当前位置:文档之家› LTD-2100最新探地雷达及其应用简介

LTD-2100最新探地雷达及其应用简介

LTD-2100最新探地雷达及其应用简介
LTD-2100最新探地雷达及其应用简介

探地雷达在桩基检测中的应用

探地雷达在桩基检测中的应用 于涛 (中铁十九局集团第三工程有限公司) 摘要介绍了探地雷达工作原理与在桩基中的检测方法,探讨了探地雷达在桩基检测中的应用现状。关键词探地雷达桩基 桩基础属隐蔽工程,为了保证桩基础的安全可靠,桩基的质量检查至关重要。常规桩基工程的检测方法如静载荷试验、高应变、低应变等已经日趋完善,但是随着工程目的的多样化和质量要求的提高,许多建筑工程中的桩基设计和施工工艺较为特殊,使得建立在杆状模型的一维波动方程理论基础之上的常规检测手段无能为力[&]。基于以上情况,常使用地质雷达探测作为桩基常规检测方法的有力补充,这正好发挥了其高分辨率、高准确性的特点,同时可以数据处理和图像解释,有其独特的效果。 地质雷达是目前精度最高的物探仪器之一,广泛应用于工程地质、岩土工程、地基处理、道路桥梁、文物考古、混凝土结构探伤等领域[!]。探地雷达能探测#"’(")深度,一般能满足工程勘测的需要[#]。但对于以钢筋混凝土为主要材料的桩基,其电性性质与周围土体有明显差异,而且介质性质较均匀,探测深度可能会增加,另外雷达剖面会有较好的效果。 &探地雷达的基本原理 探地雷达是利用高频电磁波(&*+,’&-+,)以宽频带短脉冲的形式,在地面通过发射天线(!)将信号送入地下,经地层界面或目的体反射后回到地面,再由接收天线(")接收电磁波反射信号,通过对电磁波反射信号的时域特征和振幅特征进行分析来了解地层或目的体特征信息的方法。 当发射天线向地下发射高频宽频带短脉冲电磁波时,遇到不同介电特性的介质就会有部分电磁波能量返回,接收天线接收反射回波并记录反射时间。电磁波在岩土介质中的传播速度为: !#$%" !. 式中:$为电磁波在真空中的传播速度,约为"/#)?01$&;".为相对介电常数。 电磁波在介质中传播时,其路径$波形将随所通过的介质的电性质及几何形态而变化,根据接收到波的旅行时间(亦即双程走时)、幅度、频率与波形变化资料,可以推断介质的内部结构以及目标的深度、形状等,利用电磁波在介质中的波速和旅行时间可以计算介面深度(&2’3(4!)。当发射天线沿欲探测物表面移动时就能得到其内部介质剖面图像,其工作原理见图& 。反射脉冲的信号强度,与界面的波反射系数和穿透介质的波吸收程度有关。 〔收稿日期〕!""#$"#$!%

雷达简介及分类

雷达简介及分类 英文中的“radar”(雷达)一词来源于缩略语(RADAR),表示“radio detection and ranging”(无线电检测与测距)。现如今,由于它已经成为一项非常广泛实用的技术,“radar”一词也变成一个标准的英文名词。它是利用目标对电磁波的散射来发现,探测、识别各种目标,测定目标坐标和其它情报的装置。在现代军事和生产中,雷达的作用越来越显示其重要性,特别是第二次世界大战,英国空军和纳粹德国空军的“不列颠”空战,使雷达的重要性显露的非常清楚。雷达由天线系统、发射装置、接收装置、防干扰设备、显示器、信号处理器、电源等组成。其中,天线是雷达实现大空域、多功能、多目标的技术关键之一;信号处理器是雷达具有多功能能力的核心组件之一。 雷达的分类: 雷达种类很多,分类方法也很复杂,以下列举部分分类方法: (1)按定位方法可分为:有源雷达、半有源雷达和无源雷达。 (2)按装设地点可分为;地面雷达、舰载雷达、航空雷达、卫星雷达等。 (3)按辐射种类(雷达信号形式)可分为:脉冲雷达和连续波雷达、脉部压缩雷达和频率捷变雷达等。 (4)按照角跟踪方式可分为:单脉冲雷达、圆锥扫描雷达和隐蔽圆锥扫 描雷达等。 (5)按工作频段可分为:米波雷达、分米波雷达、厘米波雷达和其它波段雷达、超视距雷达、微波雷达、毫米波雷达以及激光雷达等。 (6)按照目标测量参数可分为:测高雷达、二坐标雷达、三坐标雷达和 故我识对雷达、多站雷达等。 (7)按照天线扫描方式可分为:分为机械扫描雷达、相控阵雷达等。 (8)按照雷达采用的技术和信号处理的方式可分为:相参积累和非相参 积累、动目标显示、动目标检测、脉冲多普勒雷达、合成孔径雷达、边扫描 边跟踪雷达。 (9)按用途可分为:空中监视雷达(如远程预警、地面控制的拦截等)、 空间和导航监视雷达(弹道导弹告警、卫星监视等)、表面搜索和战场监视 雷达(地面测绘、港口和航道控制)、跟踪和制导雷达(表面火控、弹道制

国内探地雷达与国外的差别

国内探地雷达与国外的差别 随着世界经济建设和材料科学的发展,对地下非金属类目标探测技术的需求变得愈来愈迫切,六十年代末期得到发展的时域电磁场理论和相关的电子技术,进一步推动了毫微秒脉冲地下目标探测设备—探地雷达(GPR)的研制和应用。现在,国内外兴起了利用探地雷达进行地下目标无损探测的研究和应用热潮,探地雷达在城建、交通、地质、考古、国防等部门中扮演着越来越重要的角色。 在军方及地质与勘探部门的持续支持下,中国电波传播研究所在地下目标高分辨率探测领域,已开展十余年的研究工作,目前已经研制成功LTD系列多种型号的探地雷达产品,其中全数字化LTD-10一体化探地雷达具备携带方便、功能强、性能稳定等特点,既可以用于公路、隧道面层厚度检测,又可以用于地下较深层目标的探测,已广泛应用于军事和民用各领域。 但随着应用范围的不断拓宽,现场对尚处于成长期的探地雷达提出越来越高的技术要求,其中探测深度和分辨率的矛盾显得越来越明显,作者在此抛砖引玉,希望更多的科研院所、学校和现场应用部门加入到无损探测技术研究中来,通力合作,尽快使电磁波传播理论和探地雷达应用技术有大的突破。 工作原理 LTD探地雷达工作时,在雷达主机控制下,脉冲源产生周期性的毫微秒信号,并直接馈给发射天线,经由发射天线耦合到地下的信号在传播路径上遇到非均匀体时,产生反射信号。位于地面上的接收天线在接收到地下回波后,直接传输到接收机,信号在接收机经过整形和放大等处理后,经电缆传输到雷达主机,经处理后传输到微机。在微机中对信号依照幅度大小进行编码,并以伪彩色电平图/灰色电平图或波形堆积图的方式显示出来,经事后处理,可用来判断地下目标的深度、大小和方位等特性参数。 系统组成 探地雷达系统主要由LTD-10一体化雷达主机、天线、综合控制电缆、测距轮及其它相关配件和随机附送软件组成。 与国外部分品牌主机设计不同,探地雷达采用工控机和雷达主机一体化设计,与随机附送软件(包括实时采集软件和事后处理软件,两者都是全中文界面)配合,利用键盘或鼠标就可完成数据采集和后处理工作。其中,实时采集软件为用户提供分别在DOS和Windows2000

解读我国探地雷达的应用现状及展望

解读我国探地雷达的应用现状及展望 发表时间:2019-04-26T16:27:00.530Z 来源:《基层建设》2019年第4期作者:李柯辉[导读] 摘要:本文从建筑工程质量检测、岩土工程勘察及地质勘探、城市基础设施探测、公路、铁路质量检测、水利工程探测、考古探测、军事及安全领域等方面,对我国探地雷达的应用现状进行了说明,并阐述了我国探地雷达的应用展望,以期为促进我国对探地雷达技术的更好应用,推动我国更多领域的发展提供参考。 广东省公路工程质量监测中心广东广州 510500摘要:本文从建筑工程质量检测、岩土工程勘察及地质勘探、城市基础设施探测、公路、铁路质量检测、水利工程探测、考古探测、军事及安全领域等方面,对我国探地雷达的应用现状进行了说明,并阐述了我国探地雷达的应用展望,以期为促进我国对探地雷达技术的更好应用,推动我国更多领域的发展提供参考。 关键词:探地雷达;应用现状;展望引言 就探地雷达而言,其在我国之中也被称为地质雷达,于应用方面主要是通过对频率在106到109Hz的超高频脉冲电磁波的利用,来实现对地下介质所具有的分布特征方面的有效探测的一种地球物理方法,且在近年来的不断发展之中,其在应用范围方面也愈加广阔,呈现出一片大好的应用前景。 一、我国探地雷达的应用现状 (一)在建筑工程质量检测之中的应用对于建筑工程领域而言,其一系列工作的开展,都需要相应的数据作为支撑,也就是说其对于数据本身的可靠性方面的要求较高,但就实际情况而言,其中包含了很多具有较高隐蔽性的工程,若仅仅通过常规手段展开数据的获取,则存在较大的困难。但就我国当前阶段的探测雷达技术应用而言,其在建筑工程质量检测领域之中的应用具有较为良好的成效,能够对以上的问题良好的解决,其能够针对建筑工程建设施工之中,缺陷部位与完好部位介质之间的介电常数差异性的对比,来对其中存在的较为隐蔽的质量缺陷良好的探测出来,以便于对缺陷部位问题进行及时的了解及补救。在探地雷达技术实际应用于建筑工程质量检测之中时,其往往是在建筑物的结构及探伤、混凝土浇筑的质量、保护层厚度及其中钢筋的分布情况等方面发挥相应的探测作用。 (二)在岩土工程勘察及地质勘探之中的应用在岩土工程勘察及地质勘探工作的开展之中,常规的地质勘查方法都是以钻孔勘查为主,其虽然发挥了一定的作用,但因勘查的过程之中其钻孔的数量毕竟有限,使之难以对工程建设开展区域地下地层的分布情况及相应的特征全面的掌握,这便会对工程实际的建设开展带来一定的质量及安全方面的隐患。此时,在建设所在区域地质勘查工作之中对探地雷达加以应用,能够对其快速且大面积普查的优势加以发挥,进而能够对传统钻孔勘查的缺陷加以弥补,实现对地下之中的障碍物分布情况、回填土所具有的厚度、地下断裂发育以及地层分层特征等方面的情况及内容拥有较为全面的了解,进而能够为岩土工程整体设计施工的开展提供有利依据。此外,在实际开展岩土工程勘察及地质勘探时,将探地雷达技术与其他技术相结合,能够实现对地基及矿产资源调查、地层划分、断层及断裂查找、水文地质勘察等方面情况的良好勘察,以便于拥有更高依据的开展施工操作。 (三)在城市基础设施探测之中的应用在城市整体的运行过程之中,其基础设施探测工作的开展必不可少,且所包含的内容较多,有地下空洞、金属及非金属管线探索、突发工程事故抢险、城市路面坍塌等等,但又因为城市之中本身的环境条件较为复杂,存在电磁干扰、机械振动等多方面的干扰源,致使大多数探测方法的开展都难以达到相应的探测效果。此时,应用探地雷达技术其本身的天线具有一定的屏蔽功能,使之能够无惧干扰正常开展探测工作,尤其是在桩基及复合地基等基础工程之中,能够实现对地基加固效果方面的准确检测。 (四)在公路、铁路质量检测之中的应用随着近年来我国公路及铁路领域的飞速发展,因探地雷达技术本身所具有的优势,使之在以上领域之中获得了较为广泛的应用,对其分别进行说明,则可分为以下几点。第一点,在公路建设方面,充分发挥了探地雷达的探测精度及速度方面的优势,使之能够在公路路基、路基病害检测、桥梁结构及沥青厚度的检测方面良好的发挥作用,经由相应的雷达图像,能够实现对缺陷部位的清晰观看。第二点,在铁路建设方面,探地雷达技术已经在包括翻浆、裂缝、孔洞等在内的路基病害检测、路基岩溶、采空区等方面的探测工作之中发挥了作用,并达到了较为良好的应用效果。就近年来的发展情况来看,探地雷达于铁路路基领域之中的应用,已经由原本的未经运营状态之下得到铁路线路探测,逐渐向处于通车运行状态之下的铁路线路方向发展,且正在着力开展轨道车载式铁路路基质量检测系统的大力研发工作[1]。 (五)在水利工程探测之中的应用就探地雷达技术而言,其在我国水利工程领域之中的应用,主要是在工程开展前期的滑坡体与基岩埋深方面的勘察工作,中期的水利工程施工质量、堤坝隐患探测等方面的应用,不仅仅能够对整体的施工开展及施工质量提供保障,还能够对施工整体的进度及质量控制工作的开展达到一定的促进作用。其中,探地雷达应用效果最佳的便是在水利工程的质量检测及地把隐患问题的探测方面,仅仅在这两个方面的应用,便已经帮助水利工程建设解决了诸多的施工问题[2]。 (六)在考古探测之中的应用在考古这一领域之中,探地雷达技术的应用本身便拥有较高的优势,其能够通过其优越的低下探测能力,实现对低些埋藏物、地下墓穴、古遗址及古文化层埋深等方面的良好探测及调查,进而能够提升考古的整体水平,但就当前阶段的发展而言,虽然我国于此方面的起步较晚,但到目前为止已经取得了一定的成就,如我国的中国地质大学便利用这一技术,开展了针对位于甘肃省的敦煌莫高窟这一古遗迹的探索及研究工作。 (七)在军事及安全领域之中的应用就我国而言,与国外的许多国家相比,将探地雷达技术应用于军事及安全领域的开展年限较短,于我国而言仍旧属于拓展及探索领域,到目前为止其主要是在建筑物内的隐蔽物、地下隐蔽物及战争遗留未爆炸物等方面的探测之中加以应用,可以达到较好的开展效果,具有较好的应用前景。

雷达技术综述

雷达技术综述 Overview of Radar Technology 摘要: 雷达被广泛用于军事预警、导弹制导、民航管制、地形测量、气象、航海等众多领域。本文首先概述了雷达发展历程并总结了雷达技术发展的成因,然后对雷达的基本工作原理和基本雷达方程作了简要的介绍。最后介绍了几种实际雷达并指出了雷达的未来发展方向。 关键词: 雷达技术;工作原理;雷达应用;发展趋势 Abstract: Radar is widely used in many fields of military early warning, missile guidance, aviation control, topographic surveying, meteorology, navigation and so on.This paper outlines the development process of radar and summarizes the causes of the development of radar technology,then briefly introduces the basic principle of radar and basic radar equation.Finally, introduces several kinds of practical radar and points out the future development direction of radar. Key words: radar technology; working principles; radar applications; trend in development 引言 雷达是英文Radar的音译,源于radio detection and ranging的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。雷达最先是作为一种军事装备服务于人类,主要用来实施国土防空警戒,指挥和引导己方作战飞机以及各种地面防空武器。随着雷达技术的不断改进,如今雷达被广泛用于民航管制、地形测量、气象、航海等众多领域。随着高科技的不断发展,雷达技术将在21世纪得到更广泛的应用。 1 雷达的发展历程 雷达诞生于20世纪30年代,从美、欧等发达国家的雷达装备技术发展来看,雷达的发展历程大致经历了4个阶段:第1个阶段是从20世纪30年代到50年代,为实施国土防空警戒,指挥和引导己方作战飞机以及各种地面防空武器(高炮、高射机枪、探照灯等),西方大量研制部署米波段雷达和以磁控管为发射机的微波雷达。当时雷达探测目标的种类简单,主要是飞机,此外还有少量的飞艇和气球,雷达的典型技术特征是电子管、非相参,这种雷达被称为第1代。 第2个阶段是从20世纪50年代到80年代,防空作战对雷达提出了由粗略

探地雷达在地下管线探测中的应用

探地雷达在地下管线探测中的应用 张进华,马广玲,姚成虎,缪建文 (南京市测绘勘察研究院,江苏南京 210005) 摘 要:探地雷达技术是如今适应快速、准确、无损地探测地下障碍物而迅速发展的电磁技术。本文通过结合工程实例来探讨探地雷达在地下管线探测中的广泛应用。 关键词:探地雷达;地下管线探测;异常反射 1 前 言 探地雷达(Ground Penetrating Radar,简称GPR)是一种对地下或物体内不可见的目标体或界面进行定位的电磁技术。探地雷达以其探测的高分辨率和高工作效率而成为地球物理勘探的一种有力工具。随着信号处理技术和电子技术的不断发展以及工程实践的增多和经验的丰富积累,探地雷达技术进一步发展,仪器不断更新,应用范围逐步扩大,现已被广泛应用于工程地质勘察、建筑结构调查、无损检测、生态环境等众多领域。本文将以探地雷达在地下管线探测中的应用,说明探地雷达可以有效解决工程上的许多疑难问题,并总结了相关经验和应用效果。 2 探地雷达的原理及工作方法 探地雷达由地面上的发射天线将高频带短脉冲形式的高频电磁波定向送入地下,高频电磁波遇到存在电性差异的地下地层或目标体反射后返回地面,由接收天线接收。高频电磁波在传播时,其路径、电磁场强度与波形将随所通过介质的电性及几何形态而变化,故通过对时域波形的采集、处理与分析,可确定地下界面或地质体的空间位置及结构。 探地雷达通常以脉冲反射波的波形形式记录。波形的正负峰分别以黑白表示,或者以灰阶或彩色表示,这样同相轴或等灰线、等色线即可形象地表征出地下反射面或目标体。在波形图上各测点均以测线的铅垂反向记录波形,构成雷达剖面。根据雷达剖面图便可 收稿日期:2003-07-09判断地下不明障碍物。探地雷达在地下介质中的传播遵循波动方程理论。探地雷达的探测效果主要取决于地下目标体与周围介质的电磁性质差异、目标体的深度与介质对电磁波的吸收作用、目标体的几何形态及规模、干扰波的类型、强度及特点等因素。 探地雷达具有不同的野外工作方法,根据工作区的具体情况可选择剖面法、多次覆盖法以及宽角法等测量方式。实际工作中,测量参数(发射接收天线距、时窗、测点点距、天线中心频率、采样率等)可根据不同要求进行选择,从而得到不同分辨率及不同探测精度的雷达剖面。通常在进入工作区前,应有目的地进行类似场地条件的参数选择试验,以达到最佳探测效果。在进入工作区后应根据实际需要布置测线和测点,并让测线和测点尽量通过被测目的物。在不明显的目的物上进行探测时应尽量加密线距和点距,以利于后面的资料处理与解释。 3 探地雷达的数据资料解释处理及在地下管线探测中的应用效果 近几年来,我们采用加拿大生产的pulse EKKO-100A型探地雷达从事了数百次的地下管线探测工作,取得了丰富的探地雷达探测资料及很好的应用效果。 3.1 资料的处理及解释 探地雷达探测资料的解释包括数据处理和图像解释两部分内容。由于地下介质相当于一个复杂的滤波器,介质对电磁波的不同程度吸收及介质的不均匀性, 63城 市 勘 测2004年

【科普】考古作业过程及探地雷达的应用需求

考古作业过程及探地雷达的应用需求 我公司专业从事文物考古勘探工作,最终目的,在于确定文物局指定的考古勘探现场地下,是否存有文物古迹,是否具有挖掘价值,提供可靠依据,目前主要采取洛阳铲进行考古勘探,我们打算下一步在使用洛阳铲的同时,采用雷达考古勘探技术,并希望贵公司设计制作雷达考古勘探技术的相关软件。使我们在使用该技术时,对于雷达探测的数据进行技术分析,达到考古价值的确认。  现将洛阳铲的工作原理和用法提供如下,以便贵方制作相应软件时参考。  洛阳铲由两个部分组成,U型的金属铲身和一个长柄。铲身一般5至20厘米,长20至40厘米,铲柄的长度则根据使用者的需要而制造。据说制作洛阳铲有制坯、煅烧、热处理、成型、磨刃等20多道工序,因为如果弧度不对,铲进土中无法带出土来。  其实洛阳铲并没有使用非常复杂的科技,利用U型管插入取物也并非新鲜的事情。南方米行查验米粮品质常用的工具就是一个U型或者圆形钢管,插入米袋之后可以带出米袋内的米粒,用以抽检米粮的品质。这无非是利用颗粒受压进入U型管之后相互挤压的张力,使之固定在管内无法移动。  好的洛阳铲要求刃口锋利硬度高,即便铲中石块等物体也不卷刃缺口。铲身要具有一定的韧性,这样才不容易折断。好的洛阳铲插入土内吃土锐利,拔出后褪土快捷。并且能够打穿并提取断砖厚瓦。过去要制作这样的

洛阳铲,都是靠纯手工制造。除了需要使用好的钢材锻造之外,对刃口部分还要特别进行热处理以增加硬度。    洛阳铲局部  对于盗墓贼而言,洛阳铲的主要作用是探孔定位,一个有经验的盗墓贼可以通过洛阳铲中带出的土壤分析出地下是否有墓穴。在一片区域中打上若干个孔,就能了解墓穴大概的位置和面积,从而知道墓穴里宝物的规模和价值。经验丰富的盗墓贼甚至凭洛阳铲碰撞地下发出的声音和手感,便可判断地下的情况,夯实的墙壁和中空的墓室、墓道的感觉是不一样的,探孔经验老到的盗墓贼就能够精确判断出墓穴的结构,并且确定到底从那个位置挖掘进入墓穴最快捷省事。  在盗墓时,贼会先观看地势,如果怀疑该地区有墓穴就会用洛阳铲探路,左右各挖一个孔下探,一般下探3-5米后如感觉坚硬就继续挖,若松软就说明不是墓穴,换个地方再挖。一般挖5米的探洞需要20分钟左右。有经验的盗墓贼会避开墓道,而不断利用探洞寻找墓穴——因为墓道里边

第二讲 国内外地质雷达技术发展状况

第二讲国内外地质雷达技术发展状况(历史与现状) 探地雷达的历史最早可追溯到20世纪初,1904年,德国人Hulsmeyer首次将电磁波信号应用与地下金属体的探测。1910年Leimback和Lowy以专利形式在1910年的专利,他们用埋设在一组钻孔里的偶极子天线探测地下相对高的导电性质的区域,并正式提出了探地雷达的概念。1926年Hulsenbeck第一个提出应用脉冲技术确定地下结构的思路,指出只要介电常数发生变化就会在交界面会产生电磁波反射,而且该方法易于实现,优于地震方法[1,2]。但由于地下介质具有比空气强得多的电磁衰减特性,加之地下介质情况的多样性,电磁波在地下的传播比空气中复杂的多,使得探地雷达技术和应用受到了很多的限制,初期的探测仅限于对波吸收很弱的冰层厚度(1951,B.O.Steenson,1963,S.Evans)和岩石和煤矿的调查(J.C.Cook)等。随着电子技术的发展,直到70探地雷达技术才重新得到人们的重视,同时美国阿波罗月球表面探测实验的需要,更加速了对探地雷达技术的发展,其发展过程大体可分为三个阶段: 第一阶段,称为试验阶段,从20世纪70年代初期到70年代中期,在此期间美国,日本、加拿大等国都在大力研究,英国、德国也相继发表了论文和研究报告,首家生产和销售商用GPR的公司问世,即Rex Morey和Art Drake成立的美国地球物理测量系统公司(GSSI),日本电器设备大学也研制出小功率的基带脉冲雷达系统。此期间探地雷达的进展主要表现在,人们对地表附近偶极天线的辐射场以及电磁波与各种地质材料相互作用的关系有了深刻的认识,但这些设备的探测精度、地下杂乱回波中目标体的识别、分别率等方面依然存在许多问题。 第二阶段,也称为实用化阶段,从20世纪70年代中后其到80年代,在次期间技术不段发展,美国、日本、加拿大等国相继推出定型的探地雷达系统,在国际市场,主要有美国的地球物理探测设备公司(GSSI)的SIR系统,日本应用地质株式社会(OYO)的YL-R2地质雷达,英国的煤气公司的GP管道公司雷达,在70年代末,加拿大A-Cube公司的Annan和Davis等人于1998年创建了探头及软件公司(SSI),针对SIR系统的局限性以及野外实际探测的具体要求,在系统结构和探测方式上做了重大的改进,大胆采用了微型计算机控制、数字信号处理以及光缆传输高新技术,发展成了EKKO Ground Penetrating Radar 系列产品,简称EKKO GPR系列。瑞典地质公司(SGAB)也生产出RAMAC 钻孔雷达系统,此外,英国ERA公司、SPPSCAN公司,意大利IDS公司、瑞典及丹麦也都在生产和研制各种不同型号的雷达。80年代全数字化的GPR问世,具有划时代的意义,数字化GPR不仅提供了大量数据存储的解决方案,增强了实时和现场数据处理的能力,为数据的深层次后处理带来方便,更重要的是GPR 因此显露出更大的潜力,应用领域得以向纵身拓展。 第三阶段,从上个世纪80年代至今,可称为完善和提高阶段。在此期间,GPR技术突飞猛进,更多的国家开始关注探地雷达技术,出现了很多探地雷达的研究机构,如荷兰的应用科学研究组织和代尔夫大学,法国_德国的Saint-Louis 研究所(ISL),英国的DERA,瑞典的FOA,娜威科技大学和地质研究所,比利时的RMA,南非的开普敦大学,澳大利亚昆士兰大学,美国的林肯实验室和Lawrence Livermore国家实验室以及日本的一些研究机构等等。同时,探地雷达也得到了地球物理和电子工程界的更多关注,对天线的改进、信号的处理、地下目标的成像等方面提出了许多新的见解。GSSI公司在商业上取得了极大的成功,

实时三维频率步进式探地雷达技术介绍及应用案例分析

实时三维频率步进式探地雷达技术介绍及应用案例分析 ◆最快的步进频率雷达:利用数字频率信号源, 可以产生0.5-10 毫秒的扫描周期,一个同相接收机,使得整个扫描周期(一般为几个毫秒)100%可被有效利用。 ◆天线阵技术,可容纳21个天线阵子:覆盖范围从100MHz 到3GHz。实际工作时,用户无需更换天线就可采集从100MHz 到3GHz频率的数据。 ◆CMP(共中点)采集模式:这套系统可以设置为CMP(共中点)采集模式,可实时显示各层的厚度和对应的介电常数,并基于路基材料的介电常数与其密实度,含水量的相关曲线,评定路基质量。 ◆空前的区域勘察速度(工作效率):极其高的勘察效率和有效的采样方法使得 GeoScope TM采用2.4m天线阵可以以80km/h车速提供7.5×7.5cm网格完全三维图像。生产效率高达20亩/小时。 ◆数据采集过程中的三维实时显示技术:浏览器即可调用采集数据,实现实时三维显示(包括横向剖面、纵向剖面,水平切面)。 ◆软件处理能力超强:完整而快速的进行数据后处理,可加入注解及地理图像,且可以进行二次开发。 挪威3D-Radar公司成立于2001年,为国防、航空和安全高技术产品全球制造商——美国Chemring Sensors and Electronic Systems (Chemring SES)集团的子公司。3D-Radar公司拥有高质量三维雷达技术,从传统的脉冲信号雷达转为新的频率步进雷达,且具有丰富的GPR数据处理经验。 与市场上广泛使用的单通道脉冲式探地雷达系统相比,挪威3D-Radar公司的GeoScopeTM三维探地雷达系统具有如下特点: 频率步进雷达技术、实时三维显示、多通道天线阵技术、软件超强的处理能力 应用领域: ◆公路检测:面层厚度和质量、垫层和基层、桥梁检测 (脱空/剥离) ◆桥梁面板检测 ◆铁路路基检测:垫层厚度和质量、基层、电缆和管道 ◆机场跑道检测:沥青层厚度和质量、基层、脱空、电缆和管道 ◆地下公用设施 (管线/电缆):地下公用设施 ◆考古 ◆地雷和未爆炸物探测

国外雷达技术新进展概述

国外雷达技术新进展概述 朱峥嵘 (南京电子技术研究所,江苏省南京市210039) 摘 要:雷达技术的研发与应用重点仍然集中在有源相控阵雷达、合成孔径雷达方面。有源相控阵雷达技术在机载雷达系统、舰载雷达系统及陆基雷达系统中获得到了广泛的应用。文中指出Ga N (氮化镓)单片微波集成电路功率放大器的可靠性有所提高,有望成为有源相控阵雷达的关键部件,并使有源相控阵雷达的探测距离进一步增加。为满足在无人机上的应用要求,合成孔径雷达的小型化在2009年取得了新的进展。 关键词:有源相控阵雷达;合成孔径雷达;单片微波集成电路中图分类号:T N958 收稿日期:2010205221。 0 引 言 有源相控阵是近年来正在迅速发展的雷达新技 术,它将成为提高雷达在恶劣电磁环境下对付快速、机动及隐身目标的一项关键技术。有源相控阵雷达是集现代相控阵理论、超大规模集成电路、高速计算机、先进固态器件及光电子技术为一体的高新技术产物[122] 。合成孔径雷达是一种高分辨率的二维成像雷达,由于其具有全天候、全天时的优点,特别适于大面积的地表 成像[324] 。 2009年,国外有源相控阵雷达技术与合成孔径雷达技术取得了新进展。 1 有源相控阵雷达技术 有源相控阵雷达具有机械扫描雷达不可比拟的优越性,是雷达技术的主要发展方向。2009年,欧美各国竞相发展和装备有源相控阵雷达。陆基、舰载、机载有源相控阵雷达的研制取得了重大进展,欧洲雷达集团公司研制出可旋转的有源相控阵雷达天线,使该雷达具备了对飞机身后区域的探测能力。美国诺斯罗普?格鲁曼公司开发出敏捷波束机载有源相控阵雷达,不仅能对多个空中目标进行探测,还能进行地面动目标探测,使作战飞机能完成多种作战任务。随着技术的进步,尤其是Ga N (氮化镓)单片微波集成电路在T/R 组件中的应用,有源相控阵雷达的性能将进一步提高。1.1 GaN 单片微波集成电路可靠性提高,有望成为有源相控阵雷达的关键部件 与Ga A s (砷化镓)器件相比,Ga N 器件的功率密度更高(可达40W /mm ),并具有更高的耐高温特性 (工作温度可达600℃以上)。Ga N 高电子迁移率晶 体管可以提供较好的线性功率和效率以及较高的带宽 (高频参数达230GHz )。 美国雷声公司Ga N 芯片进行了长达1000h 的可靠性测试。在长达1000h 的Ga N 单片微波集成电路功率放大器可靠性测试中,器件性能没有降低,这表明此器件向实用化方向迈出了重要的一步。该公司称此Ga N 芯片将广泛用于防空/反导系统的雷达中,它将使有源相控阵雷达的探测距离大大增加,并将使其具有更强的电子攻击能力。1.2 有源相控阵雷达技术首次应用于防空系统的火控雷达 欧洲航空防务航天公司为美、意、德联合开发的ME ADS (中程扩展防空系统)的X 波段MFCR (多功能火控雷达)提供了第一批次5000个T/R 组件及其相关电子设备。这些组件是有源相控阵雷达的关键部件,它揭开了有源相控阵雷达技术应用于防空系统火控雷达的序幕。 X 波段多功能火控雷达是一种固态有源相控阵雷达,在它的主雷达天线上集成了一个敌我识别天线,并可选择性地集成电子支援分系统、GPS 天线和数字处理器。该雷达的天线安装在一台5t 的卡车上,用液体进行冷却,冷却剂从热交换器流向T/R 组件,然后回流至热交换器。该雷达能以“点对点模式”来监视有限方位角范围,也能以“选择模式”进行360°全向扫描。它的最远探测距离达400k m ,具有引导中远程精确制导武器拦截目标的能力,能同时捕捉多个低雷达截面积目标。该雷达的运用将为导弹防御系统提供一种功能更强的火控雷达。 ? 8?第36卷第6期2010年6月 信息化研究 I nf or matizati on Research Vol .36No .6Jun .2010

雷达技术概述

雷达技术的发展历程及其在现代战争下的发展趋势研究 摘要:文章简要介绍了雷达系统和技术的发展历程,分析了雷达系统与技术发展的特点,提出了现代战争下雷达技术发展展望。 关键词:雷达技术相控阵合成孔径发展历程发展趋势 引言 自从雷达诞生至今,在70 多年的发展历程中,随着科技的不断发展、需求的不断变化,出现了多种体制的新功能雷达,雷达的技术性能、体积和重量、可靠性、维修性、抗恶劣环境的生存能力等也发生了天翻地覆的变化。特别是其在现代战争中的广泛应用,使得对雷达技术的研究具有了重要的意义。 一、雷达系统与技术的发展历程 1.20 世纪30 年代及以前 19 世纪后期,物理学家麦克斯韦、法拉第和安培等人,预言并用数学公式描述了移动电流产生的电磁波的存在情况。1935 年英国和美国科学家第一次研制出能够探测空中飞机的实用米波雷达,至此宣告了雷达的诞生。1936 年美国海军研究实验室研制了T / R (收发)开关,可使雷达系统的接收和发射分系统共用一副天线,大大简化了雷达系统结构。1939 年英国科学家发明了大功率磁控管,克服了甚高频雷达波束和频带窄的缺点,使实用雷达步入了微波频段。 2.20 世纪40 年代 20 世纪40 年代美国辐射研究室把微波新技术应用于军用机载、陆基和舰载雷达取得成功,其代表产品是SCR -270 机载雷达、SCR -584 炮瞄雷达和AN / APQ-机载轰炸瞄准相控阵雷达。20 世纪40 年代主要的雷达技术有动目标显示技术、中继技术以及单脉冲跟踪技术理论的提出。动目标显示技术应用于各型对空警戒雷达,后来应用于着陆引导、岸防等型雷达,其优势是能有效抑制地海杂波,抑制大山、建筑物、风雨雪等静止和慢动目标的干扰能将机载情报传送到地面观测站,能有效加强地空之间的信息联系。 3.20 世纪50 年代 20 世纪50 年代是雷达理论发展的鼎盛时期,雷达设计从基于工程经验阶段,进人了以理论为基础,结合实践经验的高级阶段。50 年代产生的主要理论有匹配滤波器概念、统计检测理论、模糊图理论和动目标显示理论等。各种新技术的应用,出现了诸如脉冲多普勒雷达、合成孔径雷达等新休制雷达。 4.20世纪60年代 20 世纪60 年代雷达系统发展的主要标志是数字处理技术革命和相控阵雷达的应运而生。为了探测洲际弹道导弹,为防空系统提供预测情报,产生了相控阵雷达体制。新一代雷达发展方向是全固态电扫相控阵多功能雷达。雷达信号和数据处理的数字化革命、半导体元件、大规模和超大规模集成电路的应用,使雷达技术的发展日臻完善并达到比较高的水平。

探地雷达的发展与现状

探地雷达的发展与现状 探地雷达的历史最早可追溯到20世纪初。1904年,德国人Hülsmeyer首次将电磁波信号应用于地下金属体的探测。1910年,Leimback和L?wy以专利形式提出将雷达原理用于探地,他们用埋设在一组钻孔中的偶极天线探测地下相对高导电性质的区域,正式提出了探地雷达的概念。1926年Hülsenbeck第一个提出应用脉冲技术确定地下结构的思路,他指出介电常数不同的介质交界面会产生电磁波反射。由于地下介质具有比空气强得多的电磁衰减特性,加之地下介质情况的多样性,电磁波在地下的传播比空气中复杂的多,之后二三十年尽管在美国出现过一些相关的专利,这项技术很少被运用到其它领域,直到50年代后期,探地雷达技术才慢慢重新被人们所重视。探地雷达在矿井(1960,、冰层厚度(1963,、地下粘土属性(1965,Barringer)、地下水位(1966,Lundien)的探测方面得到了应用。1967年,一个与stern最初用于冰川探测的仪器类似的系统被设计研制出来,1972年Procello将其于探测月球表面结构。同样在1972年,Rex Morcy和Art Drake开创了GSSI(Geophysical Survey Systems Inc.)公司,主要从事商业探地雷达的销售。随着电子技术的发展,数字磁带记录问世,加之现代数据处理技术的应用,特别是拟反射地震处理的应用,探地雷达的实际应用范围在70年代以后迅速扩大,其中有:石灰岩地区采石场的探测(1971,Takazi;1973,kithara;)、淡水和沙漠地区的探测(1974,、工程地质探测(1976,和、煤矿井探测(1975,、泥炭调查(1982,、放射性废弃物处理调查(1982,、以及地面和井中雷达用于地质构造填图(1997, )、水文地质调查(1996, ;1997,Chieh-Hou Yang )、地基和道路下空洞及裂缝调查、埋设物探测、水坝的缺陷检测、隧道及堤岸探测等。自70年代以来、许多商业化的通用数字探地雷达系统先后问世,其中有代表性的有:美国Geophysical Survey System Inc公司的SIR系统、Microwave Associates 的MK系列,加拿大Sensor & Software的Pulse Ekko系列,瑞典地质公司(SGAB)的RAMAC/GPR系列,日本应用地质株式会社OYO公司的GEORADAR系列及一些国内产品(电子工业部LTD系列,北京爱迪尔公司CR-20、CBS-900等)。这些雷达仪器的基本原理大同小异,主要功能有多通道采集、多维显示、实时处理、变频天线、多次叠加、多波形处理等,另外还有井中雷达系统,多态雷达系统,层析成像雷达系统等。国内探地雷达的研究始于70年代初。当时,地矿部物探所、煤炭部煤科院,以及一些高校和其他研究部门均做过探地雷达设备研制和野外试验工作,但由于种种原因,这些研究未能正式用于实际。90年代以来,由于大量国外仪器的引进,探地雷达得到了广泛的应用与研究。1990-1993年,中国地质大学(武汉)在国家自然科学基金

探地雷达

探地雷达原理及应用读书报告 班级:061094班姓名:洪旭程学号:20091001724 探地雷达探测是一种先进的测试技术,是近十余年发展起来的地球物理高新技术方法,以其分辨率高、定位准确、快速经济、灵活方便、剖面直观、实时图像显示等优点,备受广大工程技术人员的青睐。现已成功地应用于岩土工程勘察、工程质量无损检测、水文地质调查、矿产资源研究、生态环境检测、城市地下管网普查、文物及考古探测等众多领域,取得了显著的探测效果和社会经济效益,并在工程实践中不断完善和提高,必将在今后的工程探测领域发挥着愈来愈重要的作用。因此,对广大工程技术人员来说,了解和学习探地雷达的原理及应用是非常必要的。 探地雷达探测技术在方法、仪器等方面仍在发展,其分辨率和探测范围也在不断的提高和扩大,比如美国地球物理调查系统公司( Geophysical Survey System Inc. ) 的SIRO10H 仪器,其标称的最小探测深度为4 cm ,最大探测深度为50 m ,最小可探测对象尺度为毫米级。但探地雷达探测技术与其它的地球物理勘查技术一样,其探测效果与其应用条件密切相关。 一、探地雷达的工作原理 探地雷达探测的工作原理,简单地说是通过特定仪器向地下发送脉冲形式的高频、甚高频电磁波。电磁波在介质中传播,当遇到存在电性差异的地下目标体,如空洞、分界面等时,电磁波便发生反射,返回到地面时由接收天线所接收。在对接收天线接收到的雷达波进行处理和分析的基础上,根据接收到的雷达波形、强度、双程时间等参数便可推断地下目标体的空间位置、结构、电性及几何形态,从而达到对地下隐蔽目标物的探测(如图1 所示) 。这是一种非破坏性的探测技术,可以安全地用于城市建设中的工程场地,并具有较高的探测精度和分辨率。 图1 中T 为发射天线, R 为接收天线,电磁波在地下介质中遇到目标体和基岩时发生反射, 信号返回地面由天线R 接收并记录,通过主机的回放处理,就可以得到雷达记录的回波曲线(如图2 所示) 。

探地雷达成像算法研究综述

探地雷达成像算法研究 摘要 探地雷达(Ground Penetrating Radar,简称GPR)集无损检测、穿透能力强、分辨率高等众多优点而成为检测和识别地下目标的一种有效技术手段。性能优良的探地雷达成像方法有助于精确定位地下目标,同时提高对目标的检测和识别能力,从而推动探地雷达在城市质量监控、地质灾害、考古挖掘、高速公路无损检测、地雷探测等各个方面得到更广泛的应用。 本文以中国电波传播研究所的探地雷达LD-2000为实验设备,从中读取探测数据。以MATLAB为软件平台,实现了探地雷达数据的显示、处理、成像几个部分。其中数据显示方式包括数据的波形堆积图,剖面面色阶图以及带数据波形图;数据处理部分包括直达波的去除、背景噪声的去除、振幅增益等;雷达成像算法部分主要采用波前成像算法和投影层析成像算法。

Imaging Algorithm of Ground Penetrating Radar ABSTRACT GPR (Ground Penetrating Radar, referred GPR) set of non-destructive testing, penetration ability, many advantages of high resolution detection and identification of underground and become the target of an effective technical means. Excellent performance GPR imaging approach helps pinpoint underground targets, while increasing the target detection and identification capabilities, thereby promoting the quality of ground penetrating radar surveillance in the city, geological disasters, archaeological excavation, highway nondestructive testing, mine detection, etc. aspects to be more widely used. In this paper, China Institute of Radiowave Propagation GPR LD-2000 for the experimental apparatus, reads probe data. MATLAB as the software platform to achieve a ground-penetrating radar data display, processing, imaging several parts. Wherein the data includes a data waveform display stacked, with a cross-sectional side view and a gradation data waveform; data processing section includes the removal of the direct wave, the background noise removal, the amplitude gain, etc.; radar imaging algorithm some of the major imaging algorithm and the wavefront projection tomography algorithms.

浅谈探地雷达的原理与特点

浅谈探地雷达的原理与特点 摘要:地下管线系统的建立是城市现代化建设的重要因素,但由于地下管线中的非金属管线的大量存在以及城市建设快速安全的需要,探地雷达探测技术的独特优势就显现出来,本文通过对探底雷达和地下管线的分析,为应用探底雷达在城市地下管线建设提供参考。 关键字:探地雷达;地下管线;探测技术 0 引言 随着城市现代化的发展,地下管线的密集程度也在不断地扩大。地下管线作为城市的重要基础设施之一,它一方面关系着城市居民生活及城市工业的发展,担负着巨大的社会责任,另一方面又由于它深埋于地下,具有不透明性,纵横交错、结构复杂。近年来,在许多大城市出现施工时挖断通信、电力电缆导致通讯中断、区域性停电、停产事故,这些事故给该地区经济和人们的生产生活带来了巨大的损失。因此,地下工程在施工时如何避免破坏这些地下管线就变得越来越重要,建立完整的城市地下管线系统成为现代城市快速建设的关键因素。 探地雷达(Ground Penetrating Radar,简称GPR)是一种对地下或物体内不可见的目标或界面进行定位的电磁法,并以其探测的高分辨率和高效率而成为地球物理勘探的一种有力工具。随着信号处理技术和电子技术的不断发展及工程实践的增多和经验的不断积累,探地雷达技术也得到极大提高,仪器也不断更新,探地雷达检测技术具有分辨率高、采集速度快、后期数据处理简便等特点。因此在铁路、公路、建筑、市政、考古等领域得到广泛的应用,并受到广大现场技术人员的认可和喜爱。 1 探地雷达的发展 国外探底雷达技术最早可追溯到二十世纪初,西方国家以专利形式提出将雷达原理用于探地,正式提出了探地雷达的概念。但是直到50年代后期探地雷达技术才被慢慢重视起来。探地雷达在矿井、冰层厚度、地下粘土属性、地下水位等方面的得到了应用。1967年,一个与Stern最初用于冰川探测的仪器类似的系统被设计研制出来,1972年,Rex Morcy和Art Drake开创了GSSI公司,主要从事商业探底雷达的销售。随着电子技术的发展,电子存储设备的问世,加之现代数据处理技术的应用,特别是拟反射地震处理的应用,探底雷达的应用领域迅速扩大,其中有:石灰岩地区采石场的探测、淡水和沙漠地区的探测、工程地质探测、煤矿井探测、泥灰调查、放射性废弃物处理调查、埋设物探测、水文地质调查、地基和道路下空洞及裂缝调查、水坝的缺陷检测、隧道及堤坝探测等。 自70年代以来,许多商业化的通用数字探地雷达系统先后问世,其中有代表性的有:美国GSSI公司的SIR和MK系列,加拿大Sensor&Software公司的Pulse Ekko系列。这些雷达的基本原理大同小异主要功能有多通道采集、多维显示、实时处理、变频天线、多次叠加、多波形处理等,另外还有井中雷达系统,

相关主题
文本预览
相关文档 最新文档