当前位置:文档之家› 干涉型微纳光纤传感器

干涉型微纳光纤传感器

干涉型微纳光纤传感器

干涉型微纳光纤传感器

金龙,李杰,关柏鸥

(暨南大学光子技术研究所,广州,510632)

摘要:本文报道我们在干涉型微纳光纤传感器方面的研究进展,包括高双折射微纳光纤环形传感器、级联长周期光栅传感器及基于单锥结构的微纳光纤干涉型传感器。通过对干涉仪几何结构的设计与优化,实现了104 nm/RIU 量级的折射率感测灵敏度,为研制成本低廉、高灵敏度的光学生物化学传感器提供了可选方案。

关键词:微纳光纤;微纳光纤传感器;干涉型传感器

微纳光纤传感器具有体积小巧、结构灵活、强瞬逝场等特点,基于对周围液体折射率的测量,能够实现对微弱生化成分变化的检测。已报道的微纳光纤折射率传感器包括光栅型、谐振型等。我们通过结构设计与优化,实现了几种干涉型微纳光纤折射率传感器,具有折射率灵敏度高、温度灵敏度低,制作成本低等优点,具体包括:

(1)高双折射微纳光纤环形传感器。在闭合光纤环镜结构中加入一段由矩形截面光纤熔融拉锥而成的高双折射微纳光纤,构成M-Z 干涉型传感器,其折射率灵敏度达到18897nm/RIU ,并通过进一步将干涉仪制成灵巧型尖端式结构,将灵敏度提升到24373nm/RIU ,温度灵敏度仅为5 pm/°C 。理论分析表明其传感特性由群双折射色散决定,可通过对光纤截面的椭圆度和和直径的优化实现灵敏度的提升。

(2)级联长周期光栅微纳光纤传感器。通过用CO 2激光器在微纳光纤上构成级联长周期光栅,感测灵敏度达到2227nm/RIU ,温度灵敏度为11.7 pm/°C ,并通过理论计算指出,通过进一步降低光纤直径到 3.5μm 左右时,由于瞬逝场作用的增强和模式色散因子的降低,感测灵敏度有望达到40000nm/RIU 左右。

(3)单锥结构的微纳光纤干涉型传感器。在光纤熔融拉锥过程中,通过减小过渡区长度,可激发微纳光纤中的高阶模式,并基于单个锥区实现干涉仪结构。这种结构制作方法简便,锥区总长度更短,本文还将介绍我们在这方面的最新结果。

CO 2

Laser

L d =9.5μm 73.5 μm d Λ 图1左图:基于高双折射微纳光纤环镜结构的传感器原理图及实物图;右图:基于级联微纳光纤长周期光栅的干涉型传感器原理图及实物图。

实验五反射式光纤位移传感器实验

实验五 反射式光纤位移传感器 一、实验目的 了解反射式光纤位移传感器的结构,学习和掌握最简单、最基本的光纤位移传感器的原理和应用。 二、基本原理 反射强度调制式光纤传感器具有准确、结构简单、价格低廉等优点,广泛应用于各种位移、压力和温度传感器中。反射式光纤位移传感器的基本结构如图5-1所示,其中发射光纤通常由一根光纤构成,接收光纤有时候由单根光纤构成,而有些时候为了提高光的接收效率也经常由多根光纤构成。本实验采用的传光型光纤,它是由两根光纤的一端熔合后组成的Y 型光纤,一根作为发射光纤,端部与光源相接发射光束;另一根作为接收光纤,端部与光电转换器相接接收反射光。两根光纤熔合后的端部是工作端也称传感探头,截面为半圆分布即D 型结构。由光源发出的光传到端部出射后再经被测体反射回来,由另一束光纤接收光信号经光电转换器转换成电压信号。 图5-1 反射式光纤位移传感器示意图 传光型光纤反射式位移传感器的发射调制方法,可用等效分析法来分析。首先,画出接收光纤关于反射体的镜像,然后计算出该镜像接收光纤在发射光纤纤端光场中所接收到的光强值,最后将该光强值乘以反射体的反射率R ,作为传感器的最后输出光强。如图5-2中的a 图所示。 接收光纤的镜像坐标即它的等效坐标位置为F (2z ,d ),这里z 为发射接收光纤的端面与反射体之间的距离,d 为发射光纤轴心到接收光纤轴心之间的距离,由此可以获得接收光纤接收到的光强为: ]] )/(1[exp[])/(1[)(2 2/30202222/3020c c tg a z a d tg a z RI z I θζσθζσ+-?+= 其中,0I 为光源的光强,σ为表征光纤折射率分布的相关参数,对于阶跃折射率光纤,它的值为1,0a 为光纤的纤芯半径,ζ为光源种类及光源与光纤耦合情况有关的调制参数, c θ为发射光纤的最大出射角。此函数的曲线形状如图5-2中的b 图所示。 reflector

干涉型光纤传感器的信号处理系统

干涉型光纤传感器的信号处理系统 近年来,传感器在朝着灵敏、精巧、适应性强和智能化、网络化的方向发展。 在这一过程中,光纤传感器作为传感器家族的新成员,由于其优越的性能而倍受青睐。在各种光纤传感器中以干涉型光纤传感器的灵敏度最高。 干涉仪结构的光纤传感器系统,通过深入研究随机信号的互相关函数和基于AR模型的功率谱估计,设计出具有事件发生检测功能的传感器信号处理算法。此算法可以对外界振动进行实时预警,并实现高速、高精度的定位。 该技术可用于检测第三方入侵,对需要防护的地域、管线进行监控、报警并提供精确定位。 研究成果对于长距离分布式干涉型光纤传感器的实用化具有重要的理论意义和实际应用价值,并在工业和国防领域具有应用前景。 本文设计的光纤传感系统分为传感线路、光收发模块、数据采集和信号处理等部分。 传感线路部分是一种基于马赫一泽德干涉仪的双向干涉结构。 当干涉仪中的干涉臂受到外力引起的振动时,光纤中传输的光信号的相位会发生变化,从而导致输出干涉波形的变化。 干涉信号经光电转换、数据采集送至信号处理系统,经信号处理分析后可以对外界振动发生的位置进行定位。 信号处理部分由DSP和PC机共同组成,DSP用于实现事件发生检测算法,PC机实现定位算法。通过实验分析表明,事件发生检测算法可以显著地改善光纤传感器的性能,提高系统准确性,降低误报率。在合理设置采样率

的基础上,可以实现lOOM的定位误差。采用DSP和PC机合理分配运算负担,可以满足光纤传感器系统实时监控的要求。 第一章绪论 1.1引言传感器是感受规定的被测物理量并按一定规律将其转换为有用信号的器件或装置,它在工业生产、国防建设和科学技术等各个领域都发挥着巨大作用。近年来,传感器在朝着灵敏、精巧、适应性强和智能化、网络化的方向发展。在这一过程中,光纤传感器作为传感器家族的新成员,由于其优越的性能而倍受青睐。与传统的传感器相比,光纤传感器具有以下的优势:首先,光纤是一种耐高压,抗腐蚀的介质,能在电磁或电子传感器不能工作的恶劣环境下运行。其次光波的传播频率极高,具有巨大的信息容量,又能有效的防止无线电波及电火花干扰传输的光波信号。同时,光纤很细,又具有极高的韧性,可以制造各种体积小、重量轻以及任意形状的传感器。更重要的是光纤传感器可以传感各种物理量,例如声,电、磁、温度、压力、振动、旋转等,并具有极高的灵敏度。 光纤传感器利用光纤本身的敏感特性进行工作。 由光源发出的光在光纤中传播时,若应力、温度、电场、磁场等外界因素发生了变化,则光波的振幅、相位、波长及偏振态等特征参量会随之变化,该过程称为光波的调制。含有调制信息的光波经光纤传输到光电转换部分,解调后被仪器接收,即可得到外场确切变化的信息。根据被测物理量对光的调制方法不同,光纤传感器可分为强度传感器,频率(或波长)传感器,相位传感器及光纤偏振式传感器四大类。其中尤其以光纤相位传感器(即各种光纤干涉仪)的灵敏度最高。光纤干涉仪将光波的相位信息转换位强度信息,通过检测光强信号分析出所测物理量。20世纪70年代以来,在飞速发展的光纤通信技术的带动下,光纤传感

反射式光纤位移传感器特性实验

仪器与电子学院实验报告 (操作性实验) 班级: 学号: 学生姓名: 实验题目:反射式光纤位移传感器特性实验 一、实验目的 1)掌握反射光纤位移传感器工作原理; 2)掌握反射光纤位移传感器静态特性标定方法。 二、实验仪器及器件 光纤、光电转换器、光电变换器、电压表、支架、反射片、测微仪。 三、实验内容及原理 反射式光纤位移传感器的工作原理如图3所示,光纤采用Y 型结构,两束多模光纤一端合并组成光纤探头,另一端分为两束,分别作为接收光纤和光源光纤,光纤只起传输信号的作用。当光发射器发生的红外光,经光源光纤照射至反射体,被反射的光经接收光纤至光电转换元件将接收到的光信号转换为电信号。其输出的光强决定于反射体距光纤探头的距离,通过对光强的检测而得到位移量。 图1 反射式光纤位移传感器原理及输出特性曲线 四、实验步骤 1、观察光纤结构:本仪器中光纤探头为半圆型结构,由数百根光导纤维组成,一半为光源光纤,一半为接收光纤。 2、将原装电涡流线圈支架上的电涡流线圈取下,装上光纤探头,探头对准镀铬反射片( 即

电涡流片)。 3、振动台上装上测微仪,开启电源,光电变换器Vo端接电压表。旋动测微仪,带动振 动平台,使光纤探头端面紧贴反射镜面,此时Vo输出为最小。然后旋动测微仪,使反射镜面离开探头,每隔0.5mm取一Vo电压值填入下表,作出V—X曲线。 4、根据所测数据求出平均值后,在坐标纸上画出输出电压-位移特性曲线(分前坡和后坡), 计算灵敏度S=,并在坐标纸上画出V—X关系线性、灵敏度、重复性、迟滞曲线。 五、实验测试数据表格记录 表1 六、实验数据分析及处理 1、线性度: 图2 线性曲线

Michelson干涉型光纤传感器原理.

一、引言 光纤传感由于具有本质安全、电绝缘性好、灵敏度高及便于连网等优点,已在许多物理量的测量中得到应用,特别是基于光纤干涉的传感系统已成为物理量检测中最为精确的系统之一。 光纤干涉仪是一种高精度测量仪器,但存在相位随机漂移及倍频等光学问题。现有文献报导中,解决的方法是采用相位生成载波技术,调制解调的实现过程复杂,并有可能产生信号波形的失真。另外,虽有采用压电陶瓷(PZT)的报导,但未见对相位随机漂移及倍频问题的具体解决方法。为此,本文给出一种简单实用的解决方案,在原理上说明其可行性,并进行了实验验证。 二、Michelson干涉型光纤传感器原理 图1所示为Michelson相位调制型光纤干涉仪结构示意图。由激光器发出的相干光经光隔离器和耦合器后一分为二分别送入2根长度基本相同的单模光纤(即干涉仪的两臂,其一为信号臂,另一参考臂),而后被反射膜反射,在耦合器的输出端发生干涉。显然,这是一种双光束干涉仪,干涉光的幅度与信号光及参考光的幅度有关,其相位为两臂光相位之差,干涉场光强分布为 I=I1+I2+2I1I2cos(Φ)=A+Bcos(Φ)(1) Φ=2nπl/λ(2) 式(1)右端是光电转换的信号,I1、I2分别为干涉仪两臂单独存在时的光强,在检测时通常以直流项对待;2I1I2cos(Φ)表示干涉效应,当Φ=2mπ时,为干涉场的极大值,其中m为干涉级次。式(2)中,Φ为干涉仪两臂光波的相位差,它可以表示为因为环境波动引起的随机漂移信号S和待测信号N之和,由光波波长λ、光纤折射率n以及光纤两臂长度差l共同决定。在波长一定的情况下,两臂光程差改变nl,就改变了干涉信号的相位差,从而实现传感功能。

光纤水听器综述

光纤水听器及阵列综述 马宏兰周美丽 (天津师范大学电子与通信工程学院) 摘要:为适应水声学应用特别是水下反潜战的需要 ,在光纤技术不断发展的基 础上 ,光纤水听器应运而生。光纤水听器是一种基于光纤、光电子技术上的新型水下声传感器 ,因其在军事、民用各领域应用广泛 ,目前光纤水听器在国内外发展迅速 ,已经到达实用状态。全光光纤水听器系统的湿端采用全光实现,信号传感与传输皆基于光纤技术。具有抗电磁干扰、重量轻和造价低等优点。文章简述了光纤水听器的发展历史、现状 ,论述了光纤水听器阵列的原理及其应用前景。 关键词:光纤水听器多路复用技术阵列 0引言:在光纤水听器的实际应用中,由于水下声场的复杂性,单元水听器很难获得目标的详细信息,因而需要将数百乃至上千个探测基元组成大的阵列,以获得更多水声场信息,通过水听器阵列完成声场信号的波束形成,实现对水下目标的定位与指向。在2003年8月下水的美国最新型攻击核潜艇上,装备的舷侧阵就由2 700个光纤水听器基元组成【1】。对于大规模的光纤水听器阵列,多达数十上百基元的光纤水听器光信号都是由同一根光纤传输的,在实际系统中,这种性能就是由光纤水听器的多路复用技术实现的。可见多路复用是光纤水听器的核心技术。 1 光纤水听器的开发 自1976年美国Bucar等人发表第一篇有关光纤水听器的论文【2】以来, 各工业发达国家的海军研究部门以及有关的研究和工业部门都在积极从事光纤水听器的研究和开发,尤其以美国最为突出。美国海军研究实验室、美国海军研究生院和Litton制导和控制公司等先后研究开发了Maeh一Zehnder、Michelson 干涉仪的光纤水听器, 主要结构有心轴型、互补型(推挽式) 、平面型和椭球弯 张式等光纤水听器。这些结构水听器达到的归一化灵敏度(△。/ 。△P)为适应水声学应用特别是水下反潜战的需要 ,在光纤技术不断发展的基础上 ,光纤水听器应运而生。光纤水听器是一种基于光纤、光电子技术上的新型水下声传感器 ,因其在军事、民用各领域应用广泛 ,目前光纤水听器在国内外发展迅速 ,已经到达实用状态。各国对光纤水听器的研究投入了大量人力和物力,技术也日益娴熟。 2、多路复用的阵列体系结构 阵列体系分为以下六大部分,其中时分/ 波分混合复用技术是其关键有效手段。 1 ) 频分复用(FDM) 【3】相位产生载波(PGC)问询的体系结构—美国海军研究实验室已用此方案对总数48 个单元水听器成网组成的阵列成功地进行了海上试验, 证实了这种体系结构的低阐值检测能力和低的串扰。 2) 时分复用(TDM) 相位产生载波问询的体系结构—美国海军研究实验室已作了10 单元的光纤水听器阵列演示, 证实了其低的光背景噪声和低的串扰。

分布式光纤传感技术

光纤光栅传感器是一种常用的光学传感器件,分布式光纤光栅就属于准分布式光纤传感器件中的一种。选题方向合理。请尽快确定课题完成方式,明确研究内容,尽快开展课题调研论证工作。75 分布式光纤光栅传感技术 光纤传感技术是一种以光纤为媒介,光为载体,感知和传输外界信号(被测量)的新型传感技术,是伴随着光导纤维及光纤通信技术发展而逐步形成的。在光通信系统中,光纤被用作远距离传输光波信号的媒质,在这类应用中,光纤传输的光信号受外界因素的影响越小越好,但是,在实际的光传输过程中,光纤容易受到外界环境因素的影响,如温度、压力、应变等外界条件的变化将引起光纤中传输光波的特征参数如频率、相位、光强、偏振态等的变化,通过测量这些参数的变化,就可以得到外界作用于光纤的物理量,这就是光纤传感技术。光纤传感技术的基本原理是:将光源的光入射进光纤,当光在光纤中传输的过程中受到外界物理量影响,使得被测参数与光纤内传输的光相互作用,进行调制,从而使其光学性质如光的频率、波长(颜色)、强度、相位、偏振态等发生变化成为被调制的信号光,然后将这一调制的信号光送入光探测器中进行解调,经信号处理后就可获得被测参数。 光纤传感器与传统传感器相比具有许多明显优势: 1)体积小、重量轻,几何形状具有多方面的适应性,可以做成任意形状的传感器和传感器阵列。 2)抗电磁干扰能力强、耐高温、耐腐蚀,在易燃、易爆环境下安全可靠。 3)光纤传感器件多是无源器件,对被测对象影响较小。 4)便于复用,便于成网。它既可以作为信息的传递媒介,又可以作为信号测量的传感装置。 5)光纤传感器传输频带宽,动态范围大,测量距离长。 光纤传感器的种类很多,按照其工作方式可分为:点式、准分布式和分布式三类。其中,准分布式光纤传感器是使用传感网络系统进行测量的,其光纤不作为传感元件,只作为传输元件,其敏感元件为多个点式的传感器,它们采用串联或各种网络结构形式连接起来,利用波分复用、时分复用或频分复用等技术形成分布式网络系统,进而可以较精确地分时或同时得到被测量信息的空间分布,也可同时得到某一点或某些空间点上不同被测量的分布信息。 光纤光栅传感器除了具有一般光纤传感器耐高温、耐腐蚀等优点之外,还具有波长编码,抗干扰能力强等特性。另外,它较易于在一根光纤中连续写入多个光栅,以制成分布式光纤光栅传感,制得的光栅阵列轻巧柔软,可与渡分复用或时分复用技术等相结合,且十分适于作为分布式传感兀件贴于结构表面或埋人到材料和结构的内部,以实现对结构应变、温度以及压力等的多点监测,这对于目

基恩士光纤传感器的分类及原理

基恩士光纤传感器的分类 KEYENCE光纤传感器根据光受被测对象的调制形式可以分为:强度调制型、偏振态制型、相位制型、频率制型;KEYENCE光纤传感器根据光是否发生干涉可分为:干涉型和非干涉型;KEYENCE光纤传感器根据是否能够随距离的增加连续地监测被测量可分为:分布式和点分式;根据光纤在传感器中的作用可以分为:一类是功能型(传感型)传感器; 另一类是非功能型(传光型)传感器。 基恩士光纤传感器的原理 KEYENCE光纤传感器光纤布拉格光栅传感器(FBS)是一种使用频率最高,范围最广的光纤传感器,这种传感器能根据环境温度以及/或者应变的变化来改变其反射的光波的波长。光纤布拉格光栅是通过全息干涉法或者相位掩膜法来将一小段光敏感的光纤暴露在一个光强周期分布的光波下面。这样光纤的光折射率就会根据其被照射的光波强度而永久改变。这种方法造成的光折射率的周期性变化就叫做光纤布拉格光栅。 当一束广谱的光束被传播到光纤布拉格光栅的时候,光折射率被改变以后的每一小段光纤就只会反射一种特定波长的光波,这个波长称为布拉格波长,这种特性就使光纤布拉格光栅只反射一种特定波长的光波,而其它波长的光波都会被传播。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。https://www.doczj.com/doc/507761948.html,/

一文深度了解光纤传感器的应用场景

一文深度了解光纤传感器的应用场景 文| 传感器技术(WW_CGQJS)光纤传感器与测量技术是当今传感器技术领域新的发展引应用,其测量用的光纤传感器有很多种类,有很多种工作方式。国内市场上光纤传感器应用主要在以下四种:光纤陀螺、光纤光栅传感器、光纤电流传感器和光纤水听器。下面对这四种产品分别介绍一下。光纤传感器应用种类一、光纤陀螺。 光纤陀螺按原理可分为干涉型、谐振型和布里渊型,这是三代光纤陀螺的代表。第一代干涉型光纤陀螺,目前该项技术已经成熟,适合进行批量生产和商品化;第二代谐振型光纤陀螺,暂时还处于实验室研究向实用化推进的发展阶段;第三代布里渊型,它还处于理论研究阶段。 光纤陀螺结构根据所采用的光学元件有三种实现方法:小型分立元件系统、全光纤系统和集成光学元件系统。目前分立光学元件技术已经基本退出,全光纤系统用在开环低精度、低成本的光纤陀螺中,集成光学器件陀螺由于其工艺简单、总体重复性好、成本低,所以在高精度光纤陀螺很受欢迎,是其主要实现方法。 二、光纤光栅传感器 目前国内外传感器领域的研究热点之一光纤布拉格光栅传感器。传统光纤传感器基本上可分为两种类型:光强型和干

涉型。光强型传感器的缺点在于光源不稳定,而且光纤损耗和探测器容易老化;干涉型传感器由于要求两路干涉光的光强同等,所以需要固定参考点而导致应用不方便。 目前开发的以光纤布拉格光栅为主的光纤光栅传感器可以避免出现上面两种情况,其传感信号为波长调制、复用能力强。在建筑健康检测、冲击检测、形状控制和振动阻尼检测等应用中,光纤光栅传感器是最理想的灵敏元件。光纤光栅传感器在地球动力学、航天器、电力工业和化学传感中有广泛的应用。三、光纤电流传感器 电力工业的迅猛发展带动电力传输系统容量不断增加,运行电压等级也越来越高,电流也越来越大,这样测量起来就非常困难,这就显现出光纤电流传感器的优点了。在电力系统中,传统的用来测量电流的传感器是以电磁感应为基础,这就存在以下缺点:它容易爆炸以至引起灾难性事故;大故障电流会造成铁芯磁饱和;铁芯发生共振效应;频率响应慢;测量精度低;信号易受干扰;体积重量大、价格昂贵等等,已经很难满足新一代数字电力网的发展需要。这个时候光纤电流传感器应运而生。 四、光纤水听器 光纤水听器主要用来测量水下声信号,它通过高灵敏度的光纤相干检测,将水声信号转换为光信号,并通过光纤传至信号处理系统进行识别。与传统水听器相比,光纤水听器具有

浅谈反射式强度型光纤传感器

大学物理实验 光纤技术专题实验 学院 班级 学号 姓名 教师张丽梅 首次实验时间2012年9月17日

浅谈反射式强度型光纤传感器 摘要:本文通过物理实验的经历和收获和查阅相关资料,简要地论述了反射式强度型光纤传感器的工作原理,以及国内外对该类传感器研究现状,指出其存在的问题和解决方法。 关键词:反射式光纤传感器,反射面,强度调制,研究,发展趋势 1引言 通过光纤技术专题实验,我对光纤的结构和一般性质,光纤的耦合、传输及传感特性有了一定的了解,尤其是在做第三个实验“光纤传感”时,对反射式强度型光纤传感器产生了浓厚的兴趣。通过查阅资料等手段,写下了这篇浅显的论文。 2反射式强度型光纤传感器及其原理 反射式强度型光纤传感器(RIM-FOS:Reflective Intensity Modulated Fiber Optic Sensor)具有原理简单、设计灵活、价格低廉等特点,并已在许多物理量

( 如位移、转速、振动等) 的测量中获得成功应用。其结构原理如图1。 图2 与传统传感器是以机- 电测量为基础相比,,光纤传感器则以光学测量为基础。从本质上分析, 光就是一种电磁波, 其波长范围从极远红外的1nm 到极远紫外线的 10nm。电磁波 的物理作用和生物化学作用主要因其中的电场而引起。因此, 在讨论光的敏感测量时必须考虑光的电矢量E 的振动。通常用下式表示:E=Asin( ωt+")

式中A—电场E 的振辐矢量; ω—光波的振动频率;"— 光的相位; t—光的传播时间。由上式可见, 只要使光 的强度、偏振态( 矢量A的方向) 、频率和相位等参量 之一随波测量状态的变化而变化, 或者受被测量调制, 那么, 我们就有可能通过对光的强度调制、偏振调制、频率调制或相位的调制等进行解调, 获得我们所需要 的被测量的信息。最简单的反射式强度型光纤传感 ( RIMFOS)由光源、发送光纤、接收光纤、反射面以及 光电探测器组成.在图一中S 为光源, D 为检测器。光 源S 发出的光经发送 光纤束全反射传播, 到达反射面( 被测物) , 射 进入接收光纤束再次全反射传播到达检测器D, 测器D 输出相应的电信号U0。 U0=f( d) 在光纤芯半径r、光纤的数值孔径NA、反射面、 检测器已确定情况下, 输出电压U0 只是位移d 的函数。所以通过分析输出电压U0, 可以得到相应位移d的数值, 这样可以实现非接触微小位移的精密测量。

干涉型微纳光纤传感器

干涉型微纳光纤传感器 金龙,李杰,关柏鸥 (暨南大学光子技术研究所,广州,510632) 摘要:本文报道我们在干涉型微纳光纤传感器方面的研究进展,包括高双折射微纳光纤环形传感器、级联长周期光栅传感器及基于单锥结构的微纳光纤干涉型传感器。通过对干涉仪几何结构的设计与优化,实现了104 nm/RIU 量级的折射率感测灵敏度,为研制成本低廉、高灵敏度的光学生物化学传感器提供了可选方案。 关键词:微纳光纤;微纳光纤传感器;干涉型传感器 微纳光纤传感器具有体积小巧、结构灵活、强瞬逝场等特点,基于对周围液体折射率的测量,能够实现对微弱生化成分变化的检测。已报道的微纳光纤折射率传感器包括光栅型、谐振型等。我们通过结构设计与优化,实现了几种干涉型微纳光纤折射率传感器,具有折射率灵敏度高、温度灵敏度低,制作成本低等优点,具体包括: (1)高双折射微纳光纤环形传感器。在闭合光纤环镜结构中加入一段由矩形截面光纤熔融拉锥而成的高双折射微纳光纤,构成M-Z 干涉型传感器,其折射率灵敏度达到18897nm/RIU ,并通过进一步将干涉仪制成灵巧型尖端式结构,将灵敏度提升到24373nm/RIU ,温度灵敏度仅为5 pm/°C 。理论分析表明其传感特性由群双折射色散决定,可通过对光纤截面的椭圆度和和直径的优化实现灵敏度的提升。 (2)级联长周期光栅微纳光纤传感器。通过用CO 2激光器在微纳光纤上构成级联长周期光栅,感测灵敏度达到2227nm/RIU ,温度灵敏度为11.7 pm/°C ,并通过理论计算指出,通过进一步降低光纤直径到 3.5μm 左右时,由于瞬逝场作用的增强和模式色散因子的降低,感测灵敏度有望达到40000nm/RIU 左右。 (3)单锥结构的微纳光纤干涉型传感器。在光纤熔融拉锥过程中,通过减小过渡区长度,可激发微纳光纤中的高阶模式,并基于单个锥区实现干涉仪结构。这种结构制作方法简便,锥区总长度更短,本文还将介绍我们在这方面的最新结果。 CO 2 Laser L d =9.5μm 73.5 μm d Λ 图1左图:基于高双折射微纳光纤环镜结构的传感器原理图及实物图;右图:基于级联微纳光纤长周期光栅的干涉型传感器原理图及实物图。

光纤水听器原理与应用综述(1)

光纤水听器原理与发展现状 袁虎邓华秋 (华南理工大学物理系广州510640) 摘要光纤水听器由于其特有的抗电磁干扰、体积小等特点,在军事、民用方面有着广泛应用。本文简介了光纤水听器的基本原理,并分别对强度调制型、干涉型和光栅型光纤水听器进行了简单的介绍。在现在的光纤水听器的应用中,点式的传感已不能满足现在的大规模集成化要求,因此分布式光纤水听器也是近期的研究热点。文中介绍了两种分布式光纤水听器的技术方案,分别是OTDR和FMCW技术。与此同时由于光纤激光器的发展,其良好的单色性和稳定性可以用于优良的光源,把它用到干涉型光纤水听器中可以极大程度的提高光纤水听器的性能。 关键词:光纤水听器;FMCW;光纤激光器 1.光纤水听器简介 声波作为一种机械波,可以在海水中进行远程能量传递,而其他类型的能量场在水中衰减很快,因此,声波是海洋深层信息收集、传递和处理的最重要形式[1]。水声传感器简称水听器,是在水中侦听声场信号的仪器。它作为反潜声纳的核心部件,在军事领域中有着重要的应用;在工业生产和民用领域,也有着广泛的用途,如用于海洋石油和天然气的勘探、地震预测、水声物理研究、海洋气候以及渔业等众多方面。 早期的水听器主要有压电陶瓷制成的压电水听器。但随着应用的深入,基于压电陶瓷传感元件的水听器出现了许多不足之处。如对电磁场的敏感性,电缆负载、连接电缆的共振效应,同时利用压电陶瓷进行点传感的技术难度和成本也十分困难。正是由于传统压电式水听器存在这些问题,随着光纤和激光技术的发展,人们研制出了一种基于光纤光电子技术的新型水听器-光纤水听器。它的研究始于冷战时期,由于反潜战的需要,美国海军开始了光纤水听器的研究。[2,3]1977年布卡诺等人发表首篇关于光纤技术的水声传感系统的论文[4]。 光纤水听器由于传感头部分不用使用电,而是通过光来传输信号,所以具有抗电磁干扰、电绝缘、动态范围宽、稳定可靠性高、灵敏度不受水流静压力和频率的影响、可以进行远距离测量、探头体积小、方便构成大规模阵列等众多优点。所以,光纤水听器的研究越来越受到各国的重视[4]。 2.光纤水听器原理

反射式光纤传感器原理操作步骤

五、注意事项 1.不得随意摇动和插拔面板上的各种元器件,以免造成实验仪不能正常工作。 2.光纤传感器弯曲半径不得小于5㎝,以免折断。 3.旋动螺旋测微丝杆尾帽中出现咔咔声表示不能继续前进,不能超过其量程。 4.在使用过程中,出现任何异常情况,必须立即关机断电以确保安全。 5.不得用手触摸反射面,以免影响实验结果。 六、实验操作 1)光路与机械系统组装调试实验 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 图3 光纤传感器安装示意图 2.将发射和接收部分接入电路,探测器输出信号处理电路不接调零电路,输出端U0接入电路板上电压表。 3.调节光纤传感器探头,使探头与反射面接触。 4.选择智能可调档位200mv或者2v档位。 5.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面,观察电压表显示变化,并分析。 6.关闭电源。 2)发光二极管驱动实验1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 2.仅仅把发射部分接入电路。 3.调节光纤传感器探头,使探头与反射面接触。 4.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面,观察电压表显示变化,并分析。 5.关闭电源。 3)光电探测器PD接收实验 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 2.仅仅把接收部分接入电路。 3.调节光纤传感器探头,使探头与反射面接触。 4.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面,观察电压表显示变化,并分析。 5.关闭电源。 4)光纤位移传感器输出信号放大处理实验 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座孔和探测器PD座孔上,把光纤传感器探头安装在光纤卡架上。 2.将发射和接收部分接入电路,探测器输出信号处理电路接调零电路,输出端U0接入电压表。 3.调节光纤传感器探头,使探头与反射面接触。 4.打开电源开关,调节螺旋测微丝杆使光纤传感器离开反射面某一距离后维持不动,调节增益旋钮,观察电压表显示变化,并分析。 5.关闭电源。 5) 光纤位移传感器输出信号误差补偿电路 1.按照图3安装光纤传感器,把输入光纤、输出光纤分别插入实验板上的光源座 7

拉曼型分布式光纤传感器DTS.

拉曼型分布式光纤传感器DTS 拉曼型分布式光纤传感器DTS描述: 产品简介 拉曼型分布式光纤传感器DTS是国内外应用较成熟的分布式光纤测温技术,利用自发拉曼散射效应和光时域反射技术实时获得沿光纤分布的温度信息,结合智能火灾判断算法,可及时预警火灾隐患,并精确定位火灾发生位置。 诺驰光电的DTS产品采用模块化设计,可靠性高;同时凭借高速微弱信号处理技术优势,实现0.5m空间分辨率,技术指标国内领先。诺驰光电可提供基于多模光纤和单模光纤的DTS,尤其适合高压电缆在线监测、电力载流量分析、交通隧道火情监测、油气储罐火情监测、输煤皮带火情监测、大坝渗漏监测应用。 测量原理 拉曼型分布式光纤传感器DTS的温度测量基于自发拉曼Raman散射效应。大功率窄脉宽激光脉冲入射到传感光纤后,激光与光纤分子相互作用,产生极其微弱的背向散射光,包括温度不敏感的斯托克斯Stokes光和温度敏感的反斯托克斯Anti-stokes光,两者波长不一样,经波分复用器WF分离后由高灵敏的探测器APD探测,根据两者的光强比值可计算出温度。而位置的确定是基于光时域反射OTDR技术,利用高速数据采集测量散射信号的回波时间即可确定散射信号所对应的光纤位置。

技术优势 ?连续分布式温度测量,无测量盲区?光纤即为传感器,可抗干扰 ?测量距离长?可精确定位 ?测量速度快?本质安全,适于易燃易爆环境下长 期工作 ?测量稳定可靠,误报率低?光纤寿命长,几十年免维护 性能特点 ?测量距离:10km?空间分辨率:0.5m—10m ?取样分辨率:0.25m—1m?测量时间:5s ?测量精度:1℃?友好的用户软件,提供可视化界面?提供单模光纤版本产品应用Applications 性能指标

反射式光纤位移传感器实验

反射式光纤位移传感器实验报告 一、实验内容 1、按照光路图搭建各类光学元件 2、用螺丝固定两侧推平移平台,侧推平移台装在滑块上,然后采用 FC=FC对接法兰连接半导体激光输出接口与塑料反射式传感光纤,塑 料反射式光鲜FC端口与功率计感应端口通过光纤法兰座固定。 3、塑料反射式传感光纤螺纹端夹持固定可调棱镜支架中,并调节可调 棱镜支架的调节旋钮使出射的光路与导轨平行。 4、调节反射镜与反射式光纤跳线之间距离,使得反射端紧贴反射镜, 调节旋钮使得反射光与入射光重合达到反射镜与光路垂直,直到显示 的功率接近0值。 5、固定反射镜与可调棱镜的位置,旋转沿光轴方向(导轨方向)xuan 转侧推平移台尺杆,使反射镜远离光纤发光端,并记录位移-功率值数 据并绘制实验图,在曲线图中线性最好的那一段可作为实际位移传感 器应用。 二、实验结果 三、实验分析 如图,线性较好的第一段(即位移在0-0.3mm间)满足线性化,可作为实际位移传感应用。反射式光纤位移传感器是一种传输型光纤传感器。光从光源耦合到光源光纤,通过光纤传输,射向反射片,再被反射到接收光纤,最后由光电

转换器接收,转换器接受到的光源与反射体表面性质、反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射片时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。

光纤传感器的分类及特点

1 光纤传感器基本原理 随着工艺水平的提高,光纤技术目前相对成熟。光纤传感器即为应用光纤传输的基本原理组合的一个广电感应系统。通常的光纤传感系统由光源、光导纤维、光传感元件,光调制元件和信号处理部分组成[3]。其工作原理如下图所示:光源发出的光经过光导纤维进入光传感元件,而在光传感元件中受到周围环境场的影响而发生变化的光再进入光调制机构,由其将传感元件测量的参数调制成幅度、相位、偏振等信息,这一过程称为光电转换过程,最后利用微处理器进行信号分析。 如前所述可以看出光纤传感器的传感机理和电磁传感器的传感机理是相似的,但是光纤传感器由于其测量信号的载体是激光,其在光导纤维内部传播,很难受到外界电磁场干扰,因此适合复杂工况下的检测,且操作方便灵活,信号输出自动化。 2 光纤传感器的分类及特点 2.1 光纤传感器的分类 2.1.1 光纤传感器的分类有不同的方式 按光纤在光纤传感器中的作用可分为传感型和传光型两种类型。 传感型光纤传感器的光纤不仅起传递光作用,同时又是光电敏感元件。由于外界环境对光纤自身的影响,待测量的物理量通过光纤作用于传感器上,使光波导的属性(光强、相位、偏振态、波长等)被调制。传感器型光纤传感器又分为光强调制型、相位调制型、振态调制型和波长调制型等。 2.1.2 传光型光纤传感器 传光型光纤传感器是将经过被测对象所调制的光信号输入光纤后,通过在输出端进行光信号处理而进行测量的,这类传感器带有另外的感光元件对待测物理量敏感,光纤仅作为传光元件,必须附加能够对光纤所传递的光进行调制的敏感元件才能组成传感元件。光纤传感器根据其测量范围还可分为点式光纤传感器、积分式光纤传感器、分布式光纤传感器三种。其中,分布式光纤传感器被用来检测大型结构的应变分布,可以快速无损测量结构的位移、内部或表面应力等重要参数。目前用于土木工程中的光纤传感器类型主要有 Math-Zender干涉型光纤传感器,Fabry-pero 腔式光纤传感器,光纤布喇格光栅传感器等。 2.2 光纤传感器的特点 研究和工程应用表明光纤传感器具有如下特点: ⑴高灵敏度,抗电磁干扰。由于光纤传感器检测系统很难受到外界场的干扰,且光信号在传输中不会与电磁波发生作用,也不受任何电噪声的影响,由于这一特征,光纤传感器在电力系统的检测中得到了广泛应用。 ⑵光纤具有很好的柔性和韧性,所以传感器可以根据现场检测需要做成不同的形状。 ⑶测量的频带宽、动态响应范围大。 ⑷可移植性强,可以制成不同的物理量的传感器,包括声场、磁场、压力、温度、加速度、位移、液位、流量、电流、辐射等。 ⑸可嵌入性强,便于与计算机和光纤系统相连,易于实现系统的遥测和控制。 3.光纤传感器土木工程中的应用举例 随着光纤传感技术的发展,在土木工程领域光纤传感器得到了广泛的应用,用来测量混凝土结构变形及内部应力,检测大型结构、桥梁健康状况等,其中最主要的都是将光纤传感器作为一种新型的应变传感器使用。

光纤传感器的应用及发展

文章编号:10044736(2004)02006304 光纤传感器的应用及发展 杨春曦,胡中功3,戴克中 (武汉化工学院电气信息工程学院,湖北武汉430073) 摘 要:简要介绍了光纤传感器的特点,综述了光纤传感器的发展以及近期国际上光纤传感器的研究和应用情况,最后描述了其前景和主要研究方向. 关键词:光纤传感器;应用;光纤布拉格光栅;温度测量中图分类号:TQ 174.75+9 文献标识码:A 收稿日期:20031013 作者简介:杨春曦(1976),男,贵州铜仁人,硕士研究生.3通讯联系人. 0 引 言 光纤传感器的历史可追溯到上世纪70年代, 那时,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来.1977年,美国海军研究所(N RL )开始执行由查尔斯?M ?戴维斯(Charles M .D avis )博士主持的Fo ss (光纤传感器系统)计划[1],这被认为是光纤传感器问世的日子.从这以后,光纤传感器在世界的许多实验室里出现.由于其具有常规传感器所无法比拟的优点和广阔的发展前景,很多国家不遗余力地加大对光纤传感器的研究力度,也涌现出许多成果[2].但它仍存在诸如价格昂贵、技术不够成熟等瓶颈,这使得它在工程上的应用较少.最近涌现的很多成果无论是在价位上还是技术上都有了新的突破.随着新方法、新工艺不断被引入,大量低价位高性能光纤传感器面世,而光纤与其他学科理论相结合,不仅使光纤传感器在信号检测精度、传输减损、信号处理方面有了很大的提高,而且其应用领域也越加广阔.本文简要地介绍了光纤传感器的特点,并对光纤传感器近期的发展动态进行简要地概述. 1 光纤传感器的特点 光纤传感器由光源、传输光纤、传感元件或调制区、光检测等部分组成.众所周知,描述光波特征的参量很多(如光强、波长、振幅、相位、偏振态和模式分布等),这些参量在光纤传输中都可能会受外界影响而发生改变.如当温度、压力、加速度、电压、电流、位移、振动、转动、弯曲、应变以及化学量和生物化学量等对光路产生影响时,均会使这 些参量发生相应变化.光纤传感器就是根据这些参量随外界因素的变化关系来检测各相应物理量的大小.一般光纤传感器按其作用不同可分为两种类型:传光型和敏感型.而按其检测方法不同主要又可分为两种类型:强度型和相位型.图1是光纤传感器的结构框图 . 图1 光纤传感器的结构框图 F ig .1 Structu ral diagram of fiber op tic sen so r 与传统的传感器相比,光纤传感器具有抗电磁干扰、灵敏度高、耐腐蚀、本质安全及测量对象广泛等特点,而且在一定条件下可任意弯曲,可根据被测对象的情况选择不同的检测方法,再加上它对被测介质影响小,非常有利于在医药卫生等具有复杂环境的领域中应用. 2 光纤传感器在研究和工程中的应 用近况 2.1 光纤传感器的工程应用 光纤的优点和具体学科理论相结合,产生一大批应用范围更广、性能更好、价格相对低廉的各具特色的光纤传感器,在传统领域和新兴领域都得到很好的应用. 2.1.1 光纤传感器在化学和生物学中的应用 当前,在国外研究得比较多的化学和生物光纤传感器主要有光吸收型传感器,荧光型传感器和衰减波形光纤传感器三种. a .光吸收型传感器的工作原理是根据测定被测物对特定波长的光产生吸收以及吸收的强度来确 第26卷第2期 武 汉 化 工 学 院 学 报 V o l .26 N o.22004年6月 J. W uhan In st . Chem. T ech . Jun. 2004

干涉型光纤水听器调制解调方案研究

干涉型光纤水听器调制解调方案研究 ! 沈梁"叶险峰"李志能 #浙江大学信息与电子工程学系"杭州$%&&’()摘要*本文概述了+,-./01.2314 干涉型光纤水听器两种不同的调制解调技术"着重分析了用$5$耦合器组成的干涉型光纤水听器的解调原理" 并比较分析了这两种方案的特点"指出采用$5$耦合器解调技术是将来构成全光纤干涉型水听器系统的优选方案6 关键词*干涉型光纤水听器789零差检测解调$ 5$耦合器中国分类法*:7’%’6%;"文献标识码*<文章编号* %&&;/%=>>#’&&%)&%/&&&?/&=@引言 光纤水听器是利用光纤的传光特性以及它与周围环境相互作用产生的种种调制效应" 在海洋中侦听声场信号的仪器A %B 6 干涉型光纤水听器具有高灵敏度的相位检测能力和大的动态范围"可以远距离捕获海洋中声发射源如潜艇C 鱼群等发出的噪声"以便进行警报和定位"其检测声压灵敏度比传统的压电式水听器高出$个数量级"因而对光纤水听器技术的研 究在?&年代初就引起各国的高度重视6 同国外相比"我国在这一领域差距很大"仍处于原理性探索与实验室研究阶段"通过近几年的探索"已取得了一些成果6本文概述了+,-./01.2/ 314 干涉型光纤水听器两种不同调制解调技术6通过严密的数学推导"重点分析了$5$耦合器对称解调技术方案A D "=B " 并分析研究了这两种方案的特点"这些工作对于实现全光纤化水听器阵列远距离信号传输与检测具有重要的意义6 E 789调制/ 解调原理干涉型光纤水听器的789检测方案是在光纤水听器中引入检测信号带宽外的某一频 率的大幅度相位调制信号A ’B " 通过分离随机漂移与信号项"消除随机漂移对传感信号的影响6将圆频率为F G " 信号幅度为H 的相位调制信号加在+,-./01.2314光纤干涉仪上"则干涉仪的检测信号及其I 1J J 1K 函数展开为L M NO P -Q J A -Q J F G R O S #R )B M NO P T A U &#H )O ’V W X M % # Y %)X U ’X #H )-Q J ’X F G R B -Q J S #R )Y A ’V W X M &# Y %)X U ’X O %#H )-Q J #’X O %)F G R B J Z 2#R )[#%) ’&&%年$月传感技术学报第%期 !来稿日期*’&&&/&>/’?资助项目*国家自然科学基金资助项目#=>(&’&&$)万方数据

分布式光纤传感器系统测量原理

分布式光纤传感器系统测量原理 [摘要]: 光在光纤中传播,光与介质中光学声子、声学声子发生碰撞,会产生后向散射的光,这些后向散射的光的频率、强度均会发生改变。其改变量的大小与折射率等有关,而折射率等因素受光纤的应变、温度的影响。 [关键词]:光纤;光纤传感器;测量 中国分类号:TN6 文献标识码:A 文章编号:1002-6908(2007)0110021-01 1.BOTDR的分布式温度和应变测量 BOTDR的分布式应变测量原理,当入射光在光纤中传播时,入射光会与声波声子相互作用,产生布里渊散射。其散射光的传播方向与入射光的传播方向相反。当入射光的波长那布里渊散射的最大能量的频率与入射光的频率之差大约是11GHz。这个频移量就叫做布里渊频移。如果光纤沿径向发生了应变,那布里渊散射对应于应力的频移量,如图1所示: 为了测量分布式的应变,通过使用BOTDR技术,沿着光纤观测布里渊散射光的频谱,确定布里渊频移的大小,从而达到测量应力的目的。如图2所示。在光纤的一端脉冲光入射,同时在这端使用时间域的BOTDR接收布里渊后向散射光。因此,产生布里渊散射的位置与脉冲光发射的位置的距离Z可以由下列登时确定,在这个式中,时间T是发射脉冲光与接收的布里渊散射光的时间差。 为了能获得布里渊散射光的频谱,我们重复上面所做的步骤,我们缓慢的改变入射光的频谱宽度。在布里渊散射光的不同频率段,我们能获得大量的分布式能量。如图2所示。所以,我们能够从获得的布里渊散射光的波形,知道在光纤中任何位置,那散射光的频谱。所以,我们固定频谱到那些Lorentzian弯曲和使用能量峰值的频谱。通过相应弯曲位置的应力。 应变与布里渊频率的改变量的各自联系。在实际的测量中,测量之前,(1)中的系数和布里渊频移可以在无应变时测量出来。然后,频移转换成应变。 注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。

光纤传感器的应用和发展

文章编号:100320794(2004)0820009202 光纤传感器的应用和发展 马天兵,杜 菲 (安徽理工大学,安徽淮南232001) 摘要:主要阐述了光纤传感器的原理、特点及国内外的发展情况,介绍了在实际测量中的一些具体应用。提出了我国光纤传感器存在的问题,指出了今后发展的方向,为光纤传感器的深入研究提供了有益的参考。 关键词:光纤传感器;测量精度;传感技术 中图号:T N253文献标识码:A 1 前言 自20世纪70年代以来,光纤传感器取得了飞速发展。由于它独特的优点,决定了可实现某些特殊条件下的测量工作,比常规检测技术具有诸多优势,是传感技术发展的一个主导方向。光纤传感技术代表了新一代传感器的发展趋势。光纤传感器产业已被国内外公认为最具有发展前途的高新技术产业之一,它以技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人所瞩目。 2 光纤传感器的原理 光纤传感器通常由光源、传输光纤、传感元件或调制区、光检测等部分组成。众所周知,描述光波特征的参量很多(如光强、波长、振幅、相位、偏振态和模式分布等)。这些参量在光纤传输中都可能会受外界影响而发生改变,特别如温度、压力、加速度、电压、电流、位移、振动、转动、弯曲、应变以及化学量和生物化学量等对光路产生影响时,都会使这些参量发生相应变化。光纤传感器就是根据这些参量随外界因素的变化关系来检测各相应物理量的大小。 光纤传感器与传统传感器相比有其独特的优点,即非接触式测量、抗干扰力强、灵敏度高、体积小、重量轻、柔性好,而且测量对象广泛。因此,在传感器行业中,光纤传感器越来越显示出它的优势。它将替代传统的机械接触式传感器及电容非接触式传感器。机械接触式传感器磨损被测表面,这就限制了测量精度。电容非接触式传感器的抗电磁干扰力差,使得其实用范围受到限制。 3 国内外光纤传感器的发展概况 由于光纤传感器应用的广泛性及其广阔的市场,其研究和开发在世界范围内引起了高度的重视,各国家更是竟相研究开发并引起激烈的竞争。 美国是研究光纤传感器起步最早、水平最高的国家,在军事和民用领域的应用方面,其进展都十分迅速。在军事应用方面,研究和开发主要包括:水下探测的光纤传感器、用于航空监测的光纤传感器、光纤陀螺、用于核辐射检测的光纤传感器等。这些研究都分别由美国空军、海军、陆军和国家宇航局(NAS A)的有关部门负责,并得到许多大公司的资助。美国也是最早将光纤传感器用于民用领域的国家。如运用光纤传感器监测电力系统的电流、电压、温度等重要参数,监测桥梁和重要建筑物的应力变化,检测肉类和食品的细菌和病毒等。日本和西欧各国也高度重视并投入大量经费开展光纤传感器的研究与开发。日本在20世纪80年代便制定了“光控系统应用计划”,该计划旨在将光纤传感器用于大型电厂,以解决强电磁干扰和易燃易爆等恶劣环境中的信息测量、传输和生产过程的控制。20世纪90年代,由东芝、日本电气等15家公司和研究机构,研究开发出12种具有一流水平的民用光纤传感器。西欧各国的大型企业和公司也积极参与了光纤传感器的研发和市场竞争,其中包括英国的标准电讯公司、法国的汤姆逊公司和德国的西门子公司等。 我国在20世纪70年代末就开始了光纤传感器的研究,其起步时间与国际相差不远。目前,已有上百个单位在这一领域开展工作,如清华大学、华中理工大学、武汉理工大学、重庆大学、核工业总公司九院、电子工业部1426所等。他们在光纤温度传感器、压力计、流量计、液位计、电流计、位移计等领域进行了大量的研究,取得了上百项科研成果,其中相当数量的研究成果具有很高的实用价值,有的达到世界先进水平。每年发表的论文、申请的专利也不少。但与发达国家相比,我国的研究水平还有不小的差距,主要表现在商品化和产业化方面,大多数品种仍处于实验室研制阶段,不能投入批量生产和工程化应用。 4 光纤传感器的应用 光纤传感器的应用范围很广,几乎涉及国民经济的所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了许多行业多年 ? 9 ?  2004年第8期 煤 矿 机 械

相关主题
文本预览
相关文档 最新文档