当前位置:文档之家› 162动量和动量定理-天津市空中课堂人教版高中物理选修3-5课件(共35张PPT)

162动量和动量定理-天津市空中课堂人教版高中物理选修3-5课件(共35张PPT)

162动量和动量定理-天津市空中课堂人教版高中物理选修3-5课件(共35张PPT)

162动量和动量定理-天津市空中课堂人教版高中物理选修3-5课件(共35张PPT)

动量定理与动能定理的应用

动量定理与动能定理的应用 一、动量守恒定律 1.定律内容:一个系统不受外力或所受外力之和为零,这个系统的总动量保持不变,这个结论叫做动量守恒定律. 说明:(1)动量守恒定律是自然界中最重要最普遍的守恒定律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体,它是一个实验规律,也可用牛顿第三定律和动量定理推导出来. (2)相互间有作用力的物体系称为系统,系统内的物体可以是两个、三个或者更多,解决实际问题时要根据需要和求解问题的方便程度,合理地选择系统. 2.动量守恒定律的适用条件 (1)系统不受外力或系统所受外力的合力为零. (2)系统所受外力的合力虽不为零,但F内》F外,亦即外力作用于系统中的物体导致的动量的改变较内力作用所导致的动量改变小得多,则此时可忽略外力作用,系统动量近似守恒.例如:碰撞中的摩擦力和空中爆炸时的重力,较相互作用的内力小的多,可忽略不计. (3)系统所受合外力虽不为零,但系统在某一方向所受合力为零,则系统此方向的动量守恒,例图6�8,光滑水平面的小车和小球所构成的系统,在小球由小车顶端滚下的过程中,系统水平方向的动量守恒. 3.动量守恒的数学表述形式: (1)p=p′即系统相互作用开始时的总动量等于相互作用结束时(或某一中间状态时)的总动量. (2)Δp=0即系统的总动量的变化为零.若所研究的系统由两个物体组成,则可表述为:m1v1+m2v2=m1v1′+m2v2′(等式两边均为矢量和)(3)Δp1=-Δp2 即若系统由两个物体组成,则两个物体的动量变化大小相等,方向相反,此处要注意动量变化的矢量性.在两物体相互作用的过程中,也可能两物体的动量都增大,也可能都减小,但其矢量和不变. 二、碰撞 1.碰撞是指物体间相互作用时间极短,而相互作用力很大的现象. 在碰撞过程中,系统内物体相互作用的内力一般远大于外力,故碰撞中的动量守恒,按碰撞前后物体的动量是否在一条直线区分,有正碰和斜碰,中学物理只研究正碰(正碰即两物体质心的连线与碰撞前后的速度都在同一直线上). 2.按碰撞过程中动能的损失情况区分,碰撞可分为二种: a.弹性碰撞:碰撞前后系统的总动能不变,对两个物体组成的系统满足: m1v1+m2v2=m1v1′+m2v2′ 1

高中物理动量定理和动能定理专项练习题

专题4、动量定理和动能定理 典型例题 【例1】如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态.木板突然受到水平向右的12N·s 的瞬时冲量作用开始运动,当小物块滑离木板时, 木板的动能E KA 为8.0J ,小物块的动能E KB 为0.50J ,重力加速度取10m/s 2 ,求: (1)瞬时冲量作用结束时木板的速度υ0; (2)木板的长度L . 【例2】在一次抗洪抢险活动中,解放军某部队用直升飞机抢救一重要落水物体,静止在空中的直升飞机上的电动机通过悬绳将物体从离飞机90m 处的洪水中吊到机舱里.已知物体的质量为80kg ,吊绳的拉力不能超过1200N ,电动机的最大输出功率为12k W ,为尽快把物体安全救起,操作人员采取的办法是,先让吊绳以最大拉力工作一段时间,而后电动机又 以最大功率工作,当物体到达机舱前已达到最大速度.(g 取10m/s 2 )求: (1)落水物体运动的最大速度; (2)这一过程所用的时间. 【例3】一个带电量为-q 的液滴,从O 点以速度υ射入匀强电场中,υ的方向与电场方向成θ角,已知油滴的质量为m ,测得油滴达到运动轨道的最高点时,速度的大小为υ,求: (1)最高点的位置可能在O 点上方的哪一侧? (2)电场强度为多大? (3)最高点处(设为N )与O 点电势差绝对值为多大?

【例4】.如图所示,固定的半圆弧形光滑轨道置于水平方向的匀强电场和匀强磁场中,轨道圆弧半径为R ,磁感应强度为B ,方向垂直于纸面向外,电场强度为E ,方向水平向左。一个质量为m 的小球(可视为质点)放在轨道上的C 点恰好处于静止,圆弧半径OC 与水平直径AD 的夹角为α(sin α=0.8). ⑴求小球带何种电荷?电荷量是多少?并说明理由. ⑵如果将小球从A 点由静止释放,小球在圆弧轨道上运动时,对轨道的最大压力的大小是多少? 【例5】.如图所示,虚线上方有场强为E 的匀强电场,方向竖直向下,虚线上下有磁感应强度相同的匀强磁场,方向垂直纸面向外,ab 是一根长为L 的绝缘细杆,沿电场线放置在虚线上方的场中,b 端在虚线上.将一套在杆上的带正电的小球从a 端由静止释放后,小球先做加速运动,后做匀速运动到达b 端.已知小球与绝缘杆间的动摩擦因数μ=0.3,小球重力忽略不计,当小球脱离杆进入虚线下方后,运动轨迹是半圆,圆的半径是L /3,求带电小球从a 到b 运动过程中克服摩擦力所做的功与电场力所做功的比值. B E

高中物理公式大全(全集) 八、动量与能量

八、动量与能量 1.动量 2.机械能 1.两个“定理” (1)动量定理:F ·t =Δp 矢量式 (力F 在时间t 上积累,影响物体的动量p ) (2)动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积累,影响物体的动能E k ) 动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时间积累作用效果——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化. 例如,质量为m 的小球以速度v 0与竖直方向成θ角 打在光滑的水平面上,与水平面的接触时间为Δt ,弹起 时速度大小仍为v 0且与竖直方向仍成θ角,如图所示.则 在Δt 内: 以小球为研究对象,其受力情况如图所示.可见小球 所受冲量是在竖直方向上,因此,小球的动量变化只能在 竖直方向上.有如下的方程: F ′击·Δt -mg Δt =mv 0cos θ-(-mv 0cos θ) 小球水平方向上无冲量作用,从图中可见小球水平方向动量不变. 综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方 面考虑了.Δt 内应用动能定理列方程:W 合=m υ02/2-m υ02 /2 =0 2.两个“定律” (1)动量守恒定律:适用条件——系统不受外力或所受外力之和为零 公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′ (2)机械能守恒定律:适用条件——只有重力(或弹簧的弹力)做功 公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k 3.动量守恒定律与动量定理的关系 一、知识网络 二、画龙点睛 规律

动能定理和动量定理的区别与联系教学内容

动能定理和动量定理的区别与联系 动量定理和动能定理虽然都是从牛顿第二定律推导出 来的,但在解决力学中某些问题时,这两个定理比牛顿第二定律更能体现出优越性。我们先看一看它们共同之处:1.两个定理都不用考虑中间过程,只考虑始末状态。动量定理只考虑始末状态的动量,动能定理只考虑始末状态的动能。过程中的速度加速度变化不予考虑。 例1 质量为m的小球以初速度v o在水平面上向右运动,小球与水平面间动摩擦因数为μ,小球碰到右侧固定挡板后被弹回,假设在碰撞过程中没有能量损失,求小球在水平面上运动的总路程S。 解:分析:小球来回与挡板碰撞运动方向不断改变,速度大小也不断改变,运用牛顿第二定律显然不好解出,而用动能定理就比较方便了,小球受三个力作用:重力mg,支持力F,摩擦力f,全过程只有摩擦力做负功,所以有–μmg S=0-1/2mv o2 S=mv o2/2μmg =v o2/2μg 2.两个定理不仅适用于恒力,也适用于变力。 例2 物块A和B用轻绳相连悬在轻弹簧下端静止不动,连接A,B的绳子被烧断后,A上升到某位置速度大小为V,这时B下落的速度大小为μ,已知A, B质量分别为m和M,在

这段时间内,弹簧的弹力对物块A的冲量是多少? 解析弹簧的弹力为变力,设弹力对物体A的冲量为I 取向上为正方向,根据动量定理: 对物块A:I–mgt=mu-0 ① 对物块B:–Mgt=–Mμ-0 ② 解得:I =mv+mu 3.两个定理不仅适用于直线运动,也适用于曲线运动。 例3 如图,质量为1kg的物体从轨 道A点由静止下滑,轨道B是弯曲的,A 点高出B点0.8m,物体到达B点的速度为 2m/s.求物体在AB轨道上克服摩擦力所 做的功。 解析本题中物体在轨道上受到的 摩擦力是大小方向不断变化的,不适合用牛顿第二定律求解,但用动能定理就方便了mgh-W=1/2mv2-0 得W=6J 4.两个定理都主要解决“不守恒”问题,动量定理主要解决动量不守恒问题,动能定理主要解决机械能不守恒问题。 例4 一列火车总质量为M,在牵引力作用下以加速

2018-2019人教版物理选修3-5第16章第2节《动量和动量定理》练习题

第2节动量和动量定理 1.动量. (1)定义:运动物体的质量和它的速度的乘积叫作物体的动量. (2)表达式:p=mv. (3)单位:千克米每秒,符号kg·m/s. (4)方向:动量是矢量,它的方向与速度的方向相同. 2.动量定理. (1)冲量(I). ①定义:物理学中把力与力作用时间的乘积叫作力的冲量,常用字母I表示,表达式为I=F·Δt. ②冲量的单位是牛·秒(N·s). ③冲量是矢量,恒力的冲量方向与恒力方向一致,冲量的运算遵守平行四边形定则. ④冲量是过程量,它是力对时间的积累. (2)动量定理:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量,其表达式为I=p′-p=Δp,也可写成F·Δt=Δp=p′-p=mv′-mv. 基础巩固 1.下列关于动量的说法中正确的是(D) A.质量大的物体动量一定大 B.质量和速率都相同的物体的动量一定相同 C.一个物体的速率改变,它的动量不一定改变 D.一个物体的运动状态变化,它的动量一定改变 解析:根据动量的定义p=mv,它由速度和质量共同决定,故A错;又因动量是矢量,它的方向与速度方向相同,而质量和速率都相同的物体,其动量大小一定相同,方向不一定相同,故B错;一个物体速率改变则它的动量大小一定改变,故C错;物体的运动状态变化指速度发生变化,它的动量也就发生了变化,故D对. 2.(多选)关于物体的动量,下列说法中正确的是(BD) A.惯性越大的物体,它的动量也越大 B.动量大的物体,它的速度不一定大 C.物体的速度大小不变,则其动量也保持不变 D.运动物体在任一时刻的动量的方向一定是该时刻的速度方向

解析:动量的大小由质量和速度的大小共同决定,即p=mv,惯性大则质量大,但动量不一定大,选项A错误;动量大的物体,可能是速度大,但也有可能是质量大,选项B正确;动量是矢量,其方向与速度方向相同,只有在速度大小、方向均不变时,其动量才保持不变,故选项C错误、选项D正确. 3.(2018·西安高二期末)下列说法正确的是(B) A.动能为零时,物体一定处于平衡状态 B.物体受到恒力的冲量也可能做曲线运动 C.物体所受合外力不变时,其动量一定不变 D.动能不变,物体的动量一定不变 解析:动能为零时,速度为零,而加速度不一定等于零,物体不一定处于平衡状态,选项A错误;物体受恒力,也可能做曲线运动.如平抛运动,选项B正确;合外力不变,加速度不变,速度均匀变化,动量一定变化,C项错误;动能不变,若速度的方向变化,动量就变化,选项D错误. 4.关于冲量,下列说法正确的是(A) A.冲量是物体动量变化的原因 B.作用在静止物体上的力的冲量一定为零 C.动量越大的物体受到的冲量越大 D.冲量的方向就是物体受力的方向 解析:力作用一段时间便有了冲量,而力作用一段时间后,物体的运动状态发生了变化,物体的动量就发生了变化.因此说冲量是物体动量变化的原因,A选项正确;只要有力作用在物体上,经历一段时间,这个力便有了冲量I=Ft,与物体处于什么状态无关,物体运动状态的变化情况是所有作用在物体上的力共同产生的效果,所以B选项不正确;物体所受冲量I=Ft与物体的动量的大小p=mv无关,C选项不正确;冲量是一个过程量,只有在某一过程中力的方向不变时,冲量的方向才与力的方向相同,故D选项不正确.5.篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以(B) A.减小球对手的冲量 B.减小球对人的冲击力 C.减小球的动量变化量 D.减小球的动能变化量 解析:接球过程中,球的初动量和末动量一定,所以球的动量变化量恒定不变,选项C 错误;根据动量定理,手对球的冲量等于球动量的改变量,也恒定不变,球对手的冲量也不变,选项A错误;球的初动能和末动能一定,所以球的动能变化量恒定不变,选项D错误;根据动量定理I=Ft,球对手的冲量I不变,接球时两手随球迅速收缩至胸前,是通过延长受力时间以减小球对人的冲击力F,所以选项B正确. 6.在距地面高为h处,同时以相等的初速度v0分别平抛、竖直上抛、竖直下抛一质量相等的物体m,当它们从抛出到落地时,比较它们的动量的增量Δp,有(B) A.平抛过程Δp较大 B.竖直上抛过程Δp较大 C.竖直下抛过程Δp较大 D.三者一样大 解析:三种运动中的物体均只受重力,分析他们运动的时间不同,即可求得冲量的大小关系,再由动量定理求出动量的增量.三个小球中竖直上抛的物体运动时间最长,而竖直下抛的物体运动时间最短,故它们重力的冲量,竖直上抛的物体最大,则由动量定理I=Δ

162_动量和动量定理导学案[上课用]

§16.2 动量和动量定理导学案 班级姓名第组 【学习目标】 1.了解物理学中动量概念的建立过程; 2.了解动量和动量的变化量及其矢量性,会正确计算做一维运动的物体的动量的变化; 3.理解冲量概念,理解动量定理及其表达式; 4.能够利用动量定理解释有关现象和解决实际问题; 5.理解动量与动能、动量定理与动能定理的区别。 【学习重点】 理解动量定理 【学习难点】 1.理解动量定理的矢量性 2.利用动量定理解释实际问题 【学习过程】 第一课时 【自主学习】 一、动量 请同学们阅读课本第6,7页有关动量的内容,完成下面的自主预习案。 1、定义:物体的_________和________的乘积。 2、定义式:p=____________。 3、单位:___________。 4、方向:动量是矢量,方向与___________的方向相同,因此动量的运算服从_____________法则。 5、对动量的理解: (1)矢量性:动量的方向与方向一致。 (2)瞬时性:动量的定义式中的v指物体的瞬时速度,从而说明动量与或对应,是(状态量或过程量)。 (3)相对性:速度具有相对性,参考系不同,就不同。 思考:匀速圆周运动的物体在运动过程中动量变化吗?为什么? 【合作探究】 一、动量的变化量: 1、定义:物体在某段时间内________与_________的矢量差(也是矢量)。 2、公式:?P=_______________(矢量式)。 3、方向:与相同 4、同一直线上动量变化的计算:选定一个正方向,与正方向同向的动量取正值,与正方向反向的动量取负值,从而将矢量运算简化为代数运算。计算结果中的正负号仅代表_________,不代表_________。

第2节质点系的角动量定理及角动量守恒定律

第5.2节 质点系的角动量定理及角动量守恒定律 5.2.1离心调速器模型如图所示.由转轴上方向下看,质量为m 的小球在水平面内绕AB 逆时针作匀速圆周运动,当角速度为ω时,杆张开α角.杆长为l .杆与转轴在B 点相交.求(1)作用在小球上的各力对A 点、B 点及AB 轴的力矩.(2)小球在图示位置对A 点、B 点及AB 轴的角动量.杆质量不计 解:(本题中A 点的位置不明确,A 点应与两小球同 高度) 以A 点为坐标原点建立坐标系,x 轴向右,y 轴向上,z 轴垂直于纸面向外。 左侧小球: 受力:j mg W ?-= ,)?cos ?(sin j i T T αα+= 位失:相对于A 点:i l r A ?sin α-= 相对于B 点:T T l j i l r B -=+-=)?cos ?(sin αα 速度:小球绕y 轴作匀速圆周运动,速率为:αωωsin l r v == 在图中所示位置:k l k v v ?sin ?αω== 重力矩: ?)?(?)?(?sin )?()?cos ?(sin ?sin )?()?sin (=?=?==-?+-=?==-?-=?=j j j j k mgl j mg j i l W r k mgl j mg i l W r B A AB B B A A ττταααταατ 拉力T 的力矩: 0?)?(?)?(0 ?2sin ?cos sin )?cos ?(sin )?sin (2 1=?=?==?-=?=-=-=+?-=?=j j j j T T T l T r k lT k lT j i T i l T r B A AB B B A A τττταααααατ 角动量: j m l j j L j j L L m l m l L j i m l k m l j i l v m r L j m l k m l i l v m r L B A AB B B B A A ?sin ?)?(?)?(sin sin sin cos ||) ?sin ?sin cos (?sin )?cos ?(sin ?sin ?sin )?sin (222 42222222αωαωαααωαααωαωαααωαωα=?=?==+=+-=?+-=?==?-=?=

162冲量和动量动量定理练习题

162冲量和动量动量定理练习题 一、冲量和动量动量定理练习题 一、选择题 1(在距地面h高处以v0水平抛出质量为m的物体,当物体着地时和地面碰撞时间为Δt,则这段时间内物体受到地面给予竖直方向的冲量为 [ ] 2(如图1示,两个质量相等的物体,在同一高度沿倾角不同的两个光滑斜面由静止自由滑下到达斜面底端的过程中,相同的物理量是 [ ] A(重力的冲量 B(弹力的冲量 C(合力的冲量 D(刚到达底端的动量 E(刚到达底端时的动量的水平分量 F(以上几个量都不同 3(在以下几种运动中,相等的时间内物体的动量变化相等的是 [ ] A(匀速圆周运动 B(自由落体运动 C(平抛运动 D(单摆的摆球沿圆弧摆动 4(质量相等的物体P和Q,并排静止在光滑的水平面上,现用一水平恒力推物体P,同时给Q物体一个与F同方向的瞬时冲量I,使两物体开始运动,当两物体重新相遇时,所经历的时间为 [ ] A(I/F B(2I/F C(2F/I D(F/I

5(A、B两个物体都静止在光滑水平面上,当分别受到大小相等的水平力作用,经过相等时间,则下述说法中正确的是 [ ] A(A、B所受的冲量相同 B(A、B的动量变化相同 C(A、B的末动量相同 D(A、B的末动量大小相同 6(A、B两球质量相等,A球竖直上抛,B球平抛,两球在运动中空气阻力不计,则下述说法中正确的是 [ ] A(相同时间内,动量的变化大小相等,方向相同 B(相同时间内,动量的变化大小相等,方向不同 C(动量的变化率大小相等,方向相同 D(动量的变化率大小相等,方向不同 7(关于冲量、动量与动量变化的下述说法中正确的是 [ ] A(物体的动量等于物体所受的冲量 B(物体所受外力的冲量大小等于物体动量的变化大小 C(物体所受外力的冲量方向与物体动量的变化方向相同 D(物体的动量变化方向与物体的动量方向相同 二、填空题 8(将0.5kg小球以10m/s的速度竖直向上抛出,在3s内小球的动量变化的大小等于______kg?m/s,方向______;若将它以10m/s的速度水平抛出,在3s内小球的动量变化的大小等于______kg?m/s,方向______。 9(在光滑水平桌面上停放着A、B小车,其质量mA,2mB,两车中间有一根用细线缚住的被压缩弹簧,当烧断细线弹簧弹开时,A车的动量变化量和B车的动量变化量之比为______。

动量定理知识点及题型解析

第6章第1课时动量动量定理 考点内容要求考纲解读 动量,冲量,动量定理Ⅱ本章是高考考查的重点,主要考查动量和 能量的综合、动量守恒与牛顿运动定律、运动 学规律、机械能知识的综合,考试题目往往涉 及多个物体、多个过程,必须灵活选取研究对 象,巧妙运用动量的观点、能量的观点等,才 能顺利求解. 预计本章在高考中,还将以综合考查为 主,综合牛顿运动定律、动量定理、动能定理、 动量守恒定律、机械能守恒定律等知识进行考 查.题型以计算题为主,难度中等以上.命题 背景多与碰撞、反冲、平抛运动、圆周运动等 相联系,侧重考查学生分析问题、解决问题的 能力. 动量守恒定律Ⅱ 动量知识和机械能知识的应用(包 括碰撞、反冲、火箭) Ⅱ 实验:验证动量守恒定律 说明:动量定理和动量守恒定律的 应用只限于一维的情况 2.掌握并能应用动量定理进行有关计算及解释有关现象. ?考点梳理 一、动量和冲量 1.动量 (1)定义:物体的质量和速度的乘积. (2)表达式:p=mv.单位:千克米每秒(kg·m/s). (3)动量的三性 ①矢量性:方向与速度的方向相同. ②瞬时性:动量是描述物体运动状态的物理量,动量定义中的速度是瞬时速度,是针对某一时刻而 言的. ③相对性:大小与参考系的选择有关,通常情况是指相对地面的动量. (4)动量与动能的大小关系:p=2mE k. 2.冲量 (1)定义:力和力的作用时间的乘积. (2)表达式:I=Ft.单位:牛秒(N·s)

(3)矢量性:冲量是矢量,它的方向由力的方向决定. (4)物理意义:表示力对时间的积累. (5)作用效果:使物体的动量发生变化. 二、动量定理 1.内容:物体所受合力的冲量等于物体的动量的变化. 2.表达式:Ft=Δp=p′-p. 3.矢量性:动量变化量的方向与冲量方向相同,还可以在某一方向上应用动量定理. 1.[对动量概念的考查] 下列关于动量的说法中正确的是() A.质量大的物体动量一定大 B.质量和速率都相同的物体的动量一定相同 C.一个物体的速率改变,它的动量不一定改变 D.一个物体的运动状态变化,它的动量一定改变 答案 D 解析根据动量的定义p=mv,它由速度和质量共同决定,故A错;又因动量是矢量,它的方向与速度方向相同,而质量和速率都相同的物体,其动量大小一定相同,方向不一定相同,故B错;一个物体速率改变则它的动量大小一定改变,故C错;物体的运动状态变化指速度发生变化,它的动量也就发生了变化,故D对. 2.[对冲量概念的考查] 关于冲量,下列说法正确的是() A.冲量是物体动量变化的原因 B.作用在静止物体上的力的冲量一定为零 C.动量越大的物体受到的冲量越大 D.冲量的方向就是物体受力的方向 答案 A 解析力作用一段时间便有了冲量,而力作用一段时间后,物体的运动状态发生了变化,物体的动量就发生了变化.因此说冲量是物体动量变化的原因,A选项正确;只要有力作用在物体上,经历一段时间,这个力便有了冲量I=Ft,与物体处于什么状态无关,物体运动状态的变化情况是所有作用在物体上的力共同产生的效果,所以B选项不正确;物体所受冲量I=Ft与物体的动量的大小p=mv无关,C选项不正确;冲量是一个过程量,只有在某一过程中力的方向不变时,冲量的方向才与力的方向相同,故D选项不正确. 3.[动量定理的理解与应用]

高中物理人教版选修3-5第十六章第2节动量和动量定理同步练习B卷(模拟)

高中物理人教版选修3-5第十六章第2节动量和动量定理同步练习B卷(模拟)姓名:________ 班级:________ 成绩:________ 一、选择题 (共5题;共10分) 1. (2分) (2017高二下·张家口期中) 下列说法正确的是() A . 当物体的动量不变时,物体的动能一定不变 B . 当物体的动能不变时,物体的动量一定不变 C . 当物体的动量为零时,物体一定处于平衡状态 D . 当物体所受合力的冲量为零时,物体受到的各力的冲量均为零 【考点】 2. (2分) (2019高一下·南昌期末) 关于物体的动量,下列说法中正确的是() A . 物体的动量越大,其惯性也越大 B . 同一物体的动量变了,其动能也一定变了 C . 物体的加速度不变,其动量一定不变 D . 运动物体在任一时刻的动量方向一定是该时刻的速度方向 【考点】 3. (2分) (2017高一下·红岗期末) 一个质量为2kg的物体,放在光滑的水平地面上静止不动.则在2s内,该物体所受重力冲量大小为(g=10m/s2)() A . 0 N?s B . 4.0 N?s C . 40 N?s

D . 以上答案均不正确 【考点】 4. (2分) (2019高三上·漠河月考) 一位质量为m的运动员下蹲由静止状态向上起跳,经Dt时间身体伸直并以速度为v离开地面,在此过程中地面对他的冲量为() A . 0 B . mv C . mv-mgDt D . mv+mgDt 【考点】 5. (2分) (2017高二下·临漳期中) 跳高运动员在跳高时总是跳到沙坑里或跳到海棉垫上,这样做是为了() A . 减小运动员的动量变化 B . 减小运动员所受的冲量 C . 减小着地过程的作用时间 D . 减小着地过程运动员所受的平均冲力 【考点】 二、多项选择题 (共3题;共9分) 6. (3分) (2020高二下·蚌埠月考) 一质量为2kg的物块在合外力F的作用下从静止开始沿直线运动。F 随时间t变化的图线如图所示,则()

动量定理和动能定理的应用

动量定理和动能定理的应用 在力学中,从力对时间的积累作用的角度来研究机械运动时,用动量来描写物体的运动状态;从力对空间的积累作用的角度来研究机械运动时,用动能来描写物体的运动状态.它们分别遵从动量定理和动能定理.实际上,物体做机械运动都是在一定的时间和空间中进行的.解决问题时,可从不同的角度(动量或动能),利用不同的规律(动量定理或动能定理)来进行研究. 解决问题的思路和方法是: 第一、明确物理过程,根据问题的要求和计算方便,确定研究对象. 第二、进行受力情况和运动过程的分析. 第三、描写研究对象的初动量(或初动能)和末动量(或末动能). 第四、根据动量定理(或动能定理),列方程并求解. 例1.一个质量为m 的物体,带有电荷为+q 的小物体,可以在水平轨道ox 上运动.o 端有 一与轨道垂直的固定的墙,轨道处于匀强电场中,场强的大小为E ,方向与ox 轴的正方向相反,如图2—1所示,小物体以初速度0v 从0x 点沿ox 轨道运动,运动时受到大小不变的摩擦力f 的作用,且qE f <;设小物体与墙壁碰撞时不损失机械能,且保持总电量不变,求它在停止运动前所通过的总路程S . 分析:在离地面高h 处,将以小球以一定的初速度竖直上抛.小球与地面不断的碰撞,最终要停在地面上.如果将图2—1的“模型’逆时针旋转900.将小物体和小球类比,可以得到“小物体”最终要静止在墙根O 处. 解:取小物体为研究对象,电场力做正功并与路径无关,阻力做负功,大小为fs 。根据动能定理,得: 22 00/mv fs x Eq -=-——————————————————(1) 解得:f /)mv Eqx (s 22200+=—————————————(2) 评析:面对新的物理问题,解题时要注意原型启发。 例2.在光滑绝缘的水平面上有一静止的带电体.加一水平向右匀强电场,作用一段时间后, 换成水平向左的匀强电场,作用相同的时间带电体恰好回到原处. (1)设向右的电场的场强为1E ,向左的电场的场强为2E ,求21E E . 图2—1

2018年高中物理动量定理和动能定理专项练习题(供参考)

专题4 、动量定理和动能定理 典型例题 【例1】如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态.木板突然受到水平向右的12N·s 的瞬时冲量作用开始运动,当小物块滑离木板时, 木板的动能E KA 为8.0J ,小物块的动能E KB 为0.50J ,重力加速度取10m/s 2 ,求: (1)瞬时冲量作用结束时木板的速度υ0; (2)木板的长度L . 【例2】在一次抗洪抢险活动中,解放军某部队用直升飞机抢救一重要落水物体,静止在空中的直升飞机上的电动机通过悬绳将物体从离飞机90m 处的洪水中吊到机舱里.已知物体的质量为80kg ,吊绳的拉力不能超过1200N ,电动机的最大输出功率为12k W ,为尽快把物体安全救起,操作人员采取的办法是,先让吊绳以最大拉力工作一段时间,而后电动机又 以最大功率工作,当物体到达机舱前已达到最大速度.(g 取10m/s 2 )求: (1)落水物体运动的最大速度; (2)这一过程所用的时间. 【例3】一个带电量为-q 的液滴,从O 点以速度υ射入匀强电场中,υ的方向与电场方向成θ角,已知油滴的质量为m ,测得油滴达到运动轨道的最高点时,速度的大小为υ,求: (1)最高点的位置可能在O 点上方的哪一侧? (2)电场强度为多大? (3)最高点处(设为N )与O 点电势差绝对值为多大?

【例4】.如图所示,固定的半圆弧形光滑轨道置于水平方向的匀强电场和匀强磁场中,轨道圆弧半径为R ,磁感应强度为B ,方向垂直于纸面向外,电场强度为E ,方向水平向左。一个质量为m 的小球(可视为质点)放在轨道上的C 点恰好处于静止,圆弧半径OC 与水平直径AD 的夹角为α(sin α=0.8). ⑴求小球带何种电荷?电荷量是多少?并说明理由. ⑵如果将小球从A 点由静止释放,小球在圆弧轨道上运动时,对轨道的最大压力的大小是多少? 【例5】.如图所示,虚线上方有场强为E 的匀强电场,方向竖直向下,虚线上下有磁感应强度相同的匀强磁场,方向垂直纸面向外,ab 是一根长为L 的绝缘细杆,沿电场线放置在虚线上方的场中,b 端在虚线上.将一套在杆上的带正电的小球从a 端由静止释放后,小球先做加速运动,后做匀速运动到达b 端.已知小球与绝缘杆间的动摩擦因数μ=0.3,小球重力忽略不计,当小球脱离杆进入虚线下方后,运动轨迹是半圆,圆的半径是L /3,求带电小球从a 到b 运动过程中克服摩擦力所做的功与电场力所做功的比值. B E

人教版高二物理选修3-5第十六章 16.2动量和动量定理课程教学设计

第十六章第二节 动量和动量定理 (第1课时,共 1 课时) 【学习目标】 1.理解动量的概念,知道动量和动量变化的含义。网 2.理解动量定理的内容,会用动量定理进行定量计算与定性分析有关现象。【重、难点】 理解动量定理的内容,会用动量定理进行定量计算与定性分析有关现象 【知识要点】 一、动量 1、动量:运动物体的叫做动量.是矢量,方向与相同;动量的合成与分 解,按平行四边形法则、三角形法则.是状态量;通常说物体的动量是指运动物体某一时刻的动量,计算物体此时的动量应取这一时刻的瞬时速度。是相对量;物体的动量亦与参照物的选取有关,常情况下,指相对地面的动量。单位是kg·m/s; 2、动量和动能的区别和联系 ①动量的大小与速度大小成正比,动能的大小与速度的大小平方成正比。即动量相同而 质量不同的物体,其动能不同;动能相同而质量不同的物体其动量不同。 ②动量是矢量,而动能是标量。因此,物体的动量变化时,其动能不一定变化;而物体的动能变化时,其动量一定变化。 ③因动量是矢量,故引起动量变化的原因也是矢量,即物体受到外力的冲量;动能是标量,引起动能变化的原因亦是标量,即外力对物体做功。 ④动量和动能都与物体的质量和速度有关,两者从不同的角度描述了运动物体的特性,且二者大小间存在关系式:P2=2mEk 或 Ek=P2/2m

3、动量的变化ΔP及其计算方法 动量的变化是指物体末态的动量减去初态的动量,是矢量,对应于某一过程(或某一段时间),是一个非常重要的物理量,其计算方法: (1)ΔP=P t一P0,主要计算P0、P t在一条直线上的情况。 (2)利用动量定理ΔP=F·t,通常用来解决P0、P t;不在一条直线上或F为恒力的情况。 二、冲量 1、冲量:叫做该力的冲量.是矢量,如果在力的作用时间内,力的方向不变, 则力的方向就是冲量的方向;冲量的合成与分解,按平行四边形法则与三角形法则.冲量不仅由力的决定,还由力的作用时间决定。单位是; 2、冲量的计算方法 (1)I=F·t.采用定义式直接计算、主要解决恒力的冲量计算问题。 (2)利用动量定理 Ft=ΔP.主要解决变力的冲量计算问题,但要注意上式中F为合外力(或某一方向上的合外力)。 三、动量定理 1、动量定理: Ft=mv/一mv或 Ft=p/-p;该定理由牛顿第二定律推导出来 2.单位:牛·秒与千克米/秒统一:l千克米/秒=1千克米/秒2·秒=牛·秒; 3.理解:(1)上式中F为研究对象所受的包括重力在内的所有外力的合力。 (2)动量定理中的冲量和动量都是矢量。定理的表达式为一矢量式,等号的两边不但大小相同,而且方向相同,这时可规定正方向,注意力和速度的正负,这样就把大量运算转化为代数运算。 (3)动量定理的研究对象一般是单个质点。求变力的冲量时,可借助动量定理求,不可直接用冲量定义式. (4)动量定理公式中的Δ(mv)是研究对象的动量的增量,是过程终态的动量减去过程始态的动量(要考虑方向),切不能颠倒始、终态的顺序。

角动量定理及角动量守恒定律

角动量定理及角动量守恒定律 一、力对点的力矩: 如图所示,定义力F 对O 点的力矩为: F r M ?= 大小为: θsin Fr M = 力矩的方向:力矩是矢量,其方向可用右手螺旋法则来判断:把右手拇指伸直,其余四指弯曲,弯曲的方向由矢径通过小于1800的角度转向力的方向时,拇指指向的方向就是力矩的方向。 二、力对转轴的力矩: 力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。 1)力与轴平行,则0=M ; 2)刚体所受的外力F 在垂直于转轴的平面内,转轴和力的作用线之 间的距离d 称为力对转轴的力臂。力的大小与力臂的乘积,称为力F 对 转轴的力矩,用M 表示。力矩的大小为: Fd M = 或: θsin Fr M = 其中θ是F 与r 的夹角。 3)若力F 不在垂直与转轴的平面内,则可把该力分解为两个力,一 个与转轴平行的分力1F ,一个在垂直与转轴平面内的分力2F ,只有分力2F 才对刚体的转动状态有影响。 对于定轴转动,力矩M 的方向只有两个,沿转轴方向或沿转轴方向反方向,可以化为标量形式,用正负表示其方向。 三、合力矩对于每个分力的力矩之和。 合力 ∑=i F F 合外力矩 ∑∑∑=?=?=?i i i M F r F r F r M = 即 ∑i M M = 四、质点的角动量定理及角动量守恒定律 在讨论质点运动时,我们用动量来描述机械运动的状态,并讨论了在机械运动过程中所遵循的动量守恒定律。同样,在讨论质点相对于空间某一定点的运动时,我们也可以用角动量来描述物体的运动状态。角动量是一个很重要的概念,在转动问题中,它所起的作用和(线)动量所起的作用相类似。 在研究力对质点作用时,考虑力对时间的累积作用引出动量定理,从而得到动量守恒定律;考虑力对空间的累积作用时,引出动能定理,从而得到机械能守恒定律和能量守恒定律。至于力矩对时间的累积作用,可得出角动量定理和角动量守恒定律;而力矩对空间的累积作用,则可得出刚体的转动动能定理,这是下一节的内容。本节主要讨论的是绕定轴转动的刚体的角动量定理和角动量守恒定律,在这之前先讨论质点对给定点的角动量定理和角动量守恒定律。 下面将从力矩对时间的累积作用,引入的角动量的概念,讨论质点和刚体的角动量和角动量守恒定律。 1.质点的角动量(Angular Momentum )——描述转动特征的物理量 1)概念 一质量为m 的质点,以速度v 运动,相对于坐标原点O 的位置矢量

【物理】物理试卷分类汇编物理动量定理(及答案)

【物理】物理试卷分类汇编物理动量定理(及答案) 一、高考物理精讲专题动量定理 1.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。已知sin37o=0.60,cos37o=0.80,重力加速度g 取10m/s 2,不计空气阻力。求: (1)物体沿斜面向上运动的加速度大小; (2)物体在沿斜面运动的过程中,物体克服重力所做功的最大值; (3)物体在沿斜面向上运动至返回到斜面底端的过程中,重力的冲量。 【答案】(1)6.0m/s 2(2)18J (3)20N·s ,方向竖直向下。 【解析】 【详解】 (1)设物体运动的加速度为a ,物体所受合力等于重力沿斜面向下的分力为: F=mg sin θ 根据牛顿第二定律有: F=ma ; 解得: a =6.0m/s 2 (2)物体沿斜面上滑到最高点时,克服重力做功达到最大值,设最大值为v m ;对于物体沿斜面上滑过程,根据动能定理有: 21 2 0m W mv -=- 解得 W =18J ; (3)物体沿斜面上滑和下滑的总时间为: 0226 2s 6 v t a ?= == 重力的冲量: 20N s G I mgt ==? 方向竖直向下。 2.在某次短道速滑接力赛中,质量为50kg 的运动员甲以6m/s 的速度在前面滑行,质量为60kg 的乙以7m/s 的速度从后面追上,并迅速将甲向前推出,完成接力过程.设推后乙的速度变为4m/s ,方向向前,若甲、乙接力前后在同一直线上运动,不计阻力,求: ⑴接力后甲的速度大小; ⑵若甲乙运动员的接触时间为0.5s ,乙对甲平均作用力的大小.

动能定理和动量定理专题讲解

动量定理和动能定理 重点难点 1.动量定理:是一个矢量关系式.先选定一个正方向,一般选初速度方向为正方向.在曲线运动中,动量的变化△P 也是一个矢量,在匀变速曲线运动中(如平抛运动),动量变化的方向即合外力的方向. 2.动能定理:是计算力对物体做的总功,可以先分别计算各个力对物体所做的功,再求这些功的代数和,即W 总 = W 1+W 2+…+W n ;也可以将物体所受的各力合成求合力,再求合力所做的功.但第二种方法 只适合于各力为恒力的情形. 3.说明:应用这两个定理时,都涉及到初、末状状态的选定,一般应通过运动过程的分析来定初、末状态.初、末状态的动量和动能都涉及到速度,一定要注意我们现阶段是在地面参考系中来应用这两个定理,所以速度都必须是对地面的速度. 规律方法 【例1】 (05年天津)如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态.木板突然受到水平向右的12N·s 的瞬时冲量作用开始运动,当小物块滑离木板时,木板的动能E KA 为8.0J ,小物块的动能E KB 为0.50J ,重力加速度取10m/s 2,求: (1)瞬时冲量作用结束时木板的速度υ0; (2)木板的长度L . 【解析】(1)在瞬时冲量的作用时,木板A 受水平面和小物块 B 的摩擦力的冲量均可以忽略. 取水平向右为正方向,对A 由动量定理,有:I = m A υ0代入数据得:υ0 = 3.0m/s (2)设A 对B 、B 对A 、C 对A 的滑动摩擦力大小分别为F fAB 、F fBA 、F fCA ,B 在A 上滑行的时间为t ,B 离开A 时A 的速度为υA ,B 的速度为υB .A 、B 对C 位移为s A 、s B . 对A 由动量定理有:—(F fBA +F fCA )t = m A υA -m A υ 对B 由动理定理有:F fAB t = m B υB 其中由牛顿第三定律可得F fBA = F fAB ,另F fCA = μ(m A +m B ) g 对A 由动能定理有:—(F fBA +F fCA )s A = 1/2m A υ2A -1/2m A υ2 对B 由动能定理有:F fA Bf s B = 1/2m B υ2 B 根据动量与动能之间的关系有: m A υA = KA A E m 2,m B υB = KB B E m 2 木板A 的长度即B 相对A 滑动距离的大小,故L = s A -s B , 代入放数据由以上各式可得L = 0.50m .

动能定理习题及解答

动能定理习题及解答 P314 13-1:已知圆盘半径r=0.5m, m A =3kg, m B =2kg ,力偶矩M=4?, 绳与盘之间无相对滑动; 求:?由0至2π时,力偶M 与物块重力所作功的总和。 解:W=?π ? ?20d 4+ (m A – m B )g ? 2πr = 109.7J P314 13-4:已知长为l ,质量为m 的均质杆OA 以球铰链O 固定,并以等角速度ω绕铅直线转动,杆与铅直线的交角为θ; 求:杆的动能。 解:此杆绕铅直轴作定轴转动,杆的转动惯量为 J z =θχθχ2 222l 0sin l 3m d sin l m =? 杆的动能为 T = 2 z J 21 ω = θω222sin ml 61 P316 13-11: 已知均质杆AB 的质量m=4kg,长l=600mm,均质圆盘 B 的质量为6kg ,半径r=100mm,作纯滚 动。弹簧刚度k=2N/mm,不计套筒A 及弹 簧的质量。连杆在30o角无初速释放; 求:(1)当AB 杆达水平位置而接触弹簧 时,圆盘与连杆的角速度;(2)弹簧的最大压缩量δmax 。 解:(1)该系统初始静止,动能为0;AB 杆达 水平位置时,B 点是AB 杆的速度瞬心,圆盘的角速度ωB =0,设杆的角速度为ωAB ,由动能定理,得 2230sin 203121l mg ml AB ?=-?ω 解得连杆的角速度 ωAB = 4.95 rad/s (2)AB 杆达水平位置接触弹簧时,系统的动能为T 1,弹簧达到最大压缩量δmax 的瞬时,系统再次静止,动能T 2=0,由

T 2 - T 1 = W 12 得 22610max 2 max 22δδωmg k ml AB +-=- 解得 δmax =87.1mm P316 13-12:已知均质轮B 和C 的质量均为m 2,半径均为r,轮B 上的力偶矩M=常量,物A 的质量为m 1; 求: 物A 由静止上移距离s 时的速度和加速度。 解:该系统初动能为零,设物A 移动距离s 时速度为υ,有 θ?ωυsin 0)2121221(12222 1g sm M r m m -=-???+ 式中 r s =?, r υω= (a) 解得 s m m r gr m M )(sin (2211+-= θ υ (b) 将式(a)(或式(b ))对时间求一阶导数,注意υ=. s ,解得 )(sin 211m m r gr m M a +-= θ P317 13-13: 已知动齿轮半径为r ,质量为m 1, 可看成均质园盘;均质曲柄OA 质量为m 2; 定齿轮半径为R 。OA 上的力偶矩M=常量。 机构位于水平面内,初始静止; 求:曲柄转过?角时的角速度和角加速度。 解:该系统初动能为零,设曲柄转过?角时的角速度为ω,有 ?υωωM m r m r R m A A =-+?++?0)21 2121)(3121(21221222 (a ) 式中 ω ωωυr r R r A A A +==,

相关主题
文本预览
相关文档 最新文档