当前位置:文档之家› 数据结构图的基本运算

数据结构图的基本运算

数据结构图的基本运算
数据结构图的基本运算

图的基本运算

1.SeqQueue.h头文件:

#include

using namespace std;

template

class SeqQueue

{

public:

SeqQueue(int mSize);

~SeqQueue(){delete []q;}

bool IsEmpty() const {return front==rear;}

bool IsFull() const{return (rear+1)%maxSize==front;} bool Front(T &x)const;

bool EnQueue(T x); //从队尾添加元素

bool DeQueue(); //从对头删除元素

void Clear(){front=rear=0;}

private:

int front ,rear;

int maxSize;

T *q;

};

template

SeqQueue::SeqQueue(int mSize)

{

maxSize=mSize;

q=new T[maxSize];

front=rear=0;

}

template

bool SeqQueue::Front(T &x)const

{

if(IsEmpty()){

cout<<"Empty"<

}

x=q[(front+1)%maxSize];

return true;

}

template

bool SeqQueue::EnQueue(T x)

{

if(IsFull()){

cout<<"Full"<

}

rear=(rear+1)%maxSize;

q[rear]=x;

return true;

}

template

bool SeqQueue::DeQueue()

{

if(IsEmpty()){

cout<<"Undetflow"<

}

front=(front+1)%maxSize;

return true;

}

2.邻接矩阵.h头文件

#include

using namespace std;

enum ResultCode {Overflow,Underflow,Success,Failure,Dulplicate,NotPresent};

template

class Graph

{

public:

virtual ResultCode Insert(int u,int v,T &w)=0;

virtual ResultCode Remove(int u,int v)=0;

virtual bool Exist(int u,int v)const=0;

virtual int Vertices()const{return n;}

protected:

int n,e;

};

template

class MGraph:public Graph

{

public:

MGraph(int mSize,const T &noedg);

~MGraph();

ResultCode Insert(int u,int v,T &w);

ResultCode Remove(int u,int v);

bool Exist(int u,int v)const;

void Visit()

{

for(int i=0;i

{

for(int j=0;j

cout<

cout<

}

}

void BFS();

void DFS();

protected:

T **a;

T noEdge;

void BFS(int v,bool *visited);

void DFS(int v,bool *visited);

};

template

void MGraph::BFS()

{

bool *visited=new bool[n];

for(int i=0;i

visited[i]=false;

for(i=0;i

if(!visited[i])

BFS(i,visited);

delete []visited;

}

template

void MGraph::DFS()

{

bool *visited=new bool[n];

for(int i=0;i

visited[i]=false;

for(i=0;i

if(!visited[i])

DFS(i,visited);

delete []visited;

}

template

void MGraph::BFS(int v,bool *visited) {

SeqQueue q(n);

visited[v]=true;

cout<<" "<

q.EnQueue(v);

while(!q.IsEmpty())

{

q.Front(v);

q.DeQueue();

for(int i=0;i

if(a[v][i]!=noEdge && !visited[i])

{

visited[i]=true;

cout<<" "<

q.EnQueue(i);

}

}

}

template

void MGraph::DFS(int v,bool *visited)

{

visited[v]=true;

cout<<" "<

for(int j=0;j

if(a[v][j]!=noEdge&&!visited[j])

DFS(j,visited);

}

template /// 构造函数和析构函数MGraph::MGraph(int mSize,const T &noedg) {

int i,j;

n=mSize;

e=0;

noEdge=noedg;

a=new T*[n];

for( i=0;i

{

a[i]=new T[n];

for( j=0;j

a[i][j]=noEdge;

a[i][i]=0;

}

}

template

MGraph::~MGraph()

{

for(int i=0;i

delete []a;

}

//边的搜索、插入、删除

template

bool MGraph::Exist(int u,int v)const

{

if(u<0||v<0||v>n-1||u>n-1||u==v||a[u][v]==noEdge) return false;

return true;

}

template

ResultCode MGraph::Insert(int u,int v,T &w)

{

if(u<0||v<0||u>n-1||v>n-1||u==v)

return Failure;

if(a[u][v]!=noEdge)

return Dulplicate;

a[u][v]=w;

e++;

return Success;

}

template

ResultCode MGraph::Remove(int u,int v)

{

if(u<0||v<0||u>n-1||v>n-1||u==v)

return Failure;

if(a[u][v]==noEdge) return NotPresent;

a[u][v]=noEdge;

e--;

return Success;

}

3.main.cpp文件

#include"邻接矩阵.h"

#include"SeqQueue.h"

int main()

{

int quan=1;

MGraph mg(12,0);

mg.Insert(0,1,quan);

mg.Insert(0,11,quan);

mg.Insert(0,10,quan);

mg.Insert(1,2,quan);

mg.Insert(1,5,quan);

mg.Insert(1,11,quan);

mg.Insert(11,10,quan);

mg.Insert(10,6,quan);

mg.Insert(10,9,quan);

mg.Insert(2,5,quan);

mg.Insert(2,3,quan);

mg.Insert(5,6,quan);

mg.Insert(5,4,quan);

mg.Insert(3,4,quan);

mg.Insert(4,7,quan);

mg.Insert(7,8,quan);

mg.Insert(6,7,quan);

mg.Insert(6,9,quan);

mg.Insert(9,8,quan);

mg.Visit();

cout<

mg.DFS();

cout<

mg.BFS();

cout<

return 0;

}

数据结构实验报告

数据结构实验报告 一.题目要求 1)编程实现二叉排序树,包括生成、插入,删除; 2)对二叉排序树进行先根、中根、和后根非递归遍历; 3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。 4)分别用二叉排序树和数组去存储一个班(50人以上)的成员信息(至少包括学号、姓名、成绩3项),对比查找效率,并说明在什么情况下二叉排序树效率高,为什么? 二.解决方案 对于前三个题目要求,我们用一个程序实现代码如下 #include #include #include #include "Stack.h"//栈的头文件,没有用上 typedefintElemType; //数据类型 typedefint Status; //返回值类型 //定义二叉树结构 typedefstructBiTNode{ ElemType data; //数据域 structBiTNode *lChild, *rChild;//左右子树域 }BiTNode, *BiTree; intInsertBST(BiTree&T,int key){//插入二叉树函数 if(T==NULL) { T = (BiTree)malloc(sizeof(BiTNode)); T->data=key; T->lChild=T->rChild=NULL; return 1; } else if(keydata){ InsertBST(T->lChild,key); } else if(key>T->data){ InsertBST(T->rChild,key); } else return 0; } BiTreeCreateBST(int a[],int n){//创建二叉树函数 BiTreebst=NULL; inti=0; while(i

数据结构与算法基础知识总结

数据结构与算法基础知识总结 1 算法 算法:是指解题方案的准确而完整的描述。 算法不等于程序,也不等计算机方法,程序的编制不可能优于算法的设计。 算法的基本特征:是一组严谨地定义运算顺序的规则,每一个规则都是有效的,是明确的,此顺序将在有限的次数下终止。特征包括: (1)可行性; (2)确定性,算法中每一步骤都必须有明确定义,不充许有模棱两可的解释,不允许有多义性; (3)有穷性,算法必须能在有限的时间内做完,即能在执行有限个步骤后终止,包括合理的执行时间的含义; (4)拥有足够的情报。 算法的基本要素:一是对数据对象的运算和操作;二是算法的控制结构。 指令系统:一个计算机系统能执行的所有指令的集合。 基本运算和操作包括:算术运算、逻辑运算、关系运算、数据传输。 算法的控制结构:顺序结构、选择结构、循环结构。 算法基本设计方法:列举法、归纳法、递推、递归、减斗递推技术、回溯法。 算法复杂度:算法时间复杂度和算法空间复杂度。 算法时间复杂度是指执行算法所需要的计算工作量。 算法空间复杂度是指执行这个算法所需要的内存空间。 2 数据结构的基本基本概念 数据结构研究的三个方面: (1)数据集合中各数据元素之间所固有的逻辑关系,即数据的逻辑结构; (2)在对数据进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构;(3)对各种数据结构进行的运算。 数据结构是指相互有关联的数据元素的集合。 数据的逻辑结构包含: (1)表示数据元素的信息; (2)表示各数据元素之间的前后件关系。 数据的存储结构有顺序、链接、索引等。 线性结构条件:

(1)有且只有一个根结点; (2)每一个结点最多有一个前件,也最多有一个后件。 非线性结构:不满足线性结构条件的数据结构。 3 线性表及其顺序存储结构 线性表由一组数据元素构成,数据元素的位置只取决于自己的序号,元素之间的相对位置是线性的。 在复杂线性表中,由若干项数据元素组成的数据元素称为记录,而由多个记录构成的线性表又称为文件。 非空线性表的结构特征: (1)且只有一个根结点a1,它无前件; (2)有且只有一个终端结点an,它无后件; (3)除根结点与终端结点外,其他所有结点有且只有一个前件,也有且只有一个后件。结点个数n称为线性表的长度,当n=0时,称为空表。 线性表的顺序存储结构具有以下两个基本特点: (1)线性表中所有元素的所占的存储空间是连续的; (2)线性表中各数据元素在存储空间中是按逻辑顺序依次存放的。 ai的存储地址为:adr(ai)=adr(a1)+(i-1)k,,adr(a1)为第一个元素的地址,k代表每个元素占的字节数。 顺序表的运算:插入、删除。(详见14--16页) 4 栈和队列 栈是限定在一端进行插入与删除的线性表,允许插入与删除的一端称为栈顶,不允许插入与删除的另一端称为栈底。 栈按照“先进后出”(filo)或“后进先出”(lifo)组织数据,栈具有记忆作用。用top表示栈顶位置,用bottom表示栈底。 栈的基本运算:(1)插入元素称为入栈运算;(2)删除元素称为退栈运算;(3)读栈顶元素是将栈顶元素赋给一个指定的变量,此时指针无变化。 队列是指允许在一端(队尾)进入插入,而在另一端(队头)进行删除的线性表。rear指针指向队尾,front指针指向队头。 队列是“先进行出”(fifo)或“后进后出”(lilo)的线性表。 队列运算包括(1)入队运算:从队尾插入一个元素;(2)退队运算:从队头删除一个元素。循环队列:s=0表示队列空,s=1且front=rear表示队列满

基本数据结构及其运算习题

第二章基本数据结构及其运算 一、单项选择题 1.数据的基本单位是( B ) A.数据B.数据元素C.数据项D.数据结构 2.在数据结构中,构成数据元素的最小单位称为(D)A.字符B.关键字C.数据元素 D.数据项 3.数据在计算机内的存储形式称为数据的( D )A.算法描述B.数据类型 C.逻辑结构D.物理结构 4.数据的逻辑结构可分为(C) A.顺序结构和链式结构B.简单结构和复杂结构C.线性结构和非线性结构D.动态结构和静态结构5.顺序表中的每个元素占m个字节,第一个元素的存储地址为LOC(1),则任意1个元素i的地址为( B ) A.LOC(1)+i*m B.LOC(1)+(i-1)*m C.LCO(1)+(i+1)*m D.(i-1)*m 6.线性表若采用链表存储,其(D) A.所有结点的地址必须是连续的 B.部分结点的地址必须是连续的 C.所有结点的地址一定不连续 D.所有结点的地址连续、不连续都可以 7.线性表在采用链式存储时,其地址( C )A.必须是连续的B.一定是不连续的 C.连续不连续都可以D.部分是连续的

8.下列不属于线性结构的是( C )。 A.单链表B.队列 C.二叉树D.数组 9.链表不具有的特点是( A) A.可随机访问任一元素B.插入删除不需要移动元素 C.不必事先估计存储空间D.所需空间与线性表的长度成正比 10.数据结构反映了数据元素之间的结构关系,链表是一种( D)。 A.顺序存储线性表B.非顺序存储非线性表 C.顺序存储非线性表D.非顺序存储线性表 11.在单链表表示的线性表中,可以从( A )。 A.第一个结点访问到所有结点 B.某个结点访问到所有结点 C.某个结点访问到该结点的所有前趋结点 D.最后一个结点访问到所有结点 12.在一个单链表中,已知指针q所指向的结点是指针p所指向的结点的前驱结点,若在指针q和p所指向的两个结点之间插入指针s指向的结点,则执行( C )。 A.s->link=p->link; p->link=s; B.p->link=s->link; s->link=p; C.q->link=s; s->link=p; D.p->link=s; s->link=q; 13.长度为n的顺序存储的线性表,设在任何位置上删除一个元素的概率相等,则删除一个元素时平均要移动的元素

数据结构实验十一:图实验

一,实验题目 实验十一:图实验 采用邻接表存储有向图,设计算法判断任意两个顶点间手否存在路径。 二,问题分析 本程序要求采用邻接表存储有向图,设计算法判断任意两个顶点间手否存在路径,完成这些操作需要解决的关键问题是:用邻接表的形式存储有向图并输出该邻接表。用一个函数实现判断任意两点间是否存在路径。 1,数据的输入形式和输入值的范围:输入的图的结点均为整型。 2,结果的输出形式:输出的是两结点间是否存在路径的情况。 3,测试数据:输入的图的结点个数为:4 输入的图的边得个数为:3 边的信息为:1 2,2 3,3 1 三,概要设计 (1)为了实现上述程序的功能,需要: A,用邻接表的方式构建图 B,深度优先遍历该图的结点 C,判断任意两结点间是否存在路径 (2)本程序包含6个函数: a,主函数main() b,用邻接表建立图函数create_adjlistgraph() c,深度优先搜索遍历函数dfs() d,初始化遍历数组并判断有无通路函数dfs_trave() e,输出邻接表函数print() f,释放邻接表结点空间函数freealgraph() 各函数间关系如右图所示: 四,详细设计 (1)邻接表中的结点类型定义:

typedef struct arcnode{ int adjvex; arcnode *nextarc; }arcnode; (2)邻接表中头结点的类型定义: typedef struct{ char vexdata; arcnode *firstarc; }adjlist; (3)邻接表类型定义: typedef struct{ adjlist vextices[max]; int vexnum,arcnum; }algraph; (4)深度优先搜索遍历函数伪代码: int dfs(algraph *alg,int i,int n){ arcnode *p; visited[i]=1; p=alg->vextices[i].firstarc; while(p!=NULL) { if(visited[p->adjvex]==0){ if(p->adjvex==n) {flag=1; } dfs(alg,p->adjvex,n); if(flag==1) return 1; } p=p->nextarc; } return 0; } (5)初始化遍历数组并判断有无通路函数伪代码: void dfs_trave(algraph *alg,int x,int y){ int i; for(i=0;i<=alg->vexnum;i++) visited[i]=0; dfs(alg,x,y); } 五,源代码 #include "stdio.h" #include "stdlib.h" #include "malloc.h" #define max 100 typedef struct arcnode{ //定义邻接表中的结点类型 int adjvex; //定点信息 arcnode *nextarc; //指向下一个结点的指针nextarc }arcnode; typedef struct{ //定义邻接表中头结点的类型 char vexdata; //头结点的序号 arcnode *firstarc; //定义一个arcnode型指针指向头结点所对应的下一个结点}adjlist; typedef struct{ //定义邻接表类型 adjlist vextices[max]; //定义表头结点数组

数据结构实验---图的储存与遍历

数据结构实验---图的储存与遍历

学号: 姓名: 实验日期: 2016.1.7 实验名称: 图的存贮与遍历 一、实验目的 掌握图这种复杂的非线性结构的邻接矩阵和邻接表的存储表示,以及在此两种常用存储方式下深度优先遍历(DFS)和广度优先遍历(BFS)操作的实现。 二、实验内容与实验步骤 题目1:对以邻接矩阵为存储结构的图进行DFS 和BFS 遍历 问题描述:以邻接矩阵为图的存储结构,实现图的DFS 和BFS 遍历。 基本要求:建立一个图的邻接矩阵表示,输出顶点的一种DFS 和BFS 序列。 测试数据:如图所示 题目2:对以邻接表为存储结构的图进行DFS 和BFS 遍历 问题描述:以邻接表为图的存储结构,实现图的DFS 和BFS 遍历。 基本要求:建立一个图的邻接表存贮,输出顶点的一种DFS 和BFS 序列。 测试数据:如图所示 V0 V1 V2 V3 V4 三、附录: 在此贴上调试好的程序。 #include #include #include V0 V1 V4 V3 V2 ??? ? ??? ? ????????=010000000101010 1000100010A 1 0 1 0 3 3 4

#define M 100 typedef struct node { char vex[M][2]; int edge[M ][ M ]; int n,e; }Graph; int visited[M]; Graph *Create_Graph() { Graph *GA; int i,j,k,w; GA=(Graph*)malloc(sizeof(Graph)); printf ("请输入矩阵的顶点数和边数(用逗号隔开):\n"); scanf("%d,%d",&GA->n,&GA->e); printf ("请输入矩阵顶点信息:\n"); for(i = 0;in;i++) scanf("%s",&(GA->vex[i][0]),&(GA->vex[i][1])); for (i = 0;in;i++) for (j = 0;jn;j++) GA->edge[i][j] = 0; for (k = 0;ke;k++) { printf ("请输入第%d条边的顶点位置(i,j)和权值(用逗号隔开):",k+1); scanf ("%d,%d,%d",&i,&j,&w); GA->edge[i][j] = w; } return(GA); } void dfs(Graph *GA, int v) { int i; printf("%c%c\n",GA->vex[v][0],GA->vex[v][1]); visited[v]=1;

数据结构 图的基本操作实现

实验五图的遍历及其应用实现 一、实验目的 1.熟悉图常用的存储结构。 2.掌握在图的邻接矩阵和邻接表两种结构上实现图的两种遍历方法实现。 3.会用图的遍历解决简单的实际问题。 二、实验内容 [题目一] :从键盘上输入图的顶点和边的信息,建立图的邻接表存储结构,然后以深度优先搜索和广度优先搜索遍历该图,并输出起对应的遍历序列. 试设计程序实现上述图的类型定义和基本操作,完成上述功能。该程序包括图类型以及每一种操作的具体的函数定义和主函数。 提示: 输入示例 上图的顶点和边的信息输入数据为: 5 7 DG A B C D E AB AE BC CD DA DB EC [题目二]:在图G中求一条从顶点 i 到顶点 s 的简单路径 [题目三]:寻求最佳旅游线路(ACM训练题) 在一个旅游交通网中,判断图中从某个城市A到B是否存在旅游费用在s1-s2元的旅游线路,为节省费用,不重游故地。若存在这样的旅游线路则并指出该旅游线路及其费用。 输入: 第一行:n //n-旅游城市个数 第2行:A B s1 s2 //s1,s2-金额数 第3行---第e+2行 ( 1≤e≤n(n-1)/2 ) 表示城市x,y之间的旅行费用,输入0 0 0 表示结束。

输出: 第一行表示 A到B的旅游线路景点序列 第二行表示沿此线路,从A到B的旅游费用 设计要求: 1、上机前,认真学习教材,熟练掌握图的构造和遍历算法,图的存储结 构也可使用邻接矩阵等其他结构. 2、上机前,认真独立地写出本次程序清单,流程图。图的构造和遍历算法 分别参阅讲义和参考教材事例 图的存储结构定义参考教材 相关函数声明: 1、/* 输入图的顶点和边的信息,建立图*/ void CreateGraph(MGraph &G) 2、/* 深度优先搜索遍历图*/ void DFSTraverse(Graph G, int v) 3、/*广度优先搜索遍历图 */ void BFSTraverse(Graph G, int v)4、 4、/* 其他相关函数 */…… 三、实验步骤 ㈠、数据结构与核心算法的设计描述 ㈡、函数调用及主函数设计 (可用函数的调用关系图说明) ㈢程序调试及运行结果分析 ㈣实验总结 四、主要算法流程图及程序清单 1、主要算法流程图: 2、程序清单 (程序过长,可附主要部分)

数据结构实验报告图实验

邻接矩阵的实现 1. 实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现2. 实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历3.设计与编码MGraph.h #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; }

int vertexNum, arcNum; }; #endif MGraph.cpp #include using namespace std; #include "MGraph.h" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0; for(k = 0; k < arcNum; k++) { cout << "Please enter two vertexs number of edge: " cin >> i >> j; arc[i][j] = 1; arc[j][i] = 1; } }

(完整版)非常实用的数据结构知识点总结

数据结构知识点概括 第一章概论 数据就是指能够被计算机识别、存储和加工处理的信息的载体。 数据元素是数据的基本单位,可以由若干个数据项组成。数据项是具有独立含义的最小标识单位。 数据结构的定义: ·逻辑结构:从逻辑结构上描述数据,独立于计算机。·线性结构:一对一关系。 ·线性结构:多对多关系。 ·存储结构:是逻辑结构用计算机语言的实现。·顺序存储结构:如数组。 ·链式存储结构:如链表。 ·索引存储结构:·稠密索引:每个结点都有索引项。 ·稀疏索引:每组结点都有索引项。 ·散列存储结构:如散列表。 ·数据运算。 ·对数据的操作。定义在逻辑结构上,每种逻辑结构都有一个运算集合。 ·常用的有:检索、插入、删除、更新、排序。 数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。 ·结构类型:由用户借助于描述机制定义,是导出类型。 抽象数据类型ADT:·是抽象数据的组织和与之的操作。相当于在概念层上描述问题。 ·优点是将数据和操作封装在一起实现了信息隐藏。 程序设计的实质是对实际问题选择一种好的数据结构,设计一个好的算法。算法取决于数据结构。 算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。 评价算法的好坏的因素:·算法是正确的; ·执行算法的时间; ·执行算法的存储空间(主要是辅助存储空间); ·算法易于理解、编码、调试。 时间复杂度:是某个算法的时间耗费,它是该算法所求解问题规模n的函数。 渐近时间复杂度:是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。 评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度。 算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。 时间复杂度按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O (n^2)、立方阶O(n^3)、……k次方阶O(n^k)、指数阶O(2^n)。

计算机系统结构

计算机系统结构

课后习题 第一章计算机系统结构的基本概念 5.从机器(汇编)语言程序员看,以下哪些是透明的? 指令地址寄存器;指令缓冲器;时标发生器;条件寄存器;乘法器;主存地址寄存器;磁盘外设;先行进位链;移位器;通用寄存器;中断字寄存器。 答:透明的有:指令缓冲器、时标发生器、乘法器、先进先出链、移位器、主存地址寄存器。 6.下列哪些对系统程序员是透明的?哪些对应用程序员是透明的? 系列机各档不同的数据通路宽度;虚拟存储器;Cache存储器;程序状态字;“启动I/O”指令;“执行”指令;指令缓冲寄存器。 答:对系统程序员透明的有:系列机各档不同的数据通路宽度;Cache存储器;指令缓冲寄存器; 对应用程序员透明的有:系列机各档不同的数据通路宽度;Cache存储器;指令缓冲寄存器;虚拟存储器;程序状态字;“启动I/O”指令。 note: 系列机各档不同的数据通路宽度、Cache存贮器、指令缓冲寄存器属于计算机组成,对系统和程序员和应用程序员都是透明的。

虚拟存贮器、程序状态字、“启动I/O”指令,对系统程序员是不透明的,而对应用程序员却是透明的。 “执行”指令则对系统程序员和应用程序员都是不透明的。 8. 实现软件移植的主要途径有哪些?分别适用于什么场合?各存在什么问题?对这些问题应采取什么对策?如果利用计算机网络实现软件移植,计算机网络应当如何组成?

第二章数据表示与指令系统 1.数据结构和机器的数据表示之间是什么关系?确定和引入数据表示的基本原则是什么? 答:数据表示是能由硬件直接识别和引用的数据类型。数据结构反映各种数据元素或信息单元之间的结构关系。 数据结构要通过软件映象变换成机器所具有的各种数据表示实现,所以数据表示是数据结构的组成元素。不同的数据表示可为数据结构的实现提供不同的支持,表现在实现效率和方便性不同。数据表示和数据结构是软件、硬件的交界面。 除基本数据表示不可少外,高级数据表示的引入遵循以下原则:

数据结构实验

实验1 (C语言补充实验) 有顺序表A和B,其元素值均按从小到大的升序排列,要求将它们合并成一 个顺序表C,且C的元素也是从小到大的升序排列。 #include main() { intn,m,i=0,j=0,k=0,a[5],b[5],c[10];/* 必须设个m做为数组的输入的计数器,不能用i ,不然进行到while 时i 直接为5*/ for(m=0;m<=4;m++)scanf("%d",&a[m]);// 输入数组a for(m=0;m<=4;m++)scanf("%d",&b[m]);// 输入数组b while(i<5&&j<5) {if(a[i]b[j]){c[k]=b[j];k++;j++;} else{c[k]=a[i];k++;i++;j++;}// 使输入的两组数组中相同的数只输出一 个 } if(i<5) for(n=i;n<5;n++) {c[k]=a[n];k++;} elseif(j<5) for(n=j;n<5;n++) {c[k]=b[n];k++;} for(i=0;i

求A QB #include main() { inti,j,k=0,a[5],b[5],c[5];//A=a[5],B=b[5],A n B=c[5] for(i=0;i<5;i++)scanf("%d",&a[i]);// 输入a 数组 for(i=0;i<5;i++)scanf("%d",&b[i]);〃输入b 数组 for(i=0;i<5;i++) {for(j=0;j<5;j++) if(a[i]==b[j]){c[k]=a[i];k++;}// 当有元素重复时,只取一个放入 c 中} for(i=0;i #defineN4 main() { inti,j,m,k,a[N+1];//k 为最后输出数组的长度变量

数据结构实现顺序表的各种基本运算(20210215233821)

实现顺序表的各种基本运算 一、实验目的 了解顺序表的结构特点及有关概念,掌握顺序表的各种基本操作算法思想及其实现。 二、实验内容 编写一个程序,实现顺序表的各种基本运算: 1、初始化顺序表; 2 、顺序表的插入; 3、顺序表的输出; 4 、求顺序表的长度 5 、判断顺序表是否为空; 6 、输出顺序表的第i位置的个元素; 7 、在顺序表中查找一个给定元素在表中的位置; 8、顺序表的删除; 9 、释放顺序表 三、算法思想与算法描述简图

主函数main

四、实验步骤与算法实现 #in clude #in clude #defi ne MaxSize 50 typedef char ElemType; typedef struct {ElemType data[MaxSize]; in t le ngth; void In itList(SqList*&L)〃 初始化顺序表 L {L=(SqList*)malloc(sizeof(SqList)); L->le ngth=0; for(i=0;ile ngth;i++) prin tf("%c ",L->data[i]); } void DestroyList(SqList*&L)〃 {free(L); } int ListEmpty(SqList*L)〃 {retur n( L->le ngth==O); } int Listle ngth(SqList*L)〃 {return(L->le ngth); } void DispList(SqList*L)〃 {int i; 释放顺序表 L

很详细的系统架构图-强烈推荐

很详细的系统架构图 专业推荐 2013.11.7

1.1.共享平台逻辑架构设计 如上图所示为本次共享资源平台逻辑架构图,上图整体展现说明包括以下几个方面: 1 应用系统建设 本次项目的一项重点就是实现原有应用系统的全面升级以及新的应用系统的开发,从而建立行业的全面的应用系统架构群。整体应用系统通过SOA面向服务管理架构模式实现应用组件的有效整合,完成应用系统的统一化管理与维护。 2 应用资源采集 整体应用系统资源统一分为两类,具体包括结构化资源和非机构化资源。本次项目就要实现对这两类资源的有效采集和管理。对于非结构化资源,我们将通过相应的资源采集工具完成数据的统一管理与维护。对于结构化资源,我们将通过全面的接口管理体系进行相应资源采集模板的搭建,采集后的数据经过有效的资源审核和分析处理后进入到数据交换平台进行有效管理。 3 数据分析与展现 采集完成的数据将通过有效的资源分析管理机制实现资源的有效管理与展现,具体包括了对资源的查询、分析、统计、汇总、报表、预测、决策等功能模块的搭建。 4 数据的应用 最终数据将通过内外网门户对外进行发布,相关人员包括局内各个部门人员、区各委办局、用人单位以及广大公众将可以通过不同的权限登录不同门户进行相关资源的查询,从而有效提升了我局整体应用服务质量。

综上,我们对本次项目整体逻辑架构进行了有效的构建,下面我们将从技术角度对相关架构进行描述。 1.2.技术架构设计 如上图对本次项目整体技术架构进行了设计,从上图我们可以看出,本次项目整体建设内容应当包含了相关体系架构的搭建、应用功能完善可开发、应用资源全面共享与管理。下面我们将分别进行说明。 1.3.整体架构设计 上述两节,我们对共享平台整体逻辑架构以及项目搭建整体技术架构进行了分别的设计说明,通过上述设计,我们对整体项目的架构图进行了归纳如下:

数据结构的逻辑结构、存储结构及数据运算的含义及其相互关系

2007 C C C 语言的特点,简单的C 程序介绍,C 程序的上机步骤。1 、算法的概念2、简单的算法举例3、算法的特性4、算法的表示(自然语言、流程图、N-S 图表示) 1 、 C 的数据类型、常量与变星、整型数据、实型数据、字符型数据、字符串常量。2、 C 的运算符运算意义、优先级、结合方向。3、算术运算符和算术表达式,各类数值型数据间的混合运算。4、赋值运算符和赋值表达式。5、逗号运算符和逗号表达式。 1 、程序的三种基本结构。2、数据输入输出的概念及在C 语言中的实现。字符数据的输入输出,格式输入与输出。 1 、关系运算符及其优先级,关系运算和关系表达式。2、逻辑运算符及其优先级,逻辑运算符和逻辑表达式。3、if语句。if语句的三种形式,if语句的嵌套,条件运算符。4、switch 语句. 1 、while 语句。2、do/while 语句。3、for 语句。4、循环的嵌套。5、break 语句和continue 语句。1 、一维数组的定义和引用。2、二维数组的定义和引用。3、字符数组。4、字符串与字符数组。5、字符数组的输入输出。6、字符串处理函数1 、函数的定义。2、函数参数和函数的值,形式参数和实际参数。3、函数的返回值。4、函数调用的方式,函数的声明和函数原型。5、函数的嵌套调用。 6、函数的递归调用。 7、数组作为函数参数。 8、局部变量、全局变量的作用域。 9、变量的存储类别,自动变星,静态变量。1 、带参数的宏定义。2、“文件包含”处理。1 、地址和指针的概念。2、变量的指针和指向变量的指针变量。3、指针变量的定义

和引用。4、指针变量作为函数参数。5、数组的指针和指向数组的指针变量。6、指向数组元素的指针。7、通过指针引用数组元素。8、数组名作函数参数。9、二维数组与指针。 1 0、指向字符串的指针变星。字符串的指针表示形式,字符串指针作为函数参数。11 、字符指针变量和字符数组的异同。1 2、返回指针值的函数。1 3、指针数组。1 、定义结构体类型变星的方法。2、结构体变量的引用。3、结构体变量的初始化。4、结构体数组5、指向结构体类型数据的指针。6、共用体的概念,共用体变量的定义和引用,共用体类型数据的特点。typedef 1 、数据结构的逻辑结构、存储结构及数据运算的含义及其相互关系。2、数据结构的两大类逻辑结构和常用的存储表示方法。3、算法描述和算法分析的方法,对于一般算法能分析出时间复杂度。 1 、线性表的逻辑结构特征。2、线性表上定义的基本运算。3、顺序表的特点,即顺序表如何反映线性表中元素之间的逻辑关系。4、顺序表上的插入、删除操作及其平均时间性能分析。5、链表如何表示线性表中元素之间的逻辑关系。6、链表中头指针和头结点的使用。7、单链表上实现的建表、查找、插入和删除等基本算法,并分析其时间复杂度。8、顺序表和链表的主要优缺点。9、针对线性表上所需的主要操作,选择时空性能优越的存储结构。 1 、栈的逻辑结构特点.栈与线性表的异同。2、顺序栈和链栈实现的进栈、退栈等基本算法。3、栈的空和栈满的概念及其判定条件。4、队列的逻辑结构特点,队列与线性表的异同。5、顺序队列(主要是循

数据结构实验报告图实验

图实验 一,邻接矩阵的实现 1.实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现 2.实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历 3.设计与编码 #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ } void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; int vertexNum, arcNum; }; #endif #include using namespace std; #include "" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0;

-计算机系统结构(有详细答案)

(仅供参考,不作为考试标准), 选择题(30分,每题2分) 计算机系统结构设计者所关心的是________所看到的的计算机结构。 A)硬件设计人员B)逻辑设计人员 C)机器语言或汇编语言程序员D)高级语言程序员 在计算机系统设计时,为了提高系统性能,应当注意________。 A)加快经常性使用指令的执行速度 B)要特别精心设计少量功能强大的指令 C)要减少在数量上占很小比例的指令的条数 D)要加快少量指令的速度 重叠寄存器技术主要用于解决在RISC系统中因________而导致的问题。 A)JMP指令影响流水线 B)CALL指令的现场保护 C)只有LOAD和STORE指令带来的访问存储器不便 D)存储器访问速度 为使流水计算机运行效率高________ A)各过程段时间要不同B)连续处理的任务类型应该不同 C)连续处理的任务类型应该相同D)连续处理的任务数尽可能少不属于堆栈型替换算法的是________。 A)近期最少使用法B)近期最久未用法 C)先进先出法D)页面失效频率法 与全相联映象相比,组相联映象的优点是________。 A)目录表小B)块冲突概率低C)命中率高D)主存利用率高"一次重叠"中消除"指令相关"最好的方法是________。 A)不准修改指令B)设相关专用通路 C)推后分析下条指令D)推后执行下条指令 流水操作中,遇到数据相关时,采用的解决办法有________。 A)用优化编译器检测,通过指令重新排序的办法 B)数据重定向技术 C)延迟转移技术 D)加快和提前形成条件码 经多级网络串联来实现全排列网络,只能用________。 A)多级立方体网络B)多级PM2I网络 C)多级混洗交换网络D)上述任何网络 虫蚀寻径以流水方式在各寻径器是顺序传送的是________。 授课:XXX

数据结构图实验报告

数据结构教程 上机实验报告 实验七、图算法上机实现 一、实验目的: 1.了解熟知图的定义和图的基本术语,掌握图的几种存储结构。 2.掌握邻接矩阵和邻接表定义及特点,并通过实例解析掌握邻接 矩阵和邻接表的类型定义。 3.掌握图的遍历的定义、复杂性分析及应用,并掌握图的遍历方 法及其基本思想。 二、实验内容: 1.建立无向图的邻接矩阵 2.图的深度优先搜索 3.图的广度优先搜索 三、实验步骤及结果: 1.建立无向图的邻接矩阵: 1)源代码: #include "" #include "" #define MAXSIZE 30 typedef struct

{ char vertex[MAXSIZE]; ertex=i; irstedge=NULL; irstedge; irstedge=p; p=(EdgeNode*)malloc(sizeof(EdgeNode)); p->adjvex=i; irstedge; irstedge=p; } } int visited[MAXSIZE]; ertex); irstedge;

ertex=i; irstedge=NULL; irstedge;irstedge=p; p=(EdgeNode *)malloc(sizeof(EdgeNode)); p->adjvex=i; irstedge; irstedge=p; } } typedef struct node { int data; struct node *next; }QNode; ertex); irstedge;ertex); //输出这个邻接边结点的顶点信息 visited[p->adjvex]=1; //置该邻接边结点为访问过标志 In_LQueue(Q,p->adjvex); //将该邻接边结点送人队Q }

很详细的系统架构图-强烈推荐

很详细的系统架构图--专业推荐 2013.11.7

1.1.共享平台逻辑架构设计 如上图所示为本次共享资源平台逻辑架构图,上图整体展现说明包括以下几个方面: 1 应用系统建设 本次项目的一项重点就是实现原有应用系统的全面升级以及新的应用系统的开发,从而建立行业的全面的应用系统架构群。整体应用系统通过SOA面向服务管理架构模式实现应用组件的有效整合,完成应用系统的统一化管理与维护。 2 应用资源采集 整体应用系统资源统一分为两类,具体包括结构化资源和非机构化资源。本次项目就要实现对这两类资源的有效采集和管理。对于非结构化资源,我们将通过相应的资源采集工具完成数据的统一管理与维护。对于结构化资源,我们将通过全面的接口管理体系进行相应资源采集模板的搭建,采集后的数据经过有效的资源审核和分析处理后进入到数据交换平台进行有效管理。 3 数据分析与展现 采集完成的数据将通过有效的资源分析管理机制实现资源的有效管理与展现,具体包括了对资源的查询、分析、统计、汇总、报表、预测、决策等功能模块的搭建。 4 数据的应用 最终数据将通过内外网门户对外进行发布,相关人员包括局内各个部门人员、区各委办局、用人单位以及广大公众将可以通过不同的权限登录不同门户进行相关资源的查询,从而有效提升了我局整体应用服务质量。 综上,我们对本次项目整体逻辑架构进行了有效的构建,下面我们将从技术角度对相

关架构进行描述。 1.2.技术架构设计 如上图对本次项目整体技术架构进行了设计,从上图我们可以看出,本次项目整体建设内容应当包含了相关体系架构的搭建、应用功能完善可开发、应用资源全面共享与管理。下面我们将分别进行说明。 1.3.整体架构设计 上述两节,我们对共享平台整体逻辑架构以及项目搭建整体技术架构进行了分别的设计说明,通过上述设计,我们对整体项目的架构图进行了归纳如下:

数据结构实验—图实验报告

精品文档数据结构 实 验 报 告

目的要求 1.掌握图的存储思想及其存储实现。 2.掌握图的深度、广度优先遍历算法思想及其程序实现。 3.掌握图的常见应用算法的思想及其程序实现。 实验内容 1.键盘输入数据,建立一个有向图的邻接表。 2.输出该邻接表。 3.在有向图的邻接表的基础上计算各顶点的度,并输出。 4.以有向图的邻接表为基础实现输出它的拓扑排序序列。 5.采用邻接表存储实现无向图的深度优先递归遍历。 6.采用邻接表存储实现无向图的广度优先遍历。 7.在主函数中设计一个简单的菜单,分别调试上述算法。 源程序: 主程序的头文件:队列 #include #include #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define OVERFLOW -2 typedef int QElemType; typedef struct QNode{ //队的操作 QElemType data; struct QNode *next; }QNode,*QueuePtr; typedef struct { QueuePtr front; QueuePtr rear; }LinkQueue; void InitQueue(LinkQueue &Q){ //初始化队列 Q.front =Q.rear =(QueuePtr)malloc(sizeof(QNode)); if(!Q.front) exit(OVERFLOW); //存储分配失败 Q.front ->next =NULL; } int EnQueue(LinkQueue &Q,QElemType e) //插入元素e为Q的新的队尾元素{ QueuePtr p; p=(QueuePtr)malloc(sizeof(QNode)); if(!p) exit(OVERFLOW); p->data=e;

数据结构 图的基本运算代码

#include"iostream" #include"LGraph.h" #include"seqqueue.h" #include"MGraph.h" #define INFTY 1000 template struct ENode { ENode() {nextArc=NULL;} ENode(int vertex,T weight,ENode *next) { adjVex=vertex; w=weight; nextArc=next; } int adjVex; T w; ENode* nextArc; }; template class ExtLGraph:public LGraph { public: ExtLGraph(int mSize):LGraph(mSize){} void DFS(); void BFS(); void TopoSort(int *order); private: void CalInDegree(int *InDegree); void DFS(int v,bool *visited); void BFS(int v,bool *visited); }; template void ExtLGraph::DFS() { bool *visited=new bool[n]; for(int i=0;i

相关主题
文本预览
相关文档 最新文档