当前位置:文档之家› 电能计量接线图演示教学

电能计量接线图演示教学

电能计量接线图演示教学
电能计量接线图演示教学

低压计量基础知识与查处窃电

作者:张立华

2010年张立华独立编写《低压电能计量知识和查处窃电》培训教材一书,作为本单位抄表员及所站长的技能培训教材,培训10期,每期35人-40人,学员技能水平明显提高.特此证明(内容见复印件)

廊坊供电公司客服中心廊坊供电公司培训中心

签字:签字:

2011年9月9日2011年9月9日

在现代化的建设与人民生活中谁都离不开电,电力的建设与发展与国民经济和人民生活质量息息相关,但是,电能作为一商品,在社会主义市场经济交换过程中,窃电的现象也就相伴而生。窃电者为了达到目的,往往是千方百计使窃电的手法更加隐蔽和更加巧妙,并随着科技知识的普及,窃电行为的手段、窃电的方法也在发生变化。对此,作为供电行业的用电管理人员一定要时刻警惕和高度重视,针对各种窃电行为进行深入的调查研究和分析,同时应采取相应的对策。就象公安人员研究犯罪分之的作案手法一样,只有掌握了犯罪分子的作案规律、共性案例和特殊性案例及其手法才能做好如何防范,而且要比窃电者棋高一酬,掌握工作的主动权,使国家的财产损失减少到最小。

窃电的手法虽然五花八门,但万变不离其宗,最常见的是从电能计量的基本入手。我们知道,一个电能表计量电量的多少,主要决定于电压、电流、功率因数三要素和时间的乘积,因此,只要想办法改变三要素中的任何一个要素都可以使电表慢转、停转甚至反转,从而达到窃电的目的(例如:矢压、矢流、短接(分流)、改变电能表进出线或极性等);另外,通过采用改变电表本身的结构性能的手法,使电表慢转(例如:改变电流线圈匝数、倒转表码、更换传动齿轮损坏传动齿轮等),也可以达到窃电的目的;各私拉乱接、无表用电的行为则属于更加明目张胆的窃电行为。下面介绍电能计量基础知识和如何查处窃电。

一、基本知识

1、电能表是怎样工作的?

答案:当电能表接入电路时,电压线圈两端加上电源电压,电流线圈通过负载电流,此时电压线圈和电流线圈产生的主磁通穿过铝盘,在铝盘上便有三个磁通的作用,共产生三个涡流,这三个涡流与三个磁通相互作用,产生转矩,驱动铝盘旋转,并带动计数器计量电能的消耗。

2、电能表分类?

(1)有功电能表

(2)无功电能表

(3)最大需量表

(4)多功能电能表

1)全电子式多功能电能表

2)机电一体化多功能电能

3)预付费电能表

3、电流互感器的用途?

答案:电流互感器是一种电流变换装置(CT)。它是将大电流变成小电流供给仪表和继电保护装置。电流互感器的二次侧电流均为5A。

4、电流互感器的二次线圈开路的后果?

答案:A、由于磁通饱和,电流互感器的二次侧将产生数千伏的高电压,而且磁通的波形变成平顶波,因此,使二次产生的感应电动势出现了尖顶波,对二次绝缘构成威胁,对设备和运行人员有危险

B、由于铁心的聚然饱和使铁心损耗增加,严重发热,绝缘有烧坏的可能;

C、将在铁心中产生剩磁,使电流互感器比差和角差增大,影响计量的准确性。

所以:电流互感器在运行中不允许开路

5、电压互感器的用途?

答案:电压互感器是一种电压变换装置(PT)。它将高电压变换为低电压供给仪表和继电保护装置。电压互感器的二次侧电压均为100V.

二、低压有功电能表接线

1、单相有功电能表接线

单相有功电能表错误接线的影响

2、三相四线有功电能表接线

1)电流回路开路

2)电流回路短路

3)电压回路开路

三相三线电能计量装置错误接线检查作业指导书.doc

三相三线有功电能表错误接线检查作业指导书 一、任务要求: 1、遵守安全工作规程,正确使用仪表; 2、画出向量图,描述故障错误; 3、列出各元件功率表达式及总的功率表达式; 4、求出更正系数 二、适用范围: 电压互感器采用两台单相互感器按V/v 0方式连接,电流互感器采用分开四线制连接方式。所接负载为一块三相三线有功电能表和一块三相三线(60°)无功电能表、电压回路阻抗对称的感性负载(容性负载的分析方法可类推)功率因数COS Φ>0.5(Φ<60°)。 三、配备工具: 一块数字式相位伏安表(仅提供一组电压测试线和一个电流钳)。 四、相关知识: (一)三相三线有功电能表正确接线的相量图 (二)正确功率表达式: )30cos(1u u uv I U P ?+?= )30cos(2w w wv I U P ?-?= ???cos 3)30cos()30cos( 210UI I U I U P P P w w wv u u uv =-?++?=+= )090:900:(οοοο≤≤-≤≤??容性时感性时 (三)电压互感器一次断线、二次断线、二次极性反接情况的电路分析。 1、电压互感器V 型接线一、二次断线时二次侧线电压数值表:

下表列出了当一次断和二次断电压时,二次侧各相与相间电压的数值。 序号故障 断线 情况 故障断线接线图 (实线为有功电能表, 虚线为无功电能表) 电压互感器一、二次断线时二次侧电压(V) 二次侧不接 电能表(空载) 二次侧接一只 有功电能表 二次侧接一只有功 电能表和一只无功电 能表 Uuv Uwv Uwu Uuv Uwv Uwu Uuv Uwv Uwu 1 一次 侧U 相断 相 0 100 100 0 100 100 50 100 50 2 一 次侧V 相断 相 50 50 100 50 50 100 50 50 100 3 一 次侧 W相 断相 100 0 100 100 0 100 100 33 67 4 二次 侧u相 断相 0 100 0 0 100 100 50 100 50 5 二 次侧 v相断 相 0 0 100 50 50 100 67 33 100 6 二 次侧w 相断 相 100 0 0 100 0 100 100 33 67

ULN2003步进电机接线图及程序

ULN2003 步进电机驱动板使用说明 一、主要技术参数 1、工作电压DC 4-12V 2、工作电流≤500mA 3、适用于2 相5 线步进电机 4、带工作指示灯,方便客户观察工作状态。同时也可以用于板子自测,5-12V 处 通上电源后,将电源的正极分别去接IN1-IN4 对应的指示灯会亮,表明板子是好的。 5、ULN2003 最高工作电压可以达到DC30V,如果客户需要接24V 等步进电机,需 要将板子上的限流电阻加大,以免烧坏工作指示灯。 二、ULN2003 简介 三、驱动板接5V 和12V 电机与单片机系统板的连接图

四、步进电机工作方式 电机可以使用单四拍、双四拍和八拍方式驱动 4.1 单四拍: A-B-C-D(0001、0010、0100、1000) #include unsigned char code F_Rotation[4]={0x01,0x02,0x01,0x08};//正转表格 unsigned char code B_Rotation[4]={0x08,0x04,0x02,0x01};//反转表格

} main() { unsigned char i; while(1) { for(i=0;i<4;i++) //4 相 { P1=F_Rotation[i]; //输出对应的相可以自行换成反转表格 Delay(500); //改变这个参数可以调整电机转速 } } } 4.2 双四拍:AB-BC-CD-DA(0011、0110、1100、1001) #include unsigned char code F_Rotation[4]={0x03,0x05,0x0D,0x09};//正转表格unsigned char code B_Rotation[4]={0x09,0x0D,0x05,0x03};//反转表格 void Delay(unsigned int i)//延时 { while(--i); } main() { unsigned char i; while(1) { for(i=0;i<4;i++) //4 相 { P1=F_Rotation[i]; //输出对应的相可以自行换成反转表格 Delay(500); //改变这个参数可以调整电机转速 } } } 4.3 八拍方式:A-AB-B-BC-C-CD-D-DA(0001、0011、0010、0110、0100、1100、1000、1001) #include sbit key=P2^0; //按键控制步进电机的方向 //八拍方式驱动,顺序为A AB B BC C CD D DA unsigned char code clockWise[]={0x01,0x03,0x02,0x06,0x04,0x0c,0x08,0x0d};

电能计量装置选型与接线错误问题及处理措施探讨

电能计量装置选型与接线错误问题及处理措施探讨 发表时间:2019-03-25T16:48:36.937Z 来源:《基层建设》2018年第35期作者:朱成武孙溶森 [导读] 摘要:电能计量装置在现代社会发展中发挥着重要作用,同时电能计量装置选型与接线问题也变得越来越突出,如何做好电能计量装置选型与接线问题成为人们关注的焦点。 国网安徽省电力有限公司庐江县供电公司安徽庐江 231500 摘要:电能计量装置在现代社会发展中发挥着重要作用,同时电能计量装置选型与接线问题也变得越来越突出,如何做好电能计量装置选型与接线问题成为人们关注的焦点。本文首先对电能计量装置的相关概念以及发展趋势做了简单介绍,同时阐述了电力计量装置选型错误带来的问题并提出相应的解决措施,希望对相关人员有所帮助。 关键词:电能计量装置;接线错误;处理措施 1.电能计量装置的组成及分类 电能计量装置是连接电网与用电客户的桥梁,是实现对客户电能的计量的一种装置。对于低压用电,耗电量比较小,通常会采用直接接入式电表,这种接入方式误差会比较小,仅仅局限于电表本身产生的误差。相对于用电量较大的低压用户,在实际的过程中,则需要通过添加电流互感器。对于高压供电用户,电能计量表则需要接入电流、电压互感器。 电能计量装置,按照电能量的多少与计量的对象的主次程度,可以分成以下几类: 第一类是变压器容量为 10000 kVA 以上以及户月平均用电量 500 万 kWh 的高压计费用户,200 MW及以上发电机、发电企业上网电量、省级电网经营企业与其供电企业的供电关口计量点采用电能计量装置。第二类主要是2000 kVA 以上以及户月平均用电量 100 万 kWh 的高压计费用户,100 MW 及以上发电机、供电企业之间的电量交换点的电能计量装置。第三类主要是变压器容量在 315 kVA 及以上,用电量在 10 万 kWh 以上的计费用户采用电能计量装置。第四类主要是负荷容量在 315 kVA 以下的计费用户、考核用的电能计量装置。第五类主要是针对单相电力用户计费使用的电能计量装置。 2. 电力计量装置选型错误带来的问题及解决措施 2.1由于选型不正确导致的电能计量产生误差 电力计量装置的选型不正确。就必然会影响其使用效果。如果电力计量装置的安装现场为10kV 电能用户,采用正确的接线方式,为三相三线连接,电表的各项功能都能够得以发挥。但是,在实际操作中,就会存在互感器没有正确连接的现象。在电力计量装置的选型出现了错误,导致安装问题产生,影响了电表的正常运行。由于配置不正确,所安装的电表成为了三相四线制,导致计量误差是必然的。日常使用的电能计量装置产生故障,也多是由于接线不正确所导致的,二次回路的电压不稳定也是一个重要因素。 2.2电能计量误差的解决措施 (1)对错误加以确认。要对这些问题予以解决,需要采取的解决方式就是将错误原因查找出来,用公式计算出准确的接线方式。在处理电能差错时,要注意电能计量装置的检查人员、客户人员和电能用户都要到现场,将所存在的错误体现在书面报告中。 (2)追补电量。在追补电量的时候,需要将电能计量的差错告知电能用户,得到确认之后才可以进行追补。具体的操作中,设定三个电能用户为 A、B、C 电能用户的电能计量装置在选择性上不正确,可以通过安装三相三线且功能多样化的电能计量装置,将两者加以对比,以做好电量的追补工作。 A、B、C 电能用户的功率因各有不同,所产生的电量错误也各有不同。经过计算之后,就可以将更正系数计算出来,即 A、B、C 三个电能用户分别为 1.387、1.562、1.683。电流互感器的变化比例为 25:5;电压互感器的变化比例为10000:100,所获得的比值等于 500。通过电能计量化装置的自动化运行,就可以可以计算出 A、B、C 三个电能用户追补的电量为38.297kWh。其中,A 电能用户追补的电量为 13.256kWh;B 电能用户追补的电量为 10.508kWh;C 电能用户追补的电量为 14.461kWh。 3. 常见三相电能计量装置错误接线的带电检查和处理方法 电能计量装置包括电能表、电压互感器、电流互感、失压计时器、电能表箱(柜)、二次回路、计量终端等。为了能够使用电检查员、电能计量专业人员在现场找到并处理正确的处理问题,这里详细分析电能计量装置接线误差判断、分析及处理方法,对于单相电表的接线错误问题,由于接线简单,在此不作讨论。本文主要介绍了三相三线,三相四线通过互感器接入电能计量装置。由于三相三线电能表通过互感器接入,因为电压二次回路、电流两者组合在一起,加上极性反接和断线就有近一百多种错误接线方式,因此分析三相三线电能仪表的连接方法具有代表性,由于三相三线测量装置使用的是不完全星形连接,三相四线测量装置用于星形连接,因此两种不同的连接方式检查方法不同。下面详细介绍了两种接线方式的带电检查和处理方法。 3.1三相三线电能计量装置错误接线的带电检查和处理方法 第一步:确定电压序列:由于三相三线电能表采用的是两只电压互感器以及互感器连接组成的 V/V 接线,电压互感器的一次使用的是A-X-A-X 接线,二次使用 A-X-A-X 接线,第二、第三的 X-A 连接一起引出作为 b 相电压。具体检查方法:首先用相位伏安表或万用表找到 B 相的电压,将相位伏安表或万用表的档位选择电压,将表笔的一端接地,另一端连接测量的电压表 A,B,C 相电压端钮上测量它们电压,其中对接地电压为 0V 或接近 0V 的相位则判定为 B 相。将相位伏安表的档位选择 U1、U2 相电档,使用测试线以相位伏安表的U1、 U2 相电压公共端连接为 B 相,并与已找到的电能表 B 相电压端钮相连接,相位伏安表的 U1、U2 两端分别于电能表的另外两个电压端钮相连如果相位伏安表显示角度为 60°,则为逆相序,如果相位伏安表显示角度为 300°,则为正相序。第二步:相序更正:如果电压序列为逆相序,根据第一步骤判断的电压序列,将电能表的电压接线更换为 ABC 正相序。第三步:根据电压 UAB 查找 Ia,UCB 查找 Ic。首先,有必要确定该计量装置的负荷容性还是感性负荷以及潮流方向、功率因数。如果它是工业用户,则计量点位于用户侧进线柜中,潮流方向是流入在感性负载的情况下,例如UAB和IA 之间的角度大于30°小于120°,电流可以判断为A相,例如UCB和Ic之间的角度大于330°,小于 60°可以将电流判断为C相。UAB和Ia在容性负载的条件下小于30°大于300°,电流可以判断为A相,UCB 和Ic之间的角度大于30°,小于 120°,电流为 C 相。第四步:改正接线:根据上述步骤测得的 UAB 和 IA,UCB和Ic,IA,Ic 之间的夹角,分别确定电流IA,Ic,并将它们与电能表电流的进线接线 IA、Ic 端钮相接。 3.2三相四线的带电检查和处理方法 第一步:对电压零线进行确定:首先是将万用表选择电压档位,将万用表笔一端表笔接地,另外的一端分别测量仪表UA,UB,

步进电机接线图

步进电机接线图标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

接线图 适配驱动器 电机型号 适配驱动器 57HS04 DM422C/DM432C/DM556/DM856/M752/M542/M860/M880A/ MA550/MA860/H850/ND556/ND882/M415B/M325 57HS06 57HS09 57HSM09 57HS13 DM556/DM856/M752/M542/M860/M880A/MA550/MA860/H850/ND556/ND88 2 57HS22 步进电机是一种专门用于位置和速度精确控制的特种电机。步进电机的最大特点是其“数字性”,对于控制器发过来的每一个脉冲信号,步进电机在其驱动器的推动下运转一个固定角度(简称一步),如下图所示。如接收到一串脉冲步进电机将连续运转一段相应距离。同时可通过控制脉冲频率,直接对电机转速进行控制。由于步进电机工作原理易学易用,成本低(相对于伺服)、电机和驱动器不易损坏,非常适合于微电脑和单片机控制,因此近 年来在各行各业的控制设备中获得了越来越广泛的应用。 步进电机的种类和特点 步进电机在构造上有三种主要类型:反应式(Variable Reluctance ,VR)、永磁式(Permanent Magnet,PM)和混合式(Hybrid Stepping,HS)。 * 反应式

定子上有绕组、转子由软磁材料组成。结构简单、成本低、步距角小,可达°、但动态 性能差、效率低、发热大,可靠性难保证。 * 永磁式 永磁式步进电机的转子用永磁材料制成,转子的极数与定子的极数相同。其特点是动态性能好、输出力矩大,但这种电机精度差,步矩角大(一般为°或15°)。 * 混合式 混合式步进电机综合了反应式和永磁式的优点,其定子上有多相绕组、转子上采用永磁材料,转子和定子上均有多个小齿以提高步矩精度。其特点是输出力矩大、动态性能好, 步距角小,但结构复杂、成本相对较高。 按定子上绕组来分,共有二相、三相和五相等系列。最受欢迎的是两相混合式步进电机,约占97%以上的市场份额,其原因是性价比高,配上细分驱动器后效果良好。该种电机的基本步距角为°/步,配上半步驱动器后,步距角减少为°,配上细分驱动器后其步距角可细分达256倍°/微步)。由于摩擦力和制造精度等原因,实际控制精度略低。同一步进 电机可配不同细分的驱动器以改变精度和效果。 雷赛步进电机系列 雷赛两相、三相混合式步进电机,采用优质冷轧钢片和耐高温永磁体制造,产品规格涵盖35 -130范围。具有温升低、可靠性高的特点,由于其具有良好的内部阻尼特性,因而运行平稳,无明显震荡区。可满足不同行业、不同环境下的使用需求。

电能计量装置错误接线检测与分析

电能计量装置错误接线检测与分析 电能计量装置在运行中经常会出现错误接线,错误接线会造成电量的差错、会出现不正确的计量或多或少,这样给用户或供电部门造成不必要的损失。电能计量装置正确接线是保证计量准确的必要条件。因此,电能计量装置接线检查也是一项很重要的任务。 标签:计量装置接线错误 电能表的计量准确性可以通过电能计量检定机构(国家授权由电力企业计量检定部门检定,一般是供电企业的计量中心)的校验得到保证,而现场接线的准确性,不仅取决于装表人员的工作责任心、业务水平及工作的熟练程度,而且由于电力客户法律、法规意识谈薄、有意窃电,致使计量装置错误接线,直接影响到计量的准确性。 对于现场接线的检查,一般采用电能表现场校验仪,采用六角图法检查分析判断,但其存在许多不足:①设备投资比较大、仪器较多、携带运输不方便;②接线较多、操作步骤复杂、使用不方便;③需提供操作电源,受现场环境影响较大;④当三相二元件有功电能表错误接线在48种以外时,仪器无法分析判断。为克服上述缺陷,我们在现场采用了手持式钳形相位表,对计量装置接线现场检查,依据现场检查结果进行分析判断,大大减少了投资和现场工作量,受到了现场检定人员的一致好评。使用该仪表可以在现场完成诸如感性、容性负荷的判别、电能表接线正确与否、电能表运行快慢判断、测量三相相序、判断变压器接线组别。可进行三相相电压、线电压、三相电流、相位差、相序及电阻的测量。 解决问题的实践过程描述 一、工作前,首先要完善好工作票制度和工作许可制度,认真填写好变电站第二种工作票,并履行好工作许可手续。完成后,可通过钳形相位表(以使用SMG2000相位表为例)?的相位测量档测量出三相负载的性质(阻性、感性、容性及相角)。 钳形相位表的使用方法: 1.将相位表的红笔和黑笔连线的另一端,按颜色分别插入相位表上标有“U1”的两侧插孔内。 2.将相位表电流卡钳连线的另一端,插入相位表上标有“I2”插孔内。此时应注意:使用相位表时I1和U2是一组,I2和U1是一组。 3.在使用相位表前应先对其进行“校准”。具体方法是:将相位表上的旋钮开关至“360°校”档。此时,相位表上的显示窗口应显示“360”,若显示值不是“360”时,可调节“W”校准螺丝,直至其显示值为“360”为止。

电能计量装置错接线方式下更正系数的确定

电能计量装置错接线方式下更正系数的确定 摘要电能计量装置的错误接线引起计量的不正确。本文提出了根据正确和错误接线所对应的功率表达式之比,来求取更正系数,最后确定应追回的少收电费。 关键词电能计量错接线更正系数确定 电能计量装置发现有错接线可能时,可以通过六角图测试法相量分析后来确定错接线方式。 例:某一错接线三相三线计量方式所对应的功率表达式: P=ULIph[cos(90°+φa)+cos(30°+φc)]=31/2ULIphcos(60°+φ) 三相三线正确的功率表达式 P0=31/2ULIphcosφ 以上式中P为三相三线错接线所对应的计量功率;P0为正确接线所对应的计量功率;UL为线电压;Iph为相电流,cosφ为负载的功率因数,φa=φc=φ。 更正系数Gx=P0/P=(31/2ULIphcosφ)/[31/2ULIphcos(60°+φ)]=2/(1-31/2tgφ) 得出更正系数的表达式,还需确定负载的功率因数,才能确定更正系数,该方法存在二个问题,①负荷的功率因数难以确定,由于原有功、无功电量是错接线方式计量的电量,使用该数据计算得到的功率因数,显然是错误的。②计量电能表在正确的接线方式下,由于环境的温度、湿度、电压、频率、工作位置、外磁场、功率因数等影响量的变化,该表的误差特性曲线也会发生变化。那么,在错接线方式下的计量电能表,同样应该考虑由影响量变化引起的误差特性曲线的变化,尤其是当出现缺少一个驱动力矩的错接线方式时,由不平衡误差为主要部分的相对误差的变化值更大,为此本人采用标准电能表在现场实测错接线的更正系数来直接获取更正系数,来解决以上的两个问题。 1解决问题的实测方法 1.1当计量装置用TA、TV无损坏时产生的错接线时。首先,采用六角图测试法,对错接线进行相量分析,确定该电能计量装置的错接线方式,然后,保护其计量电能表的错接线状态。在该错接线方式下,若计量二次回路能够分离为正确二次接线和错误的二次接线,那么,使用等级精度不大于0.2级的计量电能表的作为标准电能表,接入正确的二次回路中,这样标准电能表所接入的接线方式是正确的电能计量接线方式,而计量电能表所接入的接线方式是错误的计量接线方式,用正确接线方式下的标准电能表来校验错误接线方式下的计量电能表的相对误差,通过计算就得到计量电能表错接线的更正系数。 1.2当计量用TA、TV被损坏时产生的错接线: (1)用与1.1相同的方法确定错接线方式。 (2)调换被损坏的TA、TV,恢复正确的接线方式。 (3)根据确定的错接线方式,在联合接线盒与计量电能表接线盒二次接线模拟错接线方式。使计量电能表仍保持原来的错接线方式计量。而此时联合接线盒与TA、TV的二次接线端之间的二次接线为正确接线,使用与1.1相同的校验方法,就得到错接线方式的更正系数。 1.3当错误接线方式下,正确接线与错误接线无法同时在同一计量二次回路存在时,也就是当错接线存在时,正确的计量接线方式就无法恢复,或当计量二次接线被纠正为正确的线方式时,错误的接线方式就无法模拟时,采取六角图测试法,确定错接线方式,计算更正系数。然后,使用标准电能表,接入错接线方式下的计量回路中,用错接线方式下的标准电能表来校验错接线方式下的计量电能表的相对误差,通过计算可以得到该错接线方式的更

三相三线制电能表误接线对计量的影响汇总1(精)复习过程

三相三线制电能表误接线对计量的影响 作者:绍兴用电管理所韩明磊 一、三相三线电能计量表的正确接线及其向量图 电能计量装置主要由计量互感器、电能表及二次连接导线组成,正确接线及其向量图如下:

计量接线图(外部)向量图 计量接线图(内部同名端配合) 二、三相三线电能表实际运行中经常出现的非正常运行方式经常出现的非正常运行方式如下: 1) A相电压缺相;或B相电压缺相;或C相电压缺相; 2)电压接线错误的排列组合(Uc-b-a)(Ua-c-b)(Ub-c-a)(Ub-a-c) (Uc-a-b) 3) A相电流接反,如(-Ia/Ic);或C相电流接反,如(Ia/-Ic) 4) AC相电流互换 5) AC相电流同时接反 6) AC相电流互换并同时接反 7) A相电流正进Ⅱ元件,C相电流反进Ⅰ元件 8) A相电流反进Ⅱ元件,C电流正进Ⅰ元件 三、退补电量的计算 电能计量装置由于各种原因出现了失准,特别是错误接线,应进行电量的更正。根据退补电量,即抄见电量与实际用电量的差别,多退少补。

退补电量=正确电量-错误电量 ΔW=W-W` 更正系数K定义为:K=W W` P P` (P :正确接线时功率;P`错误接线时功率) ΔW=W-W`=KW`-W`=(K-1)W` 说明: 1)ΔW>0,用户应补交ΔW的电费。 2)ΔW<0,应退给用户ΔW的电费。 3) K>1或K<0,用户应补交ΔW的电费; 4) K<1供电企业应退给用户ΔW的电费。 5)若电能表在错误接线期间反转,则W`应取负值。 四、三相三线电能表计量误接线中常用的退补电量计算方法 三相三线电能表计量误接线中常用的退补电量计算方法有五种:功率测量法、计量装置对比法、平均电量法、估算法、更正系数法。其中更正系数法是处理三相三线电能表计量差错最常用的方法,其他方法可在无法采用更正系数法时使用,或对更正系数法的计算结果进行验证: 1. 功率测量法:在负荷运行稳定的条件下,使用功率表或现场校验仪测出错误接线时输入电能表的功率值P`及错误接线更正后输入电能表的负荷功率值P,算出更正系数K,再算出退补电量ΔW。

电能计量装置配置原则精编版

电能计量装置配置原则公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

电能计量装置配置原则 1.配置原则 (1)贸易结算用的电能计量装置原则上应配置在供受电设施的产权分界处:发电企业上网线路、电网经营企业间的联络线路两侧都应配置电能计量装置。 (2)I、II、 III类贸易结算用电能计量装置应按计量点配置计量专用电压、电流互感器或者专用二次绕组。电能计量专用电压、电流互感器或专用二次绕组及其二次回路不得接入与电能计量无关的。 (3)单机容量100MW及以上的发电机组上网结算电量,以及电网经营企业之间购销电量的计量点,宜配置准确度等级相同的主、副两套电能表。即在同一回路的同一计量点安装一主一副两套电能表,同时运行、同时记录,实时比对和监测,以保证电能计量装置的准确、可靠,避免较大的电量差错。 (4)35KV以上贸易结算用电能计量装置中的电压互感器二次回路,应不装设隔离开关辅助触点,但可装设熔断器;35kV及以下贸易结算用电能计量装置的电压互感器二次回路,应不装设隔离开关辅助触点和熔断器。 (5)安装在用电客户处的贸易结算用电能计量装置,1OKV及以下电压供电的,应配置符合GB/T16934规定的电能计量柜或计量;35kV电压供电的,宜配置GB/T16934规定的电能计量柜或电能计量箱。 (6)贸易结算用的高压电能计量装置应装设电压失压计时器。未配置计量柜(箱)的电能计量装置,其互感器二次回路的所有接线端子、试验端子应能实施铅封。 (7)互感器的实际二次负荷应在25%~100%额定二次负荷范围内;电流互感器额定二次负荷的功率因数应为电压互感器额定二次功率因数应与实际二次负荷的功率因数接近。 (8)电流互感器在正常运行中的实际负荷电流应为额定一次电流值的60%左右,至少应不小于30%。否则,应选用具有高动热稳定性能的,以减小变比。 (9)选配过载4倍及以上的宽负载电能表,以提高低负荷计量的准确性。 (10)经电流互感器接人的电能表,其标定电流宜不超过TA额定二次电流的30%,其额定最大电流应为TA额定二次电流的120%左右。直接接入式电能表的标定电流应按正常运行负荷电流的30%左右进行选择。(11)对执行功率因数调整电费的客户,应配置可计量有功电量、感性和容性无功电量的电能表;按最大需量计收基本电费的客户,应配置具有最大需量计量功能的电能表;实行分时电价的客户,应配置复费率电能表或多功能电能表。 (12)配有数据通信接口的电能表,其通信规约应符合DL/T645的要求。 (13)具有正、反向送受电的计量点,应配置计量正向和反向有功电量以及四象限无功电量的电能表。一般可配置1只具有计量正、反向有功电量和四象限无功电量的多功能电能表。 (14)中性点绝缘系统(如经消弧线圈接地)的电能计量点,应配置经互感器接人的三相三线(3×100V)有功、无功电能表;但个别经过验证、接地电流较大的,则应安装经互感器接人的三相四线(3×有功、无功电能表。 (15)中性点非绝缘系统(即中性点直接接地)的电能计量点,应配置经互感器接人的三相四线(3×有功、,无功电能表。 (16)三相三线低压线路的电能计量点,配置低压三相三线(3×380V)有功、无功电能表;当照明负荷占总负荷的15%及以上时,为减小线路附加误差,应配置低压三相四线(3×380V/220V)有功、无功电能表,或3只感应式无止逆单相电能表。

相位法对电能计量装置误接线分析..

3测量前准备工作 工作前,首先要完善好工作票制度和工作许可制度,认真填写好变电站第二种工作票,并履行好工作许可手续。完成后,可通过钳形相位表的相位测量档测量出三相负载的性质(阻性、感性、容性及相角)。 4.钳形相位表的使用方法(以使用SMG2000相位表为例) (1)将相位表的红笔和黑笔连线的另一端,按颜色分别插入相位表上标有“U1”的两侧插孔内。 (2)将相位表电流卡钳连线的另一端,插入相位表上标有“I2”插孔内。此时应注意:使用相位表时I1和U2是一组,I2和U1是一组。 (3)在使用相位表前应先对其进行“校准”。具体方法是:将相位表上的旋钮开关至“360°校”档。此时,相位表上的显示窗口应显示“360”,若显示值不是“360”时,可调节“W”校准螺丝,直至其显示值为“360”为止。 (4)在上述准备工作完成后,方可进行下一步的测量工作。 5.检查测量步骤 (1)电能计量装置外观检查:通过对电能计量装置外表、封印等的检查,初步判断电力客户是否依法用电,有无违约窃电现象。 (2)相关数据测量: ①三相相电压及线电压--用仪表的电压档可判断出电能表有无某元件失压、欠压现象; ②三相电流测量--用仪表的电流档,用钳表可依次测量出I1、I2、I1+I2的电流值,从而判断出电能表某相元件有无缺电流、电流反接或电流差现象; ③电压相序测量--用仪表的相位测量档测量接入电能表电压U12与U32之间的相位差,若为300°,则为正相序;若为60°,则为逆相序; ④接入电能表电流与电压间相位差测量--用仪表的相位测量档可测出U12与I1、I2之间的相位角及U32与I1、I2之间的相位角。 6.测量结果分析判断 通过所测结果,绘制出向量图,依据负载性质及功率因数范围,在图中定出b相位置(因三相二元件有功电能表中,b相不加电流即b相无电流)及a、c相位置,并依据三相相序判断出表头实际所加电压U12及U32,然后根据U12与I1、I2或U32与I1、I2间的相位关系,确定出实际表头所加电流,并准确判别出相位。据此可判断电能表二元件所加电压、电流错误接线形式,并写出电能表错误接线功率表达式,从而推算出错误接线更正系数,计算出实际电量。 7.工程实例 某10kV高压供电户,变压器总容量为2500kV A,装有150/5计量电流互感器两台、两相不完全星形接线,10/0.1kV电压互感器两台、V-V接线,三相二元件有功电能表一只。某日,电能表校表人员至现场检查,发现计量装置封印有伪造现象,电能表倒走。拆封后利用钳形相位表检测,测量数据如下: (1)实际负荷功率因数角φ=35°,为感性。 (2)电流测量值分别为:I1=3.5AI2=3.5AI1+I2=6A 因为这三个量的值不相等,其中一个量的值是其余任意一个量的倍,则说明有一相电流互感器极性接反了。 (3)电压测量值分别为:U12=102VU23=101VU31=100VU1=0VU2=102VU3=101V 因为在采用V/V形接法的电压二次回路里,规定的B相电压是要接地的,因此,对地为0V的那一相电压应该是B相电压,可判断出U1为B相电压. (4)相序测量:U12与U32间相位角为60° 因此可判断相序为逆相序。 (5)电压与电流间相位角测量值分别为:用钳形相位表的“φ”档测量各相电压对应电流的相位角。本例中所测得的相位角度为U12对I1为245°;U32对I1为185°;U12对I2为305°;U32

第五章 电能计量方式

第五章电能计量方式 本章重点讲述单相和三相有功电能以及无功电能的计量方式和适用范围。电能计量包括单相、三相三线和三相四线制电路中有功电能和无功电能的计量。测量电路中电能表除了直接接入式的以外,还有经互感器接入的,即电能表和互感器的联合接线。 第一节单相有功电能的计量 单相交流电路有功功率的计算公式为 图5-1所示为测量单相电路有功电能的接线。电能表的电流线圈或电流互感器的一次绕组必须与电源相线串联,而电能表的电压线圈应跨接在电源端的相线与零线(中线)之间。电流、电压线圈标有黑点“*”的一端(称为电源端)应与电源端的相线连接。当负载电流I和流经电压线圈的电流I U,都由黑点这端流入相应的线圈时,电能表的驱动力矩M Q可由相量图得到,即 因此,按此接线电能表可以正确计量电能。 如图5-2所示,若有一个线圈极性接反,例如电流线圈极性接反时,则流入电能表电流线圈中的电流方向与图5-1中的相反,产生的电流磁通方向也相反,在这种情况下,电能表的驱动力矩为

驱动力矩为负值,导致电能表反转。 如图5-3所示的电能表接线,电压线圈跨接在负载端时,电能表测量的电能包括负载和电压线圈消耗的电能。当用户不用电时,由于电能表的电流、电压线圈中仍有电流存在,使电能表产生转动,这种现象称为正向潜动。在实际中这种接线是不被采用的。

第二节三相有功电能的计量 一、三相三线制电路有功电能的测量 (一)三相电路中的功率 如图5-4所示,三相三线制电路的负载可以连接成星形和三角形两种接线。由交流电路的理论得知,无论三相电路对称与否。三相电路的瞬时功率p总是等于各相瞬时功率之和,即 当负载连接成星形时,则三相电路的瞬时功率p为 式中u各相电压的瞬时值; i各相电流的瞬时值。 根据基尔霍夫第一定律,三相三线制电路中有

某小区供配电系统设计

, 南阳理工学院 本科生毕业设计(论文)( @ 学院(系):电子与电气工程学院 专业:电气工程及其自动化 学生: 指导教师: : 完成日期 2014 年 5 月

$

南阳理工学院本科生毕业设计(论文) 某小区供配电系统设计 Design for the Power Supply and distribution system of a residence community 总计: 36 页 表格: 10 个 插图: 9 幅

南阳理工学院本科毕业设计(论文) 某小区供配电系统设计 Design for the Power Supply and distribution system of a residence community 学院:电子与电气工程学院 专业:电气工程及其自动化 学生姓名: 学号: 指导教师(职称): 评阅教师: 完成日期: 南阳理工学院 Nanyang Institute of Technology

某小区供配电系统设计 [摘要]住宅小区供配电系统的稳定运行直接影响着人们的日常生活及秩序。因此研究小区供配电系统如何更好的实现安全、可靠、经济运行具有现实的意义。本课题初步对住宅小区的供配电系统进行设计,并根据国家相关标准对所设计的内容进行规范化。分析小区的原始数据和供电特点,对小区各类负荷进行计算;通过计算负荷选择变压器的容量和数目完成变电所的设计;合理选择电气主接线方式;根据短路电流选择合适的电力电缆;确定建筑物防雷等级,做好小区的防雷接地保护。设计过程中不仅要保证供电的质量和安全性,还应尽量满足供电的经济性,节省能源和材料。 [关键词]计算负荷;短路电流;变压器;供配电设计;防雷接地 Design for the Power Supply and Distribution System of a Residence Community Electrical Engineering and Automation Specialty MA Jun-yao Abstract: Residence community for safe and reliable operation of the distribution system directly affects people's daily project is initially designed for the power supply and distribution system of the residence community. And also the design is normalized in accordance with the relevant national regulations and standards. So the power supply and distribution system in residence community district how to realize the safe, reliable and economic operation has realistic meaning. Analysis the raw data for the residence community and load calculation of the residence community. Based on the calculated load the measures of power supply and distribution of the residence community is designed. It includes the electric main wiring design, transformer and distribution substation design. Meanwhile the appropriate electric power cable are selected according to the short-circuit current. And the protection design about grounding for lightning is also essential. Not only must the quality and safety of power supply be ensured, but also the economical power supply, energy-saving and material-saving should be met as much as possible. Key words: Load calculation; Short-circuit current; Transformer; Power supply and distribution design; Grounding for lightning

电能计量装置错误接线检查

目录 实例一错误现象为表尾电压正相序WUV;电流相序I u I w 方法一:使用相位表,采用对地测量电压的方法确定V 相电压,分析判断错误接线 方法二:使用相位表,采用不对地测量电压的方法,分析判断错误接线 方法三:利用在向量图上对电压电流进行分析,判断错误接线 实例二错误现象为表尾电压逆相序VUW;电流相序I u I w;U 相电流极性反 方法一:使用相位表,采用对地测量电压的方法确定V 相电压,分析判断错误接线 方法二:使用相位表,采用不对地测量电压的方法,分析判断错误接线 方法三:采用在相量图上对电压电流进行分析,判断错误接线 实例三错误现象为表尾电压正相序WUV;电流相序I w I u ;功率因数为容性 方法一:使用相位表,采用对地测量电压的方法确定V相电压,分析判断错误接线 方法二:使用相位表,采用不对地测量电压的方法确定V

相电压,分析判断错误接线 方法三:使用相位表,利用向量图分析判断错误接线 实例四错误现象为表尾电压逆相序UWV;电流相序I u I w ;电流W相极性反;功率因数为容性 方法一:使用相位表,采用对地测量电压的方法确定V相电压,分析判断错误接线 方法二:使用相位表,采用不对地测量电压的方法确定V 相电压,分析判断错误接线 方法三:使用相位表,利用向量图分析判断错误接线 实例五错误现象为表尾电压正相序VWU;电流相序I u I w ;TV二次侧U相极性反 方法一:使用相位伏安表测量数据,分析TV二次侧不断相极性反时的错误接线 方法二:使用相位伏安表测量数据,分析TV二次侧不断相极性反时的错误接线 方法三:使用相位伏安表测量数据,利用原理图分析TV二次侧不断相极性反时的错误接线 实例六错误现象为表尾电压逆相序UWV;电流相序I w I u ;W相电流极性反;TV二次侧W相极性反 方法一:使用相位表测量数据,分析TV二次侧不断相极性反时的错误接线 方法二:使用相位表测量数据,分析TV二次侧不断相极性反

电能计量装置接线图集PDF

电能计量装置接线图集PDF 本帖最后由 wang6626866 于 2009-6-24 20:31 编辑 内容提要 ________________________________________ 本图集根据DL/T825—2002《电能计量装置安装接线规则》的技术要求,汇集了国内现行电力系统和用户采用的由不同类型电能表、电流互感器、电压互感器构成的电能计量装置,其电压等级有220V、380V、220/380V、3-10kV、3-35kV、66(63)kV、110kV及以上,用于单相照明,低压和高压三相有功、无功电能计量的联合接线,共计143种。图集分为两个单元:第一单元为电流互感器分相接线方式的联合接线图(简称分相接线方式),共计73种;第二单元为电流互感器简化接线方式的联合接线图(简称简化接线方式),共计70种。计费用电能计量装置应采用分相接线方式,目前仍在使用的简化接线方式应逐步向分相接 线方式过渡。 本图集可供电力系统和用户的电能计量设计、安装、检验及计量管理、用电检查人员 在工作中使用。 目录 第一单元电流互感器分相接线方式的联合接线图 图1-1D1-0D单相计量有功电能,直接接入式接线图(Ⅰ) 图1-2D1-0C单相计量有功电能,直接接入式接线图(Ⅱ) 图1-3D1-2D单相计量有功电能,经电流互感器接入式接线图(Ⅰ) 图1-4D1-2C单相计量有功电能,经电流互感器接入式接线图(Ⅱ) 图1-5D1-0S低压计量有功电能,直接接入式接线图(Ⅰ) 图1-6D1-0P低压计量有功电能,直接接入式接线图(Ⅱ) 图1-7D3-0D低压分相计量有功电能,直接接入式接线图 图1-8D3-6D低压分相计量有功电能,经电流互感器接入式分相接线方式接线图 图1-9D1-6S低压计量有功电能,经电流互感器接入式分相接线方式接线图(Ⅰ) 图1-10D1-6N低压计量有功电能,经电流互感器接入式分相接线方式接线图(Ⅱ)图1-11D1-6Z低压计量受进、送出电能,经电流互感器接入式分相接线方式接线图 图1-12D2-6SB低压计量有功及感性无功电能,经电流互感器接入式分相接线方式线图(Ⅰ) 图1-13D2-6NB低压计量有功及感性无功电能,经电流互感器接入式分相接线方式线图(Ⅱ)图1-14D3-6SB低压计量有功及感性、容性无功电能,经电流互感器接入式分相接线方式接 线图(Ⅰ) 图1-15D3-6NB低压计量有功及感性、容性无功电能,经电流互感器接入式分相接线方式接 线图(Ⅱ)

电能计量装置错误接线测试例题种

电能计量装置错误接线 测试例题种 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

电能计量装置错误接线测试例题 1、错误接线情况:U abc 、-I a 、I c U 2 = 0 V(接地) 当负载为感性时,相位表如下: 2、错误接线情况:U abc 、I a 、-I c U 2 = 0 V(接地) 当负载为感性时,相位表如下: 3、错误接线情况:U abc 、-I a 、-I c U 2 = 0 V(接地) 当负载为感性时,相位表如下: 4、错误接线情况:U abc 、I c 、I a U 2 = 0 V(接地) 当负载为感性时,相位表如下:

5、错误接线情况:U abc 、-I c 、I a U 2 = 0 V(接地) 当负载为感性时,相位表如下: 6、错误接线情况:U abc 、I c 、-I a U 2 = 0 V(接地) 当负载为感性时,相位表如下: 7、错误接线情况:U abc 、-I c 、-I a U 2 = 0 V(接地) 当负载为感性时,相位表如下: 8、错误接线情况:U bca 、-I a 、I c U 1 = 0 V(接地) 当负载为感性时,相位表如下:

9、错误接线情况:U bca 、I a 、-I c U 1 = 0 V(接地) 当负载为感性时,相位表如下: 10、错误接线情况:U bca 、-I a 、-I c U 1 = 0 V(接地) 当负载为感性时,相位表如下: 11、错误接线情况:U bca 、I c 、I a U 1 = 0 V(接地) 当负载为感性时,相位表如下: 12、错误接线情况:U bca 、-I c 、I a U 1 = 0 V(接地) 当负载为感性时,相位表如下: 13、错误接线情况:U bca 、I c 、-I a

第五章-电能计量方式分析

电能计量方式 讲述单相和三相有功电能以及无功电能的计量方式和适用范围。电能计量包括单相、三相三线和三相四线制电路中有功电能和无功电能的计量。测量电路中电能表除了直接接入式的以外,还有经互感器接入的,即电能表和互感器的联合接线。 第一节单相有功电能的计量 单相交流电路有功功率的计算公式为 图5-1所示为测量单相电路有功电能的接线。电能表的电流线圈或电流互感器的一次绕组必须与电源相线串联,而电能表的电压线圈应跨接在电源端的相线与零线(中线)之间。电流、电压线圈标有黑点“*”的一端(称为电源端)应与电源端的相线连接。当负载电流I和流经电压线圈的电流I U,都由黑点这端流入相应的线圈时,电能表的驱动力矩M Q可由相量图得到,即 因此,按此接线电能表可以正确计量电能。 如图5-2所示,若有一个线圈极性接反,例如电流线圈极性接反时,则流入电能表电流线圈中的电流方向与图5-1中的相反,产生的电流磁通方向也相反,在这种情况下,电能表的驱动力矩为

驱动力矩为负值,导致电能表反转。 如图5-3所示的电能表接线,电压线圈跨接在负载端时,电能表测量的电能包括负载和电压线圈消耗的电能。当用户不用电时,由于电能表的电流、电压线圈中仍有电流存在,使电能表产生转动,这种现象称为正向潜动。在实际中这种接线是不被采用的。

第二节三相有功电能的计量 一、三相三线制电路有功电能的测量 (一)三相电路中的功率 如图5-4所示,三相三线制电路的负载可以连接成星形和三角形两种接线。由交流电路的理论得知,无论三相电路对称与否。三相电路的瞬时功率p总是等于各相瞬时功率之和,即 当负载连接成星形时,则三相电路的瞬时功率p为 式中u各相电压的瞬时值; i 各相电流的瞬时值。 根据基尔霍夫第一定律,三相三线制电路中有

相关主题
文本预览
相关文档 最新文档