当前位置:文档之家› ProE_模流分析教程

ProE_模流分析教程

ProE_模流分析教程
ProE_模流分析教程

第一章计算机辅助工程与塑料射出成形

1-1 计算机辅助工程分析

计算机辅助设计(Computer-Aided Design, CAD)是应用计算机协助进行创造、设计、修改、分析、及最佳化一个设计的技术。计算机辅助工程分析(Computer-Aided Engineering, CAE)是应用计算机分析CAD几何模型之物理问题的技术,可以让设计者进行仿真以研究产品的行为,进一步改良或最佳化设计。目前在工程运用上,比较成熟的CAE技术领域包括:结构应力分析、应变分析、振动分析、流体流场分析、热传分析、电磁场分析、机构运动分析、塑料射出成形模流分析等等。有效地应用CAE,能够在建立原型之前或之后发挥功能:?协助设计变更(design revision)

?协助排除困难(trouble-shooting)

?累积知识经验,系统化整理Know-how,建立设计准则(design criteria)

CAE使用近似的数值方法(numerical methods)来计算求解,而不是传统的数学求解。数值方法可以解决许多在纯数学所无法求解的问题,应用层面相当广泛。因为数值方法应用许多矩阵的技巧,适合使用计算机进行计算,而计算机的运算速度、内存的数量和算法的好坏就关系到数值方法的效率与成败。

一般的CAE软件之架构可以区分为三大部分:前处理器(pre-processor)、求解器(solver)和后处理器

(post-processor)。前处理器的任务是建立几何模型、切割网格元素与节点、设定元素类型与材料系数、设定边界条件等。求解器读取前处理器的结果档,根据输入条件,运用数值方法求解答案。后处理器将求解后大量的数据有规则地处理成人机接口图形,制作动画以方便使用者分析判读答案。为了便利建构2D或3D模型,许多CAE软件提供了CAD功能,方便建构模型。或者提供CAD接口,以便将2D或3D的CAD图文件直接汇入CAE软件,再进行挑面与网格切割,以便执行分析模拟。

应用CAE软件必须注意到其分析结果未必能够百分百重现所有的问题,其应用重点在于有效率地针对问题提出可行之解决方案,以争取改善问题的时效。

经验=>

知识=>实验比对=>品质(Q)、成本(C)、交期(D)

CAE工具=>

应用CAE工具时,必须充分了解其理论内涵与模型限制,以区分仿真分析和实际制程的差异,才不至于对分析结果过度判读。据估计,全球应用CAE技术的比例仅15%左右,仍有广大的发展空间。影响CAE技术推广的主因有三:

?分析的准确性。

?相关技术人员的养成。

?技术使用的简易性。

而CAE模拟分析之主要误差来源包括:

?理论模式—物理现象、材料物性。

?数值解法(numerical Solver)

?几何模型(geometry model)

?错误的输入数据

1-2 塑料射出成形

塑料制品依照其材料性质、用途和成品外观特征而开发了各种加工的方法,例如押出成形(extrusion)、共押出成形(co-extrusion)、射出成形(injection molding)、吹袋成形(blown film)、吹瓶成形(blow molding)、热压成形(thermoforming)、轮压成形(calendering molding)、发泡成形(Foam molding)、旋转成形(rotational molding)、气体辅助射出成形(gas-assisted injection molding)等等。

塑料射出成形(injection molding)是将熔融塑料材料压挤进入模穴,制作出所设计形状之塑件的一个循环制程。

必须由化学反应固化定形。

射出成形是量产设计复杂、尺寸精良的塑件之最普遍和最多元化的加工方法。按照重量计算,大约32%的塑料采用射出成形加工。射出成形所生产的塑件通常只须少量的二次加工/组合、甚至不需要二次加工/组合。除了应用于热塑性塑料、热固性塑料以外,射出成形也可以应用于添加强化纤维、陶瓷材料、粉末金属的聚合物之成形。

射出机自从1870年代初期问世以来,经历了多次重大的改良,主要的里程碑包括回转式螺杆(reciprocating screw)射出机的发明、各种替代加工制程的发明,以及塑件计算机辅助设计与制造的应用。尤其是回转式螺杆射出机的发明,更对于热塑性塑料射出成形的多样性及生产力造成革命性的冲击。

现今的射出机,除了控制系统与机器功能有显著改善以外,从柱塞式机构改变为回转式螺杆是射出成形机最主要的发展。柱塞式射出机本质上具有简单的特色,但是纯粹以热传导缓慢地加热塑料,使其普及率大大地受到限制。回转式射出机则借着螺杆旋转运动所造成的摩擦热可以迅速均匀地将塑料材料塑化,并且,也可以像柱塞式射出机一般向前推进螺杆,射出熔胶。图1-1是回转式螺杆射出机的示意图。

图1-1 回转式螺杆射出机

射出成形制程最初仅仅应用于热塑性塑料,随着人类对于材料性质的了解、成形设备的改良、和工业上特殊需求等因素,使射出成形制程大大地扩张了应用范围。在过去的二十几年,许多新开发的射出成形技术应用于具有特殊特征的设计与特别材料的塑件,使射出成形塑件的设计比传统上更具有结构特征的多样性和自由度。这些研发的替代制程包括:

?共射成形(co-injection molding,又称为三明治成形)

?核心熔化成形(fusible core injection molding)

?气辅射出成形(gas-assisted injection molding)

?射出压缩成形(injection-compression molding)

?层状射出成形(lamellar, or microlayer, injection molding)

?活动供料射出成形(live-feed injection molding)

?低压射出成形(low-pressure injection molding)

?推拉射出成形(push-pull injection molding)

?反应性射出成形(reactive molding)

?结构发泡射出成形(structure foam injection molding)

?薄膜成形(thin-wall molding)

因为射出成形的广泛应用及其具有前景的未来,制程的计算机仿真也从早期的均一配置、模穴充填的经验估算演进到可以进行后充填行为、反应动力学、和不同材料或不同相态之仿真的复杂程序。市场上的模流分析软件提供了改变塑件设计、模具设计、及制程条件最佳化等CAE功能。

1-3 模流分析及薄壳理论

塑料射出成形之模流分析系应用质量守恒、动量守恒、能量守恒方程式,配合高分子材料的流变理论和数值求解法所建立的一套描述塑料射出成形之热力历程与充填/保压行为模式,经由人性化接口的显示,以获知塑料在模

其能够帮助生手迅速累积经验,协助老手找出可能被忽略的因素。应用模流分析技术可以缩减试模时间、节省开模成本和资源、改善产品品质、缩短产品上市的准备周期、降低不良率。在CAE领域,塑料射出模流分析已经存在具体的成效,协助射出成形业者获得相当完整的解决方案。

塑料射出模流分析所需的专业知识包括:

?材料特性—塑料之材料科学与物理性质、模具材料和冷却剂等相关知识。

?设计规范—产品设计和模具设计,可参考材料供货商提供的设计准则。

?成形条件—塑料或高分子加工知识以及现场实务。

市场上模流分析软件大多数是根据GHS(Generalized Hele-Shaw)流动模型所发展的中间面(mid-plane)模型或

薄壳(shell)模型之2.5D模流分析,以缩减求解过程的变量数目,并且应用成熟稳定的数值方法,发展出高效率的CAE软件。加以90%的塑料成品都是所谓的薄件,2.5D模流分析的结果具有相当高的准确性,佐以应用的实务经验,再结合专家系统,2.5D模流分析仍将主导模流分析的技术市场。薄壳模型要求塑件的尺寸/肉厚比在10以上,因此着重在塑料的平面流动,而忽略塑料在塑件肉厚方向的流动和质传,因此可以简化计算模型。就典型的模流分析案例而言,一般大约需要5000~10000个三角形元素来建构几何模型,目前2.5D模流分析方法在厚度方向使用有限元素差分法(finite difference method)分开处理,因此比较不会影响计算效率。通常,2.5D模流分析软件可以读取的档案格式包括.STL、. .IGES、MESH、STEP等档案格式。

目前,市面上可以看到的塑料射出成形仿真软件如下表:

软件名称开发单位

C-MOLD A.C.Tech. (美国)

MOLDFLOW Moldflow PTY (澳洲)

SIMUFLOW Gratfek Inc. (美国)

TM Concept Plastics & Compute Inc. (意大利)

CADMOULD I. K. V. (德国)

IMAP-F (株)丰田中央研究所(日本)

PIAS Sharp 公司(日本)

TIMON-FLOW TORAY公司(日本)

POL YFLOW SDRC (美国)

CAPLAS 佳能(日本)

MELT FLOW 宇部兴产(日本)

SIMPOE 欣波科技(台湾)

MOLDEX 科盛科技(台湾)

INJECT-3 Phillips(荷兰)

Dassault(法国)

Pro/E Plastics PTC (美国)

1-4 模流分析软件的未来发展

传统2.5D模流分析的最大困扰在于建立中间面或薄壳模型。为了迁就CAE分析,工程师往往在进行分析之前先利用转档或重建的方式建构模型,相当浪费时间,甚至可能花费分析时间的80%以上在建模和修模。新一代的模流分析软件舍弃GHS流动模型,直接配合塑件实体模型,求解3D的流动、热传、物理性质之模型方程式,以获得更真实的解答。3D模流分析技术的主要问题在于计算量非常大、计算的稳定性问题和网格品质造成数值收敛性的问题。目前,3D模流分析技术应用的模型技术有下列:

?双域有限元素法(dual-domain finite element method):

将塑件相对应面挑出,以两薄壳面及半厚度近似实体模型,配合连接器(connector)的应用以调节流动趋势。

流动长度估算错误等问题。使用此法的软件如MPI。

?中间面产生技术(mid-plane generator):

中间面产生技术可以分为中间轴转换(Medial Axis Transform, MAT)和法则归纳法(heuristic method),对于复杂结构的塑件,因为肉厚变化、公母模面不对称、肋(rib)与毂(boss)等强化原件的设计,使得MA T技术有实用上的困难,因此此项技术的发展以法则归纳法为主。

?HPFVM(High-Performance Finite Volume Method):

应用有限体积法配合配合快速数值算法(Fast Numerical Algorithm, FNA)、非线性去偶合计算法(Decoupled solution procedure for non-linearity)及高效率的迭代求解。使用此法的软件如Moldex-3D。

第二章射出成形机

就热塑性塑料(thermoplastics)而言,射出成形机将塑料颗粒材料经由熔融、射出、保压、冷却等循环,转变成最终的塑件。热塑性塑料射出成形机通常采用锁模吨数(clamping tonnage)或射出量(shot size)作为简易的机器规格辨识,可以使用的其它参数还包括射出速率、射出压力、螺杆设计、模具厚度和导杆间距等等。根据功能区分,射出成形机的大致上有三个种类:(1)一般用途射出机;(2)精密、紧配射出机;和(3)高速、薄肉厚射出机。射出成形机的主要辅助设备包括树脂干燥机、材料处理及输送设备、粉碎机、模温控制机与冷凝器、塑件退模之机械手臂、以及塑件处理设备。

2-1 射出机组件

典型的射出成形机如图2-1所示,主要包括了射出系统(injection system)、模具系统(mold system)、油压系统(hydraulic system)、控制系统(comtrol system)、和锁模系统(clamping system)等五个单元。

图2-1 应用于热塑性塑料的单螺杆射出成形机

2-1-1 射出系统

射出系统包括了料斗(hooper)、回转螺杆与料筒(barrel)组合,和喷嘴(nozzle),如图2-2。射出系统的功能是存放及输送塑料,使塑料经历进料、压缩、排气、熔化、射出及保压阶段。

图2-2 热塑性塑料的单螺杆射出成形机之塑化螺杆、料筒、

电热片、固定模板及移动模板。

(1) 料斗

热塑性塑料通常以小颗粒供应成形厂。射出机的料斗可以存放塑料胶颗粒,藉由重力作用使塑料颗粒经过料斗颈部,进入料筒与螺杆组合内。

(2) 料筒

射出机的料筒可以容纳回转式螺杆,并且使用电热片(electric heater bands))加热塑料。

(3) 回转式螺杆

回转式螺杆可以压缩塑料、熔化塑料及输送塑料,螺杆上包括了进料区(feeding zone)、压缩区(compression zone, 或转移区transition zone)、和计量区(metering zone)三个区段,如图2-3所示。

图2-3 回转式螺杆之进料区、压缩区、和计量区。

螺杆的外径为固定值,螺杆的沟槽深度(the depth of flight)从进料区到计量区起点逐渐递减,沟槽深度的变化使塑料相对于料筒内径产生压缩,造成剪切热,提供熔化塑料的主要热量。料筒外的加热片则帮助塑料维持于熔融状态,一般的射出机有三组或更多组加热片,以便设定为不同的温度区段。

(4) 喷嘴

喷嘴连接料筒和竖浇道衬套(sprue bushing)。当料筒移到最前端的成形位置,其喷嘴外径必须包覆在竖浇道定位环内,构成密封。喷嘴的温度应该设定在材料供货商建议之塑料熔化温度,或是略低于温度。如此,清理料筒时,只要将料筒后退远离竖浇道,清除的塑料可以从喷嘴自由落下,参阅图2-4。

图2-4 (a)在成形位置的喷嘴与料筒;(b)在清料位置的喷嘴与料筒。

2-1-2 模具系统

模具系统包括了导杆(tie bars)、固定模板(stationary platen)、移动模板(movable platen)、和容纳模穴、竖浇道、流道系统、顶出销和冷却管路的模板(molding plates),如图2-5所示。基本上,模具是一座热交换器,使热塑性塑料的熔胶在模穴内凝固成需要的形状及尺寸。

图2-5 典型的三板模之模具系统

合,通常以工具钢加工制成。固定安装板连接到成形机料筒一侧,并经由导杆与移动模板相接。母模板通常锁在固定模板上,并且连接到喷嘴;公模板锁在移动安装板上,沿着导杆之导引而移动。有些应用会相反地将母模板锁在移动模板上,将公模板和液压顶出机构安装固定模板上。

(1) 两板模

大多数模具是由两片模板组成,如图2-6,此类模具常使用在塑件浇口正好设在塑件边缘或者接近塑件边缘的设计,其流道(runner)也设计在母模板上。

(2) 三板模

三板模通常应用于浇口远离塑件边缘的设计,其流道是设计在分隔公模与母模的脱料板(stripper plate))上,如图2-6所示。

图2-6 (左)两板模与(右)三板模

(3) 冷却管路(回路)

冷却管路(cooling channels)是模具本体的通道,冷媒(一般是水、蒸汽或油)经由冷却管路循环以调节模壁温度。冷却管路也可以搭配其它的温度控制装置一起使用,例如障板管(bafflers)、扰流板(bubblers)或热管(thermal pins or heat pipes)等。

2-1-3 油压系统

射出机的油压系统提供开启与关闭模具的动力,蓄积并维持锁模力吨数,旋转与推进螺杆,致动顶出销,以及移动公模侧。油压系统的组件包括帮浦、阀、油压马达、油压管件、油压接头及油压槽等。

2-1-4 控制系统

控制系统提供成形机一致性的重复操作,并且监控温度、压力、射出速度、螺杆速度与位置、及油压位置等制程参数。制程控制直接影响到塑件品质和制程的经济效益。控制系统包括简单的开/关继电器控制到复杂的微处理器闭回路控制器。

2-1-5 锁模系统

锁模系统用来开启/关闭模具,支撑与移动模具组件,产生足够的力量以防止模具被射出压力推开。锁模机构可以是肘节机构锁定、油压机构锁定、或是上述的两个基本型态的组合。

2-2 射出成形系统

典型的射出成形系统(molded system)包括熔胶输送系统和成形塑件,如图2-7所示。熔胶输送系统提供让熔胶从射出机喷嘴流到模穴的通道,它通常包括:竖浇道(sprue)、冷料井(cold slug well)、主流道、分枝流道、和浇口(gates)。

图2-7 射出成形系统包括熔胶输送系统及成形塑件。

输送系统的设计对于充填模式与塑件品质都有很重要的影响。因此应该设计流道系统,以维持所需充填模式,将熔胶输送到模穴。在完成射出成形之后,冷流道输送系统将会被切除成为回收废料,所以应该设计输送系统,以产生最少的废料。

热流道(Hot runner或无流道runnerless)成形制程维持流道于高温,使其内之熔胶维持在熔融状态。因为热流道并不与塑件一起脱模,不致于造成废料,并且节省塑件二次切除加工的制程。

2-3 射出机操作顺序

塑料射出成形加工是一种适合高速量产精密组件的加工法,它将粒状塑料于料筒内融化、混合、移动(3 M’s: Melt, Mix, and Move),再于模穴内流动、充填、凝固(3F’s: Flow, Form, and Freeze)。其动作可以区分为塑料之塑化、充填、保压、冷却、顶出等阶段的循环制程,包括的基本操作动作如下列:

(1)关闭模具,以便螺杆开始向前推进,如图2-8(a)。

(2)与柱塞式射出机相同地,推进回转式螺杆以充填模穴,如图2-8(b)。

(3)螺杆继续推进,以进行模穴保压,如图2-8(c)。

(4)当模穴冷却,浇口凝固,螺杆开始后退,并塑化材料准备下一次射出,如图2-8(d)。

(5)开启模具,顶出塑件,如图2-8(e)。

(6)开闭模具,以开始下一个循环,如图2-8(f)。

塑料在料筒被螺杆挤压产生大量摩擦热而形成熔融状态,熔胶堆积于料筒前端,并且使用加热器维持熔胶温度。在充填阶段开始,射出机打开喷嘴,螺杆前进将熔胶经喷嘴注入关闭的模穴,以完成充填。当熔胶进入模穴,受压气体从顶出销、分模线和气孔逸出。良好的充填决定于塑料组件设计、浇口位置和良好的排气。假如塑料的流动性不佳,或者射出压力不足就可能造成短射现象;相反地,假如塑料的流动性太好,容易在塑件的分模面造成毛边。熔胶完全填满模穴后,继续施压以注入更多熔胶,补偿因冷却而造成之塑料体积收缩,并确保模穴完全填满。

充填与保压阶段结束,熔胶在模具里完全凝固后,再打开模穴取出塑件。冷却时间在整个成形周期占非常高的比例,大约80%,成形品的冷却时间依照塑料性质、成形品的形状、大小、尺寸、精度而有不同。当移动模板后退,使顶出销顶到后板(rear plate) 而停止运动,将成形品、浇道系统及废料顶出。

(a) (b)

(c) (d)

(e)(f)

图2-8 射出机之操作程序。(a)关闭模具;(b)充填模穴;(c)保压;

(d)螺杆后退;(e)顶出塑件;(f)开始下一个循环。

为了进一步说明制程循环中的射出机动作,图2-9画出不同阶段的油压缸压力、模穴压力、公母模分隔距离与螺杆位置的示意图,其中编号表示:

图2-9 典型的射出成形机之动作循环和各动作所占的时间比例

1-- 充填(射出阶段)

2-- 保压与冷却

3-- 开启模具

4-- 顶出塑件

5-- 关闭锁具

射出成形的周期时间根据制程的塑件重量、肉厚、塑料性质、机器设定参数而改变。典型的周期时间可能从数秒钟到数十秒。

2-4 螺杆操作

根据需求,回转式螺杆可以设定转速以塑化塑料颗粒,并且将熔胶以设定之螺杆速度、射出量与射出压力压挤进入模穴。回转式螺杆射出机之射出成形的主要控制参数如下列:

(1) 背压

背压(back pressure)是螺杆往后推以准备下一次射出塑料时,作用于螺杆前端之塑料的压力值。当射出机准备要射出时,螺杆将前端的塑料推入模穴,射出的塑料在模具内冷却后,射出机再进入螺杆倒退阶段,重新开始一个循

位置是根据充填流道和模穴所需的塑料量,以手动方式设定。

(2) 射出速度(或射出时间)

射出速度(injection speed或螺杆速度ram speed)是指射出操作中,螺杆的前进速度。对于大部份的工程塑料,应该在塑件设计的技术条件和制程允许的经济条件下,设定为最快的射出速度。然而,在射出的起始阶段,仍应采用较低的射速以避免喷射流(jetting)或扰流。接近射出完成时,也应该降低射速以避免造成塑件溢料,同时可以帮助形成均质的缝合线。

射出时间是将熔胶充填进模穴所需的时间,受到射出速度控制。虽然最佳的充填速度取决于塑件的几何形状、浇口尺寸和熔胶温度,但大多数情况会将熔胶尽速射入模穴。因为模具温度通常低于树脂的凝固点(freezing point),所以太长的射出时间会提高导致塑料太早凝固的可能性。

薄肉厚塑件使用高射出速度以防止充保模穴前发生凝固。有时候,粗厚塑件或小浇口会降低充填速度,此时必须保持熔胶连续地流过浇口以防止浇口凝固,进而充饱模穴。新进的研究方向尝试控制射出量,控制螺杆动作和止回阀(check valve)关闭的时间,以达到控制组件尺寸的目的。

(3) 螺杆旋转速度

螺杆旋转速度是塑化螺杆的转速。转速越快,塑料螺杆沟槽压缩得越激烈,产生更大量的剪切热。

(4) 缓冲量

缓冲量(cushion)是螺杆的最大允许前进位置与最末端的前进位置之间的差值。假如允许螺杆行程设为最大值,缓冲量为零,螺杆将前进至碰到喷嘴后才停止。通常,缓冲量设定为3~6 mm(1/8~1/4英吋)。

(5)熔胶温度

熔胶温度应依照(a)树脂种类、(b)射出机特性、(c)射出量,相互配合。最初设定的熔胶温度应参考树脂供货商的推荐数据。通常选择高于软化温度、低于树脂之熔点做为熔胶温度,以免过热而裂解。以nylon为例,在射出区(feed zone)的温度通常比料筒的温度高,此增加的热量可以降低熔胶射出压力而不致于使熔胶过热。因为nylon熔胶的黏滞性相当低,可以很容易地充填模穴而不必倚赖提升温度造成的致稀性。

(6)模具温度

模具温度的限制在于避免塑料在模穴内的剖面冻结(freezing)以及塑料的冷却性质(例如crystallization等)。所以,模具温度应该是在熔胶的流动性与模具温度之间作折衷选择。假如可能的话,应该让临界之凝固位置(the critical freezing location)发生在浇口处。调节浇口尺寸能够获得在可能的最低模具温度下的最佳流动性。

较低的模具温度可以加速成形周期,故应尽量使用可接受的最低模具温度。有些射出成形需要冷却或冷凝,有些则需要加热模具以控制结晶度(crystallization)和热应力。模具温度可以使用冷却剂调节。模具温度和冷却剂温度都应监控。模具固定侧和移动侧使用不同模温的目的之一是要控制成品附着在模仁,方便顶出。

影响熔胶温度和模具温度的一些因素包括:

?射出量(shot size)—大射出量需要较高的模具温度。

?射出速率(injection rate)—高射出速度会造成致稀性的高温。

?流道尺寸(size of runner)—长的流道需要较高温度。

?塑件壁厚(part thickness)—粗厚件需要较长冷却时间,通常使用较低模温。

(7)射出和保压压力

射出压力的上限是射出机的容量、锁模力和模具的结构。通常,射出压力和保压压力设定为不会造成短射的最低压力。射出压力和保压压力应该足够高,维持足够久,以便在塑件的收缩阶段继续填注塑料,将收缩量最小化。然而,太高的射出压力会造成塑件潜在的应力。两段式加压可以应用在一些制程,第一阶段的高压进行充填,第二段则以较低压力进行保压。

(8)保压时间

完成充填模穴后,射出机仍然施加压力在模具的时间称为保压时间,保压的目的在维持组件的尺寸精度。

解除压力到开模之间的时间称为剩余冷却时间,目的是让塑件足够硬化以便顶出。假如在塑件尚未完全冷却硬化之前就顶出,会造成塑件翘曲变形。

(10)开模时间(mold-opening time,也称为dead time)

开模时间包括打开模具、顶出塑件和关闭模具的时间。开模时间和射出机之操作效率、成品取出的难易度、使用脱模剂与否都有关系,以人工安置镶埋件(insert)的模具会更降低操作效率。在射出机运转过程维持最少的人力介入是开模时间最佳化的方向。有时候,考虑到成形品的可靠性和尺寸稳定性,最理想的制程循环有可能不是dead time 最短的制程。

改善dead time的方法包括:

?统计法—例如control charts、田口法。

?神经网络法—甚至可以在射出机运转之前即建议设定之成形条件。目前,可能购买现有的神经网络训练器分析正常的射出成形制程,而能够准确预测成形品的品质。甚至有神经网络训练器只要辨识组件的几何关系和树脂特性就可以对新设计缘渐渐溢出有效的成形条件。

2-5 二次加工

塑件顶出之后,切除熔胶输送系统(竖浇道、流道、浇口)的加工称为二次加工。有些塑件需要二次加工进行组合或装饰,二次加工详细说明应该可以从材料供货商的设计手册中找到。

(1) 组合

组合塑件的二次加工包括:

●黏合(bonding)

●熔接(welding)

●嵌入(inserting)

●打桩(staking)

●嵌金属型板(swaging)

●接合组合(assembly with fasteners)

(2) 装饰

装饰塑件的二次加工包括

●表面处理:加热或加压之表面处理。

●印刷:为装饰或提供信息而在塑件表面加工。

(3) 其它的二次加工

其它的二次加工包括:

●上漆

●硬镀

●金属层/遮蔽层

●表面处理

●退火

●车削

第三章 什么是塑料

塑料(plastics)是一种简单的单体(monomers)经由化学聚合反应(polymerization)而成的长链状高分子聚合物(polymers)。根据美国塑料工业协会对于塑料的定义:「将全部或部分由碳、氧、氢和氮及其它有机或无机元素使用加热、加压、或两者并用的方式聚合而成,在制造中的阶段是液体,在制造的最后阶段成为固体,此庞大而变化多端的材料族群称为塑料。」高分子聚合物加工成为塑件的制程主要包括热塑性塑料之熔化与凝固的物理相态变化或热固性塑料之固化的化学反应两种。

简单的高分子材料呈链状结构,其中最重要者首推乙烯基高分子(vinyl polymer),结构如下:

()R

| 2n

CH CH ---

其中,当 R = H ,为聚乙烯;当 R = CH 3,为聚丙烯;当 R = C 6H5,为聚苯乙烯;当 R = Cl ,则成为聚氯乙烯。高分子材料依照分子量和分子结构的差异,也造成不同物性的塑料。例如甲烷(methane, CH 4)为气体,戊烷(pentane, C 5H 12)为液体,甲烷(polyethylene, C 100H 102)为固体。高分子材料的分子量通常为10,000 ~ 1,000,000,分子量愈大,愈增加成形的困难度,200,000为合理的成形上限。

高分子聚合物的分子链可以视为一重复单体长链,加上主要分子链旁枝的化学基,如图3-1所示。虽然“塑料”可以泛指聚合物或树脂,塑料一般是指添加了塑化剂、安定剂、填充料或是其它改善性能及成形性之聚合物系统,还包括橡胶、纤维、黏着剂与表面涂料。塑料加工成塑件的制程众多,可以参考图3-2。

聚合物分子链的结构、规模大小、化学成分都直接影响聚合物的化学性质与物理性质。塑料高分子还受到机械加工制程与热历程影响。例如,聚合物熔胶的黏滞性(亦即流动阻力)随着分子量增加而增加,随着温度上升而降低。玻璃转移温度、机械性质、耐热性、耐冲击性亦阶随着分子量增加而提高。此外,作用于材料的高剪应力所造成的整齐分子链配向性也会降低聚合物熔胶的黏滞性。就分子量分布而言,短分子链影响拉伸及冲击强度,中分子链影响黏滞性及剪切流动性质,长分子链影响熔胶之弹性。

图3-2 塑料之加工制程

塑料通常具有下列特性:

?低强度与低韧性(玻纤强化塑料则可以达到高强度与高韧性)

?原料丰富,价格低廉。

?有最高使用温度限制。

?色彩鲜明,着色容易。

?受外力作用时会产生连续变形(潜变现象)。

☆易加工程复杂形状。(i.e. 容易成形,可以量产。)

☆低密度。(i.e.重量轻,塑料比重0.9~2,铝2.7,铁7.8)

☆耐腐蚀性佳。

☆良好的绝缘性和隔热性。

☆可以具有其它特殊性质,例如透明性、可弯曲性等。

塑料材料与金属材料比较,金属材料通常包括下列特性;高密度、宽广的使用范围、高热传导性、高导电性、刚性(rigidity)、高强度(strength)、不透明、易生锈、精密加工费用高昂。相对地,塑料材料则具有良好的机械阻尼、良好的热膨胀性、加工周期短而且可以减少穿孔等二次加工的成本、密度低、增加产品设计的空间与选择、料头可以回收以节省成本、可以提高产品寿命、亦可能获得很高的结构强度。钢的模数为210 GPa。一般而言,塑料的模数比金属小数十倍到数百倍。模数的定义E = 应力σ0╱应变ε0,单位是Pa(= N/m2)。塑料材料与金属、陶瓷材料之特性比较如表3-1。

表3-1 塑料材料与金属、陶瓷材料之特性比较

特性优点缺点

低熔点容易加工成形使用温度范围窄

高拉伸率Low brittleness 高潜变强度和低降伏强度

低密度成品轻结构强度低

低热传导性隔热性佳散热性差

低导电性优良的绝缘体不导电

着色容易不必在成品着色颜色比对不易

溶剂之敏感性可应用为溶液(solution) 可能被溶剂(solvent)影响

可燃性废料可以燃烧可能产生烟害(fumes or fire hazards)

透光性可以产生透明塑件因阳光照射而劣化

(1) 聚合物合金及混合物

聚合物合金(polymer alloys)及聚合物混合物(polymer blends)是将两种或更多种聚合物混合的系统。当混合结果产生融合效应(synergistic effect)而具有单一的玻璃转移温度,称为聚合物合金,其性质比各别的聚合物更佳。当混合结果具有多重的玻璃转移温度,称为聚合物混合物,其性质是各别聚合物的平均。ABS是最早期的一种成功混合物,它结合了各个成分聚合物的耐化学性、韧性(toughness)以及刚性(rigidity)。

(2) 聚合物复合材料

聚合物复合材料(polymer composites)是将强化物质添加到聚合物内,以增加所需的性质。单晶/须晶、黏土、滑石、云母等低长宽比(aspect ratio)之片状填充料可以提高材料的劲度(stiffness);然而,纤维、玻璃纤维、石墨、硼等高长宽比的填充料可以同时提高拉伸强度和劲度。

3-1 塑料之分类

根据分子联结的聚合反应种类,塑料可以区分为热塑性塑料(thermoplastics)和热固性塑料(thermosets)。表3-2列出热塑性塑料与热固性塑料相关的结构与性质之整理。热塑性塑料根据分子结构或链的结构可以再细分为不定形(amorphous)、半结晶(semi-crystalline))或液晶(liquid crystalline)聚合物。聚合物的微结构及加热与冷却的效应如图3-3。其它类别的塑料包括弹性体(elastomers)、共聚合物(copolymers)、复合物(compounds)、商用塑料和工程塑料。添加物填充料和补强剂是直接与塑料性质和性能相关的其它分类方法。

表3-2热塑性塑料与热固性塑料的结构与性质

微结构

˙线性或分枝分子链,分子间无化学作用。˙化学反应后,分子链产生交联网状结构。

对热的反应

˙可以再软化(属于物理相态变化)。˙无裂解时,交联后无法再软化。

一般性质

˙较高的耐冲击强度。

˙加工较容易。

˙对于复杂设计有较佳的适应性。˙较好的机械强度。

˙较好的尺寸稳定性。

˙较佳的耐热性及湿气绝缘性。

3-2 热塑性塑料

一般而言,热塑性塑料聚合度较高,分子量也较大。线状或分枝状的长分子链有侧链或官能基,而且不与其它聚合物分子相连接,结果,热塑性塑料可以重复地加热而软化,冷却而凝固。这种以物理反应之相变化为主的程序允许将塑料废料回收。虽然热塑性塑料可以回收,但在成形时仍可能有小程度的化学变化,回收塑料的性质可能不会与原始塑料的性质完全相同。

热塑性塑料占所生产塑料的70%,热塑性塑料以小球状或颗粒状贩售,它们在压力下加热熔化成黏稠状流体,冷却时形成所需的成品形状。与热固性塑料比较,热塑性塑料通常具有较高的耐冲击强度,容易加工,对复杂设计有较好的适应性。

图3-3 不同塑料的微结构,及制程中加热或冷却对于为结构的影响。

在热塑性塑料中,商用塑料占了90%,例如高密度聚乙烯(HPPE )、低密度聚乙烯(LDPE )、聚苯乙烯(PS )、聚丙烯(PP )和聚氯乙烯(PVC )等。然而,工程塑料诸如缩醛(acetal)、ABS 、耐隆、聚碳酸脂(PC)等提供了高机械强度、较佳的耐热性、较高的冲击强度等改善性能,因此价格也比较昂贵。

实用上,经常会提及合金塑料和工程塑料等热塑性塑料的术语。合金塑料指其构造由不同的单体或聚合体之物理混合(而非聚合)。制造合金塑料的理由大都是要适应某种要求之物理性质、有利于价格及性能指数、改进加工之可能性这三种因素,例如PC/ABS 和ABS/PV A 。而工程塑料是指在机械装置中取代其它金属材料用途之塑料,亦即使用为机械材料的塑料,属于高性能的塑料,一般具有较大的温度使用范围(–40℉~300℉)、高强度与高刚性、耐冲击性、低潜变性、耐磨损、优良的耐化学药品性及绝缘性。

热塑性塑料中又可以区分为不定形塑料和结晶性塑料,其结构与性质如表3-3。

表3-3 不定形塑料与结晶性塑料的结构与性质之比较

不定形塑料

结晶性塑料

常用的材料

丙烯晴—丁二烯—苯乙烯共聚合物(ABS )、压克力(例如PMMA 、PAN )、聚碳酸脂(PC)、聚苯乙烯(PS)、聚氯乙烯(PVC)、苯乙烯—丙烯系聚合物(SAN)。

聚缩醛树脂(POM)、耐隆(PA, 聚醯胺)、聚乙烯(PE)、聚丙烯(PP)、热塑性聚脂(例如PBT 、PET)。

微结构 分子在液相和固相都呈现杂乱的配向性。 分子在液相呈现杂乱的配向性,在固相则形成紧密堆砌的晶体。 热之反应 具有软化温度范围,但没有明显的熔点。 具有明确的熔点。 性质

● 透明 ● 抗化学性差 ● 成形时体积收缩率低 ● 通常强度不高 ● 一般具有高熔胶黏度 ● 半透明或不透明 ● 抗化学性佳 ● 成形时体积收缩率高 ● 强度高 ● 熔胶黏度低

3-2-1 不定形聚合物

在无应力作用下加热,不定形塑料熔胶之分子链杂乱地相互纠缠在一起,分子链仅以微弱的凡得瓦尔力维系。不定形塑料维持这种纠缠杂乱的配向性而无视于状态的改变。不定形塑料具有明确的玻璃转移温度和宽广的软化温度范围,没有明确的熔点。当熔胶温度降低,不定形塑料开始呈现橡胶状态,当温度继续降低到玻璃转移温度以下,它将呈现玻璃状态。不定形塑料的透明度高、耐热性中等、耐冲击性好、收缩量低。

充填模穴时,不定形塑料的分子链会沿着熔胶流动方向拉伸,分子链与冷模壁接触急冷而冻结;凝固层将塑件内层与模壁隔离,使塑件内层冷却速率较慢,有足够时间将分子链回复卷曲。也就是说,表层的分子链有较好的配向性,较小的收缩量;内层的分子链较无配向性,收缩量较大。所有的不定形塑料的线性收缩率(linear shrinkages)都很接近,所以考量塑件尺寸时,同一塑件可以使用不同的不定形塑料取代,例如以ABS取代苯乙烯,以PC取代压克力,射出成形的尺寸应该会维持在相当精度以内,只是性质会有所变化。

3-2-2 (半)结晶性聚合物

结晶性材料是不具有大侧基、旁枝或交联的聚合物,熔融的结晶性塑料黏滞性低,容易流动。当冷却到熔点以下时,分子形成规则的晶体结构,使其流动性变差。随着温度继续降低,其结晶度增加,强度也增加,透明度泽降低。结晶程序停止于玻璃转移温度。因为在正常的加工程序很难获得100%结晶,结晶性塑料通常呈现半结晶,它同时具有结晶与不定形两种相态,其结晶度则决定于聚合物的化学结构和成形条件。(半)结晶性塑料就像冰块一样具有明确的熔点,玻璃转移温度则不明显,通常低于是温,抗化学性及耐热性佳、润滑性良好、吸湿性低、收缩率高。

半结晶性塑料具有相当大的线性收缩率,无法用以取代不定形的塑料的射出成形;否则,会造成尺寸精度上很大的问题。

3-2-3 液晶聚合物

液晶聚合物在液态与固态都呈现高度规则的分子排列,如图3-3所示,其棒状的分子链形成平行数组。液晶聚合物具有低黏度、低成形收缩率、抗化学性、高劲度,抗潜变,及整体尺寸稳定性等加工与性能的优势。

3-3 热固性塑料

热固性塑料也称为热硬化塑料,于加热之初会软化,而后分子间产生化学键结,造成高度连联的网状结构,如图3-3所示。热固性塑料与热塑性塑料的最大差异就在于交联程序,本质上,热固性塑料具有较好的机械强度、强高的使用温度和较佳的尺寸稳定性。许多热固性塑料是工程塑料,并且因为交联程序而具有不定形结构。

在成形之前,热固性塑料和热塑性塑料一样具有链状结构。在成形过程中,热固性塑料以热或化学聚合反应,形成交联结构。一旦反应完全,聚合物分子键结形成三维的网状结构,这些交联的键结将会阻止分子链之间的滑动,结果,热固性塑料就变成了不熔化、不溶解的固体。假如没有发生裂解,即使加了热也不能将它再软化或再加工。热固性塑料的性质可以想象成煮熟的蛋,蛋黄从液体变成固体,却无法再转变为液体。

热固性塑料通常以液态的单体—聚合物混合料,或部份聚合的成形复合物贩售。从尚未固化的状态将热固性塑料注入模穴,于加压或未加压条件下,以加热或以化学混合物催化聚合以定形。热固性塑料通常添加矿物质、石灰、玻纤等填充料或强化物质以增强性质,例如收缩量的控制、耐化学性、防震性、绝缘性、隔热性或降低成本。其结构之网目愈细,耐热性和耐化学性也愈佳。环氧树脂、酚醛树脂都是常见的热固性塑料。热固性塑料经常应用于IC 等产品。表3-4提供了树脂供货商所建议的熔胶与模具之建议温度值。

3-4 添加剂、填充料与补强料

添加剂(additives)、填充料(fillers)和补强料(reinforcements)是用来改变或改善塑料的物理性质和机械性质,其影响列于表3-5。通常,强化纤维可以提升聚合物的机械性质,而特定的填充料则用来增加模数。一般而言,塑料是不良导体,许多填充料可以影响其电气性质,例如添加导电性填充料可以让塑料产生电磁遮敝性质;添加抗静电剂可以用来吸湿气,降低静电荷的累积;添加耦合剂可以改善塑料与强化纤维之间的键结;有些填充料可以用来降低材料成本;其它的添加剂包括降低燃烧倾向的抗燃剂、降低熔胶黏度的润滑剂、增加材料柔软性的塑化剂、和提供

填充料可以改善塑料的性质和成形性。假如添加低值长宽比的填充料,其底材的性质改变较小,此类填充料的好处如下:

?降低收缩量。

?改善耐热性。

?改善强度,特别是压缩强度。

?降低耐冲击性。

?改善耐溶剂性。

表3-4 常用树脂的建议熔胶温度与模具温度

材料名称

流动性质熔胶温度

(°C/°F)

模具温度

(°C/°F)

顶出温度

(°C/°F)

MFR

g/10

min

测试

负荷

kg

测试

温度

C

最小值建议值最大值最小值建议值最大值建议值

ABS 3510220200/392230/446280/53625/7750/12280/17688/190 PA 12 955275230/446255/491300/57230/8680/176110/230135/275 PA 6 1105275230/446255/491300/57270/15885/185110/230133/271 PA 66 100 5 275260/500280/536320/60870/15880/176110/230158/316 PBT 35 2.16250220/428250/482280/53615/6060/14080/176125/257 PC 20 1.2300260/500305/581340/64470/15895/203120/248127/261 PC/ABS12 5 240230/446265/509300/57250/12275/167100/212117/243 PC/PBT 465275250/482265/509280/53640/10460/14085/185125/257 PE-HD 152.16190180/356220/428280/53620/6840/10495/203100/212 PE-LD 102.16190180/356220/428280/53620/6840/10470/15880/176 PEI 155.00340340/644400/752440/82470/158140/284175/347191/376 PET 275290265/509270/518290/554 80/176100/212120/248150/302 PETG 23 5 260220/428255/491290/55410/5015/6030/8659/137 PMMA 10 3.8230240/464250/482280/53635/9060/14080/17685/185 POM 202.16190180/356225/437235/45550/12270/158105/221118/244 PP 202.16230200/392230/446280/53620/6850/12280/17693/199 PPE/PPO 4010265240/464280/536320/60860/14080/176110/230128/262 PS 155200180/356230/446280/53620/6850/12270/15880/176 PVC 5010200160/320190/374220/42820/6840/10470/15875/167 SAN 3010220200/392230/446270/51840/10460/14080/17685/185高值长宽比的填充料(例如25以上)可以称为纤维(fiber)。纤维补强料可以相当程度地影响塑料性质。假设聚合物与纤维之间具有良好的结合力,则沿着纤维方向的强度会大幅提升。假如多数纤维有相同的配向性,则沿着纤维配向性与垂直于纤维配向的弹性模数会有很大差异,在垂直方向的模数会与无添加纤维的塑料之模数接近。添加的纤维也相当程度地影响材料的收缩性质,在纤维配向方向的收缩率会比剖面方向的收缩率低许多。

因为纤维的配向性随着流动方向、肉厚方向、缝合线位置而变化,为了预测塑件的性质,预测这些配向性就愈显重要。

表3-5添加剂、填充料与补强料对于聚合物性质的影响添加剂、填充料及补强料常用村料对聚合物性质的影响

强化纤维碳素、碳、矿物质纤维、

玻璃、kevlar ●增加拉伸强度

●增加弯曲模数(flexural modulus) ●提高热变形温度

●提升抗收缩与抗翘曲能力

导电性填充料铝粉、碳纤维、石墨●提高电气性质

●提高热传导性

耦合剂Silanes、titanates ●改善聚合物与纤维界面之键结力抗燃剂氯、溴、硫、金属盐●降低燃烧发生率及扩散速度

混合填充料碳酸钙、硅、黏土●降低材料成本

塑化剂单体液体、低分子量材料●改善熔胶的流动性

●加强挠曲性

着色剂(色料或染料)金属氧化物、铬酸盐、碳

黑●提供耐久的颜色

●防止热裂解或紫外线造成裂解

发泡剂气体、氮复合物、联氨衍

生物

●造成孔穴组织以降低材料密度

第四章塑料如何流动

熔融的热塑性塑料呈现黏弹性行为(viscoelastic behavior),亦即黏性流体与弹性固体的流动特性组合。当黏性流体流动时,部分驱动能量将会转变成黏滞热而消失;然而,弹性固体变形时,会将推动变形的能量储存起来。日常生活中,水的流动就是典型的黏性流体,橡胶的变形属于弹性体。

除了这两种的材料流动行为,还有剪切和拉伸两种流动变形,如图4-1 (a)与(b)。在射出成形的充填阶段,热塑性塑料之熔胶的流动以剪切流动为主,如图4-1(c)所示,材料的每一层元素之间具有相对滑动。另外,当熔胶流经一个尺寸突然变化的区域,如图4-1(d),拉伸流动就变得重要多了。

图4-1 (a)剪切流动;(b)拉伸流动;(c)模穴内的剪切流动

(d)充填模穴内的拉伸流动

热塑性塑料承受应力时会结合理想黏性流体和理想弹性固体之特性,呈现黏弹性行为。在特定的条件下,熔胶像液体一样受剪应力作用而连续变形;然而,一旦应力解除,熔胶会像弹性固体一样恢复原形,如图4-2 (b)与(c)所示。此黏弹性行为是因为聚合物在熔融状态,分子量呈现杂乱卷曲型态,当受到外力作用时,将允许分子链移动或滑动。然而,相互纠缠的聚合物分子链使系统于施加外力或解除外力时表现出弹性固体般的行为。譬如说,在解除应力后,分子链会承受一恢复应力,使分子链回到杂乱卷曲的平衡状态。因为聚合物系统内仍有分子链的交缠,此恢复应力可能不是立即发生作用。

图4-2 (a)理想的黏性液体在应力作用下表现出连续的变形;

(b)理想的弹性固体承受外力会立刻变形,于外力解除后完全恢复原形;

(c)热塑性塑料之熔胶就像液体一样,在剪切应力作用下而连续变形。然而,一旦应力解除,它就像弹性

固体一般,部分变形会恢复原形。

4-1 熔胶剪切黏度

熔胶剪切黏度(shear viscosity)是塑料抵抗剪切流动的阻力,它是剪切应力与剪变率的比值,参阅图4-3。。聚合物熔胶因长分子链接构而具有高黏度,通常的黏度范围介于2~3000 Pa(水为10-1 Pa,玻璃为1020 Pa)。

图4-3 以简易之剪切流动说明聚合物熔胶黏度的定义

水是典型的牛顿流体,牛顿流体的黏度与温度有关系,而与剪变率无关。但是,大多数聚合物熔胶属于非牛顿流体,其黏度不仅与温度有关,也与剪切应变率有关。

聚合物变形时,部份分子不再纠缠,分子链之间可以相互滑动,而且沿著作用力方向配向,结果,使得聚合物的流动阻力随着变形而降低,此称为剪变致稀行为(shearing-thinning behavior),它表示聚合物承受高剪变率时黏度会降低,也提供了聚合物熔胶加工便利性。例如,以两倍压力推动开放管线内的水,水的流动速率也倍增。但是,以两倍压力推动开放管线内的聚合物熔胶,其流动速率可能根据使用材料而增加2~15倍。

介绍了剪切黏度的观念,再来看看射出成形时模穴内的剪变率分布。一般而言,材料的连接层之间的相对移动愈快,剪变率也愈高,所以,典型的熔胶流动速度曲线如图4-4(a),其在熔胶与模具的界面处具有最高的剪变率;或者,假如有聚合物凝固层,在固体与液体界面处具有最高的剪变率。另一方面,在塑件中心层因为对称性流动,使得材料之间的相对移动趋近于零,剪变率也接近零,如图4-4(b)所示。剪变率是一项重要的流动参数,因为它会影响熔胶黏度和剪切热(黏滞热)的大小。射出成形制程的典型熔胶剪变范围在102 ~105 1/s之间。

图4-4 (a)相对流动元素间运动之典型速度分布曲线;

( b)射出成形之充填阶段的剪变率分布图。

聚合物分子链的运动能力随着温度升高而提高,如图4-5所示,随着剪变率升高与温度升高,熔胶黏度会降低,而分子链运动能力的提升会促进较规则的分子链排列及降低分子链相互纠缠程度。此外,熔胶黏度也与压力相关,压力愈大,熔胶愈黏。材料的流变性质将剪切黏度表示为剪变率、温度与压力的函数。

图4-5 聚合物黏度与剪变率、温度、及压力的关系

4-2 熔胶流动之驱动--射出压力

射出机的射出压力是克服熔胶流动阻力的驱动力。射出压力推动熔胶进入模穴以进行充填和保压,熔胶从高压区流向低压区,就如同水从高处往低处流动。在射出阶段,于喷嘴蓄积高压力以克服聚合物熔胶的流动阻力,压力沿着流动长度向聚合物熔胶波前逐渐降低。假如模穴有良好的排气,则最终会在熔胶波前处达到大气压力。压力分布如图4-6所示。

图4-6 压力沿着熔胶输送系统和模穴而降低

模穴入口的压力愈高,导致愈高的压力梯度(单位流动长度之压力降)。熔胶流动长度加长,就必须提高入口压力以产生相同的压力梯度,以维持聚合物熔胶速度,如图4-7所示。

图4-7熔胶速度与压力梯度的关系

根据古典流体力学的简化理论,充填熔胶输送系统(竖浇道、流道和浇口)和模穴所需的射出压力与使用材料、设计、制程参数等有关系。图4-8显示射出压力与各参数的函数关系。使用P 表示射出压力,n 表示材料常数,大多数聚合物的n 值介于0.15~0.36 之间,0.3是一个适当的近似值,则熔胶流动在竖浇道、流道和圆柱形浇口等圆形管道内所需的射出压力为:

()()()()

1

3 +∝n n

p 管道半徑容積流動率流動長度熔膠黏滯性 熔胶流动在薄壳模穴之带状管道内所需的射出压力为:

()()()()()

1

2 +∝n n

p 管道厚度管道寬度容積流動率流動長度熔膠黏滯性 熔胶的流动速度与流动指数(Melt Index, MI) 有关,流动指数也称为流导flow conductance ),流动指数是熔胶流动难易的指标。实际上,流动指数是塑件几何形状(例如壁厚,表面特征)及熔胶黏度的函数。流动指数随着肉

PROE基础教程(初学者宝典)

1.1.1 工程图的功能(Drawing Functionality) 使用pro/e的工程图功能(Drawing),我们可以将有pro/e制作的模型输出成图纸的形式。或者,我们也可以输入由其他CAD 系统生成的图纸。在图纸中,所有的模型视图都是相关的(associative):即,当我们修改了某视图的一个尺寸后,系统会自动更新其他相关的视图,更重要的是,Pro/ENGINEER的图纸和他所依赖的模型相关,在图纸中修改的任何尺寸,都会在模型中自动更新。同样,在模型中修改的尺寸会相关到图纸。这些相关性,不仅仅是尺寸的修改,也包括添加或删除某些特征。在使用工程图功能时,用户需要购买相应的处理模块:pro/detial. 1.1.2 工程图模式(Drawing Mode) Pro/ENGINEER提供了工程图模式,这种功能可以实现双向关联,并可以输出简单的图纸。我们可以利用pro/e的基本drawing 功能建立零件或装配的工程视图,并可以添加尺寸,注解,处理(manipulate)尺寸,或使用层来管理不同类型内容的显示。 1.1.3 Pro/DETAIL模块 Pro/DETAIL,是独立于基本pro/ENGINEER的模块,该模块扩展了基本模块的功能,可以利用基本模块配合使用 Pro/DETAIL 支持附加视图,多张图纸(multisheets),提供了一系列更多用于处理工程图的命令,并且可以让我们向图纸中添加或修改文本的或符号形式的信息。另外,我们还可以自定义我们工程图的格式,进行多种形式的个性化。 1.1.4 数据接口(Drawing Interfaces) 使用ro/INTERFACE 或 Pro/DETAIL模块,我们可以在drawing中利用不同的输入(输出)命令来读取(导出)其他CAD系统得到的文件。该命令为 File 菜单 欢迎加入易妙广告网

林清安proe教程下载链接

所有的资源均为emule资源,像这样的大文件,只有emule 才能保证永远可以下载。 将链接复制到迅雷里面同样可以下载 复制内容到剪贴板 代码: 1林清安视频-ProE全套中文教程.rar ed2k://|file|ProE%E5%85%A8%E5%A5%97%E4%B8%AD%E6%96%87%E6%95%99%E7%A8%8B.rar|377 45549|DC7C4E260CA936D32E4E0F3CEF931614|h=Y2IEXPBARIT22ZCSAPW3KKQMAYYAE4U4|/ 2 林清安视频-proe的教学动画.rar ed2k://|file|proe%E7%9A%84%E6%95%99%E5%AD%A6%E5%8A%A8%E7%94%BB.rar|92587379|083 5DDC0230405E06213931D65E8B468|h=JETVQPUQJC42GBHPEEDE6ZMRMLICRWMT|/ 3林清安视频-PROEWILDFIRE资料及教学动画.rar ed2k://|file|PROEWILDFIRE%E8%B5%84%E6%96%99%E5%8F%8A%E6%95%99%E5%AD%A6%E5%8A%A8 %E7%94%BB.rar|30568848|01FB552950CEE50E29D04C27DF314B7A|h=VW7JHLCH27CBAADGW2GAY FPSKPDBYWHM|/ 林清安视频-林清安PROE2001上课影像教学档案.rar ed2k://|file|%E6%9E%97%E6%B8%85%E5%AE%89PROE2001%E4%B8%8A%E8%AF%BE%E5%BD%B1%E5% 83%8F%E6%95%99%E5%AD%A6%E6%A1%A3%E6%A1%88.rar|192527061|48BCBAB875CB993EDC418F3 8728BBADB|h=FC4H6MHPNE224YNQ4FILUCWPTBH7VLIK|/ 林清安PROE野火版零件设计上册影像教学光盘A.iso ed2k://|file|%E6%9E%97%E6%B8%85%E5%AE%89PROE%E9%87%8E%E7%81%AB%E7%89%88%E9%9B%B 6%E4%BB%B6%E8%AE%BE%E8%AE%A1%E4%B8%8A%E5%86%8C%E5%BD%B1%E5%83%8F%E6%95%99%E5%AD %A6%E5%85%89%E7%9B% 98A.iso|227917824|6A2896C158726A566C73CD277BB9429C|h=W5QTDVVL4I77NVVBYBPPYFUHXH O44Y32|/ 林清安PROE野火版零件设计上册影像教学光盘B.iso ed2k://|file|%E6%9E%97%E6%B8%85%E5%AE%89PROE%E9%87%8E%E7%81%AB%E7%89%88%E9%9B%B 6%E4%BB%B6%E8%AE%BE%E8%AE%A1%E4%B8%8A%E5%86%8C%E5%BD%B1%E5%83%8F%E6%95%99%E5%AD %A6%E5%85%89%E7%9B%98B.iso|588537856|2933FAADD7E166DE5CE52750B7492138|h=W6KOEI2 VSKQNOBRMVM5ZUOW3S2B47EAF|/ 林清安PROE野火版零件设计下册影像教学光盘A.iso ed2k://|file|%E6%9E%97%E6%B8%85%E5%AE%89PROE%E9%87%8E%E7%81%AB%E7%89%88%E9%9B%B 6%E4%BB%B6%E8%AE%BE%E8%AE%A1%E4%B8%8B%E5%86%8C%E5%BD%B1%E5%83%8F%E6%95%99%E5%AD %A6%E5%85%89%E7%9B%98A.iso|525752320|EF09BF7DC4B410F10F4DFF3B54F3854E|h=3TYBPQD Y3P6IFQIC2XPBEXXEOIAPCXLP|/ 林清安PROE野火版零件设计下册影像教学光盘B.iso

PROE曲面基础教程

mêLbkdfkbbo =OMMN proc^`b= qéá=`íá
m~ê~íêá=qó=`êéê~íá

=OMMM=m~ê~íêá=qó=`êéê~íá
m~ê~íêá=qó=`êéê~íá=Emq`F= J v 8 ) P < - - P mq` 1* 8 mq` P P 3 . < P P m~ê~íêá=qó=`êéê~íá < mq` 8 J " mq` -G+ P J 8 mq` ** ( & ( PTC ) 8 ) )
+ 8 J / w< pêá f`bj f`bj aak f`bj pìê féêí a~í~ aíê fê~íá ê f~íá fppj jbab^ j`eb`h k` _ìáê m~ê~íêá qó mêL^kfj^qb mêL^ppbj_iv mêL`^_ifkd mêL`^pqfkd mêL`aq mêL`ljmlpfqb mêL`jj mêL`lksboq mêLa^q^ ê madp mêLabpfdkbo mêLabphqlm mêLabq^fi mêLaf^do^j mêLafbc^`b mêLao^t mêLb`^a mêLbkdfkb mêLcb^qrob mêLcbjJmlpq mêLcivJqeolrde mêLe^okbppJjcd mêLfkqboc^`b ê `^aap R mêLfkqboc^`b ê `^qf^ mêLfkqo^ifkh t `áí mêLi^kdr^db mêLibd^`v mêLif_o^ov^``bpp mêLjbpe mêLjKsá mêLjliabpfdk mêLk`J^as^k`ba mêLk`J`eb`h mêLk`Jjfii mêLk`Jpebbqjbq^i mêLk`Jqrok mêLk`Jtbaj mêLk`Jtáê baj mêLk`mlpq mêLkbqtloh ^kfj^qlo mêLklqb_llh mêLmaj mêLmelqlobkabo mêLmelqlobkabo qbuqrob if_o^ov mêLmfmfkd mêLmi^pqf` ^asfplo mêLmilq mêLmltbo abpfdk mêLmol`bpp mêLobcibu mêLobmloq mêLobsfbt mêLp`^kJqllip mêLpebbqjbq^i mêLproc^`b mêLsbofcv mêLtKiá mêLtKmìá mêLtbiafkd mêìí píêìíìê k~á~íê mq` á
pêá p~éá f~íá pêáê~é sáêíì~ aá báêí táá Jpêá táá c~íê táá c~íê Jpêá táá fê~íá jê mq` `sJ`éìíêáá= afsfpflk f`bj fm~êí < mêLobcibu lê~ lê~=`êéê~íá tá < tá=kq jáêí=`êéê~íá `^qf^ a~~ìí=póí madp cê=jíê=`é~ó p^m < oLP p^m ^d dê~ó cibu díêííê=pí~ê=fK sáq áê~êó sáì~=há~íáI fK=EshfF shf w w ellmp ê~éá óí q pí ^êá~I f /_ J _ /_ J % # ) c^o=NOKONOE~FJEF= ac^op=OOTKTOMOJNE~F= < OOTKTOMOJPE~F cJ < 8" t ) d e < J P DFARS 252.227-7013 d < e (Rights in Technical Data and Computer Software Clause) (c)(1)(ii) FAR 52.227-19 d P e (Commercial Computer Software-Restricted Rights) P m~ê~íêá=qó=`êéê~íáI=NOU qó aêáI=t~í~I j^=MOQRPJUVMR OMMM V S

proe常用曲面分析功能详解讲解

proe常用曲面分析功能详解 现在是针对曲面分析单独做的教程 曲面分析应该贯穿在这个曲面外型的设计过程中.而不该最后完成阶段做分析 由于时间关系我单独做个分析简单的教程,将来的教程中我将逐步体现造型过程中贯穿分析的教程 本文重点在简单的阐述下曲面分析的运用,并不过多的阐述曲面的做法,PRT实物来源于SONJ.无嗔等版大,为求对比好坏,我会将质量好的PRT.修改约束成差点的来深入的阐述曲面分析的作用和看法.在这里先谢谢这些版大无私分享,也求得他们的原谅,未经过允许就转载他们的PRT还乱改.我先道歉… 现在这个拉手大家都看见了,这一步是VSS直接扫出来的.现在显示的呢是网格曲面.这个网格曲面和多人认为用处不大.但我想说几点看法,第一看这个面是不是整面,很明显这个面的UV先是连接在一起的,他是个整面.第2看他的UC线的走向,是不是规则在某一方向上,有没有乱,有没有波动。这些是我们 肉眼能看见的,是一个初步的分析,也能帮助大家理解曲面的走向趋势是怎么个事情。至于曲线的分析其他教程中以有很多阐述我就不在追述,至于什么叫曲面G1和G2相信大家也看到很多类似的教程 这个图你就能看见多个曲面的网格在一起时候的显示,说明不是整面。

网格曲面另一个重要作用呢就是观察收敛退化,也就是大家长说的3角面。 收敛退化是我们最不想看到的,但收敛点在那里呢,根据经验呢,比如说我这个,在做边界混合时候 2条直线是一组,曲线是另一组,也就是退化点在2条直线相交的地方,但新手一般看见教程是跟着裁减那里的角,至于为什么是在哪个位置可能不是很清楚,就看下网格曲面吧 剖面分析来说呢相对的要求比较高,原理呢很简单就是所选择的曲面面组和基准面相交的曲线的

PROE运动仿真分析基础教程

机构仿真之运动分析基础教程 机构仿真是PROE的功能模块之一。PROE能做的仿真容还算比较好,不过用好的兄弟不多。当然真正专做仿真分析的兄弟,估计都用Ansys去了。但是,Ansys研究起来可比PROE麻烦多了。所以,学会PROE的仿真,在很多时候还是有用的。我再发一份学习笔记,并整理一下,当个基础教程吧。希望能对学习仿真的兄弟有所帮助。 术语 创建机构前,应熟悉下列术语在PROE中的定义: 主体(Body) - 一个元件或彼此无相对运动的一组元件,主体DOF=0。 连接(Connections) - 定义并约束相对运动的主体之间的关系。 自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。 拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态(Dynamics) - 研究机构在受力后的运动。 执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。 基础(Ground) - 不移动的主体。其它主体相对于基础运动。 机构(Joints) - 特定的连接类型(例如销钉机构、滑块机构和球机构)。 运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接(Loop Connection) - 添加到运动环中的最后一个连接。 运动(Motion) - 主体受电动机或负荷作用时的移动方式。 放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动的图元。 回放(Playback) - 记录并重放分析运行的结果。 伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在机构或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。 LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺省坐标系。 UCS - 用户坐标系。 WCS - 全局坐标系。组件的全局坐标系,它包括用于组件及该组件所有主体的全局坐标系。 运动分析的定义 在满足伺服电动机轮廓和机构连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响运动分析结果。 如果伺服电动机具有不连续轮廓,在运行运动分析前软件会尝试使其轮廓连续,如果不能使其轮廓连续,则此伺服电机将不能用于分析。 使用运动分析可获得以下信息: 几何图元和连接的位置、速度以及加速度 元件间的干涉 机构运动的轨迹曲线 作为Pro/ENGINEER 零件捕获机构运动的运动包络 运动分析工作流程 创建模型:定义主体,生成连接,定义连接轴设置,生成特殊连接 检查模型:拖动组件,检验所定义的连接是否能产生预期的运动

ProE基础教程_入门必备.pdf

ProE工程制图 1.教学内容: a.图框制作及选定 b.视图选取 c.制作工程图(标注、详图、剖视图、制表) 2.教学目的:能够完全脱离CAD制作标准工程图 1、更换启动画面 教你换个起动画面,让你每天都有一个好心情: 打开PROE的安装目录:例D:\Program Files\proeWildfire 2.0\text\resource RESORCE里面的一个图片换了就可以了 2、工程图尺寸加公差 @++0.1@#@--0.1@# 亦可以ALT键+0177→“±” 3、选取环曲面(Loop Surf) 1.首先选取主曲面; 2.按下shift键,不要放开; 3.将鼠标移动至主曲面的边界上,此时鼠标右下方弹出“边:***”字样; 4.点击鼠标左键确认,放开shift键,OK! 相切链的选取(Tangent) 1.首先选取一段棱边; 2.按下shift键,不要放开;

3.将鼠标移动至与所选棱边相切的任一棱边上,此时鼠标右下方弹出“相切”字样; 4.点击鼠标左键确认,放开shift键,OK Copy 面时如果碎面太多,可以用Boundary选法:先选一个种子面再按shift+鼠标左键选边界 4、工程图标注修改:原数可改为任意数, 只要把@d改为@o后面加你要的数(字母O) 5、如下的倒圆角的方法,现与大家分享: 作图的步骤如下(wildfire版本): 1>在需要倒角的边上创建倒角参考终止点; 2>用做变倒角的方法,先做好变倒角,不要点"完成"; 3>击活"switch to transition" 4>单击"Transitions" 5>在已生成的成灰色的倒角上选取不需要的那部分倒角 6>在"Default (stop case 3 )"下拉菜单中选取"stop at reference" 7>在"stop references"选项栏中选取你创建的倒角终止点.结果如下图所示:

proe逆向工程学模流分析

? Pro e逆向工程的流程 ?在瞬息万变的产品市场中,能否快速地生产出合乎市场要求的产品就成为企业成败的关键,而往往我们都会遇到这样的难题,就是客户给你的只有一个实物样品或手板模型,没有图纸或CAD数据档案,工程人员没法得到准确的尺寸,制造模具就更为烦杂。 ?用传统的雕刻方法,时间长而效果不佳,这时候你就需要一个一体化的解决方案:从样品→数据→产品,逆向工程系统就专门为制造业提供了一个全新、高效的三维制造路线。 逆向工程通常是以专案方式执行一模型的仿制工作。往往拟制作的产品没有原始设计图档,而是委托单位交付一件样品或模型,如木鞋模、高尔夫球头、玩具、电气外壳结构等,请制作单位复制 (Copy)出来。 传统的复制方法是用立体雕刻机或液压三次元靠模铣床制作出一比一成等比例的模具,再进行量产。这种方法属称类比式(Analog type)复制,无法建立工件尺寸图档,也无法做任何的外形修改,已渐渐为新型数位化的逆向工程系统所取代。 逆向工程是由高速三维激光扫描机对已有的样品或模型进行准确、高速的扫描,得到其三维轮廓数据,配合反求软件进行曲向重构,并对重构的曲面进行在线精度分析、评价构造效果,最终生成IGES或STL数据,据此就能进行快速成型或CNC数控加工。 IGES数据可传给一般的CAD系统(如:UG、PRO-E等),进行进一步修改和再设计。 另外,也可传给一些CAM系统(如:UG、MASTERCAM、SMART-CAM等),做刀具路径设定,产生数控代码,由CNC 机床将实体加工出来。STL数据经曲面断层处理后,直接由激光快速成型方式将实体制作出来。 以上过程就是逆向工程的流程。

ProE3.0入门教程

Pro|Engineer Wildfire 3.0 入门教程 事前准备 此教程配合 Pro/ENGINEER Wildfire 3.0 使用。 ?继续前,请确保您已安装了 Pro/ENGINEER Wildfire 3.0。 ?如果 Pro/ENGINEER 在运行中,请立即退出。 您需要创建特殊的 Pro/ENGINEER 启动命令,并为该教程安装 Pro/ENGINEER 模型文件。 1.下载模型文件。将压缩文件保存到桌面。 o如果运行的是 Pro/ENGINEER Wildfire 3.0 的商业许可,请单击此处。 o如果运行的是 Pro/ENGINEER Wildfire 3.0 的教育(试用)许可,请单 击此处。 2.将该压缩文件解压缩到硬盘。 o建议使用普通的驱动器盘符(例如,C:\),本教程使用此驱动器盘符。 3.浏览到此压缩文件创建的文件夹。 o例如:C:\users\student\Intro_WF3_Tutorial。 4.假设您已安装了 Pro/ENGINEER Wildfire 3.0,从“开始”菜单定位快捷键。 o右键单击快捷键并选取“复制”(Copy)。 o右键单击您的桌面并选取“粘贴快捷方式”(Paste Shortcut)。 5.右键单击刚刚粘贴的快捷键并选取“属性”(Properties)。 o输入(或粘贴)指向Intro_WF3_Tutorial的完整路径。

o例如:C:\users\student\Intro_WF3_Tutorial。 6.使用刚刚配置的快捷键启动 Pro/ENGINEER Wildfire 3.0。 7.单击下一页继续 使用教程 ?单击每页顶部或底部的上一页或下一页可浏览教程。 ?请仔细阅读每一页的全部内容,并在进行下一步前执行给定的步骤。 o在某些情况下,在继续之前您可能需要在教程页面上‘向下滚动’。 ?您可通过每个页面上的主页图标返回到起始页面。 o您可使用主页中所提供的链接来跳至某一个练习。 ?在此教程中您会看到多种图标。 o信息在多数练习开始的时候提供。 o提示将始终可用。 o注释为您提供其他信息。 ?本教程中使用了多个约定: o“选取并单击”以粗体显示。 o您输入的文本以粗体显示。 o图标及其名称与文本一起显示。 o模型名称以大写显示。 o键盘键名称以大写显示。 ?要调整教程中字体大小,可以用以下两种方式之一: o在 Internet Explorer 窗口中单击“查看”(View)>“文字大小”(Text Size)。 o按 CTRL 并滚动鼠标滚轮。 ?定位教程和 Pro/ENGINEER Wildfire 3.0 窗口: o将教程大小调整为约 3 英寸宽。 o将 Pro/ENGINEER Wildfire 3.0 窗口大小调整为比默任大小约窄 3 英 寸。 o如下图所示,将教程置于 Pro/ENGINEER Wildfire 3.0 窗口的左侧。这 将使您可以轻松地在使用过程中查看教程窗口。 o建议您将监视器设置为最高分辨率(如 1600x1200),以便最大化屏幕上 的工作区域。 欢迎 欢迎学习《Pro/ENGINEER Wildfire 3.0 入门教程》。本教程将向您介绍基本的零件建模技能以及如何创建基本的组件和绘图。本教程面向 Pro/ENGINEER 的初学者以及之前从未使用过 Pro/ENGINEER 任何版本的学员。

proe有限元分析

Knowledge Base Suggested Technique For Analyzing a Model Subjected to Large Deformati Introduction Pro/MECHANICA Structure can analyze solid models based on large deformations theory. This theory is non-l nature. The standard static analysis is based on linear theory and assumes small deformations only. For exam plate, if the deflection becomes larger than about one half of the thickness of the plate, the middle surface of th becomes appreciably strained. So the plate's geometry is not the same as it was before deformation. When thi large deflections occurs, the plate is actually stiffer than indicated by ordinary theory and the load-deflection re nonlinear. Stresses for a given load are less and stresses for a given deflection are greater than the stresses th theory indicates. This document outlines the steps involved in successfully setting up and running a analysis ba deformations. Procedure 1.Create a rectangular block of size 6" x 1" x 20" as shown below. Figure 1 2.Constrain the rectangular sections at both ends of the block as shown in Figure 2.

ProE_模流分析教程2

第二章射出成形机 就热塑性塑料(thermoplastics)而言,射出成形机将塑料颗粒材料经由熔融、射出、保压、冷却等循环,转变成最终的塑件。热塑性塑料射出成形机通常采用锁模吨数(clamping tonnage)或射出量(shot size)作为简易的机器规格辨识,可以使用的其它参数还包括射出速率、射出压力、螺杆设计、模具厚度和导杆间距等等。根据功能区分,射出成形机的大致上有三个种类:(1)一般用途射出机;(2)精密、紧配射出机;和(3)高速、薄肉厚射出机。射出成形机的主要辅助设备包括树脂干燥机、材料处理及输送设备、粉碎机、模温控制机与冷凝器、塑件退模之机械手臂、以及塑件处理设备。 2-1 射出机组件 典型的射出成形机如图2-1所示,主要包括了射出系统(injection system)、模具系统(mold system)、油压系统(hydraulic system)、控制系统(comtrol system)、和锁模系统(clamping system)等五个单元。 图2-1 应用于热塑性塑料的单螺杆射出成形机 2-1-1 射出系统

射出系统包括了料斗(hooper)、回转螺杆与料筒(barrel)组合,和喷嘴(nozzle),如图2-2。射出系统的功能是存放及输送塑料,使塑料经历进料、压缩、排气、熔化、射出及保压阶段。 图2-2 热塑性塑料的单螺杆射出成形机之塑化螺杆、料筒、 电热片、固定模板及移动模板。 (1) 料斗 热塑性塑料通常以小颗粒供应成形厂。射出机的料斗可以存放塑料胶颗粒,藉由重力作用使塑料颗粒经过料斗颈部,进入料筒与螺杆组合内。 (2) 料筒 射出机的料筒可以容纳回转式螺杆,并且使用电热片(electric heater bands))加热塑料。 (3) 回转式螺杆 回转式螺杆可以压缩塑料、熔化塑料及输送塑料,螺杆上包括了进料区(feeding zone)、压缩区(compression zone, 或转移区transition zone)、和计量区(metering zone)三个区段,如图2-3所示。

ProE_模流分析教程9

第八章问题排除 塑料射出成形制程相当复杂,牵涉因素众多,当发现问题时,应该先确定制程的稳定性,确定瑕疵并非由于过度制程所引起的。排除射出成形问题并没有固定的步骤,但是,至少针对有些因为操作特性所导致的瑕疵,可以建议有效的改善方法。 8-1 包风 包风(air traps)是指熔胶波前将模穴内的空气包覆,它发生在熔胶波前从不同方向的汇流,或是空气无法从排气孔或镶埋件之缝隙逃逸的情况。包风通常发生在最后充填的区域,假如这些区域的排气孔太小或者没有排气孔,就会造成包风,使塑件内部产生空洞或气泡、塑件短射或是表面瑕疪。另外,塑件肉厚差异大时,熔胶倾向于往厚区流动而造成竞流效应(race-tracking effect),这也是造成包风的主要原因,如图8-1所示。 图8-1 熔胶波前从不同方向汇流,而造成包风。 要消除包风可以降低射出速度,以改变充填模式;或者改变排气孔位置、加大排气孔尺寸。由于竞流效应所造的包风可以藉由改变塑件肉厚此例或改变排气孔位

置加以改善排气问题。包风的改善方法说明如下: (1)变更塑件设计:缩减肉厚比例,可以减低熔胶的竞流效。 (2) 应变更模具设计:将排气孔设置在适当的位置就可以改善排气。排气孔通常设在 最后充饱的区域,例如模具与模具交接处、分模面、镶埋件与模壁之间、顶针及模具滑块的位置。重新设计浇口和熔胶传送系统可以改变充填模式,使最后充填区域落在适当的排气孔位置。此外,应确定有足够大的排气孔,足以让充填时的空气逃逸;但是也要小心排气孔不能太大而造成毛边。建议的排气孔尺寸,结晶性塑料为0.025厘米(0.001英吋),不定形塑料为0.038厘米(0.0015英吋)。 (3)调整成形条件:高射出速度会导致喷射流,造成包风。使用较低的射出速度可以 让空气有充足的时间逃逸。 8-2 黑斑、黑纹、脆化、烧痕、和掉色 黑斑(black specks)和黑纹(black streaks)是在塑件表面呈现的暗色点或暗色条纹,如图8-2所示。褐斑或褐纹是指相同类型的瑕疵,只是燃烧或掉色的程度没那么严重而已。发生黑斑或黑纹的原因是塑料有杂质污染、干燥不当,或是塑料在料筒内待料太久而过热裂解。 图8-2 (左)黑斑和(右)黑纹 脆化(brittleness)的原因是材料裂解,使分子链变短,分子重量变低,结果使得塑件的物理性质降低。塑件脆化可能导致断裂或破坏,如图8-3所示。

ProE官方设计基础教程—用骨架进行设计

www.bzfxw.com 第2-1页 本模块中,将学习如何在自顶向下设计环境中使用骨架模型来开发产品。 目标 学习此模块后,您将能够: ? 描述使用骨架的目的。 ? 创建骨架。 ? 使组件元件与骨架相关。 ? 使用骨架几何建模。 ? 控制骨架模型。 ? 使用各种骨架属性。

用骨架进行设计 第2-3页 NOTES

www.bzfxw.com 第2-4页 设计基础 NOTES 图2:发动机组件界面 2. 划分空间声明 可使用“骨架”创建子组件的空间声明,这样能够在模型中建立主组件与子组件之间的界面关系。 图3:子组件的空间声明

用骨架进行设计 第2-5页 3. 确定组件的运动 它可以指定组件的运动,这样就可以在加入元件前建立复杂的连杆运动。 图4:活塞运动的骨架 创建骨架 可在组件中创建骨架零件。完全控制其所在的级和位置。 注意: 在每一个组件中您只能创建一个骨架,但是对属于顶 级组件的每一个子组件而言均可拥有其骨架。[将配置 选项“multiple_skeletons_allowed ”设置为“是”(yes) 后,在每个组件中可具有多个骨架]。 如果在装配元件后才创建骨架,系统会用“原点对原 点”约束自动将骨架的放置重定义为第一个元件。 为了在模型中更易于使用骨架,可以增加层并修改特征名称。

www.bzfxw.com 第2-6页 设计基础 NOTES 使组件元件与骨架相关 在将元件装配到骨架零件上时,如果建立了组件元件与骨架模型之间的关系,会具有如下优点: ? 减少父子关系的体系 – 骨架成为组件中许多元件的主父项。 图5:父/子关系的示例 ? 限制了选取约束的范围 – 利用“设计管理器”功能中的“参照 控制”(Reference Control) 选项,可将系统配置成只能将模型装配到骨架上,而无法进行相互装配。 ? 控制元件位置 – 可将元件装配到骨架上,在骨架中修改空间声 明时,系统会自动更新元件位置。 ? 将运动集中控制 – 通过修改骨架元件,可以控制元件连结的运 动。

比较全面的ProE机构仿真分析

比较全面的ProE机构仿真分析 创建机构前,应熟悉下列术语在PROE中的定义: 主体(Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。 连接(Connections) - 定义并约束相对运动的主体之间的关系。 自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。 拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态(Dynamics) - 研究机构在受力后的运动。 执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。 基础(Ground) - 不移动的主体。其它主体相对于基础运动。 接头(Joints) - 特定的连接类型(例如销钉接头、滑块接头和球接头)。 运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接(Loop Connection) - 添加到运动环中的最后一个连接。 运动(Motion) - 主体受电动机或负荷作用时的移动方式。 放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动的图元。 回放(Playback) - 记录并重放分析运行的结果。 伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在接头或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。 LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺省坐标系。UCS - 用户坐标系。 WCS - 全局坐标系。组件的全局坐标系,它包括用于组件及该组件内所有主体的全局坐标系。运动分析的定义 在满足伺服电动机轮廓和接头连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响运动分析结果。 如果伺服电动机具有不连续轮廓,在运行运动分析前软件会尝试使其轮廓连续,如果不能使其轮廓连续,则此伺服电机将不能用于分析。 使用运动分析可获得以下信息: 几何图元和连接的位置、速度以及加速度 元件间的干涉 机构运动的轨迹曲线 作为Pro/ENGINEER 零件捕获机构运动的运动包络 使用重复组件分析可获得以下信息: 几何图元和连接的位置 元件间的干涉 机构运动的轨迹曲线 运动分析工作流程 创建模型:定义主体,生成连接,定义连接轴设置,生成特殊连接 检查模型:拖动组件,检验所定义的连接是否能产生预期的运动 加入运动分析图元:设定伺服电机 准备分析:定义初始位置及其快照,创建测量

ProE_模流分析教程7

第七章收缩与翘曲 塑料射出成形先天上就会发生收缩,因为从制程温度降到室温,会造成聚合物的密度变化,造成收缩。整个塑件和剖面的收缩差异会造成内部残留应力,其效应与外力完全相同。在射出成形时假如残留应力高于塑件结构的强度,塑件就会于脱模后翘曲,或是受外力而产生破裂。 7-1 残留应力 残留应力(residual stress)是塑件成形时,熔胶流动所引发(flow-induced)或者热效应所引发(thermal-induced),而且冻结在塑件内的应力。假如残留应力高过于塑件的结构强度,塑件可能在射出时翘曲,或者稍后承受负荷而破裂。残留应力是塑件收缩和翘曲的主因,可以减低充填模穴造成之剪应力的良好成形条件与设计,可以降低熔胶流动所引发的残留应力。同样地,充足的保压和均匀的冷却可以降低热效应引发的残留应力。对于添加纤维的材料而言,提升均匀机械性质的成形条件可以降低热效应所引发的残留应力。 7-1-1 熔胶流动引发的残留应力 在无应力下,长链高分子聚合物处在高于熔点温度呈现任意卷曲的平衡状态。于成形程中,高分子被剪切与拉伸,分子链沿着流动方向配向。假如分子链在完全松弛平衡之前就凝固,分子链配向性就冻结在塑件内,这种应力冻结状态称为流动引发的残留应力,其于流动方向和垂直于流动方向会造成不均匀的机械性质和收缩。一般而言,流动引发的残留应力比热效应引发的残留应力小一个次方。 塑件在接近模壁部份因为承受高剪应力和高冷却速率的交互作用,其表面的高配向性会立即冻结,如图7-1所示。假如将此塑件存放于高温环境下,塑件将会释放部份应力,导致.的收缩与翘曲。凝固层的隔热效应使聚合物中心层维持较高温度,能够释放较多应力,所以中心层分子链具有较低的配向性。

PROE运动仿真分析

第1章运动仿真 本章重点 应力分析的一般步骤 边界条件的创建 查瞧分析结果 报告的生成与分析 本章典型效果图 1、1机构模块简介 在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。对于提高设计效率降低成本有很大的作用。Pro/ engineer中“机构”模块就是专门用来进行运动仿真与动态分析的模块。PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)

与Mechanism dynamics(机械动态)两个方面的分析功能。 使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定义特定运动副,创建能使其运动起来的伺服电动机,来实现机构的运动模拟。并可以观察并记录分析,可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。也可创建轨迹曲线与运动包络,用物理方法描述运动。 使用“机械动态”分析功能可在机构上定义重力,力与力矩,弹簧,阻尼等等特征。可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。 如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力与力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。 1、2总体界面及使用环境 在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。下拉菜单的每一个选项与工具栏每一个图标相对应。用户既可以通过菜单选择进行相关操作。也可以直接点击快捷工具栏图标进行操作。 图1-1 由装配环境进入机构环境图

ProE_模流分析教程

第一章计算机辅助工程与塑料射出成形 1-1 计算机辅助工程分析 计算机辅助设计(Computer-Aided Design, CAD)是应用计算机协助进行创造、设计、修改、分析、及最佳化一个设计的技术。计算机辅助工程分析(Computer-Aided Engineering, CAE)是应用计算机分析CAD几何模型之物理问题的技术,可以让设计者进行仿真以研究产品的行为,进一步改良或最佳化设计。目前在工程运用上,比较成熟的CAE技术领域包括:结构应力分析、应变分析、振动分析、流体流场分析、热传分析、电磁场分析、机构运动分析、塑料射出成形模流分析等等。有效地应用CAE,能够在建立原型之前或之后发挥功能:?协助设计变更(design revision) ?协助排除困难(trouble-shooting) ?累积知识经验,系统化整理Know-how,建立设计准则(design criteria) CAE使用近似的数值方法(numerical methods)来计算求解,而不是传统的数学求解。数值方法可以解决许多在纯数学所无法求解的问题,应用层面相当广泛。因为数值方法应用许多矩阵的技巧,适合使用计算机进行计算,而计算机的运算速度、内存的数量和算法的好坏就关系到数值方法的效率与成败。 一般的CAE软件之架构可以区分为三大部分:前处理器(pre-processor)、求解器(solver)和后处理器 (post-processor)。前处理器的任务是建立几何模型、切割网格元素与节点、设定元素类型与材料系数、设定边界条件等。求解器读取前处理器的结果档,根据输入条件,运用数值方法求解答案。后处理器将求解后大量的数据有规则地处理成人机接口图形,制作动画以方便使用者分析判读答案。为了便利建构2D或3D模型,许多CAE软件提供了CAD功能,方便建构模型。或者提供CAD接口,以便将2D或3D的CAD图文件直接汇入CAE软件,再进行挑面与网格切割,以便执行分析模拟。 应用CAE软件必须注意到其分析结果未必能够百分百重现所有的问题,其应用重点在于有效率地针对问题提出可行之解决方案,以争取改善问题的时效。 经验=> 知识=>实验比对=>品质(Q)、成本(C)、交期(D) CAE工具=> 应用CAE工具时,必须充分了解其理论内涵与模型限制,以区分仿真分析和实际制程的差异,才不至于对分析结果过度判读。据估计,全球应用CAE技术的比例仅15%左右,仍有广大的发展空间。影响CAE技术推广的主因有三: ?分析的准确性。 ?相关技术人员的养成。 ?技术使用的简易性。 而CAE模拟分析之主要误差来源包括: ?理论模式—物理现象、材料物性。 ?数值解法(numerical Solver) ?几何模型(geometry model) ?错误的输入数据 1-2 塑料射出成形 塑料制品依照其材料性质、用途和成品外观特征而开发了各种加工的方法,例如押出成形(extrusion)、共押出成形(co-extrusion)、射出成形(injection molding)、吹袋成形(blown film)、吹瓶成形(blow molding)、热压成形(thermoforming)、轮压成形(calendering molding)、发泡成形(Foam molding)、旋转成形(rotational molding)、气体辅助射出成形(gas-assisted injection molding)等等。 塑料射出成形(injection molding)是将熔融塑料材料压挤进入模穴,制作出所设计形状之塑件的一个循环制程。

ProE_模流分析教程3

第三章 什么是塑料? 塑料(plastics)是一种简单的单体(monomers)经由化学聚合反应(polymerization)而成的长链状高分子聚合物(polymers)。根据美国塑料工业协会对于塑料的定义:「将全部或部分由碳、氧、氢和氮及其它有机或无机元素使用加热、加压、或两者并用的方式聚合而成,在制造中的阶段是液体,在制造的最后阶段成为固体,此庞大而变化多端的材料族群称为塑料。」高分子聚合物加工成为塑件的制程主要包括热塑性塑料之熔化与凝固的物理相态变化或热固性塑料之固化的化学反应两种。 简单的高分子材料呈链状结构,其中最重要者首推乙烯基高分子(vinyl polymer),结构如下: ()R | 2n CH CH --- 其中,当 R = H ,为聚乙烯;当 R = CH 3,为聚丙烯;当 R = C 6H5,为聚苯乙烯; 当 R = Cl ,则成为聚氯乙烯。高分子材料依照分子量和分子结构的差异,也造成不同物性的塑料。例如甲烷(methane, CH 4)为气体,戊烷(pentane, C 5H 12)为液体,甲烷(polyethylene, C 100H 102)为固体。高分子材料的分子量通常为10,000 ~ 1,000,000,分子量愈大,愈增加成形的困难度,200,000为合理的成形上限。 高分子聚合物的分子链可以视为一重复单体长链,加上主要分子链旁枝的化学基,如图3-1所示。虽然“塑料”可以泛指聚合物或树脂,塑料一般是指添加了塑化剂、安定剂、填充料或是其它改善性能及成形性之聚合物系统,还包括橡胶、纤维、黏着剂与表面涂料。塑料加工成塑件的制程众多,可以参考图3-2。 聚合物分子链的结构、规模大小、化学成分都直接影响聚合物的化学性质与物理性质。塑料高分子还受到机械加工制程与热历程影响。例如,聚合物熔胶的黏滞性(亦即流动阻力)随着分子量增加而增加,随着温度上升而降低。玻璃转移温度、机械性质、耐热性、耐冲击性亦阶随着分子量增加而提高。此外,作用于材料的高

相关主题
文本预览
相关文档 最新文档