当前位置:文档之家› 干涉型光纤传感器的信号处理设计

干涉型光纤传感器的信号处理设计

干涉型光纤传感器的信号处理设计
干涉型光纤传感器的信号处理设计

干涉型光纤传感器的信号处理设计

高志宇,洪小斌,伍剑,徐坤,林金桐

北京邮电大学光通信与光波技术教育部重点实验室,北京(100876)

E-mail:gaozy@https://www.doczj.com/doc/c75442122.html,

摘要:应用马赫-泽德干涉仪设计的具有双向干涉结构的光纤传感器,用于实现分布式振动传感定位。本文针对这种传感器结构,深入研究了相关运算和基于AR模型的功率谱估计方法,设计出具有事件发生检测功能的传感器信号处理算法。在此基础上,采用DSP和PC 机组成的平台实现信号的实时处理并得出定位结果。

关键词:光纤传感器,相关运算,AR模型的功率谱估计,DSP

1.引言

近年来,传感器在朝着灵敏、精巧、适应性强和智能化、网络化的方向发展。在这一过程中,光纤传感器作为传感器家族的新成员,由于其优越的性能而倍受青睐。与传统的传感器相比,光纤传感器具有以下的优势:首先,光纤是一种耐高压,抗腐蚀的介质,能在电磁或电子传感器不能工作的恶劣环境下运行。其次光波的传播频率极高,具有巨大的信息容量,又能有效的防止无线电波及电火花干扰传输的光波信号。同时,光纤很细,又具有极高的韧性,可以制造各种体积小、重量轻以及任意形状的传感器。更重要的是光纤传感器可以传感各种物理量,例如声,电、磁、温度、压力、振动、旋转等,并具有极高的灵敏度。

光纤传感器利用光纤本身的敏感特性进行工作。由光源发出的光在光纤中传播时,若应力、温度、电场、磁场等外界因素发生了变化,则光波的振幅、相位、波长及偏振态等特征参量就随之变化,该过程称为光波的调制。含有调制信息的光波经光纤传输到光电转换部分,解调后被仪器接收,即可得到外场确切变化的信息。根据被测量对光的调制方法不同,传感型光纤传感器可分为强度传感器、频率(或波长)传感器、相位传感器及光纤偏振式传感器四大类。其中尤其以光纤相位传感器(即各种光纤干涉仪)的灵敏度最高。光纤干涉仪将光波的相位信息转换位强度信息,通过检测光强信号分析出所测物理量。本文中所讨论的干涉型光纤传感器,对外界振动及压力变化进行准确定位。其中定位的准确程度决定于传感器信号处理算法的设计,故以下将从传感器的系统结构入手,着重介绍干涉型光纤传感器实现定位的信号处理算法。

2.干涉型光纤传感器的系统结构

干涉型光纤传感器所采用的干涉结构通常有四种,迈克尔逊(Michelson)干涉仪、马赫-泽德(Mach-Zehnder)干涉仪、塞格纳克(Sagnac)干涉仪和法布里-珀罗(Fabry-Perot)干涉仪。以光纤作为上述干涉仪的光路介质,就构成了干涉型光纤传感器的基本结构,本文中介绍的光纤传感器将采用马赫-泽德(Mach-Zehnder)干涉仪结构。

2.1 Mach-Zehnder干涉型光纤传感器原理

M-Z干涉型光纤传感系统的线路传感部分是一种典型的M-Z干涉仪。它的基本结构如图1所示。两个耦合器分别用来进行合束和分束,由两根光纤构成的干涉臂位于耦合器之间,其中一条作参考光路,与外界隔离,另一条作传感光路,测量传感光路中光相位的改变,可获得外场变化信息。

图 1 典型的光纤M-Z 干涉仪结构

这种干涉仪的结构具有一定的对称性,若利用两个2x2耦合器,将一束激光经分束后分别从干涉仪两端输入,干涉结果由各自的另一端接收,即可实现分布式传感。其结构如图2所示。

图 2 对称式M-Z 干涉仪实现分布传感

由激光器发出的光经耦合器分为沿两个相反方向传输的光,如果干涉臂的某部分受到外力作用产生形变,那么在光纤中传输的光信号的相位会发生变化。又由于两光纤位置的不同,受到外力的大小不同,那么两光纤中光的相位改变也不相同。这样在光信号到达耦合器时会发生干涉,干涉条纹随时间变化。这种干涉波形通过两个PIN 转换为电信号并送往终端监控部分进行处理。如果这两个检测器是同步的,可以检测出两路干涉信号波形变化的时间差,由时间差即可计算出外力作用的位置。

若在L x =处的一点发生的扰动,顺时针方向传播到耦合器的时间为c

n

x t ×=1,逆时针传播到耦合器的时间为()c

n x L t ×?=

2,通过测量时间差,即可得到扰动点的位置

??

?

????×?=

n t c L x 21 (其中n 是光纤的折射率,

c 是真空中光速,L 是干涉仪两臂的长度,t ?为时间差21t t ?)。

2.2 传感器系统

基于上述M-Z 干涉仪结构的传感器系统框图如图3所示。

图 3 传感器系统框图

其中线路传感部分为按上述结构搭建的传感光缆和全部的耦合器。光收发模块包括激光器及其控制电路、PIN 以及模拟信号的滤波和放大电路。光收发模块通过同轴电缆将模拟信号送至数据采集部分,经过A/D 转换再将数字信号送至信号处理部分进行分析处理,得出结果。信号处理部分由DSP 和PC 机组成,DSP 采用TI C6416定点处理器,通过PCI 总线与PC 实现数据交互。本文着重研究系统中信号处理部分的设计方案。

3.干涉型光纤传感器的信号处理

如前所述,传感器通过计算顺时针与逆时针方向信号到达PIN 的时间差来实现定位运算。可将干涉臂中的外环作为传感光路,内环作为参考光路,所以到达PIN1与PIN2的信号除所经路程不同外,并无太大区别,即信号时域波形大致相同。处理此类相似信号时差通常采用相关运算的方法,通过检测相关函数的峰值得出时间差t ?的估计值。本文中所设计的信号处理算法以相关运算为基础,辅以滤波及事件发生检测技术,共同构成传感器信号处理系统。

3.1 相关检测

相关函数用于分析随机信号的统计特性。假设()t x 和()t y 为两个平稳随机信号,则随机信号()t x 和()t y 之间的互相关函数定义为:

()()(){}

2*121,t y t x E t t R xy =

对于传感器的输出信号,假定()t x 和()t y 分别对应于PIN1和PIN2,则由前面分析可知,()t x 和()t y 的时域波形大致相同,只是在时间上相差 t ?。因此,通过检测互相关函

数峰值的位置可以计算出()t x 和()t y 的时间差 t ?。通常一次采样的信号长度为有限值,因此实际应用的互相关函数计算公式为:

()()()∑=?=

N

n xy n y n x N

R 0

*

1

ττ ①

其中N 为一帧信号的样点数。此过程如图4所示。

图4 相关检测运算过程

图4a 和图4b 分别为()n x 和()n y ,图4c 为()τxy R 。可见,在100=τ处xy R 取最大值,而()n x 和()n y 刚好相差100个样点(()n y 领先()n x 100各样点)。在已知采样速率s f 的情况下,可得s

f t 1

×

=?τ。 3.2 滤波器设计

通过实验分析可知,光纤传感器的输出信号频率不超过100KHz ,故在进行相关运算前,对信号进行滤波以减少带外噪声的干扰。采用窗函数法构造的FIR 低通滤波器传递函数如图5所示:

图5 低通滤波器传递函数

3.3 基于AR 模型的事件发生检测

通过上述滤波和相关运算,信号处理部分可以计算出由光纤传感器检测到的外力作用的位置。但是对于一个实时监控的系统,PIN1和PIN2的模拟信号会连续不断地输送到数据采集装置,采集装置将模拟信号采样量化并分割成点数为N 的帧,而信号处理部分需要对每一个这样的帧进行运算,并且运算时间不能超过帧长的时间以保证处理的实时性。可见,信号处理部分的负荷是很高的,而且对于外力干扰发生的概率很低的情况,绝大多数的运算并没有实际的意义。因此,需要在相关运算之前,增加一个事件发生检测机制,当判断有干扰发生时再进行运算,减少不必要的运算消耗,降低系统的负荷,同时也减少了误报发生的次数。加入如事件发生检测,是本文所讨论的信号处理设计中不同于传统信号处理的地方。 3.3.1 AR 模型的功率谱分析

信号的功率谱估计分为非参数化方法和参数化方法。非参数化方法实现简单,容易通过FFT 计算获得,但是往往存在分辨率低、运算复杂度高的缺点。AR 模型的功率谱估计属于参数化方法之一,通过建立系统的AR (自回归)模型,计算AR 参数,进而得出功率谱的估计。

若离散随机过程(){}n x 服从线性差分方程:

()()()()∑∑==?+=?+p i q

j j i j n e b n e i n x a n x 1

1

式中()n e 是一离散白噪声,则称(){}n x 为ARMA (自回归—滑动平均)过程,式②所示差分方程为ARMA 模型。系数p a a ,,1???和q b b ,,1???分别称为自回归参数和滑动平均参数,p 和q 分别为AR 阶数和MA 阶数。ARMA 过程可由下式表示:

()()()()n e z B x x z A =

其中

()p p z a z a z A ??+++="111 ()q q z b z b z B ??+++="111

分别为AR 多项式和MA 多项式。而ARMA 过程的传递函数为:

()()()

z A z B z H =

若()1=z B ,则ARMA 过程退化为

()()()n e x x z A = ③

()()

z A z H 1=

式③所示为AR 模型,AR 模型为一全极点系统。通常可用AR 模型近似ARMA 模型,同时AR 模型求解AR 参数时得到的是非常简单的线性方程。

使用模型估计功率谱密度,关键在于求解AR 参数。求解AR 参数的方法很多,本文中采用的是Yule-Walker 方法,通过求解Yule-Walker 方程得到AR 参数。首先,计算自相关函数:

()()()∑??=≥+=

10

*

0 ,1

m N n xx m m n x n x N

m r

然后建立Yule-Walker 方程:

()

()()()()

()()

()

()??

????????????=??????????????????????????

????00101101102

1*

*

*

##"#

#

#""w p x xx xx xx

x xx xx

xx

xx a a r p r p r p r r r p r r r σ ④ 其中

()()∑=+=p

k xx k xx w

k r a r 1

*

2

0σ 求解式④可通过Levinson-Durbin 算法进行高速迭代求逆,递推公式如下:

()()()*1

11

10b m bt m x m bt m xx m m a r r a r m r K m a ????++?==K K K

K

()()()

()()()

k m a m a k a k m a K k a k a m m m m m m m ?+=?+=????*11*

11 ,

p m m k ,2, ,11

,2, ,1""=?= ⑤

其中()()()[]1211

xx xx xx bt

m r m r m r r "K ??=?,上标b 代表把矢量t m r 1?K

的元素逆序排列,t 代表

转置。由此,可得到AR 模型的功率谱估计:

()()2

1

22?1?∑=?+=

p

k fk j p wp xx e k a

f P πσ

其中

()()[

]

∏=?=p

k p xx wp

k a

r 1

2

2?10?σ

而()k a

wp ?是由式⑤求得的k 阶AR 参数的估计。图6为Yule-Walker 方法计算的AR 模型信号功率谱估计。

图6 Yule-Walker 方法功率谱估计

3.3.2干涉信号特征的识别

光纤传感器由于外力干扰而产生的干涉信号具有一定的特征,表现在功率谱上就是每次干扰所产生的干涉信号其功率谱大致相同或相似。因此,可以通过实验的方法获得干涉信号的功率谱特征,将这种特征记录下来作为信号模板,与采集到的信号特征相比较,判断是否有干扰事件发生。

由3.3.1中介绍的AR 模型参数的估计方法,通过多次实验,计算出若干组AR 参数

()N i k a

pi ,,1,?"=。将这些参数进行拟合,用拟合结果作为模板参数()k a mp 。 根据信号特征模板,对每一帧输入的信号进行特征比较,判断是否与特征模板相符合。若符合,则表明有事件发生,进而对这一帧信号进行相关运算,计算干扰发生的位置;若不符合,则认为没有事件发生,无需进行相关运算。

4.信号处理算法的实现与验证

干涉型光纤传感器的信号处理部分由TI C6416 DSP 和PC 机共同组成,DSP 与PC 机通过PCI 总线通信。采集部分使用一块高速数据采集卡,可实时采集两路模拟信号,通过PCI 总线将采集数据送至PC 机和DSP 。采用DSP 和PC 机的方案是出于对信号处理实时性要求的考虑。事件发生检测需要实时处理,因此用DSP 完成3.3所述的基于AR 模型的事件发生检测。而相关运算由于实时性要求并不严格,因此在PC 机上完成。

4.1 信号处理算法实现

应用上述算法进行的一次信号处理如图7所示:

图7a 实际采集的信号

图7b 功率谱估计

图7c 相关结果

图7a 为从示波器上截取的信号波形,将这两路信号送到DSP进行事件发生检测。图7b显示的是基于AR模型的功率谱密度,上图为模板功率谱,下图为信号功率谱。经过比较,信号与模板相似度为92%,因此判断为有事件发生。图7c显示的是在PC机上进行相关运算的结果,检测出峰值出现的位置为326,在采样率为2M/s的条件下,计算得到的干扰发生位置为700M左右的位置,与实验时的实际干扰位置相差30M。

4.2 算法验证

为了进一步验证算法的准确性,设计了如图8所示的实验平台:

图 8 实验平台

本实验平台使用四段10KM光缆连接而成,可以模拟约40KM的监测距离。振动平台用来模拟外界干扰,通过改变振动平台的接入位置模拟干扰发生的不同位置。以下是在此平台上进行测试的结果:

第一组:

测试光缆总长:40.110KM

振动平台位置:光缆4

数据采集卡采样速率:2M/s

图 9 第一组实验结果

这组数据与模板的相似度为87%,相关函数峰值位置为-393,计算得到干扰发生的位置为40km+50m处,误差60m ,与实际相符。

第二组:

测试光缆总长:40.110KM

振动平台位置:光缆2

数据采集卡采样速率:500K/s

图 10 第二组实验结果

这组数据与模板的相似度为76%,相关函数峰值位置为63,计算得到干扰发生的位置为10km+300m处,误差 150m,与实际相符。

第三组:

测试光缆总长:40.110KM

振动平台位置:光缆3

数据采集卡采样速率:500K/s

图 11 第三组实验结果

这组数据改变了振动加载的方式,同时减小振动的幅度,因此这组信号与模板的相似度降为53%,根据设定的判别阈值,这组信号被事件发生检测算法过滤掉了。这一点与理论上的结果是一致的,由于信号的功率谱特征与模板不一致,因此被视为噪声而不进行相关运算了。

由上述实验结果可知,事件发生检测算法可以比较准确的分别出是否有事件发生,在判断出有事件发生的情况下,计算得到的结果大多与实际相符合。而第三组数据表明,振动方式的不同,会对传感器信号的功率谱特征产生显著的影响。由此可以模拟不同特征的振动,采集各种信号的特征建立模板数据库,根据实际信号与数据库中的特征相比较,检测出振动的种类。

5.结论

综上所述,本文采用以相关运算为基础的处理算法,并着重介绍了基于AR模型的事件发生检测算法,实现平台由DSP和PC机共同组成。实际测试表明,加入事件发生检测算法可以显著地改善光纤传感器的性能,尤其在提高系统准确性,降低误报率方面的作用十分突出。采用DSP和PC机合理分配运算负担,发挥DSP实时处理的优势,可以满足光纤传感器系统实时监控的要求。

参考文献

[1]张诚,王金海,陈才和等.《基于数字信号处理的干涉型光纤传感器检测系统的研究与设计》[J],传

感技术学报,2007年,第20卷(第1期):64-67.

[2]王泽锋,罗洪,胡永明.《干涉型光纤传感器检测技术的研究》[J],应用光学,2007年,第28卷(第

1期):86-91.

[3]王秋才,刘志麟,张劲涛等.《实时数据处理和DSP在光纤传感器测量系统中的应用研究》[J],传感

技术学报,2007年,第20卷(第4期):809-812.

[4]左炜,王殊,刘富明.分布式光纤传感器的数据处理系统》[J],计算机测量与控制,2005年,第13

卷(第12期):1440-1442.

[5]周寒青,陈曙英,隋成华.《马赫-泽德光纤传感器实验研究》[J],激光与红外,2005年,第35卷(第

10期):794-796.

[6]陈志刚, 张来斌, 王朝晖等.《基于分布式光纤传感器的输气管道泄漏检测方法》[J],传感器与微系统,

2007年,第26卷(第7期):108-110.

[7]张贤达.《现代信号处理》(第二版)[M],北京:清华大学出版社,2002年10月.

A Signal Processing Design for Interferometric Optical

Fiber Sensor

Gao Zhiyu,Hong Xiaobin,Wu Jian,Xu Kun,Lin Jintong

Key Laboratory of Optical Communication and Lightwave Technologies,Ministry of Education,Beijing University of Posts and Telecommunications,Beijing (100876)

Abstract

A kind of optical fiber sensor with bidirectional Mach-Zehnder interference meter is designed for distributed locating system. This paper mainly concerns the signal processing system of this sensor. The author designs an algorithm based on cross-correlation and AR parametric power spectrum estimation, which is used to implement a unique event detection system. This algorithm is implemented on PC and DSP, and can carry out the locating result.

Keywords:Optical Fiber Sensor;Correlation;Power Spectrum Estimation using AR Model;DSP

实验五反射式光纤位移传感器实验

实验五 反射式光纤位移传感器 一、实验目的 了解反射式光纤位移传感器的结构,学习和掌握最简单、最基本的光纤位移传感器的原理和应用。 二、基本原理 反射强度调制式光纤传感器具有准确、结构简单、价格低廉等优点,广泛应用于各种位移、压力和温度传感器中。反射式光纤位移传感器的基本结构如图5-1所示,其中发射光纤通常由一根光纤构成,接收光纤有时候由单根光纤构成,而有些时候为了提高光的接收效率也经常由多根光纤构成。本实验采用的传光型光纤,它是由两根光纤的一端熔合后组成的Y 型光纤,一根作为发射光纤,端部与光源相接发射光束;另一根作为接收光纤,端部与光电转换器相接接收反射光。两根光纤熔合后的端部是工作端也称传感探头,截面为半圆分布即D 型结构。由光源发出的光传到端部出射后再经被测体反射回来,由另一束光纤接收光信号经光电转换器转换成电压信号。 图5-1 反射式光纤位移传感器示意图 传光型光纤反射式位移传感器的发射调制方法,可用等效分析法来分析。首先,画出接收光纤关于反射体的镜像,然后计算出该镜像接收光纤在发射光纤纤端光场中所接收到的光强值,最后将该光强值乘以反射体的反射率R ,作为传感器的最后输出光强。如图5-2中的a 图所示。 接收光纤的镜像坐标即它的等效坐标位置为F (2z ,d ),这里z 为发射接收光纤的端面与反射体之间的距离,d 为发射光纤轴心到接收光纤轴心之间的距离,由此可以获得接收光纤接收到的光强为: ]] )/(1[exp[])/(1[)(2 2/30202222/3020c c tg a z a d tg a z RI z I θζσθζσ+-?+= 其中,0I 为光源的光强,σ为表征光纤折射率分布的相关参数,对于阶跃折射率光纤,它的值为1,0a 为光纤的纤芯半径,ζ为光源种类及光源与光纤耦合情况有关的调制参数, c θ为发射光纤的最大出射角。此函数的曲线形状如图5-2中的b 图所示。 reflector

光纤传感器的设计1

HARBIN ENGINEERING UNIVERSITY 物理实验报告 实验题目:光纤传感器的设计 姓名: 物理实验教学中心

实 验 报 告 一、实验题目:光纤传感器的设计 二、实验目的: 1.了解光纤传感器设计实验系统的基本构造和原理及应用; 2.了解光纤传感器设计实验系统的补偿机理,验证补偿效果; 3.设计光纤位移传感器,给出定标曲线。 三、实验仪器: 光纤传感设计实验系统主机、三光纤补偿式传感探头、精密机械调节架。 四、实验原理(原理图、公式推导和文字说明): 图1 在纤端出射光场的远场区,为简便计,可用接收光纤端面中心点处的光强来作为整个纤芯面上的平均光强。在这种近似下,得到在接收光纤终端所探测到的光强公式为 2 022(,)exp[](2)(2) SI d I x d x x πωω=?- (1) 考虑到光纤的本征损耗,光纤所接收到的反射光强可进一步表示为 00(,)(,)I x d I K KRf x d = 式中 I 0——注入光源光纤的光强; K 0,K ——光源光纤和反射接收光纤的本征损耗系数; R ——反射器的反射系数;

d ——两光纤的间距; f (x ,d )——反射式特性调制函数。结合式(1),f (x ,d )由下式给出,即 22 022(,)exp[](2)(2) a d f x d x x πωω=?- 其中 3/2 00 ()[1()] x x a a ωξ =+ 为了避免光源起伏和光纤损耗变化等因素所带来的影响。采用了双路接收的主动补偿方式可有效地补偿光源强度的变化、反射体反射率的变化以及光纤损耗等因素所带来的影响。补偿式光纤传感器的结构由图1给出。由(1)式可知 1002 00(,)(,) (,2)(,2)I x d I K KRf x d I x d I K KRf x d =?? =? 则两路接收光纤接收光强之比为 ]) 2()2(exp[22 221x d d I I ω--= 通过实验建立两路接收光强的比值与位移的关系(标定)后,即可实现补 偿式位移测量。

干涉型光纤传感器的信号处理系统

干涉型光纤传感器的信号处理系统 近年来,传感器在朝着灵敏、精巧、适应性强和智能化、网络化的方向发展。 在这一过程中,光纤传感器作为传感器家族的新成员,由于其优越的性能而倍受青睐。在各种光纤传感器中以干涉型光纤传感器的灵敏度最高。 干涉仪结构的光纤传感器系统,通过深入研究随机信号的互相关函数和基于AR模型的功率谱估计,设计出具有事件发生检测功能的传感器信号处理算法。此算法可以对外界振动进行实时预警,并实现高速、高精度的定位。 该技术可用于检测第三方入侵,对需要防护的地域、管线进行监控、报警并提供精确定位。 研究成果对于长距离分布式干涉型光纤传感器的实用化具有重要的理论意义和实际应用价值,并在工业和国防领域具有应用前景。 本文设计的光纤传感系统分为传感线路、光收发模块、数据采集和信号处理等部分。 传感线路部分是一种基于马赫一泽德干涉仪的双向干涉结构。 当干涉仪中的干涉臂受到外力引起的振动时,光纤中传输的光信号的相位会发生变化,从而导致输出干涉波形的变化。 干涉信号经光电转换、数据采集送至信号处理系统,经信号处理分析后可以对外界振动发生的位置进行定位。 信号处理部分由DSP和PC机共同组成,DSP用于实现事件发生检测算法,PC机实现定位算法。通过实验分析表明,事件发生检测算法可以显著地改善光纤传感器的性能,提高系统准确性,降低误报率。在合理设置采样率

的基础上,可以实现lOOM的定位误差。采用DSP和PC机合理分配运算负担,可以满足光纤传感器系统实时监控的要求。 第一章绪论 1.1引言传感器是感受规定的被测物理量并按一定规律将其转换为有用信号的器件或装置,它在工业生产、国防建设和科学技术等各个领域都发挥着巨大作用。近年来,传感器在朝着灵敏、精巧、适应性强和智能化、网络化的方向发展。在这一过程中,光纤传感器作为传感器家族的新成员,由于其优越的性能而倍受青睐。与传统的传感器相比,光纤传感器具有以下的优势:首先,光纤是一种耐高压,抗腐蚀的介质,能在电磁或电子传感器不能工作的恶劣环境下运行。其次光波的传播频率极高,具有巨大的信息容量,又能有效的防止无线电波及电火花干扰传输的光波信号。同时,光纤很细,又具有极高的韧性,可以制造各种体积小、重量轻以及任意形状的传感器。更重要的是光纤传感器可以传感各种物理量,例如声,电、磁、温度、压力、振动、旋转等,并具有极高的灵敏度。 光纤传感器利用光纤本身的敏感特性进行工作。 由光源发出的光在光纤中传播时,若应力、温度、电场、磁场等外界因素发生了变化,则光波的振幅、相位、波长及偏振态等特征参量会随之变化,该过程称为光波的调制。含有调制信息的光波经光纤传输到光电转换部分,解调后被仪器接收,即可得到外场确切变化的信息。根据被测物理量对光的调制方法不同,光纤传感器可分为强度传感器,频率(或波长)传感器,相位传感器及光纤偏振式传感器四大类。其中尤其以光纤相位传感器(即各种光纤干涉仪)的灵敏度最高。光纤干涉仪将光波的相位信息转换位强度信息,通过检测光强信号分析出所测物理量。20世纪70年代以来,在飞速发展的光纤通信技术的带动下,光纤传感

传感器实验报告

金属箔式应变片——半桥性能实验 一. 实验目的:比较半桥与单臂电桥的不同性能,了解其特点。 二. 基本原理:不同受力方向的两片应变片接入电桥作为邻边,电桥输出 三. 灵敏度提高,非线性得到改善。当两片应变片阻值和应变量相同时,其桥路输出电 压U02=EK/ε2。 四. 需用器件和单元:应变式传感器实验模板、应变式传感器、砝码、数显表、+15V 电源、+-4V 电源、万用表 五. 实验步骤: ① 按要求将应变式传感器装与传感器模板上。 ② 按要求进行电路接线,将两个应变片接入桥路。 ③ 进行测量,将数据记录到表格中。 六.实验数据 所以可知灵敏度δ=0.3639,非线性误差为δf1=Δm/Y F.s =1.112/65=1.71% 七、思考题: 1、半桥侧量时两片不同受力状态的电阻应变片接入电桥时,应放在: (1)对边 (2)邻边。 2、桥路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线性 (2)应变片应变效应是非线性的 (3)调零值不是真正为零。 答:都是。但是调零值可以通过记录最初的非零值来消除此误差

金直流全桥的应用——电子秤实验 一. 实验目的:了解应变片直流全桥的应用电路的标定。 二. 基本原理:电子秤实验原理为实验三全桥测量原理,通过对电路调节 三. 使电路输出的电压值为重量对应值,电压量纲(V)改为重量量纲(g)即成为一台原始 电子秤。 四. 需用器件和单元:应变式传感器实验模板、应变式传感器、砝码、±15V 电源、± 4V 电源 五. 实验步骤: 1、按实验一中2的步骤将差动放大器调零:参考图1-2将四个应变片按正确的接法接成全桥形式,合上主控箱电源开关调节电桥平衡电位器Rw1,使数显表显示0.00V 。 2、将10只砝码全部置于传感器的托盘上,调节电位器Rw3(增益即满量程调节),使数显表显示为0.200V(2V 档测显)或-0.200V 。 3、拿去托盘上的所有法码,调节电器Rw4(零位调节),使数显表显示为0。000V 或—0。000V 。 4、重复2、3步骤的标定过程,一直到精确为止,把电压量纲V 改为重量量纲g ,就可秤重,成为一台原始的电子秤。 6、根据上表计算误差与非线性误差。 所以可知灵敏度δ=1,非线性误差为δ f1=Δm/Y F.s =0

反射式光纤位移传感器特性实验

仪器与电子学院实验报告 (操作性实验) 班级: 学号: 学生姓名: 实验题目:反射式光纤位移传感器特性实验 一、实验目的 1)掌握反射光纤位移传感器工作原理; 2)掌握反射光纤位移传感器静态特性标定方法。 二、实验仪器及器件 光纤、光电转换器、光电变换器、电压表、支架、反射片、测微仪。 三、实验内容及原理 反射式光纤位移传感器的工作原理如图3所示,光纤采用Y 型结构,两束多模光纤一端合并组成光纤探头,另一端分为两束,分别作为接收光纤和光源光纤,光纤只起传输信号的作用。当光发射器发生的红外光,经光源光纤照射至反射体,被反射的光经接收光纤至光电转换元件将接收到的光信号转换为电信号。其输出的光强决定于反射体距光纤探头的距离,通过对光强的检测而得到位移量。 图1 反射式光纤位移传感器原理及输出特性曲线 四、实验步骤 1、观察光纤结构:本仪器中光纤探头为半圆型结构,由数百根光导纤维组成,一半为光源光纤,一半为接收光纤。 2、将原装电涡流线圈支架上的电涡流线圈取下,装上光纤探头,探头对准镀铬反射片( 即

电涡流片)。 3、振动台上装上测微仪,开启电源,光电变换器Vo端接电压表。旋动测微仪,带动振 动平台,使光纤探头端面紧贴反射镜面,此时Vo输出为最小。然后旋动测微仪,使反射镜面离开探头,每隔0.5mm取一Vo电压值填入下表,作出V—X曲线。 4、根据所测数据求出平均值后,在坐标纸上画出输出电压-位移特性曲线(分前坡和后坡), 计算灵敏度S=,并在坐标纸上画出V—X关系线性、灵敏度、重复性、迟滞曲线。 五、实验测试数据表格记录 表1 六、实验数据分析及处理 1、线性度: 图2 线性曲线

Michelson干涉型光纤传感器原理.

一、引言 光纤传感由于具有本质安全、电绝缘性好、灵敏度高及便于连网等优点,已在许多物理量的测量中得到应用,特别是基于光纤干涉的传感系统已成为物理量检测中最为精确的系统之一。 光纤干涉仪是一种高精度测量仪器,但存在相位随机漂移及倍频等光学问题。现有文献报导中,解决的方法是采用相位生成载波技术,调制解调的实现过程复杂,并有可能产生信号波形的失真。另外,虽有采用压电陶瓷(PZT)的报导,但未见对相位随机漂移及倍频问题的具体解决方法。为此,本文给出一种简单实用的解决方案,在原理上说明其可行性,并进行了实验验证。 二、Michelson干涉型光纤传感器原理 图1所示为Michelson相位调制型光纤干涉仪结构示意图。由激光器发出的相干光经光隔离器和耦合器后一分为二分别送入2根长度基本相同的单模光纤(即干涉仪的两臂,其一为信号臂,另一参考臂),而后被反射膜反射,在耦合器的输出端发生干涉。显然,这是一种双光束干涉仪,干涉光的幅度与信号光及参考光的幅度有关,其相位为两臂光相位之差,干涉场光强分布为 I=I1+I2+2I1I2cos(Φ)=A+Bcos(Φ)(1) Φ=2nπl/λ(2) 式(1)右端是光电转换的信号,I1、I2分别为干涉仪两臂单独存在时的光强,在检测时通常以直流项对待;2I1I2cos(Φ)表示干涉效应,当Φ=2mπ时,为干涉场的极大值,其中m为干涉级次。式(2)中,Φ为干涉仪两臂光波的相位差,它可以表示为因为环境波动引起的随机漂移信号S和待测信号N之和,由光波波长λ、光纤折射率n以及光纤两臂长度差l共同决定。在波长一定的情况下,两臂光程差改变nl,就改变了干涉信号的相位差,从而实现传感功能。

机电系统控制实验报告

穿销单元工件穿销实验报告 一、前言 模块化柔性制造综合实训系统最大特点是以机器人技术为核心的技术综合性和系统性,又兼顾模块化特征。综合性体现在机器人技术、机械技术、微电子技术、电工电子技术、传感测试技术、接口技术、PLC工控技术、信息变换技术、网络通信技术等多种技术的有机结合,并综合应用到生产设备中;而系统性指的是,生产线的传感检测、传输与处理、控制、执行与驱动等机构在微处理单元的控制下协调有序地工作,有机地融合在一起。 系统模块化结构,各工作单元是相对独立的模块,并具有较强的互换性。可根据实训需要或工作任务的不同进行不同的组合、安装和调试,达到模拟生产性功能和整合学习功能的目标,十分适合教学实训考核或技能竞赛的需要。 通过该系统,学生经过实验了解生产实训系统的基本组成和基本原理,为学生提供一个开放性的,创新性的和可参与性的实验平台,让学生全面掌握机电一体化技术的应用开发和集成技术,帮助学生从系统整体角度去认识系统各组成部分,从而掌握机电控制系统的组成、功能及控制原理。可以促进学生在掌握PLC技术及PLC网络技术、机械设计、电气自动化、自动控制、机器人技术、计算机技术、传感器技术等方面的学习,并对电机驱动及控制技术、PLC控制系统的设计与应用、计算机网络通信技术和高级语言编程等技能得到实际的训练,激发学生的学习兴趣,使学生在机电一体化系统的设计、装配、调试能力等方面能得到综合提高。体现整体柔性系统教学的先进性。 二、实验目的 1、了解PLC的工作原理; 2、掌握PLC编程与操作方法; 3、了解气缸传感器的使用方法; 4、掌握PLC进行简单装配控制的方法。 三、实验设备 1、模块化柔性制造综合实训系统一套; 2、安装西门子编程软件STEP7-MicroWIN SP6的计算机一台; 3、西门子S7-200 PLC编程电缆一条。 四、实验原理 学生可通过实验验证工业现场中如何使用PLC对控制对象进行控制,我公司提供PLC源程序,学生可在源程序的基础上进行进一步编程,将编写好的程序通过编

光纤水听器综述

光纤水听器及阵列综述 马宏兰周美丽 (天津师范大学电子与通信工程学院) 摘要:为适应水声学应用特别是水下反潜战的需要 ,在光纤技术不断发展的基 础上 ,光纤水听器应运而生。光纤水听器是一种基于光纤、光电子技术上的新型水下声传感器 ,因其在军事、民用各领域应用广泛 ,目前光纤水听器在国内外发展迅速 ,已经到达实用状态。全光光纤水听器系统的湿端采用全光实现,信号传感与传输皆基于光纤技术。具有抗电磁干扰、重量轻和造价低等优点。文章简述了光纤水听器的发展历史、现状 ,论述了光纤水听器阵列的原理及其应用前景。 关键词:光纤水听器多路复用技术阵列 0引言:在光纤水听器的实际应用中,由于水下声场的复杂性,单元水听器很难获得目标的详细信息,因而需要将数百乃至上千个探测基元组成大的阵列,以获得更多水声场信息,通过水听器阵列完成声场信号的波束形成,实现对水下目标的定位与指向。在2003年8月下水的美国最新型攻击核潜艇上,装备的舷侧阵就由2 700个光纤水听器基元组成【1】。对于大规模的光纤水听器阵列,多达数十上百基元的光纤水听器光信号都是由同一根光纤传输的,在实际系统中,这种性能就是由光纤水听器的多路复用技术实现的。可见多路复用是光纤水听器的核心技术。 1 光纤水听器的开发 自1976年美国Bucar等人发表第一篇有关光纤水听器的论文【2】以来, 各工业发达国家的海军研究部门以及有关的研究和工业部门都在积极从事光纤水听器的研究和开发,尤其以美国最为突出。美国海军研究实验室、美国海军研究生院和Litton制导和控制公司等先后研究开发了Maeh一Zehnder、Michelson 干涉仪的光纤水听器, 主要结构有心轴型、互补型(推挽式) 、平面型和椭球弯 张式等光纤水听器。这些结构水听器达到的归一化灵敏度(△。/ 。△P)为适应水声学应用特别是水下反潜战的需要 ,在光纤技术不断发展的基础上 ,光纤水听器应运而生。光纤水听器是一种基于光纤、光电子技术上的新型水下声传感器 ,因其在军事、民用各领域应用广泛 ,目前光纤水听器在国内外发展迅速 ,已经到达实用状态。各国对光纤水听器的研究投入了大量人力和物力,技术也日益娴熟。 2、多路复用的阵列体系结构 阵列体系分为以下六大部分,其中时分/ 波分混合复用技术是其关键有效手段。 1 ) 频分复用(FDM) 【3】相位产生载波(PGC)问询的体系结构—美国海军研究实验室已用此方案对总数48 个单元水听器成网组成的阵列成功地进行了海上试验, 证实了这种体系结构的低阐值检测能力和低的串扰。 2) 时分复用(TDM) 相位产生载波问询的体系结构—美国海军研究实验室已作了10 单元的光纤水听器阵列演示, 证实了其低的光背景噪声和低的串扰。

基恩士光纤传感器的分类及原理

基恩士光纤传感器的分类 KEYENCE光纤传感器根据光受被测对象的调制形式可以分为:强度调制型、偏振态制型、相位制型、频率制型;KEYENCE光纤传感器根据光是否发生干涉可分为:干涉型和非干涉型;KEYENCE光纤传感器根据是否能够随距离的增加连续地监测被测量可分为:分布式和点分式;根据光纤在传感器中的作用可以分为:一类是功能型(传感型)传感器; 另一类是非功能型(传光型)传感器。 基恩士光纤传感器的原理 KEYENCE光纤传感器光纤布拉格光栅传感器(FBS)是一种使用频率最高,范围最广的光纤传感器,这种传感器能根据环境温度以及/或者应变的变化来改变其反射的光波的波长。光纤布拉格光栅是通过全息干涉法或者相位掩膜法来将一小段光敏感的光纤暴露在一个光强周期分布的光波下面。这样光纤的光折射率就会根据其被照射的光波强度而永久改变。这种方法造成的光折射率的周期性变化就叫做光纤布拉格光栅。 当一束广谱的光束被传播到光纤布拉格光栅的时候,光折射率被改变以后的每一小段光纤就只会反射一种特定波长的光波,这个波长称为布拉格波长,这种特性就使光纤布拉格光栅只反射一种特定波长的光波,而其它波长的光波都会被传播。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。https://www.doczj.com/doc/c75442122.html,/

光纤压力传感器实验

光纤压力传感器实验 一、实验目的 1、了解并掌握传导型光纤压力传感器工作原理及其应用 二、实验内容 l、传导型光纤压力传感光学系统组装调试实验; 2、发光二极管驱动及探测器接收实验; 3、传导型光纤压力传感器测压力原理实验。 三、实验仪器 1、光纤压力传感器实验仪1台 2、气压计1个 3、气压源l套 4、光纤1根 5、2#迭插头对若干 6、电源线1根 四、实验原理 通常按光纤在传感器中所起的作用不同,将光纤传感器分成功能型(或 称为传感型)和非功能型(传光型、结构型)两大类。功能型光纤传感器使 用单模光纤,它在传感器中不仅起传导光的作用,而且又是传感器的敏感元件。但这类传感器的制造上技术难度较大,结构比较复杂,且调试困难。 非功能型光纤传感器中,光纤本身只起传光作用,并不是传感器的敏感元件。它是利用在光纤端面或在两根光纤中间放置光学材料、机械式或光学式的敏感元件感受被测物理量的变化,使透射光或反射光强度随之发生变化。所以这种传感器也叫传输回路型光纤传感器。它的工作原理是:光纤把测量对象辐射的光信号或测量对象反射、散射的光信号直接传导到光电元件上,实现对被测物理量的检测。为了得到较大的受光量和传输光的功率,这种传感器所使用的光纤主要是孔径大的阶跃型多模光纤。光纤传感器的特点是结构简单、可靠,技术上容易实现,便于推广应用,但灵敏度较低,测量精度也不高。 本实验仪所用到的光纤压力传感器属于非功能型光纤传感器。 本实验仪重点研究传导型光纤压力传感器的工作原理及其应用电路设计。在传导型光纤压力传感器中,光纤本身作为信号的传输线,利用压力一电一光一光一电的转换来实现压力的测量。主要应用在恶劣环境中,用光纤代替普通电缆传送信号,可以大大提高压力测量系统的抗干扰能力,提高测量精度。 相关参数: l、光源 高亮度白光LED,直径5mm

一文深度了解光纤传感器的应用场景

一文深度了解光纤传感器的应用场景 文| 传感器技术(WW_CGQJS)光纤传感器与测量技术是当今传感器技术领域新的发展引应用,其测量用的光纤传感器有很多种类,有很多种工作方式。国内市场上光纤传感器应用主要在以下四种:光纤陀螺、光纤光栅传感器、光纤电流传感器和光纤水听器。下面对这四种产品分别介绍一下。光纤传感器应用种类一、光纤陀螺。 光纤陀螺按原理可分为干涉型、谐振型和布里渊型,这是三代光纤陀螺的代表。第一代干涉型光纤陀螺,目前该项技术已经成熟,适合进行批量生产和商品化;第二代谐振型光纤陀螺,暂时还处于实验室研究向实用化推进的发展阶段;第三代布里渊型,它还处于理论研究阶段。 光纤陀螺结构根据所采用的光学元件有三种实现方法:小型分立元件系统、全光纤系统和集成光学元件系统。目前分立光学元件技术已经基本退出,全光纤系统用在开环低精度、低成本的光纤陀螺中,集成光学器件陀螺由于其工艺简单、总体重复性好、成本低,所以在高精度光纤陀螺很受欢迎,是其主要实现方法。 二、光纤光栅传感器 目前国内外传感器领域的研究热点之一光纤布拉格光栅传感器。传统光纤传感器基本上可分为两种类型:光强型和干

涉型。光强型传感器的缺点在于光源不稳定,而且光纤损耗和探测器容易老化;干涉型传感器由于要求两路干涉光的光强同等,所以需要固定参考点而导致应用不方便。 目前开发的以光纤布拉格光栅为主的光纤光栅传感器可以避免出现上面两种情况,其传感信号为波长调制、复用能力强。在建筑健康检测、冲击检测、形状控制和振动阻尼检测等应用中,光纤光栅传感器是最理想的灵敏元件。光纤光栅传感器在地球动力学、航天器、电力工业和化学传感中有广泛的应用。三、光纤电流传感器 电力工业的迅猛发展带动电力传输系统容量不断增加,运行电压等级也越来越高,电流也越来越大,这样测量起来就非常困难,这就显现出光纤电流传感器的优点了。在电力系统中,传统的用来测量电流的传感器是以电磁感应为基础,这就存在以下缺点:它容易爆炸以至引起灾难性事故;大故障电流会造成铁芯磁饱和;铁芯发生共振效应;频率响应慢;测量精度低;信号易受干扰;体积重量大、价格昂贵等等,已经很难满足新一代数字电力网的发展需要。这个时候光纤电流传感器应运而生。 四、光纤水听器 光纤水听器主要用来测量水下声信号,它通过高灵敏度的光纤相干检测,将水声信号转换为光信号,并通过光纤传至信号处理系统进行识别。与传统水听器相比,光纤水听器具有

浅谈反射式强度型光纤传感器

大学物理实验 光纤技术专题实验 学院 班级 学号 姓名 教师张丽梅 首次实验时间2012年9月17日

浅谈反射式强度型光纤传感器 摘要:本文通过物理实验的经历和收获和查阅相关资料,简要地论述了反射式强度型光纤传感器的工作原理,以及国内外对该类传感器研究现状,指出其存在的问题和解决方法。 关键词:反射式光纤传感器,反射面,强度调制,研究,发展趋势 1引言 通过光纤技术专题实验,我对光纤的结构和一般性质,光纤的耦合、传输及传感特性有了一定的了解,尤其是在做第三个实验“光纤传感”时,对反射式强度型光纤传感器产生了浓厚的兴趣。通过查阅资料等手段,写下了这篇浅显的论文。 2反射式强度型光纤传感器及其原理 反射式强度型光纤传感器(RIM-FOS:Reflective Intensity Modulated Fiber Optic Sensor)具有原理简单、设计灵活、价格低廉等特点,并已在许多物理量

( 如位移、转速、振动等) 的测量中获得成功应用。其结构原理如图1。 图2 与传统传感器是以机- 电测量为基础相比,,光纤传感器则以光学测量为基础。从本质上分析, 光就是一种电磁波, 其波长范围从极远红外的1nm 到极远紫外线的 10nm。电磁波 的物理作用和生物化学作用主要因其中的电场而引起。因此, 在讨论光的敏感测量时必须考虑光的电矢量E 的振动。通常用下式表示:E=Asin( ωt+")

式中A—电场E 的振辐矢量; ω—光波的振动频率;"— 光的相位; t—光的传播时间。由上式可见, 只要使光 的强度、偏振态( 矢量A的方向) 、频率和相位等参量 之一随波测量状态的变化而变化, 或者受被测量调制, 那么, 我们就有可能通过对光的强度调制、偏振调制、频率调制或相位的调制等进行解调, 获得我们所需要 的被测量的信息。最简单的反射式强度型光纤传感 ( RIMFOS)由光源、发送光纤、接收光纤、反射面以及 光电探测器组成.在图一中S 为光源, D 为检测器。光 源S 发出的光经发送 光纤束全反射传播, 到达反射面( 被测物) , 射 进入接收光纤束再次全反射传播到达检测器D, 测器D 输出相应的电信号U0。 U0=f( d) 在光纤芯半径r、光纤的数值孔径NA、反射面、 检测器已确定情况下, 输出电压U0 只是位移d 的函数。所以通过分析输出电压U0, 可以得到相应位移d的数值, 这样可以实现非接触微小位移的精密测量。

干涉型微纳光纤传感器

干涉型微纳光纤传感器 金龙,李杰,关柏鸥 (暨南大学光子技术研究所,广州,510632) 摘要:本文报道我们在干涉型微纳光纤传感器方面的研究进展,包括高双折射微纳光纤环形传感器、级联长周期光栅传感器及基于单锥结构的微纳光纤干涉型传感器。通过对干涉仪几何结构的设计与优化,实现了104 nm/RIU 量级的折射率感测灵敏度,为研制成本低廉、高灵敏度的光学生物化学传感器提供了可选方案。 关键词:微纳光纤;微纳光纤传感器;干涉型传感器 微纳光纤传感器具有体积小巧、结构灵活、强瞬逝场等特点,基于对周围液体折射率的测量,能够实现对微弱生化成分变化的检测。已报道的微纳光纤折射率传感器包括光栅型、谐振型等。我们通过结构设计与优化,实现了几种干涉型微纳光纤折射率传感器,具有折射率灵敏度高、温度灵敏度低,制作成本低等优点,具体包括: (1)高双折射微纳光纤环形传感器。在闭合光纤环镜结构中加入一段由矩形截面光纤熔融拉锥而成的高双折射微纳光纤,构成M-Z 干涉型传感器,其折射率灵敏度达到18897nm/RIU ,并通过进一步将干涉仪制成灵巧型尖端式结构,将灵敏度提升到24373nm/RIU ,温度灵敏度仅为5 pm/°C 。理论分析表明其传感特性由群双折射色散决定,可通过对光纤截面的椭圆度和和直径的优化实现灵敏度的提升。 (2)级联长周期光栅微纳光纤传感器。通过用CO 2激光器在微纳光纤上构成级联长周期光栅,感测灵敏度达到2227nm/RIU ,温度灵敏度为11.7 pm/°C ,并通过理论计算指出,通过进一步降低光纤直径到 3.5μm 左右时,由于瞬逝场作用的增强和模式色散因子的降低,感测灵敏度有望达到40000nm/RIU 左右。 (3)单锥结构的微纳光纤干涉型传感器。在光纤熔融拉锥过程中,通过减小过渡区长度,可激发微纳光纤中的高阶模式,并基于单个锥区实现干涉仪结构。这种结构制作方法简便,锥区总长度更短,本文还将介绍我们在这方面的最新结果。 CO 2 Laser L d =9.5μm 73.5 μm d Λ 图1左图:基于高双折射微纳光纤环镜结构的传感器原理图及实物图;右图:基于级联微纳光纤长周期光栅的干涉型传感器原理图及实物图。

光纤水听器原理与应用综述(1)

光纤水听器原理与发展现状 袁虎邓华秋 (华南理工大学物理系广州510640) 摘要光纤水听器由于其特有的抗电磁干扰、体积小等特点,在军事、民用方面有着广泛应用。本文简介了光纤水听器的基本原理,并分别对强度调制型、干涉型和光栅型光纤水听器进行了简单的介绍。在现在的光纤水听器的应用中,点式的传感已不能满足现在的大规模集成化要求,因此分布式光纤水听器也是近期的研究热点。文中介绍了两种分布式光纤水听器的技术方案,分别是OTDR和FMCW技术。与此同时由于光纤激光器的发展,其良好的单色性和稳定性可以用于优良的光源,把它用到干涉型光纤水听器中可以极大程度的提高光纤水听器的性能。 关键词:光纤水听器;FMCW;光纤激光器 1.光纤水听器简介 声波作为一种机械波,可以在海水中进行远程能量传递,而其他类型的能量场在水中衰减很快,因此,声波是海洋深层信息收集、传递和处理的最重要形式[1]。水声传感器简称水听器,是在水中侦听声场信号的仪器。它作为反潜声纳的核心部件,在军事领域中有着重要的应用;在工业生产和民用领域,也有着广泛的用途,如用于海洋石油和天然气的勘探、地震预测、水声物理研究、海洋气候以及渔业等众多方面。 早期的水听器主要有压电陶瓷制成的压电水听器。但随着应用的深入,基于压电陶瓷传感元件的水听器出现了许多不足之处。如对电磁场的敏感性,电缆负载、连接电缆的共振效应,同时利用压电陶瓷进行点传感的技术难度和成本也十分困难。正是由于传统压电式水听器存在这些问题,随着光纤和激光技术的发展,人们研制出了一种基于光纤光电子技术的新型水听器-光纤水听器。它的研究始于冷战时期,由于反潜战的需要,美国海军开始了光纤水听器的研究。[2,3]1977年布卡诺等人发表首篇关于光纤技术的水声传感系统的论文[4]。 光纤水听器由于传感头部分不用使用电,而是通过光来传输信号,所以具有抗电磁干扰、电绝缘、动态范围宽、稳定可靠性高、灵敏度不受水流静压力和频率的影响、可以进行远距离测量、探头体积小、方便构成大规模阵列等众多优点。所以,光纤水听器的研究越来越受到各国的重视[4]。 2.光纤水听器原理

反射式光纤传感器原理操作步骤

五、注意事项 1.不得随意摇动和插拔面板上的各种元器件,以免造成实验仪不能正常工作。 2.光纤传感器弯曲半径不得小于5㎝,以免折断。 3.旋动螺旋测微丝杆尾帽中出现咔咔声表示不能继续前进,不能超过其量程。 4.在使用过程中,出现任何异常情况,必须立即关机断电以确保安全。 5.不得用手触摸反射面,以免影响实验结果。 六、实验操作 1)光路与机械系统组装调试实验 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 图3 光纤传感器安装示意图 2.将发射和接收部分接入电路,探测器输出信号处理电路不接调零电路,输出端U0接入电路板上电压表。 3.调节光纤传感器探头,使探头与反射面接触。 4.选择智能可调档位200mv或者2v档位。 5.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面,观察电压表显示变化,并分析。 6.关闭电源。 2)发光二极管驱动实验1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 2.仅仅把发射部分接入电路。 3.调节光纤传感器探头,使探头与反射面接触。 4.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面,观察电压表显示变化,并分析。 5.关闭电源。 3)光电探测器PD接收实验 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 2.仅仅把接收部分接入电路。 3.调节光纤传感器探头,使探头与反射面接触。 4.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面,观察电压表显示变化,并分析。 5.关闭电源。 4)光纤位移传感器输出信号放大处理实验 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 2.将发射和接收部分接入电路,探测器输出信号处理电路接调零电路,输出端U0接入电压表。 3.调节光纤传感器探头,使探头与反射面接触。 4.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面某一距离后维持不动,调节增益旋钮,观察电压表显示变化,并分析。 5.关闭电源。 5) 光纤位移传感器输出信号误差补偿电路 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座 7

光纤传感器基础实验

光纤传感器基础实验 王帅 (哈尔滨工程大学13-3班75号,黑龙江省哈尔滨市 150001) 摘要:光纤传感实验仪开发研制的目的是将光纤传感这一现代技术进行广泛的普及和渗透。了解光纤传感仪试验仪的基本构造和原理,学习和掌握其正确使用方法;了解光纤端光场的径向分布和轴向分布的特点;定量了解一种光纤的纤端光场的径向分布和轴向分布;学习掌握最基本的光纤位移传感器的原理。通过对光纤接受端电压的测量,可以间接测量光纤端轴向和径向的光场强度的分布。 关键词:光纤传感器;轴向;径向;光强分布 Optical Fiber Sensor Based Experiment Wang shuai (Harbin Engineering University, Harbin,150001,Chnia) Abstract:The purpose of the development of fiber optic sensing experimental kits is to make this technology popularization. Understanding the basic structure and principle of fiber optic sensing experimental kits,learning and mastering the correct using method; Understand the radial and axial distribution characteristic of the fiber end; Learning to master the basic principle of optical fiber displacement sensor. By measuring the voltage of the optical fiber acceptting, optical fiber end light field intensity distribution of the axial and radial can be measured indirectly. Key words:fiber optic sensing experimental kits;axial; radial; light intensity distribution 0 引言 光纤传感实验仪是由多种形式的光纤传感器组成,是集教学和实验于一体的传感测量系统。它具有结构简单,灵敏度高,稳定性好,切换方便应用范围广等特点。在实验过程中,我们用光纤传感实验仪构成反射式光纤微位移传感器,可用于测量多种可转换成位移的物理量。 1 实验原理 1.1光在光纤中传输的原理 光在光纤中的传输依据是光学中的全反射定律。普通石英光纤的结构包括纤芯、包层和

反射式光纤位移传感器实验

反射式光纤位移传感器实验报告 一、实验内容 1、按照光路图搭建各类光学元件 2、用螺丝固定两侧推平移平台,侧推平移台装在滑块上,然后采用 FC=FC对接法兰连接半导体激光输出接口与塑料反射式传感光纤,塑 料反射式光鲜FC端口与功率计感应端口通过光纤法兰座固定。 3、塑料反射式传感光纤螺纹端夹持固定可调棱镜支架中,并调节可调 棱镜支架的调节旋钮使出射的光路与导轨平行。 4、调节反射镜与反射式光纤跳线之间距离,使得反射端紧贴反射镜, 调节旋钮使得反射光与入射光重合达到反射镜与光路垂直,直到显示 的功率接近0值。 5、固定反射镜与可调棱镜的位置,旋转沿光轴方向(导轨方向)xuan 转侧推平移台尺杆,使反射镜远离光纤发光端,并记录位移-功率值数 据并绘制实验图,在曲线图中线性最好的那一段可作为实际位移传感 器应用。 二、实验结果 三、实验分析 如图,线性较好的第一段(即位移在0-0.3mm间)满足线性化,可作为实际位移传感应用。反射式光纤位移传感器是一种传输型光纤传感器。光从光源耦合到光源光纤,通过光纤传输,射向反射片,再被反射到接收光纤,最后由光电

转换器接收,转换器接受到的光源与反射体表面性质、反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射片时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。

光纤传感器的分类及特点

1 光纤传感器基本原理 随着工艺水平的提高,光纤技术目前相对成熟。光纤传感器即为应用光纤传输的基本原理组合的一个广电感应系统。通常的光纤传感系统由光源、光导纤维、光传感元件,光调制元件和信号处理部分组成[3]。其工作原理如下图所示:光源发出的光经过光导纤维进入光传感元件,而在光传感元件中受到周围环境场的影响而发生变化的光再进入光调制机构,由其将传感元件测量的参数调制成幅度、相位、偏振等信息,这一过程称为光电转换过程,最后利用微处理器进行信号分析。 如前所述可以看出光纤传感器的传感机理和电磁传感器的传感机理是相似的,但是光纤传感器由于其测量信号的载体是激光,其在光导纤维内部传播,很难受到外界电磁场干扰,因此适合复杂工况下的检测,且操作方便灵活,信号输出自动化。 2 光纤传感器的分类及特点 2.1 光纤传感器的分类 2.1.1 光纤传感器的分类有不同的方式 按光纤在光纤传感器中的作用可分为传感型和传光型两种类型。 传感型光纤传感器的光纤不仅起传递光作用,同时又是光电敏感元件。由于外界环境对光纤自身的影响,待测量的物理量通过光纤作用于传感器上,使光波导的属性(光强、相位、偏振态、波长等)被调制。传感器型光纤传感器又分为光强调制型、相位调制型、振态调制型和波长调制型等。 2.1.2 传光型光纤传感器 传光型光纤传感器是将经过被测对象所调制的光信号输入光纤后,通过在输出端进行光信号处理而进行测量的,这类传感器带有另外的感光元件对待测物理量敏感,光纤仅作为传光元件,必须附加能够对光纤所传递的光进行调制的敏感元件才能组成传感元件。光纤传感器根据其测量范围还可分为点式光纤传感器、积分式光纤传感器、分布式光纤传感器三种。其中,分布式光纤传感器被用来检测大型结构的应变分布,可以快速无损测量结构的位移、内部或表面应力等重要参数。目前用于土木工程中的光纤传感器类型主要有 Math-Zender干涉型光纤传感器,Fabry-pero 腔式光纤传感器,光纤布喇格光栅传感器等。 2.2 光纤传感器的特点 研究和工程应用表明光纤传感器具有如下特点: ⑴高灵敏度,抗电磁干扰。由于光纤传感器检测系统很难受到外界场的干扰,且光信号在传输中不会与电磁波发生作用,也不受任何电噪声的影响,由于这一特征,光纤传感器在电力系统的检测中得到了广泛应用。 ⑵光纤具有很好的柔性和韧性,所以传感器可以根据现场检测需要做成不同的形状。 ⑶测量的频带宽、动态响应范围大。 ⑷可移植性强,可以制成不同的物理量的传感器,包括声场、磁场、压力、温度、加速度、位移、液位、流量、电流、辐射等。 ⑸可嵌入性强,便于与计算机和光纤系统相连,易于实现系统的遥测和控制。 3.光纤传感器土木工程中的应用举例 随着光纤传感技术的发展,在土木工程领域光纤传感器得到了广泛的应用,用来测量混凝土结构变形及内部应力,检测大型结构、桥梁健康状况等,其中最主要的都是将光纤传感器作为一种新型的应变传感器使用。

光纤传感器的位移特性

光纤传感器的位移特性实验报告 一、实验目的 了解光纤位移传感器的工作原理和性能。 二、基本原理 本实验采用的是传光型光纤,它由两束光纤混合后,组成Y型光纤,半园分布即双D型一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X有关,因此可用于测量位移。 三、需用器件与单元 光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源、反射面。 四、实验步骤 1、根据图1-6安装光纤位移传感器,二束光纤插入实验板上的座孔上。其内部已和发光管D及光电转换管T 相接。 图1-6光纤传感器安装示意图

2、将光纤实验模板输出端V O1与数显单元相连,见图1-7。 图1-7光纤传感器位移实验接线图 2、调节测微头,使探头与反射面圆平板接触。 3、实验模板接入±15V电源,合上主控箱电源开关,调R W、使数显表显示为零。 4、旋转测微头,被测体离开探头,每隔0.1mm读出数显表值,将其填入表1-4。 表1-4光纤位移传感器输出电压与位移数据 5、根据表9-1数据,作光纤位移传感器的位移特性,计算在量程1mm时灵敏度和非线性误差。 五、实验数据处理 1、实验数据:

2、光纤传感器位移与输出电压特性曲线: 3、1mm时的灵敏度与非线性误差:

用最小二乘法拟合的直线为: 灵敏度为0.1458V/mm 在0.45mm处取最大相对误差为:0.07V 非线性误差为: 六、思考题 光纤位移传感器测位移时对被测体的表面有些什么要求? 答:表面要干净没有污点,而且光洁度要好;再因为一定要可以反射光,因此一定不能出现黑色表面的情况。

干涉型光纤水听器调制解调方案研究

干涉型光纤水听器调制解调方案研究 ! 沈梁"叶险峰"李志能 #浙江大学信息与电子工程学系"杭州$%&&’()摘要*本文概述了+,-./01.2314 干涉型光纤水听器两种不同的调制解调技术"着重分析了用$5$耦合器组成的干涉型光纤水听器的解调原理" 并比较分析了这两种方案的特点"指出采用$5$耦合器解调技术是将来构成全光纤干涉型水听器系统的优选方案6 关键词*干涉型光纤水听器789零差检测解调$ 5$耦合器中国分类法*:7’%’6%;"文献标识码*<文章编号* %&&;/%=>>#’&&%)&%/&&&?/&=@引言 光纤水听器是利用光纤的传光特性以及它与周围环境相互作用产生的种种调制效应" 在海洋中侦听声场信号的仪器A %B 6 干涉型光纤水听器具有高灵敏度的相位检测能力和大的动态范围"可以远距离捕获海洋中声发射源如潜艇C 鱼群等发出的噪声"以便进行警报和定位"其检测声压灵敏度比传统的压电式水听器高出$个数量级"因而对光纤水听器技术的研 究在?&年代初就引起各国的高度重视6 同国外相比"我国在这一领域差距很大"仍处于原理性探索与实验室研究阶段"通过近几年的探索"已取得了一些成果6本文概述了+,-./01.2/ 314 干涉型光纤水听器两种不同调制解调技术6通过严密的数学推导"重点分析了$5$耦合器对称解调技术方案A D "=B " 并分析研究了这两种方案的特点"这些工作对于实现全光纤化水听器阵列远距离信号传输与检测具有重要的意义6 E 789调制/ 解调原理干涉型光纤水听器的789检测方案是在光纤水听器中引入检测信号带宽外的某一频 率的大幅度相位调制信号A ’B " 通过分离随机漂移与信号项"消除随机漂移对传感信号的影响6将圆频率为F G " 信号幅度为H 的相位调制信号加在+,-./01.2314光纤干涉仪上"则干涉仪的检测信号及其I 1J J 1K 函数展开为L M NO P -Q J A -Q J F G R O S #R )B M NO P T A U &#H )O ’V W X M % # Y %)X U ’X #H )-Q J ’X F G R B -Q J S #R )Y A ’V W X M &# Y %)X U ’X O %#H )-Q J #’X O %)F G R B J Z 2#R )[#%) ’&&%年$月传感技术学报第%期 !来稿日期*’&&&/&>/’?资助项目*国家自然科学基金资助项目#=>(&’&&$)万方数据

相关主题
文本预览
相关文档 最新文档