.16V左右。

b、设定水位段电压是否在1.800V左右。

c、查看纯油段电压,得到纯油与纯水间电压差,纯油与空气段的电压

差。

d、通过液晶和按键,设置油与空气段电压的跳变范围,设置油与空气

段电压的跳变范围。

油典型电压值 + 空气典型电压值

油与空气段电压的跳变范围 =------------------------------------

2

水典型电压值 + 油典型电压值

油与水段电压的跳变范围 =------------------------------------

2

油段电压最大值+油段电压最小值

油典型电压值 = ----------------------------------------

3.2.2.3 设置油位电流输出参数

m探极满度设置为3000。

c、设置测量修正值

因安装位置不同,通过加(减)固定数值,使测量位置与实际物理位置一致。出产默认值为0。

例如:上图中用3m的探极测量4m的罐时,若测量零点设置为0,测量满度设置为4000,测量修正值设置为1000,则(4~20)mA 电流对应的油位输出为(0-4000)mm。(注意:因下面罐体1m没有探极,不能测量,故变送器测量数值将大于1000)。

d、设置4mA电流输出准确度参数

用精密电流表测量油位输出端子输出电流,通过按键调整数值,使电流输出是为精确的4mA。(出厂调试完成,现场可以不用修改参数)。

e、设置20mA电流输出准确度参数

用精密电流表测量油位输出端子测量输出电流,通过按键调整数值,使电流输出是为精确的20mA。(出厂调试完成,现场可以不用修改参数)。

b、设置测量输出的满度(20mA对应的测量水位)。20mA对应的水

位。出厂默认值为探极长度,例如10m探极满度设置为10000,3m探极满度设置为3000。

c、设置测量修正值

因安装位置不同,通过加(减)固定数值,使测量位置与实际物理位置一致。出产默认值为0。

例如:上图中用3m的探极测量4m的罐时,若测量零点设置为0,测量满度设置为4000,测量修正值设置为1000,则(4~20)mA电流对应的水位输出为(0-4000)mm。(注意:因下面罐体1m没有探极,不能测量,故变送器测量数值将大于1000)。

d、设置4mA电流输出准确度参数

用精密电流表测量油位输出端子测量输出电流,通过按键调整数值,使电流输出是为精确的4mA。(出厂调试完成,现场可以不用修改参数)。

e、设置20mA电流输出准确度参数

4设置参数流程图

双容水箱液位串级控制系统DCS实训报告毕业论文

DCS实训报告双容水箱液位串级控制系统

一、实训目的 (1)、熟悉集散控制系统(DCS)的组成。 (2)、掌握MACS组态软件的使用方法。 (3)、培养灵活组态的能力。 (4)、掌握系统组态与装置调试的技能。 二、实训内容及要求 以THSA-1型生产过程自动化技术综合实训装置为工业对象。完成中水箱和下水箱串级液位控制系统的组态。 要求:设计液位串级控制系统,并用MACS组态软件完成组态。 包括:(1)、数据库组态。 (2)、设备组态。 (3)、算法组态。 (4)、画面组态。 (5)、在实验装置上进行系统调试。 三、工程分析 THSA-1型生产过程自动化技术综合实训装置中水箱和下水箱串级液位控制系统需要2个输入测量信号,1个输出控制信号。 因此,该系统包括: (1)、该系统有2个AI点LT1、LT2,1个AO点LV1。 (2)、该系统需要1个模拟量输入模块FM148用于采集中水箱液位信号LT1和下水箱液位信号LT2;1个模拟量输出模块

FM151用于控制电动控制阀的开度LV1。并且FM148的设备号为2号,FM151的设备号为3号。 (3)、LT1按2号设备的第1通道,LT2按2号设备的第2通道。LV1按3号设备的第1通道。 (4)、系统配备1个现场控制站10站,1台服务器兼操作员站。 四、实训步骤 1、工程的建立 (1)、打开:开始macsv组态软件数据库总控。(2)、选择工程/新建工程,新建工程并输入工程名;Demo。(3)、点击“确定”按钮,然后在空白处选择“demo”工程。工程信息如下图所示: (4)、选择“编辑>域组号组态”,选择组号为1,将刚创建的工程“demo”从“未分组的域”移到右边“改组所包含的域”里,点击“确认”按钮。然后,在数据库总控组态软件窗口会出现当前工程名、当前域号、该域分组号、系统总点数。 (5)、数据库组态。

三容水箱液位控制

三容水箱液位过程控制设计 专业:自动化 班级:2011级4班 组员:孙健 组员:姜悦2 组员:黄潇20115041 指导老师:陈刚 重庆大学自动化学院 2015年1月

目录 一、现代工业背景 (1) 二、问题的提出 (2) 三、模型的建立 (3) 3.1 单容水箱的数学模型 (3) 3.2 双容水箱的数学模型 (5) 3.3 三容水箱模型 (6) 四、算法的描述 (8) 4.1对原始模型的仿真 (8) 4.2添加P控制并对其仿真 (9) 4.3添加单回路控制并对其仿真 (10) 4.4添加PID控制和单回路控制并对其仿真 (11) 五、结果及分析 (14) 六、总结与体会 (15) 6.1 组长孙健的总结 (15) 6.2 组员姜悦的总结 (15) 6.3 组员黄潇的总结 (15) 七、参考文献 (17) 八、附录 (18)

一、现代工业背景 世界上任何国家的经济发展,都伴随着人民生活水平的改善和城市化进程的不断加快。但是相应的淡水资源的需求和消耗也在不断增多。水,作为一种必不可少的资源,长期以来一直被认为是取之不尽、用之不竭的。在这种观点的驱使下,水环境的质量越来越恶劣、水资源短缺也越来越严重,这一切都加重了城市的负荷,带来一系列危及城市生存与发展的生态环境问题。污水也是造成环境污染的来源之一。这个污染源的出现引起了世界各国政府的关注,治理水污染环境的课题被列入世界环保组织的工作日程。 建设污水处理厂,消除水污染也是为人民造福的一项事业,政府一时又拿不出巨大的资金投入到治理项目的建设中去。为了使污染快速得到控制,向公民投放建设专项债券,给公民一定的高于银行存款利息的待遇,使公民的资金投入到基础设施建设,发挥这部分资金的作用,也能为政府解除一些资金筹措的忧虑,又体现了全民的环保意识。 现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理。 一级处理,主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。 二级处理,主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准。 三级处理,进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗分析法等。 整个过程为通过粗格栅的原污水经过污水提升泵提升后,经过格栅或者砂滤器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。 经济发展与水环境污染是成正比的,也就是说经济发展的速度越快,相应带来的水环境污染就越严重。人民生活离不开水,工农业生产发展更离不开水,排出来的无论是生活污水还是工业废水都会带来不同程度的污染。经济的发展是需要资金投入的,保护环境不受污染,同样也需要钱,当资金有限的时候,就需要将经济发展和保护环境这两项硬指标进行有机的协调,不能造成顾此失彼或厚此薄彼的局面。若顾经济发展失环境保护,就会产生环境严重受到污染,再投入相当的资金也不会治理到原来的清洁环境。国外的反面教训警示了我们,日本的伊势湾受到沿海石化生产废水的污染,使伊势湾的水产品受到严重的损失,产生了不能食用的后果,虽经多年的治理也难以恢复污染前的环境状况。这也充分证明了经济发展与环境保护的密切关系。

双容水箱液位串级控制系统设计(精)教学总结

双容水箱液位流量串级控制系统设计 ◆设计题目 双容水箱液位流量串级控制系统设计 ◆设计任务 如图1所示的两个大容量水箱。要求水箱2水位稳定在一定高度,水流量经常波动,作为扰动量存在。试针对该双容水箱系统设计一个液位流量串级控制方案。 水箱1 水箱2 图1 系统示意图◆设计要求 1)已知主被控对象(水箱2水位)传递函数W1=1/(100s+1, 副被控对象(流量)传递函数W2=1/(10s+1。 2)假设液位传感器传递函数为Gm1=1/(0.1s+1,针对该水箱工作过程设计单回路PID 调节器,要求画出控制系统方框图及实施方案图,并给出PID 参数整定的方法与结果; 3)假设流量传感器传递函数为Gm2=1/(0.1s+1,针对该水箱工作过程设计液位/流量串级控制系统,要求画出控制系统方框图及实施方案图,并给出主、副控制器的结构、参数整定方法及结果; 4)在进口水管流量出现阶跃扰动的情况下,分别对单回路PID 控制与串级控制进行仿真试验结果比较,并说明原因。 ◆设计任务分析

一、系统建模 系统建模基本方法有机理法建模和测试法建模两种建模方法。 机理法建模就是根据生产过程中实际发生的变化机理,写出各种有关的平衡方程,从中获得所需的数学模型 测试法一般只用于建立输入—输出模型。它是根据工业过程的输入和输出的实测数据进行某种数学处理后得到的模型。它的特点是把研究的工业过程视为一个黑匣子,完全从外特性上测试和描述它的动态性质。 对于本设计而言,由于双容水箱的各个环节的数学模型已知,故采用机理法建模。 在该液位控制系统中,建模参数如下: 控制量:水流量Q ; 被控量:水箱2液位; 主被控对象(水箱2水位)传递函数W1=1/(100s+1, 副被控对象(流量)传递函数W2=1/(10s+1。 控制对象特性: Gm1(S )=1/(0.1S+1)(水箱1传递函数); Gm2(S )=1/(0.1S+1)(水箱2传递函数)。 控制器:PID ; 执行器:流量控制阀门;

双容水箱液位控制系统

内蒙古科技大学 控制系统仿真课程设计说明书 题目:双容水箱液位控制系统 仿真 学生姓名:任志江 学号:1067112104 专业:测控技术与仪器 班级:测控 10-1班 指导教师:梁丽

摘要 随着工业生产的飞速发展,人们对生产过程的自动化控制水平、工业产品和服务产品质量的要求也越来高。每一个先进、实用控制算法和监测算法的出现都对工业生产具有积极有效的推动作用。然而,当前的学术研究成果与实际生产应用技术水平并不是同步的,通常情况下实际生产中大规模应用的算法要比理论方面的研究滞后几年,甚至有的时候这种滞后相差几十年。这是目前控制领域所面临的最大问题,究其根源主要在于理论研究尚缺乏实际背景的支持,一旦应用于现场就会遇到各种各样的实际问题,制约了其应用。本设计设计的课题是双容水箱的PID液位控制系统的仿真。在设计中,主要针对双容水箱进行了研究和仿真。本文的主要内容包括:对水箱的特性确定与实验曲线分析,通过实验法建立了液位控制系统的水箱数学模型,设计出了控制系统,针对所选液位控制系统选择合适的PID算法。用MATLAB/Simulink建立液位控制系统,调节器采用PID控制系统。通过仿真参数整定及各个参数的控制性能,对所得到的仿真曲线进行分析,总结了参数变化对系统性能的影响。 关键词:MATLAB;PID控制;液位系统仿真

目录 第一章控制系统仿真概述 (2) 1.1 控制系统计算机仿真 (2) 1.2 控制系统的MATLAB计算与仿真 (2) 第二章 PID控制简介及其整定方法 (6) 2.1 PID控制简介 (6) 2.1.1 PID控制原理 (6) 2.1.2 PID控制算法 (7) 2.2 PID 调节的各个环节及其调节过程 (8) 2.2.1 比例控制与其调节过程 (8) 2.2.2 比例积分调节 (9) 2.2.3 比例积分微分调节 (10) 2.3 PID控制的特点 (10) 2.4 PID参数整定方法 (11) 第三章双容水箱液位控制系统设计 (12) 3.1双容水箱结构 (12) 3.2系统分析 (12) 3.3双容水箱液位控制系统设计 (15) 3.3.1双容水箱液位控制系统的simulink仿真图 (15) 3.3.2双容水箱液位控制系统的simulink仿真波形 (16) 第四章课程设计总结 (17)

基于组态王6.5的串级PID液位控制系统设计(双容水箱)

本科毕业论文(设计) 题目:基于组态王6.5的串级PID液位控制系统设计学院:自动化工程学院 专业:自动化 姓名: ### 指导教师: ### 2011年 6 月 5 日

Cascade level PID control system based on Kingview 6.5

摘要 开发经济实用的教学实验装置、开拓理论联系实际的实验容,对提高课程教学实验水平,具有重要的实际意义。 就高校学生的实验课程来讲,由于双容水箱液位控制系统本身具有的复杂性和对实时性的高要求,使得在该系统上实现基于不同控制策略的实验容,需要全面掌握自动控制理论及相关知识。 本文通过对当前国外液位控制系统现状的研究,选取了PID控制、串级PID控制等策略对实验系统进行实时控制;通过对实验系统结构的研究,建立了单容水箱和双容水箱实验系统的数学模型,并对系统的参数进行了辨识;利用工业控制软件组态王6.5,并可通用于ADAM模块及板卡等的实现方案,通过多种控制模块在该实验装置上实验实现,验证了实验系统具有良好的扩展性和开放性。 关键词:双容水箱液位控制系统串级PID控制算法组态王6.5 智能调节仪 Abstract It is significant to develop applied experiment device and experiment content which combines theory and practice to improve experimental level of teaching. Based on the current situation of domestic and international level control system, selected the PID control, cascade PID control strategies such as

双容水箱液位控制系统

双容水箱液位控制系统 郭晨雨

目录 摘要 --------------------------------------------------------------------------- 错误!未定义书签。 一.PID控制原理、优越性,对系统性能的改善----------------- 错误!未定义书签。二.被控对象的分析与建模--------------------------------------------- 错误!未定义书签。 三.PID参数整定方法概述---------------------------------------------- 错误!未定义书签。 PID控制器中比例、积分和微分项对系统性能影响分析错误!未定义书签。 比例作用 --------------------------------------------------------- 错误!未定义书签。 积分作用 --------------------------------------------------------- 错误!未定义书签。 微分作用 --------------------------------------------------------- 错误!未定义书签。 PID参数的整定方法 ------------------------------------------------ 错误!未定义书签。 临界比例度法 ------------------------------------------------------- 错误!未定义书签。 PID参数的确定 ----------------------------------------------------- 错误!未定义书签。 四.控制结构 ---------------------------------------------------------------- 错误!未定义书签。 利用根轨迹校正系统 ----------------------------------------------- 错误!未定义书签。 利用伯德图校正系统 ----------------------------------------------- 错误!未定义书签。 调整系统控制量的模糊PID控制方法------------------------- 错误!未定义书签。 模糊控制部分----------------------------------------------------- 错误!未定义书签。 PID控制部分 ---------------------------------------------------- 错误!未定义书签。五.控制器的设计---------------------------------------------------------- 错误!未定义书签。 六.仿真结果与分析--------------------------------------------------------- 错误!未定义书签。 七.结束语---------------------------------------------------------------------- 错误!未定义书签。参考文献 ---------------------------------------------------------------------- 错误!未定义书签。

双容水箱液位流量串级控制系统设计

题目:双容水箱液位流量串级控制系统设计1.设计任务 如图1所示的两个大容量水箱。要求水箱2水位稳定在一定高度,水流量经常波动,作为扰动量存在。试针对该双容水箱系统设计一个液位流量串级控制方案。 水箱2 图1 系统示意图 2.设计要求 1)已知主被控对象(水箱2水位)传递函数W1=1/(100s+1), 副被控对象(流量)传递函数W2=1/(10s+1)。 2)假设液位传感器传递函数为Gm1=1/(0.1s+1),针对该水箱工作过程设计单回路PID调节器,要求画出控制系统方框图及实施方案图,并给出PID参数整定的方法与结果; 3)假设流量传感器传递函数为Gm2=1/(0.1s+1),针对该水箱工作过程设计液位/流量串级控制系统,要求画出控制系统方框图及实施方案图,并给出主、副控制器的结构、参数整定方法及结果; 4)在进口水管流量出现阶跃扰动的情况下,分别对单回路PID控制与串级控制进行仿真试验结果比较,并说明原因。 3. 设计任务分析 (1)液位控制系统是以改变进水大小作为控制手段,目的是控制下水箱液位处于一个稳定值。 (2)单回路控制系统:对于此系统,若采用单回路控制系统控制液位,以液 位主控制信号反馈到控制器PID,直接去控制进水阀门开度,在无扰动情况下可以采用,但对于有扰动情况,由于控制过程的延迟,会导致控制不及时,造成超调量变大,稳定性下降,控制系统很难获得满意效果

(3)串级控制系统采用两套回路,其中内回路起粗调作用,外回路用来完成细调作用。对液位控制系统,内回路以流量作为前导信号控制进水阀开度,在有扰动情况下可以提早反应消除扰动引起的波动,从而使主控对象不受干扰,另外内回路的给定值受外回路控制器的影响,根据改变更改给定值,从而保证负荷扰动时,仍能使系统满足要求 1 ()T s G 2()T s G --主副控制器的传递函数 ()u s G --控制阀的传递函数 ()z s G --执行器的传递函数 1 2()()m m s s G G --主副变送器传递函数 01 ()s G 02()s G --主副对象的传递函数 4.单回路PID 控制的设计 (1)无干扰下的单回路PID 仿真方框图

双容水箱液位定值控制系统实验报告

XXXX大学 电子信息工程学院 专业硕士学位研究生综合实验报告 实验名称:双容水箱液位定值控制系统专业:控制工程 姓名: XXX 学号:XXXXXX 指导教师: XXX 完成时间:XXXXX

实验名称:双容水箱液位定值控制系统 实验目的: 1.通过实验进一步了解双容水箱液位的特性。 2.掌握双容水箱液位控制系统调节器参数的整定与投运方法。 3.研究调节器相关参数的改变对系统动态性能的影响。 4.研究P、PI、PD和PID四种调节器分别对液位系统的控制作用。 5.掌握双容液位定值控制系统采用不同控制方案的实现过程。 实验仪器设备: 1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS需两台计算机)、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个; 4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根; 5.SA-41挂件一个、CP5611专用网卡及网线; 6.SA-42挂件一个、PC/PPI通讯电缆一根。 实验原理: 本实验以中水箱与下水箱串联作为被控对象,下水箱的液位高度为系统的被控制量。要求下水箱液位稳定至给定量,将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制下水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。调节器的参数整定可采用本章第一节所述任意一种整定方法。本实验系统结构图和方框图如图所示。

自动控制课程设计--双容水箱液位串级控制

自动控制课程设计 课程名称:双容水箱液位串级控制 学院:机电与汽车工程学院 专业:电气工程与自动化 学号: 631224060430 姓名:颜馨 指导老师:李斌、张霞 2014/12/30

0摘要 (2) 1引言 (2) 2对象分析和液位控制系统的建立 (2) 2.1水箱模型分析 (2) 2.2阶跃响应曲线法建立模型 (3) 2.3控制系统选择 (3) 2.3.1控制系统性能指标【2】 (3) 2.3.2方案设计 (4) 2.4串级控制系统设计 (4) 2.4.1被控参数的选择 (4) 2.4.2控制参数的选择 (5) 2.4.3主副回路设计 (5) 2.4.4控制器的选择 (5) 3 PID控制算法 (6) 3.1 PID算法 (6) 3.2 PID控制器各校正环节的作用 (6) 4 系统仿真 (7) 4.1.1系统结构图及阶跃响应曲线 (7) 4.2.1 PID初步调整 (10) 4.2.2 PID不同参数响应曲线 (12) 4.3.1 系统阶跃响应输出曲线 (17) 5加有干扰信号的系统参数调整 (20) 6心得体会 (22) 7参考文献 (22)

液位控制是工业生产乃至日常生活中常见的控制,比如锅炉液位,水箱液位等。针对水箱液位控制系统,建立水箱模型并设计PID控制规律,利用Matlab 仿真,整定PID参数,得出仿真曲线,得到整定参数,控制效果很好,实现了水箱液位的控制。 关键词:串级液位控制;PID算法;Matlab;Simulink 1引言 面液位控制可用于生产生活的各方面。如锅炉液位的控制,如果液位过低,可能造成干烧,容易发生事故;炼油过程中精馏塔液位的控制,关系到产品的质量,是保障生产效果和安全的重要问题。因而,液位的控制具有重要的现实意义和广泛的应用前景。本文针对双容水箱,以下水箱液位为主控制对象,上水箱为副控制对象。选择进水阀门为执行机构,基于Matlab建模仿真,采用PID控制算法,整定PID参数,得出合理控制参数。 2对象分析和液位控制系统的建立 2.1水箱模型分析 现以下水箱液位为主调节参数,上水箱液位为副调节参数,构成传统液位串级控制系统,其结构原理图如图1所示。 图1 双容水箱液位控制示意图

双容水箱液位串级控制系统课程设计

双容水箱液位串级控制系统课程设计 1. 设计题目 双容水箱液位串级控制系统设计 2. 设计任务 图1所示双容水箱液位系统,由水泵1、2分别通过支路1、2向上水箱注水,在支路一中设置调节阀,为保持下水箱液位恒定,支路二则通过变频器对下水箱液位施加干扰。试设计串级控制系统以维持下水箱液位的恒定。 1 图1 双容水箱液位控制系统示意图 3. 设计要求 1) 已知上下水箱的传递函数分别为: 111()2()()51p H s G s U s s ?==?+,22221()()1()()()201 p H s H s G s Q s H s s ??===??+。 要求画出双容水箱液位系统方框图,并分别对系统在有、无干扰作用下的动态过程进行仿真(假设干扰为在系统单位阶跃给定下投运10s 后施加的均值为0、方差为0.01的白噪声); 2) 针对双容水箱液位系统设计单回路控制,要求画出控制系统方框图,并分别对控制系统在有、无干扰作用下的动态过程进行仿真,其中PID 参数的整定要求写出整定的依据(选择何种整定方法,P 、I 、D 各参数整定的依据如何),对仿真结果进行评述; 3) 针对该受扰的液位系统设计串级控制方案,要求画出控制系统方框图及实施方案图,对控制系统的动态过程进行仿真,并对仿真结果进行评述。 4.设计任务分析

系统建模基本方法有机理法建模和测试法建模两种,机理法建模主要用于生产过程的机理已经被人们充分掌握,并且可以比较确切的加以数学描述的情况;测试法建模是根据工业过程的实际情况对其输入输出进行某些数学处理得到,测试法建模一般较机理法建模简单,特别是在一些高阶的工业生产对象。对于本设计而言,由于双容水箱的数学模型已知,故采用机理建模法。 在该液位控制系统中,建模参数如下: 控制量:水流量Q ; 被控量:下水箱液位; 控制对象特性: 111() 2()()51 p H s G s U s s ?==?+(上水箱传递函数); 22221()()1()()()201p H s H s G s Q s H s s ??= ==??+(下水箱传递函数)。 控制器:PID ; 执行器:控制阀; 干扰信号:在系统单位阶跃给定下运行10s 后,施加均值为0、方差为0.01的白噪声 为保持下水箱液位的稳定,设计中采用闭环系统,将下水箱液位信号经水位检测器送至控制器(PID ),控制器将实际水位与设定值相比较,产生输出信号作用于执行器(控制阀),从而改变流量调节水位。当对象是单水箱时,通过不断调整PID 参数,单闭环控制系统理论上可以达到比较好的效果,系统也将有较好的抗干扰能力。该设计对象属于双水箱系统,整个对象控制通道相对较长,如果采用单闭环控制系统,当上水箱有干扰时,此干扰经过控制通路传递到下水箱,会有很大的延迟,进而使控制器响应滞后,影响控制效果,在实际生产中,如果干扰频繁出现,无论如何调整PID 参数,都将无法得到满意的效果。考虑到串级控制可以使某些主要干扰提前被发现,及早控制,在内环引入负反馈,检测上水箱液位,将液位信号送至副控制器,然后直接作用于控制阀,以此得到较好的控制效果。 设计中,首先进行单回路闭环系统的建模,系统框图如下: 可发现,在无干扰情况下,整定主控制器的PID 参数,整定好参数后,分别改变P 、I 、D 参数,观察各参数的变化对系统性能的影响;然后加入干扰(白噪声),比较有无干扰两

双容水箱液位模糊控制

双容水箱液位模糊控制 一、实验目的 熟悉双容液位控制系统的组成原理。 通过实验进一步掌握模糊控制原理及模糊控制规则的生成。了解量化因子和比例因子对控 制效果的影响。 掌握解模糊方法及实现。 二、实验设备 实验对双象为TKGK-1双容液位系统 TKGK-1 型实验装置:GK-06、GK-07-2 万用表一只 计算机系统 三、实验原理 图1双容水箱液位模糊控制系统方框图 图1为双容水箱液位控制系统。控制 的目的是使下水箱的液位等于给定值,并能克服来 自系统内部和外部扰动的影响。双容水箱液位系统 如图2,该被控对象具有非线性和时滞性,建立精确的 数学模型比较困难;模糊控制不 仅可以避开复杂的数学模型,通常还能得到比较好性 能指标。模糊控制器的结构图如图3。 模糊控制器的输入为误差和误差变化率:误差e=r- y,误差变化率ec=de/dt ,其

糊语言集合,然后由E和EC模糊语言的的子集和模糊控制规则R (模糊关系矩阵)根据合成推理规则进行模糊决策,这样就可以得到模糊控制向量U,最后再把模糊量解模糊转换为精确量u ,再经D/A转换为模拟量去控制 执行机构动作。 图3模糊控制器组成原理图 模糊量化:根据精确量实际变化范围[a,b],合理选择模糊变量的论域为[-n,n],通过量化因 子k=&-企,将其转换成若干等级的离散论域,如七个等级为{负大,负中,负小,零,正小,正中,正大},简写为{NB,NM,NS,O,PS,PM,PB}确定模糊子集的隶属函数曲线。一般常采用三角形、梯形和正态分布等几种曲线。然后由隶属函数曲线得出模糊变量E、EG U的赋值表。 根据经验,E模糊子集的隶数度函数取正态分布曲线,则赋值表见表 模糊控制规则:模糊控制规则是操作经验和专家知识的总结,是进行模糊推理的依据。在设 计模糊控制规则时,必须考虑控制规则的完备性、交叉性和一致性。既保证对于任意给定的 输入,均有相应的控制规则起作用;控制器的输出值总是由数条控制规则来决定;控制规则 中不存在相互矛盾的规则。在总结专家经验和过程知识的基础上,可以得到如表二的控制规 则表: 模糊推理:模糊推理是模糊控制器的核心,模糊控制系统目前常采用的有:CRI推理的查表法、CRI推理的解析法、Mamdani直接推理法、后件函数法等。本实验可采用Mamdani直接推理法。Mamdani推理法是先求出模糊关系R,再根据输入求出控制量,把 控制量清晰化,可得控制查询表.

液位测量方法

[摘要]该文对磁致伸缩法、核辐射法、光纤传感器法和雷达法等20余种液位测量方法进行了分类归纳,并对各自的原理、特点等进行了较系统的比较分析。 [关键词]液位;测量方法;分析 物位包括液位和料位两类。液位又包括液位信号器和连续液位测量两种。液位信号器是对几个固定位置的液位进行测量,用于液位的上、下限报警等。连续液位测量是对液位连续地进行测量,它广泛地应用于石油、化工、食品加工等诸多领域,具有非常重要的意义。文中对20余种连续液位测量方法进行比较分析。 1 玻璃管法、玻璃板法、双色水位法、人工检尺法 玻璃管法:该方法利用连通器原理工作,如图1—1所示[1]。图中1-被测容器;2-玻璃管;3-指示标度尺;4、5-阀;6、7-连通管。液位直接从指示标度尺读出。 玻璃板法:玻璃板可通过连通器安装,也可在容器壁上开孔安装,并可串联几段玻璃板以增大量程。液位数值直接从玻璃板刻度尺读出。 双色水位计法:该方法利用光学原理,使水显示绿色,而使水蒸汽显示红色,从而指示出水位[2]。 人工检尺法:该方法用于测量油罐液位。测量时,测量员把量油尺投入油品中,并在尺砣与罐底接触时提起量油尺。根据量油尺上的油品痕迹,读出油面高度;根据量油尺末端试水膏颜色的变化确定水垫层的高度,从而确定油高和水高[3]。 以上4种方法都是人工测量方法,具有测量简单、可靠性高、直观、成本低的优点。 2 吹气法、差压法、HTG法 吹气法:该方法的工作原理如图2—1所示[4]。图中,1-过滤器;2-减压阀;3-节流元件;4-转子流量计;5-变送器。因吹气管内压力近似等于液柱的静压力,故P=ρgH 式中,ρ-液体密度;H-液位。故由静压力P即可测量液位H。吹气法适用于测量腐蚀性强、有悬浊物的液体,主要应用在测量精度要求不高的场合。 差压法:该方法的工作原理如图2-2所示[4]。图中,1、2-阀门;3-差压变送器。对于开口容器或常压容器,阀门1及气相引压管道可以省掉。压力差与液位的关系为ΔP=P2-P1=ρgH 式中:ΔP-变送器正、负压室压力差;P2、P1-引压管压力;H-液位。差压变送器将压力差变换为4~20 mA的直流信号。如果压力处于测量范围下限时对应的输出信号大于或小于4 mA,则都需要采用调整迁移弹簧等零点迁移技术,使之等于4 mA。 HTG法:该方法应用于油罐差压液位测量中,如图2—3所示。图中:P1、P2、P3-高精度电子变送器以便远距离传输测量信号。 浮筒法:该方法采用中间带孔的磁浮筒作为液位敏感元件,如图3—1所示。不锈钢套管从浮筒中间孔穿过,固定在罐顶和罐底之间。液位变化带动空心磁浮筒(内藏永久磁铁)沿套管上下移动,并吸引套管内的磁铁沿套管内壁上下移动,二次仪器|仪表根据磁铁的移动量计算出液位。 浮球法:该方法利用杠杆原理工作,如图3—2所示[4]。图中:1-浮球;2-连杆;3-转轴;4-平衡重;5-杠杆。浮球跟随液位变化而绕转轴旋转,带动转轴上的指针转动,并与杠杆另一端的平衡重平衡,同时在刻度盘上指示出液位数值。浮球法有内浮球式和外浮球式两种,如图3—2所示。浮球法主要用于测量温度高、粘度大的液位,但量程较小。 伺服法:该方法采用波动积分电路,消除抖动、延长寿命、提高液位测量精度。现代伺服液位仪的测量精度较高,已达到40 m量程内小于1 mm的精度,且一般都具有测量密度分布和平均密度的功能。 沉筒法:沉筒的位置随着液位的变化而变化,但其变化量并不与液位变化量相等。在图3-3a中[4],液位与浮筒位置的关系如下: 上式中:ΔH-液位变化量;C-弹簧的弹性系数;A-沉筒截面积;ρ液体密度;ΔX-沉筒位置变化量。通常情况下,浮筒位置变化量ΔX远小于液位变化量ΔH。图3—3b是扭力管式沉筒法原理[4],图中:1-沉筒;2-杠杆;3-扭力管;4-芯轴;5-外壳。沉筒位置随液位变化而变化,在杠杆的作用下,扭力管芯轴的扭角发生变化,二次仪表根据扭角的变化量计算出液位。

双容水箱液位PID控制实验

《过程控制系统设计》课程实验报告 2018年5月9日

实验二双容水箱液位PID控制实验 一、实验目的 1、学习双容水箱液位PID 控制系统的组成和原理; 2、进一步熟悉PID 的调节规律; 3、进一步熟悉PID 控制器参数的整定方法。 二、实验设备 1、四水箱实验系统DDC 实验软件; 2、PC 机(Window XP 操作系统); 3、CS4000型过程控制实验装置。 三、实验原理 1、控制系统的组成及原理 单回路调节系统,一般是指用一个控制器来控制一个被控对象,其中控制器只接收一个测量信号,其输出也只控制一个执行机构。双容水箱液位PID 控制系统也是一种单回路调节系统,典型的双容水箱液位控制系统如图 1 所示: 图 1 双容水箱液位PID 控制系统的方框图 在双容水箱液位PID 控制系统中,以液位为被控量。其中,测量电路主要功能是测量对象的液位并对其进行归一化等处理;PID 控制器是整个控制系统的核心,它根据设定值和测量值的偏差信号来进行调节,从而控制双容水箱的液位达到期望的设定值。 3、PID 控制器参数的实验整定方法 双容水箱液位PID 控制器参数整定,是为了得到某种意义下的最佳过渡过程。我们这里选用较通用的“最佳”标准,即在阶跃扰动作用下,先满足需要的衰减率,然后尽量协调准确性和快速性要求。 四、实验内容 在手动情况下进入初始稳态(如图3),然后根据水箱的实际液位情况进行了一次下水箱阶跃响应测试,最终达到平衡状态,如图4所示。根据两点法求K、T、τ参数,并用响应曲线法整定出对应的控制器参数。将整定好的参数投入设备,进行闭环自动控制,并微调参数,记录分析控制系统的响应曲线。

浮筒液位计、界面计的异同及其维护

1 浮筒液位计、界面计的异同及其维护 黄金潮 高鸿毅 林清萍 (上海信东仪器仪表有限公司,上海 201615) 摘 要: 主要介绍了扭矩管式浮筒液位计、界面计的异同、安装及其维护要点 关键词: 液位 界面 安装 维护 0 引言 由于扭矩管式浮筒液位计、界面计比弹簧式浮筒液位计、界面计有更好的稳定性、可靠性、准确性,因此广泛地被工业测量所选用。而上海信东仪器仪表有限公司引进日本东京计装株式会社专利技术在上海制造的FST-3000系列智能扭矩管式浮筒(界面)计以其独特的优点,广泛应用于石化、冶金等行业,深受操作人员及仪表维护人员的欢迎。 1 扭矩管式浮筒液位计、界面计的异同点 1.1 相同点 ① 工作原理完全一样(图1)。 ② 结构、软硬件完全一样(图1)。 ③ 回差基本上一致。 ④ 不挂浮筒或不加以挂重时,显示都大于100%。 ⑤ 两者均有温度自动补偿功能 图1 工作原理断面构造图 1.2 不同点 不同点如表1所示。

2 表1 更细、更轻、更薄 15° 机罩挂钩 浮筒挂钩 机罩挂钩 浮筒挂钩(螺旋状)将浮筒挂钩(螺旋状)的开口端插入机罩挂钩 旋转浮筒使浮筒挂钩正确地挂入机罩挂钩上 图2 浮筒安装示意图 2 浮筒的安装 ①安装时必须轻拿轻放,避免强力冲击、碰撞。

3 ② 扭矩管部分不能脚踩、锤砸等。 ③ 严禁划伤法兰密封水纹线。 ④ 必须保证上法兰水平安装,同时必须保证外套筒严格垂直地安装在接管上。 ⑤ 注意清除外套筒内的包装物,如海绵等。 ⑥ 安装浮筒时,先将浮筒放入外套筒内,将上法兰倾斜约15°,旋转浮筒挂钩,使之与机罩内的挂环连接,安装示意图如图2所示。 ⑦ 浮筒挂钩连接好以后,严禁将挂钩强行闭合。 ⑧ 采用加力扳手紧固螺栓,避免强烈振动损坏仪表。 3 自我诊断 由于仪表具有自我诊断功能,因而为排除故障提供了方便。常见故障诊断情况如表2所示。 表2 出错码 原因 说明 E1 电源异常 仪表回路端电压由于负载电阻(含电缆电阻)太大而低于10V 以下时发生 E2 温度检测器异常 检测温度超出-200℃~+400℃范围时发生(检测器破坏、缆线断线、接插件接触不良) E3 角度变换器异常 超出角度变换器使用范围时发生; 霍尔IC 元件破损或接插件接触不良或断线时发生。 E4 A/D 转换器异常 AMP 放大板不良时发生 E5 CPU 异常 CPU/显示线路板不良时发生 E6 EEPROM 电可擦可编程只读存储器异常 无数据输入时发生; CPU 板与放大板之间的接插件接触不良时发生; AMP 放大板不良时发生。 4 维护 为了设备运转自如,建议在适当的时间间隔内进行有关维护工作。 4.1 直观检查 观察设备并检验是否有破损、腐蚀等现象,若发现问题,需进行适当的零件更换。 4.2 检查电子室和端子箱的内部 打开电子室和端子箱的外盖,检查其内部是否有水滴或其它杂物,密封圈的密封性能是否可靠,确认电缆入口的密封是否完好。 4.3 检查套筒和浮筒 若套筒内有沉积物,将会引起设备失灵,因此建议定期检查并进行清洗等维护工作。若浮筒上有附着物时,建议对其进行清洗,否则将会产生测量误差。 若发现浮筒上有腐蚀现象,则需更换浮筒。 参考文献 1 黄金潮,高鸿毅,林清萍.浮筒式液位计的产品特性与典型应用,中国石化自动化市场 2007-2;37-39.

双容水箱液位串级控制系统_毕业设计

双容水箱液位串级控制系统_毕业设计 1. 设计题目 双容水箱液位串级控制系统设计 2. 设计任务 图1所示双容水箱液位系统,由水泵1、2分别通过支路1、2向上水箱注水,在支路一中设置调节阀,为保持下水箱液位恒定,支路二则通过变频器对下水箱液位施加干扰。试设计串级控制系统以维持下水箱液位的恒定。 1 图1 双容水箱液位控制系统示意图 3. 设计要求 1) 已知上下水箱的传递函数分别为: 111()2()() 51 p H s G s U s s ?= = ?+,22221()()1()() () 201 p H s H s G s Q s H s s ??= = = ??+。 要求画出双容水箱液位系统方框图,并分别对系统在有、无干扰作用下的动态过程进行仿真(假设干扰为在系统单位阶跃给定下投运10s 后施加的均值为0、方差为0.01的白噪声); 2) 针对双容水箱液位系统设计单回路控制,要求画出控制系统方框图,并分别对控制系统在有、无干扰作用下的动态过程进行仿真,其中PID 参数的整定要求写出整定的依据(选择何种整定方法,P 、I 、D 各参数整定的依据如何),对仿真结果进行评述; 3) 针对该受扰的液位系统设计串级控制方案,要求画出控制系统方框图及实施方案图,对控制系统的动态过程进行仿真,并对仿真结果进行评述。 4.设计任务分析 系统建模基本方法有机理法建模和测试法建模两种,机理法建模主要用于生产过程的机

理已经被人们充分掌握,并且可以比较确切的加以数学描述的情况;测试法建模是根据工业过程的实际情况对其输入输出进行某些数学处理得到,测试法建模一般较机理法建模简单,特别是在一些高阶的工业生产对象。对于本设计而言,由于双容水箱的数学模型已知,故采用机理建模法。 在该液位控制系统中,建模参数如下: 控制量:水流量Q ; 被控量:下水箱液位; 控制对象特性: 111()2()() 51 p H s G s U s s ?= = ?+(上水箱传递函数); 22221()()1()() () 201 p H s H s G s Q s H s s ??= = = ??+(下水箱传递函数)。 控制器:PID ; 执行器:控制阀; 干扰信号:在系统单位阶跃给定下运行10s 后,施加均值为0、方差为0.01的白噪声 为保持下水箱液位的稳定,设计中采用闭环系统,将下水箱液位信号经水位检测器送至控制器(PID ),控制器将实际水位与设定值相比较,产生输出信号作用于执行器(控制阀),从而改变流量调节水位。当对象是单水箱时,通过不断调整PID 参数,单闭环控制系统理论上可以达到比较好的效果,系统也将有较好的抗干扰能力。该设计对象属于双水箱系统,整个对象控制通道相对较长,如果采用单闭环控制系统,当上水箱有干扰时,此干扰经过控制通路传递到下水箱,会有很大的延迟,进而使控制器响应滞后,影响控制效果,在实际生产中,如果干扰频繁出现,无论如何调整PID 参数,都将无法得到满意的效果。考虑到串级控制可以使某些主要干扰提前被发现,及早控制,在内环引入负反馈,检测上水箱液位,将液位信号送至副控制器,然后直接作用于控制阀,以此得到较好的控制效果。 设计中,首先进行单回路闭环系统的建模,系统框图如下: 在无干扰情况下,整定主控制器的PID 参数,整定好参数后,分别改变P 、I 、D 参数,观察各参数的变化对系统性能的影响;然后加入干扰(白噪声),比较有无干扰两种情况下

双容水箱串级PID控制实验液位

双容水箱液位串级PID控制实验 一、实验目的 1、进一步熟悉PID调节规律 2、学习串级PID控制系统的组成和原理 3、学习串级PID控制系统投运和参数整定 二、实验设备 1、四水箱实验系统DDC实验软件 2、PC机(Window 2000 Professional 操作系统) 三、实验原理 1、控制系统的组成及原理 一个控制器的输出用来改变另一个控制器的设定值,这样连接起来的两个控制器称为“串级”控制器。两个控制器都有各自的测量输入,但只有主控制器具有自 己独立的设定值,只有副控制器的输出信号送给被控对象,这样组成的系统称为串 级控制系统。本仿真系统的双容水箱串级控制系统如下图所示: 图17-1 本仿真系统的双容水箱串级控制系统框图 串级控制器术语说明 主变量:y1称主变量。使它保持平稳使控制的主要目的 副变量:y2称副变量。它是被控制过程中引出的中间变量 副对象:上水箱 主对象:下水箱 主控制器:PID控制器1,它接受的是主变量的偏差e1,其输出是去改变副控

制器的设定值 副控制器:PID控制器2,它接受的是副变量的偏差e2,其输出去控制阀门 副回路:处于串级控制系统内部的,由PID控制器2和上水箱组成的回路 主回路:若将副回路看成一个以主控制器输出r2为输入,以副变量y2为输出的等效环节,则串级系统转化为一个单回路,即主回路。 串级控制系统从总体上看,仍然是一个定值控制系统,因此,主变量在干扰作用下的过渡过程和单回路定值控制系统的过渡过程具有相同的品质指标。但是串级控制系统和单回路系统相比,在结构上从对象中引入一个中间变量(副变量)构成了一个回路,因此具有一系列的特点。串级控制系统的主要优点有: 1)副回路的干扰抑制作用 发生在副回路的干扰,在影响主回路之前即可由副控制器加以校正2)主回路响应速度的改善 副回路的存在,使副对象的相位滞后对控制系统的影响减小,从而改善了主回路的相应速度 3)鲁棒性的增强 串级系统对副对象及控制阀特性的变化具有较好的鲁棒性 4)副回路控制的作用 副回路可以按照主回路的需要对于质量流和能量流实施精确的控制由此可见,串级控制是改善调节过程极为有效的方法,因此得到了广泛的应用。 2、串级PID控制系统投运 串级控制系统和简单控制系统的投运要求一样,必须保证无扰动切换,采用先副回路后主回路的投运方式。这里以我们的串级控制系统为例,给出具体的操作步骤: A.将主、副控制器的切换开关都置于手动位置,副回路处于内给定 B.用副控制器的输出控制阀门,使主变量接近设定值,当工况比较平稳时, 将副控制器设成自动——无扰动切换,因为手动状态时副控制器的设定值 跟踪副变量 C.手动设定主控制器的输出值等于副控制器的设定值,当工况比较平稳时, 将主控制器设置成自动——无扰动切换,因为手动状态时副控制器的设定 值跟踪副变量 D.串级两个控制器,将副回路控制器设置成“远端模式”,这样主控制器的

相关主题
文本预览
相关文档 最新文档