当前位置:文档之家› 计量装置接线图

计量装置接线图

计量装置接线图
计量装置接线图

高供低计计量装置接线图

`

注:1、该端子排为虚拟的遥控线和遥信线接入点.

2、遥控线编号:(轮次1)正线K101负线K102

(轮次2)正线K201负线K202如此类推.

3、遥信线编号:(遥信1)正线X101负线X102

(遥信2)正线X201负线X202如此类推.

高供高计计量装置接线图

注:1、该端子排为虚拟的遥控线和遥信线接入点.

2、遥控线编号:(轮次1)正线K101负线K102

(轮次2)正线K201负线K202如此类推.

3、遥信线编号:(遥信1)正线X101负线X102

(遥信2)正线X201负线X202如此类推.

高压兆欧表10kV接线图

高压兆欧表10kV接线图变电站变压器、电缆的绝缘电阻测量接线图:

可调高压数字兆欧表测试电压高,功率大,被测量对象往往又带有工频泄漏或感应上高压干扰电能,因此为了人身安全,使用该仪器首先一定要接好安全接地线! 该仪表在高压启动后,请不要采用人工放电方式检查仪表,在测试完毕后也应等待仪表自动放电使电压表回零后才进行例行安全需要的人工放电!因为短路放电的强烈电脉冲波有损被测对象的绝缘寿命,如果脉冲窜入仪表,也有损仪表内的集成电路! 该仪表是为了解决高压变电站、发电厂现场强干扰下对大型高压变压器、电机电器、远程电力电缆或埋设电缆等电气绝缘电阻特性的测试而设计研制。它亦可用于广泛领域的电气绝缘电阻特性测量。它具有下列特点: 1.具有强力抗电场感应干扰能力,达到2mA(50Hz),已知适应500kV变电站现场不拆线测量500kV大型变压器的绝缘电阻参数。 2.测试电源的短路电流>5mA,最大达15mA。适应大容量、大电感的测试。 3.电阻测量范围宽广,从0.5MΩ~200000MΩ。读数准确、分辨力高。 4.测试电源的电压范围宽广,可选择0.5、1、2.5、5、10kV,也可从0V平滑调起连续调节到需要的电压。 5.具有计时报时功能,提醒使用者记录,分析被测量对象的吸收比和极化指数。 1.产品规格: 型号测试电压电压准确度短路电流 GM-5kV 0.25、0.5、1、2.5、5kV ±(5%+10V)>5mA GM-10kV 0.5、1、2.5、5、10kV ±(5%+10V)>5mA GM-15kV 1、2.5、5、10、15kV ±(5%+10V)>5mA GM-20kV 0.5、1、2.5、5、10、20kV ±(5%+10V)>5mA 2.量程与准确度: 量程(限压)电阻测量 有效范围 准确度 20MΩ/500V 0.5~19.99 MΩ±(5%+5字) 200MΩ/1000V 5.0~199.9 MΩ±(5%+5字) 2GΩ0.05~1.999 GΩ±(5%+5字)

低压计量接线图

低压计量接线 第一节电流电压共用 三只单相电能表经互感器接入测量三相有功电量(电流电压线共用) 安装时应注意以下几点: 1、一次侧电源线电流方向应从P1流向P2。 2、电流互感器变比应按铭牌所标变比安装,匝数应以穿心式电流互感器 内壁所穿匝数为准。 3、穿心的电源线应有足够的载流量,绝缘应完好无损坏。 4、电能表电流回路应与电流互感器二次侧串联,电压回路应与相应相电 压并联。 5、电流互感器二次侧S1端子应接电能表电流回路的进线端(第1孔) 6、电流互感器二次侧S2端子应接电能表电流回路的出线端(第2孔) 7、电流回路不允许开路 8、电流回路不允许接地 9、电压回路火线应由对应相引入,接入电压回路进线端(第1孔) 10、电压回路零线三相应并联,接入零线进线端(第3孔或第4孔) 11、电压回路不允许短路 接线图如下 三只单相电能表经互感器接入接线图(电流电压线共用)

三只单相电能表带三相四线无功表经互感器接入测量三相有功无功电量(电流电压线共用) 安装时应注意以下几点: 1、一次侧电源线电流方向应从P1流向P2。 2、电流互感器变比应按铭牌所标变比安装,匝数应以穿心式电流互感器 内壁所穿匝数为准。 3、穿心的电源线应有足够的载流量,绝缘应完好无损坏。 4、电能表电流回路应与电流互感器二次侧串联,电压回路应与相应相电 压并联。 5、A相电流互感器二次侧S1端子应接A相有功电能表电流回路的进线端 (第1孔) 6、A相有功电能表电流回路的出线端(第2孔),应与无功电能表电流回 路A相的进线端(无功表第1孔)串联。 7、A相电流互感器二次侧S2端子应接无功电能表电流回路A相的出线端 (第3孔) 8、 9、B相电流互感器二次侧S1端子应接B相有功电能表电流回路的进线端 (第1孔) 10、B相有功电能表电流回路的出线端(第2孔),应与无功电能表电流回 路B相的进线端(无功表第4孔)串联。 11、B相电流互感器二次侧S2端子应接无功电能表电流回路B相的出线端 (第6孔) 12、C相电流互感器二次侧S1端子应接C相有功电能表电流回路的进线端 (第1孔) 13、C相有功电能表电流回路的出线端(第2孔),应与无功电能表电流回 路C相的进线端(无功表第7孔)串联。 14、C相电流互感器二次侧S2端子应接无功电能表电流回路C相的出线端

高压计量接线图

第二章高压计量接线 第一节高压计量箱一次多变比 高压计量箱电压互感器做V/V形接线(二次四电流桩头回线分开)安装时应注意以下几点: 1、首先要辨别清楚高压计量箱是单变比还是多变比,如果是多变 比还要弄清是一次多变比还是二次多变比 2、一次侧电源线应接P1桩头,单变比计量箱出线应接P2桩头, 一次多变比计量箱应接所要使用的变比桩头。 3、A相电流互感器二次侧aS1端子应接电能表电流回路A相的 进线端(第1孔) 4、A相电流互感器二次侧aS2端子应接电能表电流回路A相的 出线端(第3孔) 5、C相电流互感器二次侧cS1端子应接电能表电流回路C相的进 线端(第7孔) 6、C相电流互感器二次侧cS2端子应接电能表电流回路A相的出 线端(第9孔) 7、电流回路不允许开路 8、A、C相电流回路二次侧S2端子应接地。 9、电压回路二次侧A相端子应接入电能表电压回路A相的端子 (第2孔) 10、电压回路二次侧B相端子应接入电能表电压回路B相的端子 (第5孔) 11、电压回路二次侧C相端子应接入电能表电压回路C相的端子 (第8孔) 12、电压回路不允许短路 13、电压回路B相应接地 14、接线图如下:

高压计量箱电压互感器做V/V形接线接线图(二次四电流桩头回线 分开)

高压计量箱电压互感器做V/V形接线(二次三电流桩头回线共用)安装时应注意以下几点: 1、首先要辨别清楚高压计量箱是单变比还是多变比,如果是多变 比还要弄清是一次多变比还是二次多变比 2、一次侧电源线应接P1桩头,单变比计量箱出线应接P2桩头, 一次多变比计量箱应接所要使用的变比桩头。 3、二次侧S1端子应接电能表电流回路A相的进线端(第1孔) 4、二次侧S2端子应接电能表电流回路A相的出线端,并与电能 表C相电流回路的出线端并联。(第3孔和第9孔) 5、二次侧S3端子应接电能表电流回路C相的进线端(第7孔) 6、电流回路不允许开路 7、电流回路二次侧S2端子应接地。 8、电压回路二次侧A相端子应接入电能表电压回路A相的端子 (第2孔) 9、电压回路二次侧B相端子应接入电能表电压回路B相的端子 (第5孔) 10、电压回路二次侧C相端子应接入电能表电压回路C相的端子 (第8孔) 11、电压回路不允许短路 12、电压回路B相应接地 13、接线图如下:

电力计量装置接线检查及其准确性研究 白龙

电力计量装置接线检查及其准确性研究白龙 发表时间:2019-06-26T11:13:02.517Z 来源:《电力设备》2019年第1期作者:白龙 [导读] 摘要:电力计量的相关应用设备和装置随着技术的创新发展,其设备的性能和质量得到很大的提升。 (鄂尔多斯电业局伊金霍洛供电分局计量班内蒙古鄂尔多斯 017200) 摘要:电力计量的相关应用设备和装置随着技术的创新发展,其设备的性能和质量得到很大的提升。但是在实际的检修维护工作中,我们不能轻视和忽略计量设备出现的故障和问题,为了进一步提升其准确性和性能指标,要对其进行严格和细致的接线检查,排除各类故障问题和存在的隐患,提升其计量信息的精准程度。如此供电企业才可以获取更为精准的用电信息数据,有利于获得更多的经济收益,并减少电力能源的损耗。 关键词:电力计量装置;接线检查;准确性 1电能计量装置概述 作为电企电网与用电客户之间的纽带,电能计量装置是一种对客户所用电能实现计量统计的一种装置。对于耗电量较小的低压用电用户,电企通常采用直接接入式电表,采用这种接入方式能够有效的电能计量误差局限在电表本身的范围内,相对误差较小;对耗电量较大的低压用电用户,就需要在电能计量装置上添加电流互感器。而对于使用高压供电的电企用户,其电能计量装置需要接入电压、电流互感器。随着电企技术和科技的发展和进步,电能计量装置正向着智能化、网络化、标准化、数字化、信息化和系统化方向迈进。电能计量装置的网络化发展使得电企的客户服务质量以及运营管理水平都买向了一个更高的台阶,采用统一、标准化计量模式的电能计量装置使得电能计量更加准确、高效,对于电能计量装置的管理、运行和维护工作也更加便捷,但电能计量装置的设计越繁复,就给一线接线工作人员带来更大的困难,接线错误现象频繁发生,这也是近年来导致电能计量装置出现电能计量故障的主要因素。 2电能计量装置常见接线错误分析 2.1单相错误接线 在整个电能计量装置异常接线中,计量单相电路有功能电能的异常接线是最常见的。这一异常接线情况又具体可分为以下五大类。一是,接线工作人员在将相线和零线连接的过程中,出现了工作失误而将相线和零线接反的现象。二是,在电能计量装置中,接线人员在对装置的进线和出线进行区分时出现了失误,结果导致了异常接线的情况。三是,接线人员在接线过程中,出现了电源同电流线圈间短路的情况,进而导致了异常接线。四是,接线员由于忘记了将电压钩连片进行连接进而出现了异常接线。五是,在对380V单相负载电能进行计量的过程中,接线员由于工作惯性,使用了1只220V的单相电能表读数,然后将这一结果乘以2的计算方法进行计量进而导致出现了接线错误。事实上,这一算法是缺乏稳定性和科学性的。 2.2三相三线 电能计量装置的三相三线错误接线判断难度较大。当出现接线错误后,会因为检查处理不及时而扩大影响范围。三相三线计量装置的错误接线方式主要有以下几种,如果超过2种因素引起错误接线,则看做是多故障错误接线。向量图是判断电能计量装置错误接线的常用方法之一,是指三相三线互感器且只有一只功能表V/V接法向量图。向量图利用计量仪器对电压、电流及相位进行测量,绘制出相应的接线图,以展现电压与电流的相位关系。在此基础上,与电能计量装置负载状态相结合,判断三线电能表接线方式。相位角表。在进行电能计量装置错误接线判断时,向量法需要绘制相应的向量图,过程比较复杂。因此,可通过相位角表法,实现判断过程的简化。用电用户通过使用相位角表法,可得出相应的功率因数角。而功率因素角是在不同接线方式下,电压、电流功率因数角表的体现。相位角表本质是利用计量仪测定电压电流及相位,结合相位角表获取相应的功率因数角,最终判断电能计量装置的负载状态,掌握电能计量装置接线是否准确。 2.3三相四线 三相四线由三根火线与一根零线组成,两根火线间电压为380V,火线与零线的电压为220V。单纯应用一根火线及零线的是单相电,应用三根火线的则是三相电。当单相电用电量较大时,可以通过三根火线与零线,构建三路三相电满足用户用电需求,同时保证电网负荷处于均匀状态。对于三相四线电能计量装置错误接线检查工作,可以采用与三相三线相同的方式,利用向量图与相位角表进行。主要电能计量装置错误接线方式。 3电力计量装置接线检查 3.1停电状态下进行检查 在检查电能计量装置的过程中,电能表如果是在停电的状态下那就说明属于停滞状态,这时候检查工作人员可以直接对其进行接线检查。在检查接线的过程中与主要有以下几方面:第一是要把接线两端的标志准确的确认出来,接线时要有针对性地划分不同颜色的绝缘导线。第二是检查接线的工作人员要对互感器进行实验,以此来确认互感器运行的状态符不符合相关的要求。第三是对三相电压互感器进行组别实验,以此来确认安装时的精准性。第四是检查工作人员还要认真仔细的核对端子的标志,以此确认每个部件应该具体地安装到哪个位置上。 3.2带电的状态进行检查 带电检查电压回路就是在电能表正常运转的状态下对其进行接线检查。在带电检查电压回路时检查工作人员应该主要检查电压互感器的一、二次侧检查,细致的检查一、二次侧是否有断线或极性搞错的问题。在检查带电电压回路的过程中一般是用一个交流电压表对二次线间的电压进行检测,从中判断出电压的大小与接线的模式,从而得到接线的具体情况。而电流回路的检查主要检查的是有没有断线的故障或是短路的故障等,在检查过程中检查工作人员应该,通过分析圆盘的转向状态来得出结果。工作人员可以按照顺序将一相、三相的电压段引线进行切断,如若圆盘还是正常运转的话就说明没有出现错接线的问题。反之就说明出现了错接线的问题。切断三相电压时如果圆盘不正常运转了,就说明三相回路的内部发生了断线与短路的问题。 4提升计量设备准确性的管理措施 4.1基本管理 在基础性质的管理工作过程中,管理人员应该采取具有针对性的措施和策略,对于其计量的工作运行状态,费用核算等情况进行实时的监管,并全面搜集和整理其运行数据,通过科学的指标来衡量和评估计量设备的基本运行情况,还要开展实地的考察和检查工作,可有

高压计量箱安装措施实用版

YF-ED-J5722 可按资料类型定义编号 高压计量箱安装措施实用 版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

高压计量箱安装措施实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 洪兴煤矿一回电源来自乐民35kv变电站乐 洪10kv专线,二回电源来自洪兴35KV变电站 10KV洪兴专线。因 。特编此措施以便于高压计量箱顺利安 装。 一、乐洪专线倒闸时间 20xx年月日 时分 二、停电时间年月日时 分至时分 三、高压计量箱安装操作负责人及相关参 与人员

负责人: 参与人: 操作人员: 四、高压计量箱安装注意事项 1、高压计量箱安装前必须熟悉该设备的性能及其接线方式。检查并确定所安装的设备是否配有计量箱使用说明书、出厂检验的产品合格证书、安装使用注意事项等出厂相关资料;电压、电流互感器的检定记录或报告,计量箱安装是作业指导书。 2、参加作业的工作负责人和操作人员应适当、足够,精神状态良好。作业人员必须持有相应级别的计量检定员证,具备电业作业的相关资质,并熟练掌握计量箱的安装方法和技能;熟悉计量箱设备性能及二次接线。

低压计量接线图讲解学习

低压计量接线图

低压计量接线 第一节电流电压共用 三只单相电能表经互感器接入测量三相有功电量(电流电压线共用) 安装时应注意以下几点: 1、一次侧电源线电流方向应从P1流向P2。 2、电流互感器变比应按铭牌所标变比安装,匝数应以穿心式电流互感器 内壁所穿匝数为准。 3、穿心的电源线应有足够的载流量,绝缘应完好无损坏。 4、电能表电流回路应与电流互感器二次侧串联,电压回路应与相应相电 压并联。 5、电流互感器二次侧S1端子应接电能表电流回路的进线端(第1孔) 6、电流互感器二次侧S2端子应接电能表电流回路的出线端(第2孔) 7、电流回路不允许开路 8、电流回路不允许接地 9、电压回路火线应由对应相引入,接入电压回路进线端(第1孔) 10、电压回路零线三相应并联,接入零线进线端(第3孔或第4孔) 11、电压回路不允许短路 接线图如下 三只单相电能表经互感器接入接线图(电流电压线共用)

三只单相电能表带三相四线无功表经互感器接入测量三相有功无功电量(电流电压线共用) 安装时应注意以下几点: 1、一次侧电源线电流方向应从P1流向P2。 2、电流互感器变比应按铭牌所标变比安装,匝数应以穿心式电流互感器 内壁所穿匝数为准。 3、穿心的电源线应有足够的载流量,绝缘应完好无损坏。 4、电能表电流回路应与电流互感器二次侧串联,电压回路应与相应相电 压并联。 5、A相电流互感器二次侧S1端子应接A相有功电能表电流回路的进线 端(第1孔) 6、A相有功电能表电流回路的出线端(第2孔),应与无功电能表电流 回路A相的进线端(无功表第1孔)串联。 7、A相电流互感器二次侧S2端子应接无功电能表电流回路A相的出线 端(第3孔) 8、 9、B相电流互感器二次侧S1端子应接B相有功电能表电流回路的进线 端(第1孔) 10、B相有功电能表电流回路的出线端(第2孔),应与无功电能表电流 回路B相的进线端(无功表第4孔)串联。 11、B相电流互感器二次侧S2端子应接无功电能表电流回路B相的出线 端(第6孔) 12、C相电流互感器二次侧S1端子应接C相有功电能表电流回路的进线 端(第1孔) 13、C相有功电能表电流回路的出线端(第2孔),应与无功电能表电流 回路C相的进线端(无功表第7孔)串联。

三相三线电能计量装置错误接线检查作业指导书.doc

三相三线有功电能表错误接线检查作业指导书 一、任务要求: 1、遵守安全工作规程,正确使用仪表; 2、画出向量图,描述故障错误; 3、列出各元件功率表达式及总的功率表达式; 4、求出更正系数 二、适用范围: 电压互感器采用两台单相互感器按V/v 0方式连接,电流互感器采用分开四线制连接方式。所接负载为一块三相三线有功电能表和一块三相三线(60°)无功电能表、电压回路阻抗对称的感性负载(容性负载的分析方法可类推)功率因数COS Φ>0.5(Φ<60°)。 三、配备工具: 一块数字式相位伏安表(仅提供一组电压测试线和一个电流钳)。 四、相关知识: (一)三相三线有功电能表正确接线的相量图 (二)正确功率表达式: )30cos(1u u uv I U P ?+?= )30cos(2w w wv I U P ?-?= ???cos 3)30cos()30cos( 210UI I U I U P P P w w wv u u uv =-?++?=+= )090:900:(οοοο≤≤-≤≤??容性时感性时 (三)电压互感器一次断线、二次断线、二次极性反接情况的电路分析。 1、电压互感器V 型接线一、二次断线时二次侧线电压数值表:

下表列出了当一次断和二次断电压时,二次侧各相与相间电压的数值。 序号故障 断线 情况 故障断线接线图 (实线为有功电能表, 虚线为无功电能表) 电压互感器一、二次断线时二次侧电压(V) 二次侧不接 电能表(空载) 二次侧接一只 有功电能表 二次侧接一只有功 电能表和一只无功电 能表 Uuv Uwv Uwu Uuv Uwv Uwu Uuv Uwv Uwu 1 一次 侧U 相断 相 0 100 100 0 100 100 50 100 50 2 一 次侧V 相断 相 50 50 100 50 50 100 50 50 100 3 一 次侧 W相 断相 100 0 100 100 0 100 100 33 67 4 二次 侧u相 断相 0 100 0 0 100 100 50 100 50 5 二 次侧 v相断 相 0 0 100 50 50 100 67 33 100 6 二 次侧w 相断 相 100 0 0 100 0 100 100 33 67

电能计量接线图

低压计量基础知识与查处窃电 作者:张立华 2010年张立华独立编写《低压电能计量知识和查处窃电》培训教材一书,作为本单位抄表员及所站长的技能培训教材,培训10期,每期35人-40人,学员技能水平明显提高.特此证明(内容见复印件) 廊坊供电公司客服中心廊坊供电公司培训中心 签字:签字: 2011年9月9日2011年9月9日

在现代化的建设与人民生活中谁都离不开电,电力的建设与发展与国民经济和人民生活质量息息相关,但是,电能作为一商品,在社会主义市场经济交换过程中,窃电的现象也就相伴而生。窃电者为了达到目的,往往是千方百计使窃电的手法更加隐蔽和更加巧妙,并随着科技知识的普及,窃电行为的手段、窃电的方法也在发生变化。对此,作为供电行业的用电管理人员一定要时刻警惕和高度重视,针对各种窃电行为进行深入的调查研究和分析,同时应采取相应的对策。就象公安人员研究犯罪分之的作案手法一样,只有掌握了犯罪分子的作案规律、共性案例和特殊性案例及其手法才能做好如何防范,而且要比窃电者棋高一酬,掌握工作的主动权,使国家的财产损失减少到最小。 窃电的手法虽然五花八门,但万变不离其宗,最常见的是从电能计量的基本入手。我们知道,一个电能表计量电量的多少,主要决定于电压、电流、功率因数三要素和时间的乘积,因此,只要想办法改变三要素中的任何一个要素都可以使电表慢转、停转甚至反转,从而达到窃电的目的(例如:矢压、矢流、短接(分流)、改变电能表进出线或极性等);另外,通过采用改变电表本身的结构性能的手法,使电表慢转(例如:改变电流线圈匝数、倒转表码、更换传动齿轮损坏传动齿轮等),也可以达到窃电的目的;各私拉乱接、无表用电的行为则属于更加明目张胆的窃电行为。下面介绍电能计量基础知识和如何查处窃电。

电能计量装置配置原则精编版

电能计量装置配置原则公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

电能计量装置配置原则 1.配置原则 (1)贸易结算用的电能计量装置原则上应配置在供受电设施的产权分界处:发电企业上网线路、电网经营企业间的联络线路两侧都应配置电能计量装置。 (2)I、II、 III类贸易结算用电能计量装置应按计量点配置计量专用电压、电流互感器或者专用二次绕组。电能计量专用电压、电流互感器或专用二次绕组及其二次回路不得接入与电能计量无关的。 (3)单机容量100MW及以上的发电机组上网结算电量,以及电网经营企业之间购销电量的计量点,宜配置准确度等级相同的主、副两套电能表。即在同一回路的同一计量点安装一主一副两套电能表,同时运行、同时记录,实时比对和监测,以保证电能计量装置的准确、可靠,避免较大的电量差错。 (4)35KV以上贸易结算用电能计量装置中的电压互感器二次回路,应不装设隔离开关辅助触点,但可装设熔断器;35kV及以下贸易结算用电能计量装置的电压互感器二次回路,应不装设隔离开关辅助触点和熔断器。 (5)安装在用电客户处的贸易结算用电能计量装置,1OKV及以下电压供电的,应配置符合GB/T16934规定的电能计量柜或计量;35kV电压供电的,宜配置GB/T16934规定的电能计量柜或电能计量箱。 (6)贸易结算用的高压电能计量装置应装设电压失压计时器。未配置计量柜(箱)的电能计量装置,其互感器二次回路的所有接线端子、试验端子应能实施铅封。 (7)互感器的实际二次负荷应在25%~100%额定二次负荷范围内;电流互感器额定二次负荷的功率因数应为电压互感器额定二次功率因数应与实际二次负荷的功率因数接近。 (8)电流互感器在正常运行中的实际负荷电流应为额定一次电流值的60%左右,至少应不小于30%。否则,应选用具有高动热稳定性能的,以减小变比。 (9)选配过载4倍及以上的宽负载电能表,以提高低负荷计量的准确性。 (10)经电流互感器接人的电能表,其标定电流宜不超过TA额定二次电流的30%,其额定最大电流应为TA额定二次电流的120%左右。直接接入式电能表的标定电流应按正常运行负荷电流的30%左右进行选择。(11)对执行功率因数调整电费的客户,应配置可计量有功电量、感性和容性无功电量的电能表;按最大需量计收基本电费的客户,应配置具有最大需量计量功能的电能表;实行分时电价的客户,应配置复费率电能表或多功能电能表。 (12)配有数据通信接口的电能表,其通信规约应符合DL/T645的要求。 (13)具有正、反向送受电的计量点,应配置计量正向和反向有功电量以及四象限无功电量的电能表。一般可配置1只具有计量正、反向有功电量和四象限无功电量的多功能电能表。 (14)中性点绝缘系统(如经消弧线圈接地)的电能计量点,应配置经互感器接人的三相三线(3×100V)有功、无功电能表;但个别经过验证、接地电流较大的,则应安装经互感器接人的三相四线(3×有功、无功电能表。 (15)中性点非绝缘系统(即中性点直接接地)的电能计量点,应配置经互感器接人的三相四线(3×有功、,无功电能表。 (16)三相三线低压线路的电能计量点,配置低压三相三线(3×380V)有功、无功电能表;当照明负荷占总负荷的15%及以上时,为减小线路附加误差,应配置低压三相四线(3×380V/220V)有功、无功电能表,或3只感应式无止逆单相电能表。

某小区供配电系统设计

, 南阳理工学院 本科生毕业设计(论文)( @ 学院(系):电子与电气工程学院 专业:电气工程及其自动化 学生: 指导教师: : 完成日期 2014 年 5 月

$

南阳理工学院本科生毕业设计(论文) 某小区供配电系统设计 Design for the Power Supply and distribution system of a residence community 总计: 36 页 表格: 10 个 插图: 9 幅

南阳理工学院本科毕业设计(论文) 某小区供配电系统设计 Design for the Power Supply and distribution system of a residence community 学院:电子与电气工程学院 专业:电气工程及其自动化 学生姓名: 学号: 指导教师(职称): 评阅教师: 完成日期: 南阳理工学院 Nanyang Institute of Technology

某小区供配电系统设计 [摘要]住宅小区供配电系统的稳定运行直接影响着人们的日常生活及秩序。因此研究小区供配电系统如何更好的实现安全、可靠、经济运行具有现实的意义。本课题初步对住宅小区的供配电系统进行设计,并根据国家相关标准对所设计的内容进行规范化。分析小区的原始数据和供电特点,对小区各类负荷进行计算;通过计算负荷选择变压器的容量和数目完成变电所的设计;合理选择电气主接线方式;根据短路电流选择合适的电力电缆;确定建筑物防雷等级,做好小区的防雷接地保护。设计过程中不仅要保证供电的质量和安全性,还应尽量满足供电的经济性,节省能源和材料。 [关键词]计算负荷;短路电流;变压器;供配电设计;防雷接地 Design for the Power Supply and Distribution System of a Residence Community Electrical Engineering and Automation Specialty MA Jun-yao Abstract: Residence community for safe and reliable operation of the distribution system directly affects people's daily project is initially designed for the power supply and distribution system of the residence community. And also the design is normalized in accordance with the relevant national regulations and standards. So the power supply and distribution system in residence community district how to realize the safe, reliable and economic operation has realistic meaning. Analysis the raw data for the residence community and load calculation of the residence community. Based on the calculated load the measures of power supply and distribution of the residence community is designed. It includes the electric main wiring design, transformer and distribution substation design. Meanwhile the appropriate electric power cable are selected according to the short-circuit current. And the protection design about grounding for lightning is also essential. Not only must the quality and safety of power supply be ensured, but also the economical power supply, energy-saving and material-saving should be met as much as possible. Key words: Load calculation; Short-circuit current; Transformer; Power supply and distribution design; Grounding for lightning

高压计量接线方式(四种)

–12–AN-639 What are the connections for 3-phase 4-wire wye service (with three voltage sensors)? Figure 6. 4-Wire Wye Service Connections with Three Voltage Sensors Active Power V V I I V V I I V V I I V I V I V I AP N AP AN BP N BP BN CP N CP CN A A B B C C =?()×?() +?()×?()+?()×?()=×()+×()+×() ??????To select this calculation mode in the ADE7754, the WATMOD register should be 00x00 and WATSEL = 0x00 according to the ADE7754 Data Sheet. What are the connections for 3-phase 4-wire wye service (with two voltage sensors)? Figure 7. 4-Wire Wye Connections with T wo Voltage Sensors Active Power V V I I I I V V I I I I V I I V I I AP N AP AN BP BN CP N CP CN BP BN A A B C C B =?()×?()??() ()+?()×?()??()( ) =×?()+×?() ??????To select this calculation mode in the ADE7754, the WATMOD register should be 0x01 and WATTSEL = 0x07. REV. 0

低压用电检查错误接线及计量串户预防措施

低压用电检查错误接线及计量串户预防措施 发表时间:2017-06-13T16:22:39.867Z 来源:《电力设备》2017年第6期作者:田园方世蒲[导读] 摘要:低压用电检查错误接线与计量串户工作较为重要,主要因为错误接线与计量串户情况对于电力系统的危害较为重要。(国网甘肃省电力公司庆阳供电公司)摘要:低压用电检查错误接线与计量串户工作较为重要,主要因为错误接线与计量串户情况对于电力系统的危害较为重要,相关技术人员必须要予以一定重视,保证可以提升低压用电检查工作质量,增强其发展效果,减少其中存在的问题,达到预期的管理目的。关键词:低压用电检查;错误接线;计量串户;预防措施在低压用电检查期间,技术人员必须要全面了解错误接线与计量串户对于电力系统的危害情况,保证可以提升检查工作的准确性,树立正确的工作观念,并且采取有效措施预防此类问题,提升其工作质量。 一、低压用电错误接线与计量串户危害问题的分析在低压用电系统实际运行的过程中,经常会出现错误接线与计量串户的现象,影响着电力系统的稳定运行。具体危害表现为以下几点: 第一,低压用电错误接线与计量串户现状分析。随着我国城市建设速度的加快,新的住宅逐渐增多,然而,部分城市建筑质量不合格,经常会影响电力系统的建设,难以提升电力系统的运行质量。这就导致低压用电错误接线与计量串户现象频频发生,再加上我国电力系统相关技术人员不重视系统检查工作,不能对其进行准确的处理,就导致电力服务质量降低。虽然在缴纳电费的时候,要求服务人员对用户进行提醒,但是,还是会出现核对错误的现象,无法保证用电错误接线与计量串户问题的规避效果。第二,低压用电错误接线类型分析。目前,我国对于低压用电多无接线的类型进行了分析,发现最为主要的情况就是:电力企业在搜集用户信息数据之前,不能对电源点与计量点进行合理的设置,只能将其安装在楼道中,部分开发商不重视楼道施工质量,导致出现错误接线现象,甚至会出现电表串户的问题,难以提升电力系统的运行准确性,影响着电力企业的长远进步。第三,主要危害情况分析。在电力系统实际运行期间,经常会出现低压用电错误接线与计量串户的现象。首先,在出现此类问题之后,会导致电表的数据信息采集效率降低,主要因为电表的数据信息采集点在楼道中,很可能会导致真正的电力用户电表无法搜集到准确的信息,或是导致电力用户不能更好的采集数据信息,影响着电表终端采集器的数据准确性。其次,在出现计量串户问题之后,也会因为电表的采集终端各类采集器出现不准确的现象,影响着电表的终端运行效果,甚至会导致电表报废。最后,在出现此类问题的时候,会导致台区线损分析工作质量降低,难以保证计量点的准确性,无法提升电量计算可靠性,甚至发生严重的偏差问题,造成用户投诉等后果,无法提升电力企业的信誉度。二、低压用电错误接线与计量串户问题分析低压用电错误接线与计量串户问题的原因包括电表安装问题、人为问题等,导致出现各类难以解决的故障现象,影响着电力企业的服务质量。具体原因表现为以下几点:第一,电表安装问题。在电力企业实际发展的过程中,电表安装工作较为重要,直接决定电力企业的服务质量,电表安装问题发生的原因就是计量技术人员不重视电表安装工作,不能合理核对用户户名与标签等,难以提升其工作质量。同时,房地产开发商不重视施工质量,不能应用先进的技术开展电表安装工作,导致出现电表接线错误现象,甚至会出现计量串户问题[1]。第二,用电检查工作人员问题。电力企业用电检查工作人员在实际工作期间,不重视电表安装工作,不能及时发现电表错误接线与计量串户问题,难以提升其工作质量,甚至会因为工作积极性低出现电表串户的现象。首先,用电检查人员还在应用传统的用电检查方式,不重视技术的创新,不能转变工作观念意识,难以提升检查工作质量。其次,电力企业用电检查工作人员不能科学开展电表短路检查工作,无法清楚的记录电表故障信息,也难以识别电表串户问题,导致其工作质量降低,甚至会影响整个电力系统的运行可靠性[2]。 三、低压用电检查错误接线与计量串户的预防措施在低压用电检查过程中,经常会发现错误接线与计量串户等问题,影响着电力系统的运行质量,因此,相关技术人员与管理人员必须要制定完善的管理制度,合理应用各类检查技术,预防电表串户等现象,提升电力企业的服务质量,增强其发展效果。具体措施包括以下几点: (四)提升业务受理信息质量电力企业相关管理部门必须要针对电表串户问题的分析,制定针对性的预防方案,提升业务受理信息质量。首先,技术人员需要对受力的信息进行反复核对,严格审查用户名与地质等各类信息数据,保证其基本信息数据一致性符合相关标准。其次,技术人员需要引导用户向开发商索要电表用户关系的承诺书,避免因为房地产开发商的各类问题出现计量串户的现象。最后,技术人员需要仔细对房地产开发商的电表数据信息进行核对,一旦发现其中存在数据信息问题,就要采取有效措施处理问题[3]。(五)提升接线质量 在电表安装之前,技术人员必须要全面控制接线的质量,保证接线安全性符合相关标准,对于每一个电力用户,都要开展细致的界限检查活动,具体检查内容为:接线的出现开关信息数据、用户信息与地址信息等,保证信息数据的准确性。同时,技术人员要重视电表信息准确性,利用电阻、短接等方式开展测试工作,保证可以提升测试工作效率,减少其中存在的计量串户问题。另外,技术人员要重视审查之前的准备工作,并且在审查之后对电表箱进行上锁处理,避免出现人为干扰现象,提升电表安全性,规避计量串户问题。(六)提升装前质量 在施工之前,相关技术人员必须要认真核对电表信息,遵循各类技术原则,在保证各类信息数据准确无误之后,才能对电表进行安装处理。在安装电表机械设备滞后,要对其连接性进行检查,再次核对用户信息,然后对其进行封箱处理,避免出现各类难以解决的问题。(七)验收送电环节的质量控制在电表验收之后,技术人员要对其进行送电处理,在此期间,相关监督部门必须要重视电表的检查工作,在送电之前,检查电表是否存在接线错误或是计量串户等问题,然后将检查结果上报给相关部门,在部门允许之后,才能开展送电活动。同时,在电力企业送电过程中,技术人员需要合理控制送电服务质量,保证可以将各类送电信息输送给用户,避免出现各类问题。(八)提升电表置换安装质量

电能计量装置接线图集PDF

电能计量装置接线图集PDF 本帖最后由 wang6626866 于 2009-6-24 20:31 编辑 内容提要 ________________________________________ 本图集根据DL/T825—2002《电能计量装置安装接线规则》的技术要求,汇集了国内现行电力系统和用户采用的由不同类型电能表、电流互感器、电压互感器构成的电能计量装置,其电压等级有220V、380V、220/380V、3-10kV、3-35kV、66(63)kV、110kV及以上,用于单相照明,低压和高压三相有功、无功电能计量的联合接线,共计143种。图集分为两个单元:第一单元为电流互感器分相接线方式的联合接线图(简称分相接线方式),共计73种;第二单元为电流互感器简化接线方式的联合接线图(简称简化接线方式),共计70种。计费用电能计量装置应采用分相接线方式,目前仍在使用的简化接线方式应逐步向分相接 线方式过渡。 本图集可供电力系统和用户的电能计量设计、安装、检验及计量管理、用电检查人员 在工作中使用。 目录 第一单元电流互感器分相接线方式的联合接线图 图1-1D1-0D单相计量有功电能,直接接入式接线图(Ⅰ) 图1-2D1-0C单相计量有功电能,直接接入式接线图(Ⅱ) 图1-3D1-2D单相计量有功电能,经电流互感器接入式接线图(Ⅰ) 图1-4D1-2C单相计量有功电能,经电流互感器接入式接线图(Ⅱ) 图1-5D1-0S低压计量有功电能,直接接入式接线图(Ⅰ) 图1-6D1-0P低压计量有功电能,直接接入式接线图(Ⅱ) 图1-7D3-0D低压分相计量有功电能,直接接入式接线图 图1-8D3-6D低压分相计量有功电能,经电流互感器接入式分相接线方式接线图 图1-9D1-6S低压计量有功电能,经电流互感器接入式分相接线方式接线图(Ⅰ) 图1-10D1-6N低压计量有功电能,经电流互感器接入式分相接线方式接线图(Ⅱ)图1-11D1-6Z低压计量受进、送出电能,经电流互感器接入式分相接线方式接线图 图1-12D2-6SB低压计量有功及感性无功电能,经电流互感器接入式分相接线方式线图(Ⅰ) 图1-13D2-6NB低压计量有功及感性无功电能,经电流互感器接入式分相接线方式线图(Ⅱ)图1-14D3-6SB低压计量有功及感性、容性无功电能,经电流互感器接入式分相接线方式接 线图(Ⅰ) 图1-15D3-6NB低压计量有功及感性、容性无功电能,经电流互感器接入式分相接线方式接 线图(Ⅱ)

电能计量装置错接线方式下更正系数的确定1

电能计量装置错接线方式下更正系数的确定 摘要电能计量装置的错误接线引起计量的不正确。本文提出了根据正确和错误接线所对应的功率表达式之比,来求取更正系数,最后确定应追回的少收电费。 关键词电能计量错接线更正系数确定 电能计量装置发现有错接线可能时,可以通过六角图测试法相量分析后来确定错接线方式。 例:某一错接线三相三线计量方式所对应的功率表达式: P=ULIph[cos(90°+φa)+cos(30°+φc)]=31/2ULIphcos(60°+φ) 三相三线正确的功率表达式 P0=31/2ULIphcosφ 以上式中P为三相三线错接线所对应的计量功率;P0为正确接线所对应的计量功率;UL为线电压;Iph为相电流,cosφ为负载的功率因数,φa=φc=φ。 更正系数Gx=P0/P=(31/2ULIphcosφ)/[31/2ULIphcos(60°+φ)]=2/(1-31/2tgφ) 得出更正系数的表达式,还需确定负载的功率因数,才能确定更正系数,该方法存在二个问题,①负荷的功率因数难以确定,由于原有功、无功电量是错接线方式计量的电量,使用该数据计算得到的功率因数,显然是错误的。②计量电能表在正确的接线方式下,由于环境的温度、湿度、电压、频率、工作位置、外磁场、功率因数等影响量的变化,该表的误差特性曲线也会发生变化。那么,在错接线方式下的计量电能表,同样应该考虑由影响量变化引起的误差特性曲线的变化,尤其是当出现缺少一个驱动力矩的错接线方式时,由不平衡误差为主要部分的相对误差的变化值更大,为此本人采用标准电能表在现场实测错接线的更正系数来直接获取更正系数,来解决以上的两个问题。 1解决问题的实测方法 1.1当计量装置用TA、TV无损坏时产生的错接线时。首先,采用六角图测试法,对错接线进行相量分析,确定该电能计量装置的错接线方式,然后,保护其计量电能表的错接线状态。在该错接线方式下,若计量二次回路能够分离为正确二次接线和错误的二次接线,那么,使用等级精度不大于0.2级的计量电能表的作为标准电能表,接入正确的二次回路中,这样标准电能表所接入的接线方式是正确的电能计量接线方式,而计量电能表所接入的接线方式是错误的计量接线方式,用正确接线方式下的标准电能表来校验错误接线方式下的计量电能表的相对误差,通过计算就得到计量电能表错接线的更正系数。 1.2当计量用TA、TV被损坏时产生的错接线: (1)用与1.1相同的方法确定错接线方式。 (2)调换被损坏的TA、TV,恢复正确的接线方式。 (3)根据确定的错接线方式,在联合接线盒与计量电能表接线盒二次接线模拟错接线方式。使计量电能表仍保持原来的错接线方式计量。而此时联合接线盒与TA、TV的二次接线端之间的二次接线为正确接线,使用与1.1相同的校验方法,就得到错接线方式的更正系数。 1.3当错误接线方式下,正确接线与错误接线无法同时在同一计量二次回路存在时,也就是当错接线存在时,正确的计量接线方式就无法恢复,或当计量二次接线被纠正为正确的线方式时,错误的接线方式就无法模拟时,采取六角图测试法,确定错接线方式,计算更正系数。然后,使用标准电能表,接入错接线方式下的计量回路中,用错接线方式下的标准电能表来校验错接线方式下的计量电能表的相对误差,通过计算可以得到该错接线方式的更正系数。当标准电能表接入错接线回路,若某一驱动元件发生倒走,即负力矩时,不管被检的计量电能表是否反转,为了保证标准表应有的准确度,则通过反接标准电能表电流的方法,

相关主题
文本预览
相关文档 最新文档