当前位置:文档之家› Common food allergens and their IgE-binding epitopes

Common food allergens and their IgE-binding epitopes

Common food allergens and their IgE-binding epitopes
Common food allergens and their IgE-binding epitopes

Invited review article

Common food allergens and their IgE-binding epitopes

Hiroaki Matsuo a ,*,Tomoharu Yokooji b ,Takanori Taogoshi a

a Department of Pharmaceutical Services,Hiroshima University Hospital,Hiroshima,Japan

b

Department of Pathophysiology and Therapeutics,Institute of Biomedical and Health Sciences,Hiroshima University,Hiroshima,Japan

a r t i c l e i n f o

Article history:

Received 6May 2015Received in revised form 18June 2015

Accepted 23June 2015

Available online 29July 2015Keywords:Allergen Diagnosis Epitope

Food allergy

Immunoglobulin E

Abbreviations:

AA,amino acid;AAI,a -amylase inhibitor;IgE,immunoglobulin E;LMW-GS,low molecular weight glutenin subunits;

LTP,lipid transfer protein;OM,ovomucoid;OVA,ovalbumin;WDEIA,wheat-dependent exercise-induced anaphylaxis

a b s t r a c t

Food allergy is an adverse immune response to certain kinds of food.Although any food can cause allergic reactions,chicken egg,cow's milk,wheat,shell ?sh,fruit,and buckwheat account for 75%of food allergies in Japan.Allergen-speci ?c immunoglobulin E (IgE)antibodies play a pivotal role in the devel-opment of food allergy.Recent advances in molecular biological techniques have enabled the ef ?cient analysis of food allergens.As a result,many food allergens have been identi ?ed,and their molecular structure and IgE-binding epitopes have also been identi ?ed.Studies of allergens have demonstrated that IgE antibodies speci ?c to allergen components and/or the peptide epitopes are good indicators for the identi ?cation of patients with food allergy,prediction of clinical severity and development of tolerance.In this review,we summarize our current knowledge regarding the allergens and IgE epitopes in the well-researched allergies to chicken egg,cow's milk,wheat,shrimp,and peanut.

Copyright ?2015,Japanese Society of Allergology.Production and hosting by Elsevier B.V.This is an open access

article under the CC BY-NC-ND license (https://www.doczj.com/doc/c97070877.html,/licenses/by-nc-nd/4.0/).

Introduction

The prevalence of food allergy in Japan is estimated to be 5%e 10%among infants (aged 0e 6years)and 1.5%e 3%among school-aged children (aged >6years),and the prevalence among adults is thought to be similar to that of schoolchildren.1,2The prevalence of food allergy among pediatric patients in the U.S.and Europe is reported to be 8%and 6.9%,respectively,which is similar to that in Japan.The most common foods that induce immediate-type food allergy in Japan are chicken egg (38.2%of food allergy patients),cow's milk (15.9%),wheat (8%),shell ?sh (6%),fruit (6%),buckwheat (5%),?sh (4%),peanut (3%),and ?sh roe (3%).1The frequency of causative foods in the U.S.is different:peanut (25.2%),cow's milk (21.1%),shell ?sh (17.2%),tree nut (13.1%),chicken egg (9.8%),?n ?sh (6.2%),strawberry (5.3%),and wheat (5.0%).3In European patients,the most common causative foods in order of decreasing frequency

are cow's milk,wheat,chicken egg,?sh,soy,tree nut,shell ?sh,and peanut.4Despite these differences,there is a global trend toward an increased prevalence of food allergy.5,6

To understand the pathogenesis of food allergy and establish effective approaches for diagnosis,treatment,and prevention,detailed information on the allergen molecule is essential.Recently,a number of allergen molecules have been identi ?ed,and their three-dimensional (3-D)structures have been determined by advanced biological and analytical methods.The immunoglobulin E (IgE)recognition sites (IgE-binding epitopes)in allergens contribute to allergenicity.Therefore,it is important to identify the epitope structure for the development of new strategies for accu-rate diagnosis and allergen-speci ?c immunotherapy of food allergy as well as the production of hypoallergenic foods.The bene ?t of component-resolved diagnosis of food allergy using epitope peptides 7e 14and effective immunotherapy for peanut allergy with IgE-binding epitope modi ?ed recombinant allergen 15have been reported.Here,we provide an overview of the most common food allergen molecules from chicken egg,cow's milk,wheat,shrimp,and peanut,for which IgE-binding epitopes have been well characterized.

*Corresponding author.Department of Pharmaceutical Services,Hiroshima University Hospital,1-2-3Kasumi,Minami-ku,Hiroshima 734-8551,Japan.

E-mail address:hmatsuo@hiroshima-u.ac.jp (H.Matsuo).

Peer review under responsibility of Japanese Society of

Allergology.

Contents lists available at ScienceDirect

Allergology International

journal ho mep age:http ://www.el sevi er.co m/lo cate/ali

t

https://www.doczj.com/doc/c97070877.html,/10.1016/j.alit.2015.06.009

1323-8930/Copyright ?2015,Japanese Society of Allergology.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license (https://www.doczj.com/doc/c97070877.html,/

licenses/by-nc-nd/4.0/).

Allergology International 64(2015)332e 343

Food allergens

Food allergy is an allergen-speci?c IgE-mediated type I response.Its pathogenesis is divided into two phases:1)the sensitization phase in which the allergen enters the body through the gastrointestinal tract,skin,or mucosa,where it encounters a na?ve immune system under Th2-dominant conditions,resulting in IgE production;and2)the induction phase,which occurs following the oral intake of the same allergen as in the sensitization phase, and which elicits allergic symptoms such as urticaria,itching, wheezing,dyspnea,and abdominal pain.These responses are caused by the release of chemical mediators such as histamine and leukotrienes from activated mast cells and basophils.Cross-linking of IgE receptors with an allergen is required for the activation of these cells;therefore,more than two IgE antibodies are required to bind to one allergen molecule.

Food allergens include proteins or glycoproteins that have a molecular weight of5e100kDa and the ability to cross-link IgE receptors.Although many potential allergens are enzymatically digested and denatured by the acidic environment of the stomach, some are resistant to these conditions.16Intact food allergens have been detected in the serum after oral food administration in ani-mals17e19and humans.20e22In addition,anti-ulcer agents that inhibit gastric digestion of the allergen have an effect on the sensitization and induction phases.23

A number of different forms of plant food allergies have been reported,including pollen-food allergy syndrome and latex-fruit syndromes,in which allergic symptoms are induced mainly in the mucous membranes after ingestion of the causative food.24e26The most comprehensively characterized allergen components associ-ated with plant food allergies are pro?lins,seed storage proteins (2S albumins,7S/11S globulins),and pathogenesis related proteins such as non-speci?c lipid transfer proteins(LTPs).These compo-nents,collectively named panallergens,are widely distributed among various plants and have cross-reactivity with related plant species.27e29Carbohydrate determinants have been also reported as cross-reacting IgE-binding motifs in several plant allergens.30,31

IgE-binding epitopes and T-cell epitopes in food allergens

IgE-binding epitopes can be divided into two types,linear (sequential)and conformational(discontinuous).Linear epitopes comprise continuous amino acid(AA)sequences,while confor-mational epitopes are formed by spatially adjacent AAs that are distantly located in the AA primary sequence of the proteins. Several methods of IgE-binding epitope mapping have been re-ported.32Arrays of overlapping peptides synthesized on a nitrocellulose membrane(SPOT membrane)33are frequently used to determine sequential epitopes.10,34,35Peptide microarrays, formed from hundreds of synthetic peptides printed on a glass slide,have been used to determine IgE-binding linear epito-pes.11,13,36e40The determination of conformational IgE epitopes, however,requires sophisticated techniques,such as X-ray crystal-lography of allergens and immunocomplexes,nuclear magnetic resonance,mutant generation,and in silico analysis.41,42In such cases,IgE epitopes are predicted based on the3-D structures of food allergens,which have been determined for lysozyme(Gal d4), b-lactoglobulin(Bos d5),latex(Hev b6),birch pollen(Bet v1),and peach(Pru p3).29,43,44Recently,conformational epitopes recog-nized by monoclonal antibodies speci?c for almond(Pru du6)and cashew(Ana o2)allergens were mapped by hydrogen/deuterium exchange footprint analysis.45e47Although this new technique is not directly applicable to the identi?cation of conformational epi-topes recognized by human polyclonal IgE antibodies,the infor-mation obtained for the epitopes of monoclonal antibodies is useful to predict the conformational epitopes of human IgE antibodies.

Antigen-speci?c responses of CD4tT-cells,especially helper T-cells and regulatory T-cells,contribute to the sensitization,desen-sitization,and tolerance induction of food allergy.48T-cell epitopes that bind to major histocompatibility class II molecules are at least 13AAs long.49The mapping of T-cell epitopes and IgE-binding epitopes provides useful information for the design of peptide and/or recombinant protein-based immunotherapy for food al-lergy.T-cell epitopes can be identi?ed using peptides of10e20 residues that overlap the entire AA sequence of the candidate allergen and allergen-speci?c T-cell lines derived from peripheral blood mononuclear cells.Then,peptides that induce T-cell prolif-eration contain T-cell epitopes.T-cell epitope sequences can be also predicted by computer-based in silico analysis.50However, numerous synthetic peptides need to be assayed with T-cells from patients to con?rm the biological reactivity of the predicted epi-topes.Although studies to identify T-cell epitopes are behind those of IgE-binding epitopes,T-cell epitopes of milk(Bos d5),egg(Gal d1and2),peach(Pru p3),and peanut(Ara h1and2),among others,have been reported.51e57

Chicken egg

Chicken(Gallus domesticus)eggs consist of white and yolk. Ovomucoid(OM,Gal d1),ovalbumin(OVA,Gal d2),ovotransferrin (Gal d3),and lysozyme(Gal d4)have been identi?ed as egg white allergens58(Table1),whereas serum albumin(a-livetin,Gal d5) and a fragment of the vitellogenin-1precursor(YGP42,Gal d6) have been reported as egg yolk allergens.65,66In studies of

Table1

Chicken egg allergens.

Protein name IUIS name MW(kDa)AA length Accession no.IgE-binding epitopes(amino acid number)Year Ref

Ovomucoid Gal d128186P01005(Gal d1.0101)4e20,46e59,91e104201337

1e10,11e20,47e56,113e12220078

32e42,40e50,56e66,71e75,80e90,

101e105,121e130,159e174,179e186

200259

1e14,11e24,31e44,51e64,61e74,

101e114,121e134

200160

1e20,49e56,85e96,115e122,175e186199761 Ovalbumin Gal d244386CAA23682(Gal d2.0101)126e135,142e155,160e173,165e177,

189e199,327e337,371e386

201462

39e50,96e103,192e201,244e249,252e261200363 Ovotransferrin Gal d377705e e e Lysozyme Gal d414129CAA23711(Gal d4.0101)11e27,57e83,108e122201464 Serum albumin Gal d569615e e e

Fragment of vitellogenin-1 precursor(YGP42)Gal d635285e e e

H.Matsuo et al./Allergology International64(2015)332e343333

component-resolved diagnosis of chicken egg allergy,measure-ments of Gal d1-and/or Gal d2-speci?c IgE reactivity improved the sensitivity of a serum-based test.67e69The prevalence of speci?c IgE to each allergen was43.5%for Gal d1,52.1%for Gal d2,13.0%for Gal d3,36.9%for Gal d4,4.3%for Gal d5,and18.5%for Gal d6in suspected chicken egg allergy patients.65,67

OM(Gal d1)

OM accounts for11%of egg white protein and has three struc-turally independent tandem domains(DI,DII,and DIII),which exert trypsin-inhibitory activity.70OM is highly heat-stable and protease digestion-resistant,and is the immunodominant allergen in chicken egg.71,72Signi?cant OM-speci?c IgE antibody levels indi-cate a risk of clinical reactions to both raw and cooked egg71,73,74 and OM-speci?c IgE also has some prognostic value in predicting which patients will outgrow egg allergy.The IgE-binding epitopes have been identi?ed by enzyme-linked immunosorbent assay and microarray techniques(Table1).8,37,59e61The number of epitopes and their locations differed among the studies,possibly because of the population studied,the overlapping peptide length,and the techniques used.J€a rvinen et al.8reported that patients with persistent egg allergy,but not patients who outgrew egg allergy, had IgE antibodies that recognized the AA1e10,AA11e20, AA47e56,and AA113e122in OM.These observations indicated that the presence of sequential epitope-speci?c serum IgE anti-bodies represents the basis of a screening method for persistent egg allergy.In a recent study using microarray techniques,two major B-cell epitopes(AA4e20and AA46e59)that coincided with the epitopes described previously were identi?ed,37indicating that AA4e20and AA46e59are clinically relevant epitopes.Although AA4e20and AA46e59were recognized by24%and32%of patients who tested positive for OM-speci?c IgE,one third of the patients did not recognize any linear epitopes of OM.37The3-D conforma-tion of OM,including carbohydrate modi?cations,is preferentially recognized by IgE in egg allergy patients.Thus,the detection of conformational epitopes is also of importance for the diagnosis and prognosis of egg OM allergy.

OVA(Gal d2)

OVA is the most abundant heat-labile phosphoglycoprotein in egg white(approximately54%)and is a dominant allergen in egg allergy.58Measurement of OVA-speci?c IgE is helpful for the diag-nosis of egg allergy,especially in children with anaphylaxis.68The ?ve IgE-binding epitopes of OVA,AA38e49,AA95e102, AA191e200,AA243e248,and AA251e260,have been mapped by Mine et al.63using SPOT membranes.A recent study using digested OVA with human and simulated gastroduodenal?uids showed that seven IgE-binding peptides,AA125e134,AA141e154,AA159e172, AA164e176,AA188e198,AA326e336,and AA370e385,remained after digestion.62In addition,the importance of AA370e385was indicated by the observation that this peptide is bound by80%of sera from egg allergy patients.

Ovotransferrin(Gal d3)

Ovotransferrin,an iron-binding protein,is a heat-labile and digestible allergen75,76accounting for12%of egg white proteins. Thirty-seven percent of egg-allergic patients were reportedly sensitized to this component.67Although the3-D structure has been elucidated,77both linear and conformational IgE-binding epitopes remain to be identi?ed.Lysozyme(Gal d4)

Lysozyme is well characterized physicochemically because of its

use as an antimicrobial agent in clinical situations and as a food

preservative.Jim e nez-Saiz et al.64reported three possible IgE-binding peptides,AA11e27,AA57e83,and AA108e122,in immu-

noreactive fragments of lysozyme digested with simulated gastric

and duodenal?uids.The lysozyme(AA24e129)fragment,which is

linked by disul?de bonds to two immunoreactive peptides,

AA57e83and AA108e122,is resistant to digestive enzymes,and

induces basophil activation.Thus,lysozyme contains linear IgE-

binding epitopes that are involved in the clinical manifestation of

chicken egg allergy.

Chicken serum albumin(Gal d5)

Chicken serum albumin(a-livetin)was identi?ed as the causa-tive allergen of bird-egg syndrome,which causes respiratory

symptoms following exposure to birds,with secondary symptoms

of allergy after egg ingestion.66The prevalence of chicken serum

albumin-speci?c IgE is relatively low in chicken egg allergy

patients.67,68

YGP42(Gal d6)

A35-kDa fragment of the vitellogenin-1precursor,known as the

YGP42protein(Gal d6),was also identi?ed as an egg yolk

allergen.65This protein is heat-and reduction-stable;however,IgE-

binding of this protein is reduced by treatment with gastric?uid.To

date,no B-cell epitopes have been identi?ed.

Cow's milk

The physicochemical properties of allergens from cow's(Bos

domesticus)milk are well characterized(Table2).Fractionation of

milk yields two fractions,caseins and whey.Caseins(Bos d8)

include a s1-(Bos d9),a s2-(Bos d10),b-(Bos d11),k-(Bos d12),and g-caseins.Whey also called milk serum consists of a-lactalbumin

(Bos d4),b-lactoglobulin(Bos d5),bovine serum albumin(Bos d6), immunoglobulin(Bos d7),and lactoferrin.The prevalence of IgE reactivity to Bos d8(46.5%),Bos d4(27.6%),Bos d7(10.3%),and lactoferrin(10.3%)was demonstrated in patients with suspected cow's milk allergy.67These components,as well as cow's milk protein-speci?c IgE,are good prognostic markers of the persistence of cow's milk allergy.86,87

a-Lactalbumin(Bos d4)

a-Lactalbumin,a calcium-binding milk protein,has as a key role

in lactose biosynthesis.88Its high thermal stability was revealed by

analysis of recombinant a-lactalbumin.78The prevalence of a-lactalbumin-speci?c IgE in milk allergy patients varies from27.6% to62.8%depending on the study population.67,78,89The IgE-binding epitopes of a-lactalbumin,AA1e16,AA13e26,AA47e58,and AA93e102,have been identi?ed.79Hochwallner et al.78identi?ed six IgE-reactive peptides using a panel of19-or20-mer overlapping peptides spanning the entire protein.Three of these peptides, AA1e19,AA15e34,and AA105e123,are located on the surface of the protein.

b-Lactoglobulin(Bos d5)

b-Lactoglobulin is the most abundant protein in milk whey.The

major IgE-binding epitopes of b-lactoglobulin,AA1e16,AA31e60, AA67e86,and AA127e152,have been identi?ed.79Cerecedo et al.38

H.Matsuo et al./Allergology International64(2015)332e343 334

also used a panel of overlapping peptides in a microarray-based immunoassay to analyze the IgE-binding epitopes of b-lactoglob-ulin.The identi?ed IgE epitopes,AA58e77,AA76e95,and AA121e140,are recognized by more than75%of milk allergy pa-tients.AA58e77is signi?cantly associated with milk protein-reactive patients.Recent studies identi?ed AA1e16,AA56e70, and AA76e90as epitopes in Chinese patients.80These sequences are roughly in accordance with the epitopes detected in European patients described previously.

Bovine serum albumin(Bos d6)

Bovine serum albumin is an important allergen in milk,meat, and epithelia allergy.90e92There is cross-reactivity between serum albumin from cow,sheep,deer,pig,dog,and cat(meat and/or epithelia)90;therefore,albumins are implicated as panallergens in mammals.Although bovine serum albumin is the major allergen in beef allergy,93bovine serum albumin-speci?c IgE is found in only 3.8%of patients with cow's milk allergy.89Structural modi?cation by heat treatment and chemical denaturation does not affect the allergenicity of bovine serum albumin,94and several IgE-binding epitope sequences have been reported in beef allergy.95,96

Bovine gamma globulin(Bos d7)

Bovine gamma globulin is also an allergen in cow's milk and beef allergy.97Approximately10%of patients with cow's milk al-lergy are bovine gamma globulin-speci?c IgE positive.67

Caseins(Bos d8e12)

Casein(Bos d8)constitutes approximately80%of the proteins present in cow's milk.These phosphorylated proteins are heat-stable but are susceptible to digestive enzymes.98Casein is composed of four major proteins,a s1-casein(Bos d9),a s2-casein (Bos d10),b-casein(Bos d11),and k-casein(Bos d12),most of which exist in a colloidal particle known as the casein micelle.The molecular weight and AA length of caseins are listed in Table2.The proportions of casein in milk protein are37%for a s1-casein,37%for a s2-casein,13%for b-casein,and13%for k-casein.

a s1-Casein(Bos d9)

Approximately50%of serum samples from patients with cow's milk allergy react with a s1-casein,which has an unordered mo-lecular structure.89Nakajima-Adachi et al.83identi?ed AA181e199 in the C-terminal region as the immunodominant IgE-binding re-gion.Three regions of a s1-casein,corresponding to AA19e30, AA93e98,and AA141e150,were also identi?ed as IgE-binding peptides.84In recent studies,several IgE-binding epitopes were identi?ed by overlapping peptide mapping.38,81,82

a s2-Casein(Bos d10)

Busse et al.85identi?ed10sequential IgE-binding epitopes of a s2-casein,four of which AA83e100,AA143e158,AA157e172,and AA165e188,were detected in77%of patients.Cerecedo et al.38 mapped seven IgE-binding epitopes and showed that four, AA1e20,AA13e32,AA67e86,and AA181e207,were signi?cantly associated with the reactive group of patients.

b-Casein(Bos d11)

Six major and three minor IgE-binding epitopes of b-casein were identi?ed by Chatchatee et al.34Cerecedo et al.38also identi?ed four B-cell epitopes,three of which,AA25e50,AA52e74,and AA154e73,were found to be associated with allergic symptoms. Several IgE-binding epitopes remain as fragments of b-casein after gastrointestinal digestion.99

k-Casein(Bos d11)

Using overlapping peptide mapping,eight major IgE-binding peptides of k-casein were identi?ed,three of which,AA9e26, AA21e44,and AA47e68,were recognized by93%of patients with cow's milk allergy.34AA16e35and AA34e53in k-casein were also

Table2

Cow's milk allergens.

Protein name IUIS name MW(kDa)AA length Accession no.IgE-binding epitopes(amino acid number)Year Ref a-Lactalbumin Bos d414.2123AAA30615(Bos d4.0101)1e19,15e34,45e64,60e79,90e109,105e123201078

1e16,13e26,47e58,93e102200179 b-Lactoglobulin Bos d518.3162CAA32835(Bos d5.0101)1e16,56e70,76e90,136e150201280

58e77,76e95,121e140200838

1e16,31e60,67e86,127e152200179 Serum albumin Bos d667583e e e Immunoglobulin Bos d7160e e e e Caseins

(Bos d9e Bos d12)

Bos d820e30e e e e

a

S

1-Casein Bos d923.6199NP_851372(Bos d9.0101)6e20,11e35,126e140,171e185201381

16e35,28e50,73e92200838

17e36,39e48,69e78,83e102,109e120,

122e132,139e154,159e174,173e194

200182

181e199199883

19e30,93e98,141e150199684 a S2-Casein Bos d1025.2207NP_776953(Bos d10.0101)1e20,13e32,67e82,106e125,122e141,

157e182,181e207

200838

31e44,43e56,83e100,93e108,105e114,

117e128,143e158,157e172,165e188,

191e200

200185

b-Casein Bos d1124209XP_005902099(Bos d11.0101)25e50,52e74,121e140,154e173200838

1e16,45e54,55e70,83e92,107e120,

135e144,149e164,167e184,185e208

200134 k-Casein Bos d1219169NP_776719(Bos d12.0101)16e35,34e53200838

9e26,21e44,47e68,67e78,95e116, 111e126,137e148,149e166200134

H.Matsuo et al./Allergology International64(2015)332e343335

identi ?ed as IgE-binding dominant epitopes.38Thus,the N-termi-nal region (AA9e 68)of k -casein may play an important role in the allergenicity of this protein.The critical AAs for IgE-binding to linear epitopes of k -casein were identi ?ed by Han et al.100

Time-related differences in the binding of IgE and IgG4to epi-topes of b -lactoglobulin,a -lactalbumin,and caseins between pa-tients with early recovery or persistent cow's milk allergy have been investigated.101,102Furthermore,IgE and IgG4epitope binding was also analyzed to predict the outcome of oral immunotherapy in cow's milk allergy using peptide arrays.103The results of this study showed that monitoring the binding of IgE and IgG4to epitope peptides of caseins has predictive value for the development of tolerance to cow's milk or the outcome of oral immunotherapy.Wheat

Wheat (Triticum aestivum )is an important allergen source that elicits various clinical types of food allergy,such as immediate

wheat allergy,baker's asthma,wheat contact dermatitis,and wheat-dependent exercise-induced anaphylaxis (WDEIA).The total protein content of wheat ?our ranges from 8%to 12%,and can be classi ?ed as water/salt-soluble proteins (albumin and globulin)and the insoluble protein,gluten.Wheat pro ?lin (Tri a 12),non-speci ?c LTP (Tri a 14),a -amylase inhibitors (AAI,Tri a 15,Tri a 28e 30),wheat germ agglutinin (Tri a 18),thioredoxin (Tri a 25),thiol reductase homolog (Tri a 27),triosephosphate isomerase (Tri a 31),1-cys-peroxiredoxin (Tri a 32),serpin (Tri a 33),glyceraldehyde-3-phosphate dehydrogenase (Tri a 34),dehydrin (Tri a 35),a -pur-othionin (Tri a 37),serine proteinase inhibitor (Tri a 39),thaumatin-like protein,peroxidase,and glutathione S-transferase in the sol-uble fraction have been identi ?ed as allergens in patients with baker's asthma,wheat food allergy and wheat contact urticaria (Table 3).112e 115a /b -Gliadin (Tri a 21),g -gliadin (Tri a 20),u 1,2-gliadin,u 5-gliadin (Tri a 19),low molecular weight glutenin sub-units (LMW-GS,Tri a 36),and high molecular weight glutenin subunits (Tri a 26)in wheat gluten have been reported as allergens

Table 3

Wheat allergens.Protein name

IUIS name

MW (kDa)

AA length

Accession no.

IgE-binding epitopes

(AA sequence or number)Year

Ref

Water/salt-soluble protein Pro ?lin

Tri a 1214e e

e

e e Non-speci ?c lipid transfer protein 1Tri a 14990P2429624e 33,37e 46,81e 90

2011104a -Amylase inhibitors Monomeric 0.28Tri a 1512e e e e e Dimeric 0.19Tri a 2813e e e e e Tertameric CM1/CM2

Tri a 2913e e e e e CM3

Tri a 3016e e e e e CM16/CM17

e 17e e e e e Agglutinin Tri a 1817e e e e e Thioredoxin

Tri a 2513e e e e e Thiol reductase homologue Tri a 2727e e e e e Triosephosphate isomerase Tri a 3126e e e e e 1-Cys-peroxiredoxin Tri a 3224e e

e

e e Serpin

Tri a 3340398CAB5271046e 68,76e 92,271e 293,364e 3842012105Glyceraldehyde-3-phosphate-dehydrogenase Tri a 3440e 42e e e e e Dehydrin

Tri a 3512e e

e

e e a -Purothionin

Tri a 3712111AFQ605402e 31,42e 71,62e 912014106Serine protease inhibitor-like protein Tri a 39

9e e e e e Glutathione transferase e 25e e e e e Thaumatin like protein e 18e e e e e Peroxidase

e

36e e e

e

e Water/salt-insoluble protein a /b -Gliadin

Tri a 21

28e 35

299

P04725

VRVPVPQLQP,QEQVPLVQQQ,VQQQQFPGQQ,QQQFPGQQQQ,YLQLQPFPQP,QILQQILQQQ,LQIPEQSQCQ,QEQKQQLQQQ,SFQQPQQQYP,LALQTLPAMC,YIPPHCSTTI 2011,2005

104,107

g -Gliadin Tri a 2028e 35280BAN29066(Tri a 20.0101)QPQQPFPQ

2013108308P08453

QPQQPFPQ

2012109QQX 3X 4PQ (X 3?L,S,Q;X 4?L,V,F)2005107u 1,2-Gliadin e 40261Q9FUW7

QPQQPFPQ

2012

109

QQPX 5PX 6Q (X 5?I,T,F;X 6?V,Q,I)

2011,2005104,107u 5-Gliadin

Tri a 1965420

BAE20328

(Tri a 19.0101)

QQX 1PX 2QQ (X 1?L,F,S,I;X 2?Q,E)

2011,2005104,107QQIPQQQ,QQFPQQQ,QQSPEQQ,QQSPQQQ,QQYPQQQ,PYPP,

QQFHQQQ,QSPEQQQ,YQQYPQQ,QQPPQQ

2005,2004

35,110

High molecular weight glutenin subunits Tri a 2688827QQPGQ,QQPGQGQQ,QQSGQGQ 200510Low molecular weight glutenin subunits Tri a 3632e 40369

Q9ZNY0

HQQQPIQQQP,QQPIQQQPQQ,QQFPQQQPCS,PFVHPSILQQ,QCSPVAMPQS,LPQIPQQSRY,QSRYEAIRAI 2011104

QQQPP

1996111

H.Matsuo et al./Allergology International 64(2015)332e 343

336

that cause WDEIA.113,116,117Gliadins and glutenins are allergens that also cause baker's asthma and common immediate wheat allergy in some cases.118,119In addition,LTP in the water/salt-soluble fraction was reported to cause WDEIA.112,113These?ndings demonstrate the comparative speci?city of the causative allergens to each clinical type of wheat allergy,although some allergens contribute to the development of two or more clinical types of this allergy.It should be noted that the biological activity of some wheat allergens re-ported in this review have not been determined using techniques such as the skin prick test or the basophil histamine release test.

Water/salt-soluble wheat allergens

Tri a12is recognized by speci?c IgE antibodies in patients with baker's asthma,grass pollen allergy,and food allergy to wheat.115,120e122However,the prevalence of IgE reactivity to wheat pro?lin in patients with food allergy and respiratory allergy is low.115Tri a14was identi?ed as an allergen in food allergy patients after ingestion of wheat products,123e126as well as in patients with baker's asthma127and WDEIA.118Monomeric AAI0.28(Tri a15), dimeric AAI0.19(Tri a28),tetrameric AAI CM1/CM2(Tri a29),AAI CM3(Tri a30),and AAI CM16are allergens in pediatric patients with wheat allergy,126patient's with baker's asthma,121,128and those with work-related wheat dermatitis.129

Tri a18,25,32e35,and39were identi?ed as allergens in pa-tients with baker's asthma and/or food allergy.103,105,122,130e133Four IgE-binding epitopes of Tri a33,AA46e48,AA76e92,AA271e293, and AA364e384,were identi?ed using overlapping peptide map-ping,105and3-D modeling showed that these epitopes are partially located on the surface of the protein.No differences were identi?ed in the IgE-binding epitope peptides associated with food allergy and baker's asthma.105

Tri a27was identi?ed as an allergen that causes wheat protein contact dermatitis and wheat food allergy.114,134,135It is considered that the N-linked glycan moieties with fucose residues contained in this allergen are involved in IgE-binding.136The highest frequencies of Tri a27-speci?c IgE were reported in patients with baker's asthma.121Tri a37was recently reported as a novel wheat allergen speci?c for patients with wheat food allergy.137Twenty percent of patients with wheat food allergy had Tri a37-speci?c IgE,whereas the frequency was only3%among patients with baker's asthma.137 The IgE-binding epitopes in this allergen have been mapped to three regions of the protein,AA2e31,AA42e71,and AA62e91.106 Water/salt-insoluble wheat allergens

Gliadins and glutenins are water/salt-insoluble wheat proteins that have been identi?ed as causative allergens in patients with wheat food allergy,baker's asthma,and WDEIA.10,35,107,113,117u5-Gliadin(Tri a19)is a major allergen in WDEIA138,139and children

with immediate allergy to ingested wheat.140Because of the pres-ence of a repetitive domain,there are many IgE epitope sequences in u5-gliadin;however,the consensus sequence comprising QQX1PX2QQ(X1?L,F,S,I;X2?Q,E,G)has been identi?ed as the IgE-binding epitope in Japanese and European patients.35,104,107,110 The measurement of speci?c IgE to u5-gliadin and its IgE-binding epitopes in the diagnosis of patients with wheat food allergy including WDEA has been reported.10,141e145However,the Tri a19-speci?c IgE test alone could not be used to diagnose all patients with wheat food allergy.146,147g-Gliadin(Tri a20)is a causative allergen in patients with food allergy to wheat and those with baker's asthma.113,117Furthermore,g-gliadin-speci?c IgE was also detected in Japanese patients with WDEIA following transdermal sensitization with hydrolyzed wheat protein.108,148The IgE-binding epitope sequence of QPQQPFPQ in g-gliadin identi?ed in Japanese patients sensitized via the dermal route was identical to the epitope

sequence identi?ed in European patients sensitized orally with

hydrolyzed wheat proteins.109a/b-Gliadin(Tri a21)and a1,2-gliadin are also important causative allergens in wheat food al-

lergy,WDEIA,and baker's asthma.104,107,113,146The IgE-binding

epitopes for these allergens were identi?ed in patients with

wheat allergy104,107and in addition,the sequences of QQPFP and

PQQPF in gliadin were epitopes in atopic dermatitis-related wheat

allergy.149

LMW-GS(Tri a36)was identi?ed as an allergen that induces

wheat food allergy123,150,151and WDEIA152in European patients.

There are several types of LMW-GS encoded by genes located on

group1chromosomes at the Glu-A3,Glu-B3,and Glu-D3loci,153

and patients with wheat allergy exhibited IgE-reactivity to

different LMW-GS.150Although the LMW-GS GluB3-23,B16,and

P73epitopes are well characterized,147,150,152only GluB3-23is

de?ned as Tri a36in the IUIS allergen database.147Tanabe et al.111

identi?ed the QQQPP motif in LMW-GS as a major IgE-binding

epitope responsible for atopic dermatitis in patients sensitized

with wheat.

High molecular weight glutenin subunits(Tri a26)has been

identi?ed as an allergen responsible for WDEIA in Japanese patients

and its IgE-binding epitopes,QQPGQ,QQPGQGQQ,and QQSGQGQ,

have been?ne-mapped.10We showed that the combined detection

of IgE antibodies speci?c to epitope peptides or recombinant pro-

teins of Tri a26and Tri a19improved the sensitivity and speci?city

of the diagnosis of WDEIA.10,154

Shrimp

Seafood allergy is a common food allergy.The prevalence of?sh

and shell?sh allergies is estimated at0.2%e0.3%and0.6%,respec-

tively.155Allergy to crustacean shell?sh,which include shrimp,

prawns,lobsters,and crabs,seems to affect school-aged children

and adults predominantly.1Crustacean-allergic patients can show

cross-reactivity to different types of shell?sh as well as molluscan

shell?sh,such as gastropods(abalones,limpets,snails),bivalves

(scallops,oysters,mussels),and cephalopods(squid,octopus).

Studies of shrimp allergens are the most advanced among the

shell?sh allergies.156There are various types of edible shrimp

worldwide,with White Paci?c shrimp(Litopenaeus vannamei),

black tiger(Penaeus monodon),kuruma prawn(Marsupenaeus

japonicus),and Japanese spiny lobster(Panulirus japonicas)the

most commonly eaten in Japan.The allergens responsible for

crustacean allergies are also well studied.Tropomyosin,arginine

kinase,sarcoplasmic calcium-binding protein,myosin light chain,

troponin C,and triosephosphate isomerase have been identi?ed as

allergens in Penaeus monodon,L.vannamei,Crangon crangon(North

Sea shrimp),Homarus americanus(American lobster),and some

crabs(Table4).156,159e161

Tropomyosin(group1)

Tropomyosin is associated with the actin and troponin compo-

nents of muscle cells,and isoforms of tropomyosin were identi?ed

in several shrimp species,including Pandalus borealis(Pan b1),

Penaeus monodon(Pen m1),Penaeus aztecus(Pen a1),Penaeus

indicus(Pen i1),Metapenaeus ensis(Met e1),L.vannamei(Lit v1),

Crangon crangon(Cra c1),and H.americanus(Hom a1).Although

tropomyosins from crustaceans share high homology(up to98%),

the AA sequence identity of crustacean and molluscan tropomyosin

is much lower(approximately60%).160The major continuous IgE

epitopes were identi?ed in Pen a1157and Lit v1158using over-

lapping peptide mapping.Nine IgE-binding peptides in Pen a1

were identi?ed,?ve of which,AA37e63,AA82e105,AA115e150,

H.Matsuo et al./Allergology International64(2015)332e343337

AA190e 210,and AA246e 284,corresponded with the epitopes of Lit v 1.The sequences LEX 1X 2L or LEX 1X 2N (X 1?D,E,N or K,X 2?D or E)in AA1e 36(LEKDN),AA37e 63(LENDL),AA82e 105(LEEDL),and AA246e 284(LEDLE)were identi ?ed as common IgE-binding motifs in Lit v 1.158The immunodominant regions of Pan b 1were also mapped by Myrset et al.162Arginine kinase (group 2)

Arginine kinase was identi ?ed in three types of shrimp (Cra c 2,163

Lit v 2,164Pen m 2165).Eight IgE-binding epitopes were iden-ti ?ed in Lit v 2,158with the highest diagnostic ef ?ciency shown in the test for AA232e 255peptide-speci ?c IgE.13Recent studies showed that Pen m 2is an important allergen recognized by Th2cells in patients with shrimp allergy.166

Myosin light chain (group 3and Cra c 5)

Myosin light chain (Lit v 3,Pen m 3)was ?rst identi ?ed in L.vannamei 167and Penaeus monodon .168Cra c 5was also con ?rmed as a novel type of IgE-binding myosin light chain with only 13%AA sequence identity to Lit v 3.163Six IgE-binding sequences were identi ?ed in Lit v 3.158

Sarcoplasmic calcium-binding protein

Sarcoplasmic calcium-binding protein was identi ?ed as an allergen in three types of shrimp (Cra c 4,163Lit v 4,169and Pen m 4170).Three IgE-binding regions were identi ?ed in Lit v 4.158Troponin C (group 6)and triosephosphate isomerase (Cra c 8)Troponin C (Cra c 6163and Pen m 6171)and triosephosphate isomerase (Cra c 8163)were identi ?ed as allergens in patients with shrimp allergy but have not been reported in L.vannamei and

Penaeus monodon ,suggesting they are minor or local shrimp allergens.

Several studies conducted to investigate component-resolved diagnosis using recombinant shrimp allergens and IgE-binding epitope peptides showed that measuring IgE binding to tropomy-osin and sarcoplasmic calcium-binding protein is useful for the prediction of clinical reactivity in patients with shrimp allergy although the measurement of IgE speci ?c for other allergens and epitopes is necessary for the accurate diagnosis of shrimp allergy.7,13Peanut

Twelve allergens have been identi ?ed in association with pea-nut (Arachis hypogaea )allergy (Table 5).These are designated Ara h 1to Ara h 13,with the exception of Ara h 4,which has been renamed Ara h 3.02.176Ara h 2,Ara h 6,and Ara h 7,which belong to the 2S albumin family,are seed storage proteins and have homol-ogous AA sequences and secondary structures.177Ara h 2and Ara h 6are the most clinically relevant allergens in peanut allergy.178,179Ara h 1(7S globulin)and Ara h 3(11S globulin)are seed proteins belonging to the cupin superfamily,which contains a conserved barrel domain.180,181Ara h 5is a member of the pro ?lin family with 72%AA sequence identity to birch pollen pro ?lin (Bet v 2),and is a class II type labile food allergen.182Ara h 8,a pathogenesis related protein-10(Bet v 1)homolog,is also a class II food allergen.It is a major allergen and produces allergic symptoms in birch pollen-allergic patients after the ingestion of peanuts.183,184Ara h 9,a non-speci ?c LTP,was identi ?ed as a peanut allergen in patients who have peach allergy and are positive for Pru p 3-speci ?c IgE.185,186Most of these patients did not have IgE antibodies spe-ci ?c to Ara h 1,Ara h 2,and Ara h 3,indicating that Ara h 9is an important allergen in peanut allergy.Oleosins (Ara h 10and Ara h 11)are obtained from peanut oil bodies.187,188In a recent study,the IgE-binding epitopes of Ara h 10and Ara h 11were identi ?ed using

Table 4

Shrimp allergens.Protein name

IUIS name MW (kDa)AA length Accession no.

IgE-binding epitopes (amino acid number)Year Ref Tropomyosin Penaeus aztecus (Brown shrimp)

Pen a 137284AAZ76743(Pen a 1.0101)1e 36,37e 63,61e 81,82e 105,115e 150,142e 162,157e 183,190e 210,246e 2842002157Litopenaeus vannamei (White shrimp)Lit v 137

284ACB38288(Lit v 1.0101)43e 57,85e 105,133e 148,187e 202,247e 2842010158Pandalus borealis (Northern shrimp)Pan b 1e e e e e Metapenaeus ensis (Greasyback shrimp)Met e 1e e e e e Penaeus indicus

(Indian white shrimp)Pen i 1e e e e e Penaeus monodon (Black tiger shrimp)Pen m 1e e e e e Crangon crangon (North sea shrimp)Cra c 1e e

e

e e Arginine kinase

Lit v 240

356ABI98020(Lit v 2.0101)1e 18,25e 42,64e 96,121e 141,142e 159,160e 192,232e 2552010158Pen m 2e e e e e Cra c 2e e

e

e e Myosin light chain 2Lit v 320

177ACC76803(Lit v 3.0101)13e 30,22e 48,49e 66,58e 90,79e 99,118e 1412010158Pen m 3e e

e

e e Sarcoplasmic

calcium e binding protein Lit v 420

193ACM89179(Lit v 4.0101)10e 36,49e 72,130e 1472010158Pen m 4e e e e e Cra c 4e e e e e Myosin light chain 1Cra c 518e e e e e Troponin C

Cra c 620e e e e e Pen m 6e e e e e Triosephosphate isomerase

Cra c 8

28

e

e

e

e

e

H.Matsuo et al./Allergology International 64(2015)332e 343

338

in silico methods.189In addition,Kobayashi et al.190identi?ed the IgE-binding epitope of peanut oleosin3,which differs from those of Ara h10and Ara h11.Ara h12and Ara h13,which are defensins directed against fungal pathogens,were identi?ed as allergens by Petersen et al.191Although they have been listed as peanut allergens by the WHO/IUIS Allergen Nomenclature Subcommittee,the details have not been reported.The prevalence of IgE binding to Ara h 10e13has not yet been elucidated.From the viewpoint of component-resolved diagnosis of peanut allergy,Ara h1,2,3,6,and 9are signi?cant allergens that correlate with reactivity and/or severity,although the sensitivity and speci?city of each component is population-dependent.192e194

7S globulin(Ara h1)

Ara h1is a glycosylated seed storage protein.IgE binding to Ara h1has a low sensitivity to heating and digestion with pepsin.195,196 Twenty-three IgE-binding epitopes were identi?ed throughout the protein by overlapping peptide mapping,172and a further epitope, AA361e385,was reported by Shref?er et al.11Six of these epitopes, AA90e97,AA98e104,AA108e115,AA124e131,AA134e143,and AA144e151,are pepsin-resistant.197B?gh et al.198identi?ed?ve conformational epitope motifs in Ara h1by competitive immu-noscreening of a phage-displayed random peptide library,and epitope mimics were found to cluster in three areas of Ara h1. Furthermore,phage-display technology was used to analyze the difference between IgE and IgG epitopes of Ara h1.199Elucidation of IgE and IgG epitope recognition patterns could be a valuable tool for the diagnosis of peanut allergy.

11S globulin(Ara h3)

Ara h3is post-transcriptionally cleaved to form two protein fragments by an asparaginyl endopeptidase after the formation of an intermolecular disul?de bond.Thus,23-kDa and36-kDa spots are observed by2D-PAGE under reducing conditions.181Analysis of the IgE-binding epitope sequences in Ara h3in three different overlapping peptide array experiments showed that four epitopes, AA30e44,AA237e251,AA276e290,and AA300e312,were important in peanut allergy.12,175

2S albumin(Ara h2and6)

Ara h2,which consists of two isoforms,Ara h2.01and Ara h 2.02,is highly resistant to boiling and proteolytic digestion.200,201 Seven to ten IgE-binding epitopes were identi?ed in Ara h2us-ing overlapping peptide immunoassays.12,39,173,174In addition,post-translational proline hydroxylation of Ara h2contributes to linear IgE epitopes.202

Ara h6shares55%identity with the AA sequence of Ara h2and some of the IgE epitopes of Ara h6are cross-reactive with those of Ara h2.173As with Ara h2,the resistance of Ara h6to heat and digestive enzymes was reported.201Seven IgE-binding epitopes were identi?ed for Ara h6by Otsu et al.,173and the linear IgE-binding epitopes of Ara h2and Ara h6were useful in predicting clinical reactions in patients with peanut allergy.

Protein structures of Ara h1e3,5,and8were elucidated by X-ray crystal structure analysis.181,203e206B-cell epitopes of Ara h1e3, 5e13were predicted using in silico methods,and the predicted epitope sequences of Ara h1e3correlated with the epitopes identi?ed experimentally,189suggesting that computational pre-diction of epitopes may contribute to improved accuracy of peanut allergy diagnosis.

Conclusions

Advances in molecular biology and analytical chemistry in the past three decades have facilitated the identi?cation of food aller-gens and their sequential IgE-binding epitopes.The production of recombinant allergens and the use of3-D structural analysis have

Table5

Peanut allergens.

Protein name IUIS name MW(kDa)AA length Accession no.IgE-binding epitopes(amino acid number)Year Ref

Cupin(Vicillin-type, 7S globulin)Ara h164626AAB00861(Ara h1.0101)139e147,175e183(most dominant)200812

26e33*,48e57,66e73*,90e97*,98e104,

108e115,124e131,134e143,144e151,

295e302,312e319,325e334,345e352,

361e385,393e402,409e418,463e468,

498e507*,525e534,539e548,551e560,

559e568,578e587,598e605(*dominant

epitope)

2004,199711,172

Conglutin(2S albumin)Ara h217.5160ABQ96212(Ara h2.01)31e36,43e53,63e68,92e103,106e118,

120e128,130e139,140e152

2014173

31e36(most dominant)200812

30e39,44e59,62e67,70e80,92e103,

110e116,130e136

200539

18e27,24e31,30e39,42e51,52e59,

62e67,68e75,120e125,130e135,146e152

1997174

Ara h615124ABQ96216(Ara h6.0101)1e13,23e33,41e47,58e70,73e85,

97e106,107e119

2014173 Ara h716e17e e e e e

Cupin(Legumin-type, 11S globulin,Glycinin)Ara h360510AAC63045(Ara h3.0101)301e309(most dominant)200812

30e44,237e251,276e290,300e3121999175

Pro?lin Ara h514e e e e e Pathogenesis-related

protein10(PR-10)

Ara h817e e e e e

Non-speci?c lipid-transfer

protein type1

Ara h99.1e e e e e

Oleosin Ara h1018e e e e e Ara h1114e e e e e Defensin Ara h12 5.2e e e e e Ara h138.4e e e e e

H.Matsuo et al./Allergology International64(2015)332e343339

also contributed to this progress.The results of these studies have enhanced our understanding of the mechanisms of food allergy at the molecular level.Although there are a number of limitations associated with studies of food allergen components and epitopes, the detection and quanti?cation of serum IgE antibodies speci?c to allergen components and epitope peptides are useful for the diagnosis and prognosis of food allergy.In addition,clari?cation of the sensitization patterns of allergen components in individual patients might facilitate allergen-speci?c immunotherapy of food allergy.However,numerous issues remain to be investigated.For example,conformational IgE epitopes and T-cell epitopes have not yet been identi?ed for most food allergens,even those for which the3-D structure has been determined.Furthermore,many aller-gens remain unidenti?ed because of biodiversity,especially in seafood,and the disposition and digestion of food allergens after ingestion have not been clari?ed.Future studies should focus on full IgE and T-cell epitope mapping in individual patients to improve the diagnosis,therapy,and prevention of food allergy. Con?ict of interest

The authors have no con?ict of interest to declare.

References

1.Urisu A,Ebisawa M,Ito K,Aihara Y,Ito S,Mayumi M,et al.Japanese guideline

for food allergy2014.Allergol Int2014;63:399e419.

2.Ebisawa M,Nishima S,Ohnishi H,Kondo N.Pediatric allergy and immunology

in Japan.Pediatr Allergy Immunol2013;24:704e14.

3.Gupta RS,Springston EE,Warrier MR,Smith B,Kumar R,Pongracic J,et al.The

prevalence,severity,and distribution of childhood food allergy in the United States.Pediatrics2011;128:e9e17.

4.Nwaru BI,Hickstein L,Panesar SS,Muraro A,Werfel T,Cardona V,et al.The

epidemiology of food allergy in Europe:a systematic review and meta-anal-ysis.Allergy2014;69:62e75.

5.Nwaru BI,Hickstein L,Panesar SS,Roberts G,Muraro A,Sheikh A,et al.

Prevalence of common food allergies in Europe:a systematic review and meta-analysis.Allergy2014;69:992e1007.

6.Sicherer SH,Sampson HA.Food allergy:epidemiology,pathogenesis,diag-

nosis,and treatment.J Allergy Clin Immunol2014;133:291e307.

7.Pascal M,Grishina G,Yang AC,S a nchez-García S,Lin J,Towle D,et al.Mo-

lecular diagnosis of shrimp allergy:ef?ciency of several allergens to predict clinical reactivity.J Allergy Clin Immunol Pract2015;3:521e9.

8.J€a rvinen KM,Beyer K,Vila L,Bardina L,Mishoe M,Sampson HA.Speci?city of

IgE antibodies to sequential epitopes of hen's egg ovomucoid as a marker for persistence of egg allergy.Allergy2007;62:758e65.

9.Beyer K,Jarvinen KM,Bardina L,Mishoe M,Turjanmaa K,Niggemann B,et al.

IgE-binding peptides coupled to a commercial matrix as a diagnostic instru-ment for persistent cow's milk allergy.J Allergy Clin Immunol2005;116: 704e5.

10.Matsuo H,Kohno K,Niihara H,Morita E.Speci?c IgE determination to epitope

peptides of omega-5gliadin and high molecular weight glutenin subunit is a useful tool for diagnosis of wheat-dependent exercise-induced anaphylaxis.

J Immunol2005;175:8116e22.

11.Shref?er WG,Beyer K,Chu TH,Burks AW,Sampson HA.Microarray immu-

noassay:association of clinical history,in vitro IgE function,and heteroge-neity of allergenic peanut epitopes.J Allergy Clin Immunol2004;113:776e82.

12.Flinterman AE,Knol EF,Lencer DA,Bardina L,den Hartog Jager CF,Lin J,et al.

Peanut epitopes for IgE and IgG4in peanut-sensitized children in relation to severity of peanut allergy.J Allergy Clin Immunol2008;121:737e43.

13.Ayuso R,S a nchez-Garcia S,Pascal M,Lin J,Grishina G,Fu Z,et al.Is epitope

recognition of shrimp allergens useful to predict clinical reactivity?Clin Exp Allergy2012;42:293e304.

14.Lin J,Sampson HA.The role of immunoglobulin E-binding epitopes in the

characterization of food allergy.Curr Opin Allergy Clin Immunol2009;9: 357e63.

15.Wood RA,Sicherer SH,Burks AW,Grishin A,Henning AK,Lindblad R,et al.

A phase1study of heat/phenol-killed, E.coli-encapsulated,recombinant

modi?ed peanut proteins Ara h1,Ara h2,and Ara h3(EMP-123)for the treatment of peanut allergy.Allergy2013;68:803e8.

16.Moreno FJ.Gastrointestinal digestion of food allergens:effect on their aller-

genicity.Biomed Pharmacother2007;61:50e60.

17.Tsume Y,Taki Y,Sakane T,Nadai T,Sezaki H,Watabe K,et al.Quantitative

evaluation of the gastrointestinal absorption of protein into the blood and lymph circulation.Biol Pharm Bull1996;19:1332e7.

18.Yokooji T,Nouma H,Matsuo H.Characterization of ovalbumin absorption

pathways in the rat intestine,including the effects of aspirin.Biol Pharm Bull 2014;37:1359e65.19.Yokooji T,Hamura K,Matsuo H.Intestinal absorption of lysozyme,an egg-

white allergen,in rats:kinetics and effect of NSAIDs.Biochem Biophys Res Commun2013;438:61e5.

20.Matsuo H,Morimoto K,Akaki T,Kaneko S,Kusatake K,Kuroda T,et al.Exercise

and aspirin increase levels of circulating gliadin peptides in patients with wheat-dependent exercise-induced anaphylaxis.Clin Exp Allergy2005;35: 461e6.

21.Matsuo H,Kaneko S,Tsujino Y,Honda S,Kohno K,Takahashi H,et al.Effects of

non-steroidal anti-in?ammatory drugs(NSAIDs)on serum allergen levels after wheat ingestion.J Dermatol Sci2009;53:241e3.

22.Kohno K,Matsuo H,Takahashi H,Niihara H,Chinuki Y,Kaneko S,et al.Serum

gliadin monitoring extracts patients with false negative results in challenge tests for the diagnosis of wheat-dependent exercise-induced anaphylaxis.

Allergol Int2013;62:229e38.

23.Untersmayr E,Jensen-Jarolim E.The role of protein digestibility and antacids

on food allergy outcomes.J Allergy Clin Immunol2008;121:1301e8.

24.Kondo Y,Urisu A.Oral allergy syndrome.Allergol Int2009;58:485e91.

25.Price A,Ramachandran S,Smith GP,Stevenson ML,Pomeranz MK,Cohen DE.Oral

allergy syndrome(pollen-food allergy syndrome).Dermatitis2015;26:78e88. 26.Ricci G,Piccinno V,Calamelli E,Giannetti A,Pession https://www.doczj.com/doc/c97070877.html,tex-fruit syndrome in

Italian children and adolescents with natural rubber latex allergy.Int J Immunopathol Pharmacol2013;26:263e8.

27.Hauser M,Roulias A,Ferreira F,Egger M.Panallergens and their impact on the

allergic patient.Allergy Asthma Clin Immunol2010;6:1.

28.Andersen MB,Hall S,Dragsted LO.Identi?cation of european allergy patterns

to the allergen families PR-10,LTP,and pro?lin from Rosaceae fruits.Clin Rev Allergy Immunol2011;41:4e19.

29.Sinha M,Singh RP,Kushwaha GS,Iqbal N,Singh A,Kaushik S,et al.Current

overview of allergens of plant pathogenesis related protein families.Scienti-?cWorldJournal2014;2014:543195.

30.Soh JY,Huang CH,Lee BW.Carbohydrates as food https://www.doczj.com/doc/c97070877.html, Pac Allergy

2015;5:17e24.

31.Altmann F.The role of protein glycosylation in allergy.Int Arch Allergy

Immunol2007;142:99e115.

32.Hensen SM,Derksen M,Pruijn GJ.Multiplex peptide-based B cell epitope

mapping.Methods Mol Biol2014;1184:295e308.

33.Frank R.The SPOT-synthesis technique.Synthetic peptide arrays on mem-

brane supports e principles and applications.J Immunol Methods2002;267: 13e26.

34.Chatchatee P,J€a rvinen KM,Bardina L,Vila L,Beyer K,Sampson HA.Identi?-

cation of IgE and IgG binding epitopes on beta-and kappa-casein in cow's milk allergic patients.Clin Exp Allergy2001;31:1256e62.

35.Matsuo H,Morita E,Tatham AS,Morimoto K,Horikawa T,Osuna H,et al.

Identi?cation of the IgE-binding epitope in omega-5gliadin,a major allergen in wheat-dependent exercise-induced anaphylaxis.J Biol Chem2004;279: 12135e40.

36.Lin J,Bardina L,Shref?er WG,Andreae DA,Ge Y,Wang J,et al.Development of

a novel peptide microarray for large-scale epitope mapping of food allergens.

J Allergy Clin Immunol2009;124:315e22.

37.Martínez-Botas J,Cerecedo I,Zamora J,Vlaicu C,Dieguez MC,G o mez-

Coronado D,et al.Mapping of the IgE and IgG4sequential epitopes of ovo-mucoid with a peptide microarray immunoassay.Int Arch Allergy Immunol 2013;161:11e20.

38.Cerecedo I,Zamora J,Shref?er WG,Lin J,Bardina L,Dieguez MC,et al.Map-

ping of the IgE and IgG4sequential epitopes of milk allergens with a peptide microarray-based immunoassay.J Allergy Clin Immunol2008;122:589e94. 39.Shref?er WG,Lencer DA,Bardina L,Sampson HA.IgE and IgG4epitope mapping

by microarray immunoassay reveals the diversity of immune response to the peanut allergen,Ara h2.J Allergy Clin Immunol2005;116:893e9.

40.Perez-Gordo M,Lin J,Bardina L,Pastor-Vargas C,Cases B,Vivanco F,et al.

Epitope mapping of Atlantic salmon major allergen by peptide microarray immunoassay.Int Arch Allergy Immunol2012;157:31e40.

41.Pom e s A.Relevant B cell epitopes in allergic disease.Int Arch Allergy Immunol

2010;152:1e11.

42.Sharma P,Gaur SN,Arora N.In silico identi?cation of IgE-binding epitopes of

osmotin protein.PLoS One2013;8:e54755.

43.Dall'antonia F,Pavkov-Keller T,Zangger K,Keller W.Structure of allergens

and structure based epitope predictions.Methods2014;66:3e21.

44.Pacios LF,Tordesillas L,Cuesta-Herranz J,Compes E,S a nchez-Monge R,

Palacín A,et al.Mimotope mapping as a complementary strategy to de?ne allergen IgE-epitopes:peach Pru p3allergen as a model.Mol Immunol 2008;45:2269e76.

45.Coales SJ,Tuske SJ,Tomasso JC,Hamuro Y.Epitope mapping by amide

hydrogen/deuterium exchange coupled with immobilization of antibody,on-line proteolysis,liquid chromatography and mass spectrometry.Rapid Com-mun Mass Spectrom2009;23:639e47.

46.Willison LN,Zhang Q,Su M,Teuber SS,Sathe SK,Roux KH.Conformational

epitope mapping of Pru du6,a major allergen from almond nut.Mol Immunol 2013;55:253e63.

47.Xia L,Willison LN,Porter L,Robotham JM,Teuber SS,Sathe SK,et al.Mapping

of a conformational epitope on the cashew allergen Ana o2:a discontinuous large subunit epitope dependent upon homologous or heterologous small subunit association.Mol Immunol2010;47:1808e16.

48.Berin MC,Mayer L.Can we produce true tolerance in patients with food al-

lergy?J Allergy Clin Immunol2013;131:14e22.

H.Matsuo et al./Allergology International64(2015)332e343 340

49.Jardetzky TS,Brown JH,Gorga JC,Stern LJ,Urban RG,Strominger JL,et al.

Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common,polyproline II-like conformation for bound peptides.

Proc Natl Acad Sci U.S.A1996;93:734e8.

50.Nielsen M,Lund O,Buus S,Lundegaard C.MHC class II epitope predictive

algorithms.Immunology2010;130:319e28.

51.Bohle B.T-cell epitopes of food allergens.Clin Rev Allergy Immunol2006;30:

97e108.

52.Tordesillas L,Cuesta-Herranz J,Gonzalez-Mu~n oz M,Pacios LF,Comp e s E,

Garcia-Carrasco B,et al.T-cell epitopes of the major peach allergen,Pru p3: Identi?cation and differential T-cell response of peach-allergic and non-allergic subjects.Mol Immunol2009;46:722e8.

53.Pastorello EA,Monza M,Pravettoni V,Longhi R,Bonara P,Scibilia J,et al.

Characterization of the T-cell epitopes of the major peach allergen Pru p3.Int Arch Allergy Immunol2010;153:1e12.

54.DeLong JH,Simpson KH,Wambre E,James EA,Robinson D,Kwok WW.Ara h

1-reactive T cells in individuals with peanut allergy.J Allergy Clin Immunol 2011;127:1211e8.

55.Pascal M,Konstantinou GN,Masilamani M,Lieberman J,Sampson HA.In silico

prediction of Ara h2T cell epitopes in peanut-allergic children.Clin Exp Al-lergy2013;43:116e27.

56.Ravkov EV,Pavlov IY,Martins TB,Gleich GJ,Wagner LA,Hill HR,et al.Iden-

ti?cation and validation of shrimp-tropomyosin speci?c CD4T cell epitopes.

Hum Immunol2013;74:1542e9.

57.Meulenbroek LA,den Hartog Jager CF,Lebens AF,Knulst AC,Bruijnzeel-

Koomen CA,Garssen J,et al.Characterization of T cell epitopes in bovine a-lactalbumin.Int Arch Allergy Immunol2014;163:292e6.

58.Mine Y,Yang M.Recent advances in the understanding of egg allergens:

basic,industrial,and clinical perspectives.J Agric Food Chem2008;56: 4874e900.

59.Mine Y,Wei Zhang J.Identi?cation and?ne mapping of IgG and IgE epitopes

in ovomucoid.Biochem Biophys Res Commun2002;292:1070e4.

60.Holen E,Bolann B,Elsayed S.Novel B and T cell epitopes of chicken ovomu-

coid(Gal d1)induce T cell secretion of IL-6,IL-13,and IFN-gamma.Clin Exp Allergy2001;31:952e64.

61.Cooke SK,Sampson HA.Allergenic properties of ovomucoid in man.J Immunol

1997;159:2026e32.

62.Bened e S,L o pez-Exp o sito I,L o pez-Fandi~n o R,Molina E.Identi?cation of IgE-

binding peptides in hen egg ovalbumin digested in vitro with human and simulated gastroduodenal?uids.J Agric Food Chem2014;62:152e8.

63.Mine Y,Rupa P.Fine mapping and structural analysis of immunodominant

IgE allergenic epitopes in chicken egg ovalbumin.Protein Eng2003;16: 747e52.

64.Jim e nez-Saiz R,Bened e S,Miralles B,L o pez-Exp o sito I,Molina E,L o pez-

Fandi~n o R.Immunological behavior of in vitro digested egg-white lysozyme.

Mol Nutr Food Res2014;58:614e24.

65.Amo A,Rodríguez-P e rez R,Blanco J,Villota J,Juste S,Moneo I,et al.Gal d6is

the second allergen characterized from egg yolk.J Agric Food Chem2010;58: 7453e7.

66.Quirce S,Mara~n o n F,Umpi e rrez A,de las Heras M,Fern a ndez-Caldas E,

Sastre J.Chicken serum albumin(Gal d5)is a partially heat-labile inhalant and food allergen implicated in the bird-egg syndrome.Allergy2001;56: 754e62.

67.D'Urbano LE,Pellegrino K,Artesani MC,Donnanno S,Luciano R,Riccardi C,

et al.Performance of a component-based allergen-microarray in the diagnosis of cow's milk and hen's egg allergy.Clin Exp Allergy2010;40:1561e70.

68.Tosca MA,Pistorio A,Accogli A,Silvestri M,Rossi GA,Ciprandi G.Egg allergy:

the relevance of molecular-based allergy diagnostics.Clin Exp Allergy2014;44: 1094e5.

69.Caubet JC,Kondo Y,Urisu A,Nowak-We?grzyn A.Molecular diagnosis of egg

allergy.Curr Opin Allergy Clin Immunol2011;11:210e5.

70.Kato I,Schrode J,Kohr WJ,Laskowski Jr M.Chicken ovomucoid:determination

of its amino acid sequence,determination of the trypsin reactive site,and preparation of all three of its domains.Biochemistry1987;26:193e201.

71.Urisu A,Ando H,Morita Y,Wada E,Yasaki T,Yamada K,et al.Allergenic ac-

tivity of heated and ovomucoid-depleted egg white.J Allergy Clin Immunol 1997;100:171e6.

72.Matsuda T,Watanabe K,Nakamura R.Immunochemical and physical prop-

erties of peptic-digested ovomucoid.J Agric Food Chem1983;31:942e6. 73.Ando H,Mov e rare R,Kondo Y,Tsuge I,Tanaka A,Borres MP,et al.Utility of

ovomucoid-speci?c IgE concentrations in predicting symptomatic egg allergy.

J Allergy Clin Immunol2008;122:583e8.

74.Lemon-Mul e H,Sampson HA,Sicherer SH,Shref?er WG,Noone S,Nowak-

Wegrzyn A.Immunologic changes in children with egg allergy ingesting extensively heated egg.J Allergy Clin Immunol2008;122:977e83.

75.Shin M,Han Y,Ahn K.The in?uence of the time and temperature of heat

treatment on the allergenicity of egg white proteins.Allergy Asthma Immunol Res2013;5:96e101.

76.Astwood JD,Leach JN,Fuchs RL.Stability of food allergens to digestion in vitro.

Nat Biotechnol1996;14:1269e73.

77.Mizutani K,Toyoda M,Mikami B.X-ray structures of transferrins and related

proteins.Biochim Biophys Acta2012;1820:203e11.

78.Hochwallner H,Schulmeister U,Swoboda I,Focke-Tejkl M,Civaj V,Balic N,

et al.Visualization of clustered IgE epitopes on alpha-lactalbumin.J Allergy Clin Immunol2010;125:1279e85.

79.J€a rvinen KM,Chatchatee P,Bardina L,Beyer K,Sampson HA.IgE and IgG

binding epitopes on alpha-lactalbumin and beta-lactoglobulin in cow's milk allergy.Int Arch Allergy Immunol2001;126:111e8.

80.Cong YJ,Li LF.Identi?cation of the critical amino acid residues of immuno-

globulin E and immunoglobulin G epitopes in b-lactoglobulin by alanine scanning analysis.J Dairy Sci2012;95:6307e12.

81.Cong Y,Yi H,Qing Y,Li L.Identi?cation of the critical amino acid residues of

immunoglobulin E and immunoglobulin G epitopes on a s1-casein by alanine scanning analysis.J Dairy Sci2013;96:6870e6.

82.Chatchatee P,J€a rvinen KM,Bardina L,Beyer K,Sampson HA.Identi?cation of

IgE-and IgG-binding epitopes on alpha(s1)-casein:differences in patients with persistent and transient cow's milk allergy.J Allergy Clin Immunol 2001;107:379e83.

83.Nakajima-Adachi H,Hachimura S,Ise W,Honma K,Nishiwaki S,Hirota M,

et al.Determinant analysis of IgE and IgG4antibodies and T cells speci?c for bovine alpha(s)1-casein from the same patients allergic to cow's milk:exis-tence of alpha(s)1-casein-speci?c B cells and T cells characteristic in cow's-milk allergy.J Allergy Clin Immunol1998;101:660e71.

84.Spuergin P,Mueller H,Walter M,Schiltz E,Forster J.Allergenic epitopes of

bovine alpha S1-casein recognized by human IgE and IgG.Allergy1996;51: 306e12.

85.Busse PJ,J€a rvinen KM,Vila L,Beyer K,Sampson HA.Identi?cation of

sequential IgE-binding epitopes on bovine alpha(s2)-casein in cow's milk allergic patients.Int Arch Allergy Immunol2002;129:93e6.

86.Ahrens B,Lopes de Oliveira LC,Grabenhenrich L,Schulz G,Niggemann B,

Wahn U,et al.Individual cow's milk allergens as prognostic markers for tolerance development?Clin Exp Allergy2012;42:1630e7.

87.J€a rvinen KM,Beyer K,Vila L,Chatchatee P,Busse PJ,Sampson HA.B-cell

epitopes as a screening instrument for persistent cow's milk allergy.J Allergy Clin Immunol2002;110:293e7.

88.Permyakov EA,Berliner LJ.alpha-Lactalbumin:structure and function.FEBS

Lett2000;473:269e74.

89.Hochwallner H,Schulmeister U,Swoboda I,Balic N,Geller B,Nystrand M,et al.

Microarray and allergenic activity assessment of milk allergens.Clin Exp Al-lergy2010;40:1809e18.

90.Vicente-Serrano J,Caballero ML,Rodríguez-P e rez R,Carretero P,P e rez R,

Blanco JG,et al.Sensitization to serum albumins in children allergic to cow's milk and epithelia.Pediatr Allergy Immunol2007;18:503e7.

91.Restani P,Ballabio C,Cattaneo A,Isoardi P,Terracciano L,Fiocchi A.Charac-

terization of bovine serum albumin epitopes and their role in allergic re-actions.Allergy2004;59(Suppl.78):21e4.

92.Fiocchi A,Restani P,Riva E,Qualizza R,Bruni P,Restelli AR,et al.Meat allergy:

I e Speci?c IgE to BSA and OSA in atopic,beef sensitive children.J Am Coll Nutr

1995;14:239e44.

93.Fiocchi A,Restani P,Riva E.Beef allergy in children.Nutrition2000;16:454e7.

94.Restani P,Fiocchi A,Beretta B,Velon a T,Giovannini M,Galli CL.Effects of

structure modi?cations on IgE binding properties of serum albumins.Int Arch Allergy Immunol1998;117:113e9.

95.Tanabe S,Kobayashi Y,Takahata Y,Morimatsu F,Shibata R,Nishimura T.Some

human B and T cell epitopes of bovine serum albumin,the major beef allergen.Biochem Biophys Res Commun2002;293:1348e53.

96.Beretta B,Conti A,Fiocchi A,Gaiaschi A,Galli CL,Giuffrida MG,et al.Antigenic

determinants of bovine serum albumin.Int Arch Allergy Immunol2001;126: 188e95.

97.Werfel SJ,Cooke SK,Sampson HA.Clinical reactivity to beef in children

allergic to cow's milk.J Allergy Clin Immunol1997;99:293e300.

98.Wal JM.Structure and function of milk allergens.Allergy2001;56(Suppl.67):

35e8.

99.Lisson M,Lochnit G,Erhardt G.Genetic variants of bovine b-and k-casein

result in different immunoglobulin E-binding epitopes after in vitro gastro-intestinal digestion.J Dairy Sci2013;96:5532e43.

100.Han N,J€a rvinen KM,Cocco RR,Busse PJ,Sampson HA,Beyer K.Identi?cation of amino acids critical for IgE-binding to sequential epitopes of bovine kappa-casein and the similarity of these epitopes to the corresponding human kappa-casein sequence.Allergy2008;63:198e204.

101.Savilahti EM,Kuitunen M,Valori M,Rantanen V,Bardina L,Gimenez G,et al.

Use of IgE and IgG4epitope binding to predict the outcome of oral immu-notherapy in cow's milk allergy.Pediatr Allergy Immunol2014;25:227e35. 102.Matsumoto N,Okochi M,Matsushima M,Kato R,Takase T,Yoshida Y,et al.

Peptide array-based analysis of the speci?c IgE and IgG4in cow's milk al-lergens and its use in allergy evaluation.Peptides2009;30:1840e7.

103.Savilahti EM,Rantanen V,Lin JS,Karinen S,Saarinen KM,Goldis M,et al.Early recovery from cow's milk allergy is associated with decreasing IgE and increasing IgG4binding to cow's milk epitopes.J Allergy Clin Immunol 2010;125:1315e21.

104.Denery-Papini S,Bodinier M,Pineau F,Triballeau S,Tranquet O,Adel-Patient K,et al.Immunoglobulin-E-binding epitopes of wheat allergens in patients with food allergy to wheat and in mice experimentally sensitized to wheat proteins.Clin Exp Allergy2011;41:1478e92.

105.Mameri H,Denery-Papini S,Pietri M,Tranquet O,Larr e C,Drouet M,et al.

Molecular and immunological characterization of wheat Serpin(Tri a33).Mol Nutr Food Res2012;56:1874e83.

106.Pahr S,Selb R,Weber M,Focke-Tejkl M,Hofer G,Dordi c A,et al.Biochemical, biophysical and IgE-epitope characterization of the wheat food allergen,Tri a

37.PLoS One2014;9:e111483.

H.Matsuo et al./Allergology International64(2015)332e343341

107.Battais F,Mothes T,Moneret-Vautrin DA,Pineau F,Kanny G,Popineau Y,et al.

Identi?cation of IgE-binding epitopes on gliadins for patients with food al-lergy to wheat.Allergy2005;60:815e21.

108.Yokooji T,Kurihara S,Murakami T,Chinuki Y,Takahashi H,Morita E,et al.

Characterization of causative allergens for wheat-dependent exercise-induced anaphylaxis sensitized with hydrolyzed wheat proteins in facial soap.

Allergol Int2013;62:435e45.

109.Denery-Papini S,Bodinier M,Larr e C,Brossard C,Pineau F,Triballeau S,et al.

Allergy to deamidated gluten in patients tolerant to wheat:speci?c epitopes linked to deamidation.Allergy2012;67:1023e32.

110.Matsuo H,Kohno K,Morita E.Molecular cloning,recombinant expression and IgE-binding epitope of omega-5gliadin,a major allergen in wheat-dependent exercise-induced anaphylaxis.FEBS J2005;272:4431e8.

111.Tanabe S,Arai S,Yanagihara Y,Mita H,Takahashi K,Watanabe M.A major wheat allergen has a Gln-Gln-Gln-Pro-Pro motif identi?ed as an IgE-binding epitope.Biochem Biophys Res Commun1996;219:290e3.

112.Salcedo G,Quirce S,Diaz-Perales A.Wheat allergens associated with Baker's asthma.J Investig Allergol Clin Immunol2011;21:81e92.

113.Tatham AS,Shewry PR.Allergens to wheat and related cereals.Clin Exp Allergy 2008;38:1712e26.

114.Matsuo H,Uemura M,Yorozuya M,Adachi A,Morita E.Identi?cation of IgE-reactive proteins in patients with wheat protein contact dermatitis.Contact Dermat2010;63:23e30.

115.Constantin C,Quirce S,Poorafshar M,Touraev A,Niggemann B,Mari A,et al.

Micro-arrayed wheat seed and grass pollen allergens for component-resolved diagnosis.Allergy2009;64:1030e7.

116.Morita E,Matsuo H,Chinuki Y,Takahashi H,Dahlstr€o m J,Tanaka A.Food-dependent exercise-induced anaphylaxis-importance of omega-5gliadin and HMW-glutenin as causative antigens for wheat-dependent exercise-induced anaphylaxis-.Allergol Int2009;58:493e8.

117.Hofmann SC,Fischer J,Eriksson C,Bengtsson Gref O,Biedermann T,Jakob T.

IgE detection to a/b/g-gliadin and its clinical relevance in wheat-dependent exercise-induced anaphylaxis.Allergy2012;67:1457e60.

118.Pastorello EA,Farioli L,Stafylaraki C,Scibilia J,Mirone C,Pravettoni V,et al.

Wheat-dependent exercise-induced anaphylaxis caused by a lipid transfer protein and not by u-5gliadin.Ann Allergy Asthma Immunol2014;112:386e7. 119.Romano A,Scala E,Rumi G,Gaeta F,Caruso C,Alonzi C,et al.Lipid transfer proteins:the most frequent sensitizer in Italian subjects with food-dependent exercise-induced anaphylaxis.Clin Exp Allergy2012;42:1643e53.

120.Sander I,Rozynek P,Rihs HP,van Kampen V,Chew FT,Lee WS,et al.Multiple wheat?our allergens and cross-reactive carbohydrate determinants bind IgE in baker's asthma.Allergy2011;66:1208e15.

121.Sander I,Rihs HP,Doekes G,Quirce S,Krop E,Rozynek P,et https://www.doczj.com/doc/c97070877.html,ponent-resolved diagnosis of baker's allergy based on speci?c IgE to recombinant wheat?our proteins.J Allergy Clin Immunol2015;135:1529e37.

122.Pahr S,Constantin C,Mari A,Scheiblhofer S,Thalhamer J,Ebner C,et al.

Molecular characterization of wheat allergens speci?cally recognized by pa-tients suffering from wheat-induced respiratory allergy.Clin Exp Allergy 2012;42:597e609.

123.Pastorello EA,Farioli L,Conti A,Pravettoni V,Bonomi S,Iametti S,et al.Wheat IgE-mediated food allergy in European patients:alpha-amylase inhibitors, lipid transfer proteins and low-molecular-weight glutenins.Allergenic mol-ecules recognized by double-blind,placebo-controlled food challenge.Int Arch Allergy Immunol2007;144:10e22.

124.Battais F,Pineau F,Popineau Y,Aparicio C,Kanny G,Guerin L,et al.Food al-lergy to wheat:identi?cation of immunogloglin E and immunoglobulin G-binding proteins with sequential extracts and puri?ed proteins from wheat ?our.Clin Exp Allergy2003;33:962e70.

125.Palacin A,Bartra J,Mu~n oz R,Diaz-Perales A,Valero A,Salcedo G.Anaphylaxis to wheat?our-derived foodstuffs and the lipid transfer protein syndrome:a potential role of wheat lipid transfer protein Tri a14.Int Arch Allergy Immunol 2010;152:178e83.

126.M€a kel€a MJ,Eriksson C,Kotaniemi-Syrj€a nen A,Palosuo K,Marsh J,Borres M, et al.Wheat allergy in children-new tools for diagnostics.Clin Exp Allergy 2014;44:1420e30.

127.Palacin A,Quirce S,Armentia A,Fern a ndez-Nieto M,Pacios LF,Asensio T,et al.

Wheat lipid transfer protein is a major allergen associated with baker's asthma.J Allergy Clin Immunol2007;120:1132e8.

128.G o mez-Casado C,Garrido-Arandia M,Pereira C,Catarino M,Parro V, Armentia A,et https://www.doczj.com/doc/c97070877.html,ponent-resolved diagnosis of wheat?our allergy in baker's asthma.J Allergy Clin Immunol2014;134:480e3.

129.Olivieri M,Biscardo CA,Palazzo P,Pahr S,Malerba G,Ferrara R,et al.Wheat IgE pro?ling and wheat IgE levels in bakers with allergic occupational phe-notypes.Occup Environ Med2013;70:617e22.

130.Sutton R,Skerritt JH,Baldo BA,Wrigley CW.The diversity of allergens involved in bakers'asthma.Clin Allergy1984;14:93e107.

131.Weichel M,Glaser AG,Ballmer-Weber BK,Schmid-Grendelmeier P,Crameri R.

Wheat and maize thioredoxins:a novel cross-reactive cereal allergen family related to baker's asthma.J Allergy Clin Immunol2006;117:676e81.

132.Sander I,Flagge A,Merget R,Halder TM,Meyer HE,Baur X.Identi?cation of wheat?our allergens by means of2-dimensional immunoblotting.J Allergy Clin Immunol2001;107:907e13.

133.Constantin C,Quirce S,Grote M,Touraev A,Swoboda I,Stoecklinger A,et al.

Molecular and immunological characterization of a wheat serine proteinase inhibitor as a novel allergen in baker's asthma.J Immunol2008;180:7451e60.134.Kimoto M,Suzuki M,Komiyama N,Kunimoto A,Yamashita H,Hiemori M, et al.Isolation and molecular cloning of a major wheat allergen,Tri a Bd27K.

Biosci Biotechnol Biochem2009;73:85e92.

135.SotkovskyP,Hub a lek M,Hernychov a L,Nov a k P,Havranov a M,Setinov a I, et al.Proteomic analysis of wheat proteins recognized by IgE antibodies of allergic patients.Proteomics2008;8:1677e91.

136.Hiemori M,Yosida Y,Kimoto M,Yamashita H,Takahashi K,Takahashi K,et al.

Investigation of multiple forms of Tri a Bd27K,a major wheat allergen,by immunoblotting analysis.Biosci Biotechnol Biochem2010;74:199e202. 137.Pahr S,Constantin C,Papadopoulos NG,Giavi S,M€a kel€a M,Pelkonen A,et al.

a-Purothionin,a new wheat allergen associated with severe allergy.J Allergy Clin Immunol2013;132:1000e3.

138.Palosuo K,Alenius H,Varjonen E,Kalkkinen N,Reunala T.Rye gamma-70and gamma-35secalins and barley gamma-3hordein cross-react with omega-5 gliadin,a major allergen in wheat-dependent,exercise-induced anaphy-laxis.Clin Exp Allergy2001;31:466e73.

139.Morita E,Matsuo H,Mihara S,Morimoto K,Savage AW,Tatham AS.Fast omega-gliadin is a major allergen in wheat-dependent exercise-induced anaphylaxis.J Dermatol Sci2003;33:99e104.

140.Palosuo K,Varjonen E,Kekki OM,Klemola T,Kalkkinen N,Alenius H,et al.

Wheat omega-5gliadin is a major allergen in children with immediate allergy to ingested wheat.J Allergy Clin Immunol2001;108:634e8.

141.Brans R,Sauer I,Czaja K,Pfützner W,Merk HF.Microarray-based detection of speci?c IgE against recombinant u-5-gliadin in suspected wheat-dependent exercise-induced anaphylaxis.Eur J Dermatol2012;22:358e62.

142.Ebisawa M,Shibata R,Sato S,Borres MP,Ito K.Clinical utility of IgE antibodies to u-5gliadin in the diagnosis of wheat allergy:a pediatric multicenter challenge study.Int Arch Allergy Immunol2012;158:71e6.

143.Shibata R,Nishima S,Tanaka A,Borres MP,Morita https://www.doczj.com/doc/c97070877.html,efulness of speci?c IgE antibodies to u-5gliadin in the diagnosis and follow-up of Japanese children with wheat allergy.Ann Allergy Asthma Immunol2011;107:337e43.

144.Ito K,Futamura M,Borres MP,Takaoka Y,Dahlstrom J,Sakamoto T,et al.IgE antibodies to omega-5gliadin associate with immediate symptoms on oral wheat challenge in Japanese children.Allergy2008;63:1536e42.

145.Matsuo H,Dahlstr€o m J,Tanaka A,Kohno K,Takahashi H,Furumura M,et al.

Sensitivity and speci?city of recombinant omega-5gliadin-speci?c IgE mea-surement for the diagnosis of wheat-dependent exercise-induced anaphy-laxis.Allergy2008;63:233e6.

146.Beyer K,Chung D,Schulz G,Mishoe M,Niggemann B,Wahn U,et al.The role of wheat omega-5gliadin IgE antibodies as a diagnostic tool for wheat allergy in childhood.J Allergy Clin Immunol2008;122:419e21.

147.Baar A,Pahr S,Constantin C,Scheiblhofer S,Thalhamer J,Giavi S,et al.Mo-lecular and immunological characterization of Tri a36,a low molecular weight glutenin,as a novel major wheat food allergen.J Immunol2012;189: 3018e25.

148.Chinuki Y,Morita E.Wheat-dependent exercise-induced anaphylaxis sensi-tized with hydrolyzed wheat protein in soap.Allergol Int2012;61:529e37. 149.Tanabe S.IgE-binding abilities of pentapeptides,QQPFP and PQQPF,in wheat gliadin.J Nutr Sci Vitaminol2004;50:367e70.

150.Sn e garoff J,Branlard G,Bouchez-Mahiout I,Laudet B,Tylichova M,Chardot T, et al.Recombinant proteins and peptides as tools for studying IgE reactivity with low-molecular-weight glutenin subunits in some wheat allergies.J Agric Food Chem2007;55:9837e45.

151.Baar A,Pahr S,Constantin C,Giavi S,Manoussaki A,Papadopoulos NG,et al.

Speci?c IgE reactivity to Tri a36in children with wheat food allergy.J Allergy Clin Immunol2014;133:585e7.

152.Bouchez-Mahiout I,Sn e garoff J,Tylichova M,Pecquet C,Branlard G, Lauri e re M.Low molecular weight glutenins in wheat-dependant,exercise-induced anaphylaxis:allergenicity and antigenic relationships with omega5-gliadins.Int Arch Allergy Immunol2010;153:35e45.

153.Liu L,Ikeda TM,Branlard G,Pe~n a RJ,Rogers WJ,Lerner SE,et https://www.doczj.com/doc/c97070877.html,parison of low molecular weight glutenin subunits identi?ed by SDS-PAGE,2-DE, MALDI-TOF-MS and PCR in common wheat.BMC Plant Biol2010;10:124. 154.Takahashi H,Matsuo H,Chinuki Y,Kohno K,Tanaka A,Maruyama N,et al.

Recombinant high molecular weight-glutenin subunit-speci?c IgE detection is useful in identifying wheat-dependent exercise-induced anaphylaxis complementary to recombinant omega-5gliadin-speci?c IgE test.Clin Exp Allergy2012;42:1293e8.

155.Chafen JJ,Newberry SJ,Riedl MA,Bravata DM,Maglione M,Suttorp MJ,et al.

Diagnosing and managing common food allergies:a systematic review.JAMA 2010;303:1848e56.

156.Leung NY,Wai CY,Shu S,Wang J,Kenny TP,Chu KH,et al.Current immu-nological and molecular biological perspectives on seafood allergy:a comprehensive review.Clin Rev Allergy Immunol2014;46:180e97.

157.Ayuso R,Lehrer SB,Reese G.Identi?cation of continuous,allergenic regions of the major shrimp allergen Pen a1(tropomyosin).Int Arch Allergy Immunol 2002;127:27e37.

158.Ayuso R,S a nchez-Garcia S,Lin J,Fu Z,Ib a~n ez MD,Carrillo T,et al.Greater epitope recognition of shrimp allergens by children than by adults suggests that shrimp sensitization decreases with age.J Allergy Clin Immunol2010;125: 1286e93.

159.Giuffrida MG,Villalta D,Mistrello G,Amato S,Asero R.Shrimp allergy beyond Tropomyosin in Italy:clinical relevance of Arginine Kinase,Sarcoplasmic calcium binding protein and Hemocyanin.Eur Ann Allergy Clin Immunol 2014;46:172e7.

H.Matsuo et al./Allergology International64(2015)332e343 342

160.Tsabouri S,Triga M,Makris M,Kalogeromitros D,Church MK,Priftis KN.Fish and shell?sh allergy in children:review of a persistent food allergy.Pediatr Allergy Immunol2012;23:608e15.

161.Hajeb P,Selamat J.A contemporary review of seafood allergy.Clin Rev Allergy Immunol2012;42:365e85.

162.Myrset HR,F?ste CK,Kristiansen PE,Dooper MM.Mapping of the immu-nodominant regions of shrimp tropomyosin Pan b1by human IgE-binding and IgE receptor crosslinking studies.Int Arch Allergy Immunol2013;162: 25e38.

163.Bauermeister K,Wangorsch A,Garoffo LP,Reuter A,Conti A,Taylor SL,et al.

Generation of a comprehensive panel of crustacean allergens from the North Sea Shrimp Crangon crangon.Mol Immunol2011;48:1983e92.

164.García-Orozco KD,Aispuro-Hern a ndez E,Yepiz-Plascencia G,Calder o n-de-la-Barca AM,Sotelo-Mundo RR.Molecular characterization of arginine kinase,an allergen from the shrimp Litopenaeus vannamei.Int Arch Allergy Immunol 2007;144:23e8.

165.Yu CJ,Lin YF,Chiang BL,Chow LP.Proteomics and immunological analysis of a novel shrimp allergen,Pen m2.J Immunol2003;170:445e53.

166.Renand A,Newbrough S,Wambre E,DeLong JH,Robinson D,Kwok WW.

Arginine kinase Pen m2as an important shrimp allergen recognized by TH2 cells.J Allergy Clin Immunol2014;134:1456e9.

167.Ayuso R,Grishina G,Bardina L,Carrillo T,Blanco C,Ib a~n ez MD,et al.Myosin light chain is a novel shrimp allergen,Lit v3.J Allergy Clin Immunol2008;122: 795e802.

168.Abdel Rahman AM,Kamath S,Lopata AL,Helleur RJ.Analysis of the allergenic proteins in black tiger prawn(Penaeus monodon)and characterization of the major allergen tropomyosin using mass spectrometry.Rapid Commun Mass Spectrom2010;24:2462e70.

169.Ayuso R,Grishina G,Ib a~n ez MD,Blanco C,Carrillo T,Bencharitiwong R,et al.

Sarcoplasmic calcium-binding protein is an EF-hand-type protein identi?ed as a new shrimp allergen.J Allergy Clin Immunol2009;124:114e20.

170.Shiomi K,Sato Y,Hamamoto S,Mita H,Shimakura K.Sarcoplasmic calcium-binding protein:identi?cation as a new allergen of the black tiger shrimp Penaeus monodon.Int Arch Allergy Immunol2008;146:91e8.

171.Kalyanasundaram A,Santiago TC.Identi?cation and characterization of new allergen troponin C(Pen m6.0101)from Indian black tiger shrimp Penaeus monodon.Eur Food Res Technol2015;240:509e15.

172.Burks AW,Shin D,Cockrell G,Stanley JS,Helm RM,Bannon GA.Mapping and mutational analysis of the IgE-binding epitopes on Ara h1,a legume vicilin protein and a major allergen in peanut hypersensitivity.Eur J Biochem 1997;245:334e9.

173.Otsu K,Guo R,Dreskin SC.Epitope analysis of Ara h2and Ara h6:charac-teristic patterns of IgE-binding?ngerprints among individuals with similar clinical histories.Clin Exp Allergy2015;45:471e84.

174.Stanley JS,King N,Burks AW,Huang SK,Sampson H,Cockrell G,et al.Iden-ti?cation and mutational analysis of the immunodominant IgE binding epi-topes of the major peanut allergen Ara h2.Arch Biochem Biophys1997;342: 244e53.

175.Rabjohn P,Helm EM,Stanley JS,West CM,Sampson HA,Burks AW,et al.

Molecular cloning and epitope analysis of the peanut allergen Ara h3.J Clin Invest1999;103:535e42.

176.Radauer C,Nandy A,Ferreira F,Goodman RE,Larsen JN,Lidholm J,et al.

Update of the WHO/IUIS Allergen nomenclature database based on analysis of allergen sequences.Allergy2014;69:413e9.

177.Kleber-Janke T,Crameri R,Appenzeller U,Schlaak M,Becker WM.Selective cloning of peanut allergens,including pro?lin and2S albumins,by phage display technology.Int Arch Allergy Immunol1999;119:265e74.

178.Flinterman AE,van Hoffen E,den Hartog Jager CF,Koppelman S,Pasmans SG, Hoekstra MO,et al.Children with peanut allergy recognize predominantly Ara h2and Ara h6,which remains stable over time.Clin Exp Allergy2007;37: 1221e8.

179.Koid AE,Chapman MD,Hamilton RG,van Ree R,Versteeg SA,Dreskin SC,et al.

Ara h6complements Ara h2as an important marker for IgE reactivity to peanut.J Agric Food Chem2014;62:206e13.

180.Barre A,Borges JP,Roug e P.Molecular modelling of the major peanut allergen Ara h1and other homotrimeric allergens of the cupin superfamily:a struc-tural basis for their IgE-binding cross-reactivity.Biochimie2005;87:499e506. 181.Jin T,Guo F,Chen YW,Howard A,Zhang YZ.Crystal structure of Ara h3,a major allergen in peanut.Mol Immunol2009;46:1796e804.

182.Kleber-Janke T,Crameri R,Scheurer S,Vieths S,Becker WM.Patient-tailored cloning of allergens by phage display:peanut(Arachis hypogaea)pro?lin,a

food allergen derived from a rare mRNA.J Chromatogr B Biomed Sci Appl 2001;756:295e305.

183.Mittag D,Akkerdaas J,Ballmer-Weber BK,Vogel L,Wensing M,Becker WM, et al.Ara h8,a Bet v1-homologous allergen from peanut,is a major allergen in patients with combined birch pollen and peanut allergy.J Allergy Clin Immunol2004;114:1410e7.

184.Asarnoj A,Mov e rare R,Ostblom E,Poorafshar M,Lilja G,Hedlin G,et al.IgE to peanut allergen components:relation to peanut symptoms and pollen sensitization in8-year-olds.Allergy2010;65:1189e95.

185.Krause S,Reese G,Randow S,Zennaro D,Quaratino D,Palazzo P,et al.Lipid transfer protein(Ara h9)as a new peanut allergen relevant for a Mediter-ranean allergic population.J Allergy Clin Immunol2009;124:771e8.

186.Javaloyes G,Goikoetxea MJ,García Nu~n ez I,Aranda A,Sanz ML,Blanca M, et al.Pru p3acts as a strong sensitizer for peanut allergy in Spain.J Allergy Clin Immunol2012;130:1432e4.

187.Bublin M,Breiteneder H.Cross-reactivity of peanut allergens.Curr Allergy Asthma Rep2014;14:426.

188.Cabanos C,Katayama H,Tanaka A,Utsumi S,Maruyama N.Expression and puri?cation of peanut oleosins in insect cells.Protein J2011;30:457e63. 189.Mishra A,Jain A,Arora N.Mapping B-cell epitopes of major and minor peanut allergens and identifying residues contributing to IgE binding.J Sci Food Agric 2015.https://www.doczj.com/doc/c97070877.html,/10.1002/jsfa.7121.

190.Kobayashi S,Katsuyama S,Wagatsuma T,Okada S,Tanabe S.Identi?cation of

a new IgE-binding epitope of peanut oleosin that cross-reacts with buck-

wheat.Biosci Biotechnol Biochem2012;76:1182e8.

191.Petersen A,Rennert S,Bottger M,Krause S,Gutsmann T,Lindner B,et al.

Defensin:a novel allergen in peanuts.Allergy2012;67(Suppl.96):374. 192.Ebisawa M,Mov e rare R,Sato S,Maruyama N,Borres MP,Komata T.Measure-ment of Ara h1-,2-,and3-speci?c IgE antibodies is useful in diagnosis of peanut allergy in Japanese children.Pediatr Allergy Immunol2012;23:573e81.

193.Suratannon N,Ngamphaiboon J,Wongpiyabovorn J,Puripokai P, Chatchatee https://www.doczj.com/doc/c97070877.html,ponent-resolved diagnostics for the evaluation of peanut allergy in a low-prevalence area.Pediatr Allergy Immunol2013;24:665e70. 194.Sicherer SH,Wood RA.Advances in diagnosing peanut allergy.J Allergy Clin Immunol Pract2013;1:1e13.

195.Koppelman SJ,Bruijnzeel-Koomen CA,Hessing M,de Jongh HH.Heat-induced conformational changes of Ara h1,a major peanut allergen,do not affect its allergenic properties.J Biol Chem1999;274:4770e7.

196.Eiwegger T,Rigby N,Mondoulet L,Bernard H,Krauth MT,Boehm A,et al.

Gastro-duodenal digestion products of the major peanut allergen Ara h1 retain an allergenic potential.Clin Exp Allergy2006;36:1281e8.

197.van Boxtel EL,Koppelman SJ,van den Broek LA,Gruppen H.Determination of pepsin-susceptible and pepsin-resistant epitopes in native and heat-treated peanut allergen Ara h1.J Agric Food Chem2008;56:2223e30.

198.B?gh KL,Nielsen H,Madsen CB,Mills EN,Rigby N,Eiwegger T,et al.IgE epitopes of intact and digested Ara h1:a comparative study in humans and rats.Mol Immunol2012;51:337e46.

199.B?gh KL,Nielsen H,Eiwegger T,Madsen CB,Mills EN,Rigby NM,et al.IgE versus IgG4epitopes of the peanut allergen Ara h1in patients with severe allergy.Mol Immunol2014;58:169e76.

200.Chatel JM,Bernard H,Orson FM.Isolation and characterization of two com-plete Ara h2isoforms cDNA.Int Arch Allergy Immunol2003;131:14e8. 201.Lehmann K,Schweimer K,Reese G,Randow S,Suhr M,Becker WM,et al.

Structure and stability of2S albumin-type peanut allergens:implications for the severity of peanut allergic reactions.Biochem J2006;395:463e72.

202.Bernard H,Guillon B,Drumare MF,Paty E,Dreskin SC,Wal JM,et al.Aller-genicity of peanut component Ara h2:contribution of conformational versus linear hydroxyproline-containing epitopes.J Allergy Clin Immunol2015;135: 1267e74.

203.Chruszcz M,Maleki SJ,Majorek KA,Demas M,Bublin M,Solberg R,et al.

Structural and immunologic characterization of Ara h1,a major peanut allergen.J Biol Chem2011;286:39318e27.

204.Mueller GA,Gosavi RA,Pom e s A,Wünschmann S,Moon AF,London RE,et al.

Ara h2:crystal structure and IgE binding distinguish two subpopulations of peanut allergic patients by epitope diversity.Allergy2011;66:878e85. 205.Wang Y,Fu TJ,Howard A,Kothary MH,McHugh TH,Zhang Y.Crystal structure of peanut(Arachis hypogaea)allergen Ara h5.J Agric Food Chem2013;61: 1573e8.

206.Hurlburt BK,Offermann LR,McBride JK,Majorek KA,Maleki SJ,Chruszcz M.

Structure and function of the peanut panallergen Ara h8.J Biol Chem 2013;288:36890e901.

H.Matsuo et al./Allergology International64(2015)332e343343

峄山碑及译文

《峄山碑》全文及译文 《峄山碑》是秦始皇二十八年(公元前219年)东巡时所刻,下面是小编为大家带来的峄山碑全文及译文,欢迎阅读。 碑文 皇帝立国,维初在昔,嗣世称王 讨伐乱逆,威动四极,武义直方 戎臣奉诏,经时不久,灭六暴强 廿有六年,上荐高号,孝道显明 既献泰成,乃降专惠,亲巡远方 登于绎山①,群臣从者,咸思攸长 追念乱世,分土建邦,以开争理 功战日作,流血于野,自泰古始 世无万数,陀及五帝,莫能禁止 廼今皇帝,壹家天下,兵不复起 灾害灭除,黔首康定,利泽长久 群臣诵略,刻此乐石,以箸经纪 注:①绎山:指峄山。 皇帝日:“金石刻尽,始皇帝所为也。今袭号而金石刻辞不称,始皇帝其于久远也。如后嗣为之者,不称成功盛德。”丞相臣斯、臣去疾,御史大夫臣德。昧死言,臣请具刻诏书,金石刻因明白矣。臣昧死请,制日可。 注释: 皇帝立国,维初在昔,嗣世称王 (维是发语词,不翻。嗣世,一代代,继承。这三句,是一句话。) 讨伐乱逆,威动四极,武义直方 (武义直方,就相当于说正义战争。) 戎臣奉诏,经时不久,灭六暴强 (戎臣,就是带兵的将领。灭六暴强即诛灭六国。) 廿有六年,上荐高号,孝道显明

(皇帝二十六年,公元前221年。群臣上表,请求秦王称皇帝号。就叫上荐高号。这个孝道,是说秦国各代国君,均有统一之志,始皇帝的统一,乃是完成祖先之道。)既献泰成,乃降专惠,亲巡远方 (溥惠,尃惠。溥就是普。我用的书里面,百度百科里面,都错成了专字。既献泰成,乃降尃惠,亲巡远方。应该是这样子才对。既,就是完成了的意思。泰成,就是大成。完成了统一大业。普惠,把恩泽给了所有的人。寴车巛,就是亲巡。从车和从辵,都是表示动作的形符。坐车出巡,就是车巛。) 登于绎山①,群臣从者,咸思攸长 (登上峄山,大家都发起了怀古之悠情。) 追念乱世,分土建邦,以开争理 (过去是乱世,起因于分土建国,就是封建制。所以,大家才会去争斗。) 功战日作,流血于野,自泰古始 (功战就是攻战。自太古以来就是如此。) 世无万数,,阤yi3及五帝,莫能禁止 (无数代以来,到五帝时代,都不能禁止。阤,延续。) 廼今皇帝,壹家天下,兵不复起 (如今统一了,不再打仗了。) 灾害灭除,黔首康定,利泽长久 (黔首,就是百姓。) 群臣诵略,刻此乐石,以箸经纪 (诵略,因为皇帝的功德是说不完的,所以,大臣说的,只是大略。是为诵略。经纪,就是法度,秩序。) 以上内容,是始皇帝的刻辞。下面,是秦二世的内容。上面的是四言诗。下面的,是散文了。 皇帝曰:‘金石刻尽始皇帝所为也,令袭号而金石刻辞不称始皇帝。其于久远也,如后嗣为之者,不称成功盛德。丞相臣斯、臣去疾、御史大夫臣德昧死言:‘请具刻诏书,金石刻因明白矣。’臣昧死请。制曰:“可’。” 译文 皇帝立国,维初在昔,嗣世称王 讨伐乱逆,威动四极,武义直方戍臣奉诏,经时不久,灭六暴强

古代晋灵公不君、齐晋鞌之战原文及译文

晋灵公不君(宣公二年) 原文: 晋灵公不君。厚敛以雕墙。从台上弹人,而观其辟丸也。宰夫胹熊蹯不熟,杀之,寘诸畚,使妇人载以过朝。赵盾、士季见其手,问其故而患之。将谏,士季曰:“谏而不入,则莫之继也。会请先,不入,则子继之。”三进及溜,而后视之,曰:“吾知所过矣,将改之。”稽首而对曰:“人谁无过?过而能改,善莫大焉。诗曰:‘靡不有初,鲜克有终。’夫如是,则能补过者鲜矣。君能有终,则社稷之固也,岂惟群臣赖之。又曰:‘衮职有阙,惟仲山甫补之。’能补过也。君能补过,衮不废矣。” 犹不改。宣子骤谏,公患之,使鉏麑贼之。晨往,寝门辟矣,盛服将朝。尚早,坐而假寐。麑退,叹而言曰:“不忘恭敬,民之主也。贼民之主,不忠;弃君之命,不信。有一于此,不如死也!”触槐而死。 秋九月,晋侯饮赵盾酒,伏甲将攻之。其右提弥明知之,趋登曰:“臣侍君宴,过三爵,非礼也。”遂扶以下。公嗾夫獒焉。明搏而杀之。盾曰:“弃人用犬,虽猛何为!”斗且出。提弥明死之。 初,宣子田于首山,舍于翳桑。见灵辄饿,问其病。曰:“不食三日矣!”食之,舍其半。问之,曰:“宦三年矣,未知母之存否。今近焉,请以遗之。”使尽之,而为之箪食与肉,寘诸橐以与之。既而与为公介,倒戟以御公徒,而免之。问何故,对曰:“翳桑之饿人也。”问其名居,不告而退。——遂自亡也。 乙丑,赵穿①攻灵公于桃园。宣子未出山而复。大史书曰:“赵盾弑其君。”以示于朝。宣子曰:“不然。”对曰:“子为正卿,亡不越竟,反不讨贼,非子而谁?”宣子曰:“呜呼!‘我之怀矣,自诒伊戚。’其我之谓矣。” 孔子曰:“董狐,古之良史也,书法不隐。赵宣子,古之良大夫也,为法受恶。惜也,越竞乃免。” 译文: 晋灵公不行君王之道。他向人民收取沉重的税赋以雕饰宫墙。他从高台上用弹弓弹人,然后观赏他们躲避弹丸的样子。他的厨子做熊掌,没有炖熟,晋灵公就把他杀了,把他的尸体装在草筐中,让宫女用车载着经过朝廷。赵盾和士季看到露出来的手臂,询问原由后感到很忧虑。他们准备向晋灵公进谏,士季说:“如果您去进谏而君王不听,那就没有人能够再接着进谏了。还请让我先来吧,不行的话,您再接着来。”士季往前走了三回,行了三回礼,一直到屋檐下,晋灵公才抬头看他。晋灵公说:“我知道我的过错了,我会改过的。”士季叩头回答道:“谁能没有过错呢?有过错而能改掉,这就是最大的善事了。《诗经》说:‘没有人向善没有一个开始的,但却很少有坚持到底的。’如果是这样,那么能弥补过失的人是很少的。您如能坚持向善,那么江山就稳固了,不只是大臣们有所依靠啊。

嗜酸性粒细胞性胃肠炎分级诊疗

消化病科疾病分级诊疗指南 嗜酸性粒细胞性胃肠炎(EG) 嗜酸性粒细胞性胃肠炎是以胃肠道嗜酸性粒细胞浸润、胃肠道水肿增厚为特点的胃肠道炎症性疾病,临床表现为腹痛或不适、恶心、呕吐等,部分可出现肠梗阻及腹水,病变亦可累及肝胆系统,引起黄疸。 嗜酸性粒细胞性胃肠炎分类 一、按部位分类 1.局限性:多见于中老年,病变仅累及胃,约占EG26%,此型又称嗜酸性粒细胞性胃炎。胃窦部最常见,主要表现为上腹部的痉挛性疼痛、恶心呕吐等,胃内的肿块可以导致恶变或胃流出道梗阻。 2.弥漫性:多见于中青年,主要表现为上腹部痉挛性疼痛、恶心及呕吐,发作有规律,可能与进食某种食物有关,约占50%患者可出现肠梗阻表现。 二、按浸润程度分类(Klein分型) 1.粘膜型:此型病变主要累及胃肠粘膜。患者可有过敏性病史及较高的血IgE浓度,其临床表现为胃肠道蛋白丢失、贫血、吸收不良、体重下降及腹泻等; 2.肌层型:此型病变主要累及肌层,其临床表现为梗阻,这种梗阻有时需要手术治疗,另外,还偶有胃肠道出血和瘘

管形成; 3.浆膜型:此型病变主要累及浆膜层,其临床表现为腹痛,且常伴有腹膜炎、腹水等。 根据上述分类,按照如下分级诊疗指南实施救治: 一级医院 根据患者病史、临床表现、血常规化验等做出初步诊断,在尽量保证患者安全前提下尽快转诊至二级或三级医院进一步明确诊断及治疗。 二级医院 接诊病人后做出初步诊断,在安全前提下尽快完善胃肠镜及病理化验以在最短时间内完成诊断,有腹水患者需行腹水常规、生化、脱落细胞化验。同时嘱患者尽量避免引起胃肠过敏食物,给以维持水电解质热量平衡,给予对症及支持治疗。诊断明确后,可给以口服糖皮质激素、色甘酸钠或抗过敏药物治疗。若发生肠梗阻,除禁饮食、胃肠减压、通便灌肠、抗感染、抑酸、补液等基础治疗外,有经验的医院可行肠梗阻手术切除梗阻的部分胃肠道。手术经验不丰富的医院可转三级医院手术治疗。 三级医院

峄山碑 释文

峄山碑释文 皇帝立国,维初在昔, 维是发语词,不翻。 嗣世称王,一代代,继承。 这三句,是一句话。 讨伐乱逆,威动四极,武义直方。 武义直方,就相当于说正义战争。 我们的战争是正义的。 我们作战的对象,是乱逆 戎臣奉诏,经时不久,灭六暴强。 戎臣,就是带兵的将领。诛灭六国。 廿有六年,上荐高号,孝道显明。 皇帝二十六年,公元前221年。 群臣上表,请求秦王称皇帝号。就叫上荐高号。 这个孝道,是说秦国各代国君,均有统一之志, 始皇帝的统一,乃是完成祖先之道。 既献泰成,乃降专惠,亲巡远方。 溥惠, 尃惠。 溥就是普。 我用的书里面,百度百科里面,都错成了专字。 既献泰成,乃降尃惠,亲巡远方。 应该是这样子才对。 既,就是完成了的意思。泰成,就是大成。 完成了统一大业。 普惠,把恩泽给了所有的人。 寴车巛,就是亲巡。 从车和从辵,都是表示动作的形符。 坐车出巡,就是车巛。 登于峄山,群臣从者,咸思攸长。 登上峄山,大家都发起了怀古之悠情。 追念乱世,分土建邦,以开争理。 过去是乱世,起因于分土建国,就是封建制。所以,大家才会去争斗。功战日作,流血于野,自泰古始。 功战就是攻战。自太古以来就是如此。 世无万数,陀及五帝,莫能禁止 无数代以来,到五帝时代,都不能禁止。 阤,延续。 乃今皇帝,壹家天下,兵不复起 如今统壹了,不再打仗了。 灾害灭除,黔首康定,利泽长久 黔首,就是百姓。 群臣诵略,刻此乐石,以著经纪 经纪,就是法度,秩序。

诵略,因为皇帝的功德是说不完的,所以,大臣说的,只是大略。是为诵略。以上内容,是始皇帝的刻辞。 下面,是秦二世的内容。 上面的是四言诗。 下面的,是散文了。 皇帝曰,金石刻尽始皇帝所为也, 今袭号,而金石刻辞不称始皇帝,其于久远也。如后嗣为之者,不称成功盛德。丞相臣斯,这是李斯。 臣去疾,此人据说是姓杜。 御史大夫臣德,此人史传无载。 左丞相,右丞相,御史大夫, 是政府首脑。 当时的官制,这三位均是宰相。 当时的制度,是宰相负责制。 可以开府。 就是可以自己组成一个行政班子。 人员由宰相任命。不通过皇帝。 当时的宰相,权利是很大的。 皇帝基本就是个国家象征。 秦始皇很厉害,所以他能管事儿。 到了二世,就不管事了。事全交给宰相处理。 汉朝的皇帝,其实也是不太过问事情的。 政务交给宰相处理。 皇权,相权,在中国历史上, 是皇权越来越大, 相权越来越小。 昧死言,臣请具刻诏书金石刻,因明白矣。臣昧死请。 制曰,可。这是皇帝说的。 皇帝说,可以。 昧死言,就是冒着因冒犯皇帝而可能被处死的危险,来进言。 这是一种大臣上书的格式。 因为皇帝总是对的,皇帝即是圣人。 你对他说话,可能就是错的。 这个峄山刻石就讲完了。 简单的,跟现代汉语没什么区别的词就不用讲了。 其实在战国后期,所有的人, 不论是哪国的百姓, 都是希望统一的。 春秋战国之际的所有思想家,其思想都是要求统一的。 无论是儒,墨,老庄,都要求统一。 社会整体的愿望就是统一,结束战争。 所以,如果不是秦国政治比较急功近利, 他完全可以是一个好的帝国。

嗜酸性粒细胞计数偏高的原因

嗜酸性粒细胞计数偏高的原因 嗜酸性粒细胞计数偏高的原因1、嗜酸性粒偏高的原因嗜酸性粒细胞计数嗜酸性粒细胞起源于骨髓内CFU-s经过单向嗜酸性祖细胞(CFU-EO)阶段在有关生成素诱导下逐步分化成熟为嗜酸性粒细胞在正常人外周血中少见仅为0.5-5%嗜酸性粒细胞有微弱的吞噬作用,但基本是无杀菌力它的主要作用是抑制嗜石破天惊生粒细胞和肥大细胞合成与释放其活性物质吞噬其释出颗粒并分泌组胺酶发破坏组胺从而起到限制过敏反应的作用。此外实验症明它还参加与对嚅虫的免疫反应嗜酸性粒细胞的趋化因子至少有六大来源:①从肥大细胞或嗜碱性粒细胞而来的组胺(histamine);②由补体而来的C3AC5A、C567其中以C5a最为重要;③从致敏淋巴细胞而来的嗜酸性细胞趋化因子;④从寄生虫而来的嗜酸性粒细胞趋化因子;⑤从某些细菌而的嗜酸性粒细胞趋化因子(如乙型溶血性链球菌等);⑥从肿瘤细胞而来的嗜酸性粒细胞趋化因子以上务因素均可引起的嗜酸性粒细胞增多由于嗜酸性粒细胞在外周血中百分率很低故经白细胞总数和嗜酸性粒细胞百分率换算而来的绝对值误差较大因此在临床上需在了解嗜酸性粒细胞的变化时应采用直接计数法[原理]用嗜酸性粒细胞稀释液将血液稀释一定倍数同时破坏红细胞和大部分其它白细胞并将嗜酸性粒细胞着色然后滴入细胞计数盘中计数一定范围内嗜酸性粒细胞数即可求得每升血液中嗜酸性粒细胞数嗜酸性粒细胞稀释液中类繁多虽想方不同但作用大同小异分为保护嗜酸性粒细胞而破坏其它细胞的物质和着染嗜酸性粒细胞的物质(如溴甲酚紫、伊红、石楠红等)可根据本实验室的条件选择配制[参考值](0.05-0.5)×109/L[临床意义] 2、生理变化在劳动、寒冷、饥锇、精神刺激等情况下交感神经兴奋

如何翻译古文

如何翻译古文 学习古代汉语,需要经常把古文译成现代汉语。因为古文今译的过程是加深理解和全面运用古汉语知识解决实际问题的过程,也是综合考察古代汉语水平的过程。学习古代汉语,应该重视古文翻译的训练。 古文翻译的要求一般归纳为信、达、雅三项。“信”是指译文要准确地反映原作的含义,避免曲解原文内容。“达”是指译文应该通顺、晓畅,符合现代汉语语法规范。“信”和“达”是紧密相关的。脱离了“信”而求“达”,不能称为翻译;只求“信”而不顾“达”,也不是好的译文。因此“信”和“达”是文言文翻译的基本要求。“雅”是指译文不仅准确、通顺,而且生动、优美,能再现原作的风格神韵。这是很高的要求,在目前学习阶段,我们只要能做到“信”和“达”就可以了。 做好古文翻译,重要的问题是准确地理解古文,这是翻译的基础。但翻译方法也很重要。这里主要谈谈翻译方法方面的问题。 一、直译和意译 直译和意译是古文今译的两大类型,也是两种不同的今译方法。 1.关于直译。所谓直译,是指紧扣原文,按原文的字词和句子进行对等翻译的今译方法。它要求忠实于原文,一丝不苟,确切表达原意,保持原文的本来面貌。例如: 原文:樊迟请学稼,子曰:“吾不如老农。”请学为圃。子曰:“吾不如老圃。”(《论语?子路》) 译文:樊迟请求学种庄稼。孔子道:“我不如老农民。”又请求学种菜蔬。孔子道:“我不如老菜农。”(杨伯峻《论语译注》) 原文:齐宣王问曰:“汤放桀,武王伐纣,有诸?”(《孟子?梁惠王下》) 译文:齐宣王问道:“商汤流放夏桀,武王讨伐殷纣,真有这回事吗?(杨伯峻《孟子译注》) 上面两段译文紧扣原文,字词落实,句法结构基本上与原文对等,属于直译。 但对直译又不能作简单化理解。由于古今汉语在文字、词汇、语法等方面的差异,今译时对原文作一些适当的调整,是必要的,并不破坏直译。例如: 原文:逐之,三周华不注。(《齐晋鞌之战》) 译文:〔晋军〕追赶齐军,围着华不注山绕了三圈。

嗜酸性粒细胞

【参考值】男性:0.10--0.7×109/L;女性:0.10--0.65×109/L。【生物学变异】妇女绝经约升高8%,4-10岁儿童(农村环境)夜间较白天约高45%。昼夜律中午比早晨约低20%;高海拔约低48%;妊娠约降低25%。【药物影响】⒈增加引起过敏反应导致嗜酸性粒细胞增加的药物有:眠尔通(偶尔)、苯妥英钠(偶尔)、吩噻嗪、氯奋乃静、丙咪嗪、甲基多巴、氨苯喋啶、链激酶、碘化钾、碘化物、氯碘丙脲、碘胺药、碘胺二甲基异恶唑、磺胺甲异恶唑、二甲氧苯青霉素钠、羧苄青霉素、氨苄青霉素、先锋霉素I、III、IV、红霉素、新生霉素、卡那霉素、强力霉素、金霉素(可能)、四环素、氯霉素、紫霉素、利福平、氨基水杨酸、青霉胺(伴皮疹)、氟化物、金(一时性)、去郁敏。异烟肼可引起过敏现象。别嘌呤醇可引起严重的过敏反应。泮地黄中毒时可有过敏反应。仅1%病倒对呋喃啶发生过敏反应。竹桃霉素引起过敏性胆汁郁积致嗜酸性粒细胞增加。青霉素的过敏反应致嗜酸性粒细胞增至20%,1%的病人应用先锋霉素II可增至10%,卷须霉素可增至35%,砷剂一般增加至10%-20%个别病例增至50%.苯茚二酮仅报道一例用药15天后发生过敏反应导致嗜酸性粒细胞增加。应用链霉素的一半病例发生造血的反应引起嗜酸性粒细胞增加。⒉减少注射肾上腺素的直接作用引起嗜酸性粒细胞减少。氢化考的松和糖皮质激素则通过对肾上腺的直接作用引起嗜酸性粒细胞减少。考的松和促皮质素为正常的生理反应,正常人注射促皮质素后,嗜酸性粒细胞可减少80%-90%。消炎痛和普鲁卡因酰胺可出现一时性减少。阿司匹林可引起再生障碍性贫血或全血细胞减少,嗜酸性粒细胞亦减少。用烟酸后2小时嗜酸性粒细胞减少60%,24小时后则增加。用烟酰胺4小时后显著减少。【病理学变异】⒈升高见于变态反应疾病[哮喘、荨麻疹、支气管肺曲霉病、过敏(嗜酸性粒细胞达8%--29%)、湿疹、某些药物反应(青霉素、链霉素、红霉素、阿片等)]、寄生虫病、结节性动脉周围炎和Voisins综合征、皮肤病、恶性血液病和新生物疾患(结节病、何杰金氏病、原发性红细胞增多症、肝癌、卵巢癌、髓样白血病)、射线、苯、猩红热早期(嗜酸性粒细胞8%-20%)、甲状腺机能亢进,心内膜炎和心肌病。⒉减少嗜酸性粒细胞减少见于伤寒、疟疾急性期、糖尿病酸中毒、肾上肾功能亢进,Surrenales和应激状态。

峄山碑全文及译文

峄山碑全文及译文文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

《峄山碑》全文及译文《峄山碑》是秦始皇二十八年(公元前219年)东巡时所刻,下面是小编为大家带来的峄山碑全文及译文,欢迎阅读。 碑文 皇帝立国,维初在昔,嗣世称王 讨伐乱逆,威动四极,武义直方 戎臣奉诏,经时不久,灭六暴强 廿有六年,上荐高号,孝道显明 既献泰成,乃降专惠,亲巡远方 登于绎山①,群臣从者,咸思攸长 追念乱世,分土建邦,以开争理 功战日作,流血于野,自泰古始 世无万数,陀及五帝,莫能禁止 廼今皇帝,壹家天下,兵不复起 灾害灭除,黔首康定,利泽长久 群臣诵略,刻此乐石,以箸经纪 注:①绎山:指峄山。 皇帝日:“金石刻尽,始皇帝所为也。今袭号而金石刻辞不称,始皇帝其于久远也。如后嗣为之者,不称成功盛德。”丞相臣斯、臣去疾,御史大夫臣德。昧死言,臣请具刻诏书,金石刻因明白矣。臣昧死请,制日可。 注释: 皇帝立国,维初在昔,嗣世称王

(维是发语词,不翻。嗣世,一代代,继承。这三句,是一句话。) 讨伐乱逆,威动四极,武义直方 (武义直方,就相当于说正义战争。) 戎臣奉诏,经时不久,灭六暴强 (戎臣,就是带兵的将领。灭六暴强即诛灭六国。) 廿有六年,上荐高号,孝道显明 (皇帝二十六年,公元前221年。群臣上表,请求秦王称皇帝号。就叫上荐高号。这个孝道,是说秦国各代国君,均有统一之志,始皇帝的统一,乃是完成祖先之道。) 既献泰成,乃降专惠,亲巡远方 (溥惠,尃惠。溥就是普。我用的书里面,百度百科里面,都错成了专字。既献泰成,乃降尃惠,亲巡远方。应该是这样子才对。既,就是完成了的意思。泰成,就是大成。完成了统一大业。普惠,把恩泽给了所有的人。寴车巛,就是亲巡。从车和从辵,都是表示动作的形符。坐车出巡,就是车巛。) 登于绎山①,群臣从者,咸思攸长 (登上峄山,大家都发起了怀古之悠情。) 追念乱世,分土建邦,以开争理 (过去是乱世,起因于分土建国,就是封建制。所以,大家才会去争斗。)功战日作,流血于野,自泰古始 (功战就是攻战。自太古以来就是如此。) 世无万数,,阤yi3及五帝,莫能禁止 (无数代以来,到五帝时代,都不能禁止。阤,延续。) 廼今皇帝,壹家天下,兵不复起

齐晋鞌之战原文和译文

鞌之战选自《左传》又名《鞍之战》原文:楚癸酉,师陈于鞌(1)。邴夏御侯,逢丑父为右②。晋解张御克,郑丘缓为右(3)。侯日:“余姑翦灭此而朝食(4)”。不介马而驰之⑤。克伤于矢,流血及屦2 未尽∧6),曰:“余病矣(7)!”张侯曰:“自始合(8),而矢贯余手及肘(9),余折以御,左轮朱殷(10),岂敢言病吾子忍之!”缓曰:“自始合,苟有险,余必下推车,子岂_识之(11)然子病矣!”张侯曰:“师之耳目,在吾旗鼓,进退从之。此车一人殿之(12),可以集事(13),若之何其以病败君之大事也擐甲执兵(14),固即死也(15);病未及死,吾子勉之(16)!”左并辔(17) ,右援拐鼓(18)。马逸不能止(19),师从之,师败绩。逐之,三周华不注(20) 韩厥梦子舆谓己曰:“旦辟左右!”故中御而从齐侯。邴夏曰:“射其御者,君子也。”公曰:“谓之君子而射之,非礼也。”射其左,越于车下;射其右,毙于车中。綦毋张丧车,从韩厥,曰:“请寓乘。”从左右,皆肘之,使立于后。韩厥俛,定其右。逢丑父与公易位。将及华泉,骖絓于木而止。丑父寝于轏中,蛇出于其下,以肱击之,伤而匿之,故不能推车而及。韩厥执絷马前,再拜稽首,奉觞加璧以进,曰:“寡君使群臣为鲁、卫请,曰:‘无令舆师陷入君地。’下臣不幸,属当戎行,无所逃隐。且惧奔辟而忝两君,臣辱戎士,敢告不敏,摄官承乏。” 丑父使公下,如华泉取饮。郑周父御佐车,宛茷为右,载齐侯以免。韩厥献丑父,郤献子将戮之。呼曰:“自今无有代其君任患者,有一于此,将为戮乎”郤子曰:“人不难以死免其君,我戮之不祥。赦之,以劝事君者。”乃免之。译文1:在癸酉这天,双方的军队在鞌这个地方摆开了阵势。齐国一方是邴夏为齐侯赶车,逢丑父当车右。晋军一方是解张为主帅郤克赶车,郑丘缓当车右。齐侯说:“我姑且消灭了这些人再吃早饭。”不给马披甲就冲向了晋军。郤克被箭射伤,血流到了鞋上,但是仍不停止擂鼓继续指挥战斗。他说:“我受重伤了。”解张说:“从一开始接战,一只箭就射穿了我的手和肘,左边的车轮都被我的血染成了黑红色,我哪敢说受伤您忍着点吧!”郑丘缓说:“从一开始接战,如果遇到道路不平的地方,我必定(冒着生命危险)下去推车,您难道了解这些吗不过,您真是受重伤了。”daier 解张说:“军队的耳朵和眼睛,都集中在我们的战旗和鼓声,前进后退都要听从它。这辆车上还有一个人镇守住它,战事就可以成功。为什么为了伤痛而败坏国君的大事呢身披盔甲,手执武器,本来就是去走向死亡,伤痛还没到死的地步,您还是尽力而为吧。”一边说,一边用左手把右手的缰绳攥在一起,用空出的右手抓过郤克手中的鼓棰就擂起鼓来。(由于一手控马,)马飞快奔跑而不能停止,晋军队伍跟着指挥车冲上去,把齐军打得打败。晋军随即追赶齐军,三次围绕着华不注山奔跑。韩厥梦见他去世的父亲对他说:“明天早晨作战时要避开战车左边和右边的位置。”因此韩厥就站在中间担任赶车的来追赶齐侯的战车。邴夏说:“射那个赶车的,他是个君子。”齐侯说: “称他为君子却又去射他,这不合于礼。”daier 于是射车左,车左中箭掉下了车。又射右边的,车右也中箭倒在了车里。(晋军的)将军綦毋张损坏了自己的战车,跟在韩厥的车后说: “请允许我搭乗你的战车。”他上车后,无论是站在车的左边,还是站在车的右边,韩厥都用肘推他,让他站在自己身后——战车的中间。韩厥又低下头安定了一下受伤倒在车中的那位自己的车右。于是逢丑父和齐侯(乘韩厥低头之机)互相调换了位置。将要到达华泉时,齐侯战车的骖马被树木绊住而不能继续逃跑而停了下来。(头天晚上)逢丑父睡在栈车里,有一条蛇从他身子底下爬出来,他用小臂去打蛇,小臂受伤,但他(为了能当车右)隐瞒了这件事。由于这样,他不能用臂推车前进,因而被韩厥追上了。韩厥拿着拴马绳走到齐侯的马前,两次下拜并行稽首礼,捧着一杯酒并加上一块玉璧给齐侯送上去,

嗜酸粒细胞增多症诊断与治疗中国专家共识(2017年版)

?标准与讨论? 嗜酸粒细胞增多症诊断与治疗中国专家共识(2017年版) 中华医学会血液学分会白血病淋巴瘤学组DOI :10.3760/cma.j.issn.0253-2727.2017.07.001 通信作者:肖志坚,中国医学科学院血液学研究所、血液病医院,Email :zjxiao@https://www.doczj.com/doc/c97070877.html, ;王建祥,中国医学科学院血液学研究所、血液病医院,Email :wangjx@https://www.doczj.com/doc/c97070877.html, Chinese expert consensus on the diagnosis and treatment of eosinophilia (2017)Leukemia and Lymphoma Group,Chinese Society of Hematology,Chinese Medical Association Corresponding author:Xiao Zhijian,Institute of Hematology and Blood Diseases Hospital,CAMS &PUMC,Tianjin 300020,China,Email:zjxiao @https://www.doczj.com/doc/c97070877.html,;Wang jianxiang,Institute of Hematology and Blood Diseases Hospital,CAMS &PUMC,Tianjin 300020,China,Email:wangjx @https://www.doczj.com/doc/c97070877.html, 为了进一步规范我国血液科医师对嗜酸粒细胞增多症患者的临床诊治,由中华医学会血液学分会白血病淋巴瘤学组牵头,在广泛征求国内专家意见基础上,最终达成了嗜酸粒细胞增多症的诊断程序、实验室检查、诊断标准和治疗原则等方面的共识。 一、定义和分类[1-6]1.嗜酸粒细胞增多症(Eosinophilia ):外周血嗜酸粒细胞绝对计数>0.5×109/L 。 2.高嗜酸粒细胞增多症(Hypereosinophilia,HE ):外周血2次检查(间隔时间>1个月)嗜酸粒细胞绝对计数>1.5×109/L 和(或)骨髓有核细胞计数嗜酸粒细胞比例≥20%和(或)病理证实组织嗜酸粒细胞广泛浸润和(或)发现嗜酸粒细胞颗粒蛋白显著沉积(在有或没有较明显的组织嗜酸粒细胞浸润情况下)。 3.HE 的分类:分为遗传性(家族性)HE (HE FA )、继发性(反应性)HE (HE R )、原发性(克隆性)HE (HE N )和意义未定(特发性)HE (HE US )的四大类。 (1)HE FA :发病机制不明,呈家族聚集,无遗传性 免疫缺陷症状或体征,无HE R 和HE N 证据。 (2)HE R :主要可能原因有:①过敏性疾病:如哮喘、异位性皮炎、花粉症等;②皮肤病(非过敏性):Wells 综合征等;③药物:包括抗生素和抗痉挛剂;④感染性疾病:寄生虫感染和真菌感染等;⑤胃肠道疾病:嗜酸细胞性胃肠炎、肠道炎症性疾病、慢性胰腺炎、乳糜泄等;⑥脉管炎:Churg-Strauss 综合征、结节性多动脉炎等;⑦风湿病:系统性红斑狼疮、Shulman 病、类风湿性关节炎等;⑧呼吸道疾病:L ǒeffler 综合征、过敏性支气管肺曲霉菌病等;⑨肿瘤:实体瘤、淋巴瘤和急性淋巴细胞白血病(嗜酸粒细胞为非克隆性)、系统性肥大细胞增多症(嗜酸粒细胞为非克隆性)等;⑩其他:慢性移植物抗宿主病、Gleich 病等。 (3)HE N :是指嗜酸粒细胞起源于血液肿瘤克隆。主要包括:①髓系和淋系肿瘤伴PDGFRA 、PDGFRB 、FGFR1重排或PCM1-JAK2、ETV6-JAK2或BCR-JAK2融合基因[7-9];②慢性嗜酸粒细胞白血病-非特指型(CEL-NOS ),包括那些伴ETV6-ABL1、ETV6-FLT3或其他激酶融合基因;③不典型慢性髓性白血病伴嗜酸粒细胞增多(aCML-Eo );④慢性粒单核细胞白血病伴嗜酸粒细胞增多(CMML-Eo );⑤慢性髓性白血病加速期或急变期(偶见);⑥其他骨髓增殖性肿瘤急变期(偶见); ⑦急性髓系白血病伴嗜酸粒细胞增多(AML-Eo ),特别是伴t (8;21)(q22;q22)或inv (16)(p13.1q22)(仅偶见);⑧急性淋巴细胞白血病,如果证实嗜酸粒细胞来源于恶性克隆;⑨系统性肥大细胞增多症(嗜酸粒细胞证实为克隆性)。 (4)HE US :查不到上述引起嗜酸粒细胞增多的原发或继发原因。 4.HE 相关的器官受损[1,5]:器官功能受损,伴显著的组织嗜酸粒细胞浸润和(或)发现嗜酸粒细胞颗粒蛋白广泛沉积(在有或没有较显著的组织嗜酸粒细胞浸润情况下)且至少有以下1条:①纤维化(肺、心脏、消化道、皮肤和其他脏器组织);② 血栓

儿童嗜酸性粒细胞性食管炎诊疗指南

儿童嗜酸性粒细胞性食管炎诊疗指南 近日,来自雅典大学得Papadopoulou 医生及其同事在JPGN 上发表文章,旨在指导儿童、青少年嗜酸性粒细胞性食管炎(EoE)得诊断与治疗。? 嗜酸性粒细胞性食管炎(EoE)就是一种慢性、免疫性食管疾病,临床表现为食管功能障碍,组织病理学表现为嗜酸性粒细胞为主得炎性浸润。食管黏膜活检标本每个高倍视野中有超过15 个嗜酸性粒细胞,即可诊断为EoE。 一、流行病学 流行病学数据主要来自于各个地区得小范围调查结果.由于检查方法与诊断标准得不同,研究发现得EoE发病率也不同,近年来发病呈上升趋势。? 二、临床、消化道内镜、组织病理学特征 EoE没有特异得病原体或内镜下特点.流行病学研究与病例报道显示男性及有过敏性疾病史得患者EOE 高发。EoE 在男性与患过敏性疾病得人群中更为常见,如食物过敏、哮喘与过敏性鼻炎。不同年龄患儿得临床表现各不相同。婴儿与学龄前儿童主要表现为非特异性症状,包括喂养困难、呕吐、反流与拒食。也有病例报道儿童期发生呕吐、腹痛或胸骨后疼痛,青春期发生胃食管反流(GERD)症状、吞咽困难与食物嵌塞。 EoE儿童还可以发生外周血嗜酸性粒细胞增多症(每mm3大于700 个嗜酸性粒细胞)。食物引起得IgE升高表明患儿得EoE可能与食物过敏有关。内镜下较为特异得发现就是增粗得「食管环」,可以表现为黏膜苍白、线状裂隙以及白斑或窄径食管,EoE 内镜下没有发现黏膜断裂,而黏膜断裂可见于GERD与克罗恩病。 但内镜下正常也不能排除EoE,指南推荐:不管内镜下就是否发现病变,都要对食管上端与下端至少进行2-4 次活检.组织病理学检查可以发现食管黏膜中嗜酸性粒细胞密度增高,这种病变可以就是全食管性得,还可发现基底层增生、固有层纤维化以及嗜酸性微脓肿。表皮活检会低估深层病变得严重程度,特别对于EoE,嗜酸性粒细胞只在表皮下层募集,而且食管壁增厚、表皮下纤维化以及神经功能障碍都就是发生在表皮层以下。? 三、鉴别诊断:质子泵抑制剂反应型EoE 与GERD 主要得鉴别诊断就是GERD,但就是也应当排除以下疾病可能:感染性食管炎、贲门失弛缓症、乳糜泻、克罗恩病、结缔组织病、移植物抗宿主性疾病、药物过敏以及嗜酸细胞增多综合征,因为这些疾病食管活检也有嗜酸性粒细胞增多. ?GERD 与EoE得鉴别诊断相当复杂,两者往往相辅相成。GERD 有食管黏膜得断裂,溃疡会损害食管黏膜得屏障功能,增加食物过敏得风险,如食管闭锁修复术后得患儿由于创面溃疡使得患EoE得风险升高.食物过敏反过来又会导致上消化道症状,包括消化道蠕动节律改变、增加短暂性下食管括约肌松弛得次数,从而促进GERD 得发生。EoE还会在胃食管反流发作后引起食管蠕动障碍、清除功能下降等。另外EoE 引起得炎症还会导致食管对酸性物质高度敏感。 总而言之,EoE 与GERD 不就是相互独立得疾病,它们相辅相成,基本无法根据临床表现来区分.鉴别诊断可以通过免疫组织化学染色寻找内皮内肥大细胞与产IgE细胞.另外最新 研究表明,还可以用胞浆内嗜酸性粒细胞源蛋白来鉴别EoE 与GERD。? 四、抗分泌药物帮助确诊EoE 对于有食管功能异常与嗜酸性粒细胞性食管炎得患儿,8周质子泵抑制剂(PPI)后可以帮助她们治疗PPI-反应型嗜酸性粒细胞性食管炎(PPI-REE),但儿童EoE 对PP

《鞌之战》阅读答案(附翻译)原文及翻译

《鞌之战》阅读答案(附翻译)原文及翻 译 鞌之战[1] 选自《左传成公二年(即公元前589年)》 【原文】 癸酉,师陈于鞌[2]。邴夏御齐侯[3],逢丑父为右[4]。晋解张御郤克,郑丘缓为右[5]。齐侯曰:余姑翦灭此而朝食[6]。不介马而驰之[7]。郤克伤于矢,流血及屦,未绝鼓音[8],曰:余病[9]矣!张侯[10]曰:自始合,而矢贯余手及肘[11],余折以御,左轮朱殷[12],岂敢言病。吾子[13]忍之!缓曰:自始合,苟有险[14],余必下推车,子岂识之[15]?然子病矣!张侯曰:师之耳目,在吾旗鼓,进退从之[16]。此车一人殿之[17],可以集事[18],若之何其以病败君之大事也[19]?擐甲执兵,固即死也[20]。病未及死,吾子勉之[21]!左并辔[22],右援枹而鼓[23],马逸不能止[24],师从之。齐师败绩[25]。逐之,三周华不注[26]。 【注释】 [1]鞌之战:春秋时期的著名战役之一。战争的实质是齐、晋争霸。由于齐侯骄傲轻敌,而晋军同仇敌忾、士气旺盛,战役以齐败晋胜而告终。鞌:通鞍,齐国地名,在今山东济南西北。 [2]癸酉:成公二年的六月十七日。师,指齐晋两国军队。陈,

列阵,摆开阵势。 [3]邴夏:齐国大夫。御,动词,驾车。御齐侯,给齐侯驾车。齐侯,齐国国君,指齐顷公。 [4]逢丑父:齐国大夫。右:车右。 [5]解张、郑丘缓:都是晋臣,郑丘是复姓。郤(x )克,晋国大夫,是这次战争中晋军的主帅。又称郤献子、郤子等。 [6]姑:副词,姑且。翦灭:消灭,灭掉。朝食:早饭。这里是吃早饭的意思。这句话是成语灭此朝食的出处。 [7]不介马:不给马披甲。介:甲。这里用作动词,披甲。驰之:驱马追击敌人。之:代词,指晋军。 [8] 未绝鼓音:鼓声不断。古代车战,主帅居中,亲掌旗鼓,指挥军队。兵以鼓进,击鼓是进军的号令。 [9] 病:负伤。 [10]张侯,即解张。张是字,侯是名,人名、字连用,先字后名。 [11]合:交战。贯:穿。肘:胳膊。 [12]朱:大红色。殷:深红色、黑红色。 [13]吾子:您,尊敬。比说子更亲切。 [14]苟:连词,表示假设。险:险阻,指难走的路。 [15]识:知道。之,代词,代苟有险,余必下推车这件事,可不译。 [16]师之耳目:军队的耳、目(指注意力)。在吾旗鼓:在我们

《鞌之战》阅读答案附翻译

《鞌之战》阅读答案(附翻译) 《鞌之战》阅读答案(附翻译) 鞌之战[1] 选自《左传·成公二年(即公元前589年)》 【原文】 癸酉,师陈于鞌[2]。邴夏御齐侯[3],逢丑父为右[4]。晋解张御郤克,郑丘缓为右[5]。齐侯曰:“余姑 翦灭此而朝食[6]。”不介马而驰之[7]。郤克伤于矢, 流血及屦,未绝鼓音[8],曰:“余病[9]矣!”张侯[10]曰:“自始合,而矢贯余手及肘[11],余折以御,左轮 朱殷[12],岂敢言病。吾子[13]忍之!”缓曰:“自始合,苟有险[14],余必下推车,子岂识之[15]?——然 子病矣!”张侯曰:“师之耳目,在吾旗鼓,进退从之[16]。此车一人殿之[17],可以集事[18],若之何其以 病败君之大事也[19]?擐甲执兵,固即死也[20]。病未 及死,吾子勉之[21]!”左并辔[22],右援枹而鼓[23],马逸不能止[24],师从之。齐师败绩[25]。逐之,三周 华不注[26]。 【注释】 [1]鞌之战:春秋时期的著名战役之一。战争的实质是齐、晋争霸。由于齐侯骄傲轻敌,而晋军同仇敌忾、 士气旺盛,战役以齐败晋胜而告终。鞌:通“鞍”,齐

国地名,在今山东济南西北。 [2]癸酉:成公二年的六月十七日。师,指齐晋两国军队。陈,列阵,摆开阵势。 [3]邴夏:齐国大夫。御,动词,驾车。御齐侯,给齐侯驾车。齐侯,齐国国君,指齐顷公。 [4]逢丑父:齐国大夫。右:车右。 [5]解张、郑丘缓:都是晋臣,“郑丘”是复姓。郤(xì)克,晋国大夫,是这次战争中晋军的主帅。又称郤献子、郤子等。 [6]姑:副词,姑且。翦灭:消灭,灭掉。朝食:早饭。这里是“吃早饭”的意思。这句话是成语“灭此朝食”的出处。 [7]不介马:不给马披甲。介:甲。这里用作动词,披甲。驰之:驱马追击敌人。之:代词,指晋军。 [8]未绝鼓音:鼓声不断。古代车战,主帅居中,亲掌旗鼓,指挥军队。“兵以鼓进”,击鼓是进军的号令。 [9]病:负伤。 [10]张侯,即解张。“张”是字,“侯”是名,人名、字连用,先字后名。 [11]合:交战。贯:穿。肘:胳膊。 [12]朱:大红色。殷:深红色、黑红色。 [13]吾子:您,尊敬。比说“子”更亲切。

临床检验试验 嗜酸性粒细胞直接计数

嗜酸性粒细胞直接计数 一、实验目的: 掌握嗜酸性粒细胞直接计数的方法。 二、实验原理: 采用嗜酸性粒细胞稀释液,将血液稀释一定倍数,使大部分的红细胞和其他白细胞破坏,并使嗜酸性粒细胞着色,将稀释的细胞悬液滴入血细胞计数板,计数一定体积内的嗜酸性粒细胞说数量,经过换算得出每升血液中的嗜酸性粒细胞数。 三、实验材料: 显微镜、一次性采血针、试管、试管架、20uL的吸管、胶吸头、干脱脂棉、计数板、盖玻片、显微镜、一次性采血针、嗜酸性粒细胞稀释液。 四、实验步骤: 1、加稀释液:吸取嗜酸性粒细胞稀释液0.38ml于小试管中。 2、采血及加血:用微量吸管采血20uL,擦去管尖外部余血。将吸管插入小试管稀释液的底部,轻轻放出血液,并吸取上层稀释液清洗吸管2~3次。 3、混匀:将试管中的血液与稀释液混匀,待红细胞完全溶解。 4、充池:再次将小试管中的细胞悬液混匀。用玻璃棒蘸取细胞悬液1滴,注入改良Neubauer计数板的2个计数池中,室温静置3~5min。 5、计数:低倍镜下计数2个计数池,共计10个大方格内的嗜酸性粒细胞数。 五、实验结果: 10个大方格内的嗜酸性粒细胞数为8个。 嗜酸性粒细胞/L=8÷10×10×20×106=0.16×109/L。 六、讨论: 1、计数应在60min内完成,因时间太长,嗜酸性粒细胞会被逐渐溶解,造成结果偏低。 2、血液加入稀释液后应立即摇匀,否则易导致血液凝固和细胞聚集,因嗜酸性粒细胞易 破碎,震荡不易太猛烈。 3、嗜酸性粒细胞变化的临床意义 1)嗜酸性粒细胞增多指成人外周血嗜酸性粒细胞绝对值大于0.5×109/L。临床上常见于过敏性疾病及寄生虫感染,为T淋巴细胞介导的反应性嗜酸性粒细胞增多;亦常见于某些恶性肿瘤、骨髓增殖性疾病。 2)嗜酸性粒细胞减少指成人外周血嗜酸性粒细胞绝对值小于0.05×109/L。临床上主要见于传染病急性期、严重组织损伤以及判断垂体或肾上腺皮质功能。 年级:2009 专业:医学检验班级:1班姓名:赵富海学号:2009221792

姜夔《续书谱》原文、译文2

【原文】用笔 用笔不欲太肥,肥则形浊;又不欲太瘦,瘦则形枯;不欲多露锋芒,露则意不持重;不欲深藏圭角,藏则体不精神;不欲上大下小,不欲左高右低,不欲前多后少。欧阳率更结体太拘,而用笔特备众美,虽小楷而翰墨洒落,追踵钟、王,来者不能及也。颜、柳结体既异古人,用笔复溺于一偏。予评二家为书法之一变,数百年间,人争效之,字画刚劲高明,固不为书法之无助,而魏、晋之风规,则扫地矣。然柳氏大字,偏旁清劲可喜,更为奇妙,近世亦有仿效之者,则浊俗不除,不足观。故知与其太肥,不若瘦硬也。 【译文】用笔不要太肥,太肥了字形就浑浊;也不要太瘦,太瘦了字形就憔悴;不要多露锋芒,锋芒太露,字就不稳重;不要深藏棱角,不见棱角,字就没有精神;不要上面大,下面小;不要左边高,右边低;不要先占地位多,后占地位少。欧阳询的书法,结体虽太拘束,但用笔独具众美,就是小楷,笔墨也潇洒利落,上追钟王,后来人是谁也及不上他的。颜柳结体,既与古人不同,用笔又陷于偏执。我说这两家书派是书法的变体,几百年来,人们争相效学,固然其笔画的刚劲高明,对书法艺术的发展不能说毫无帮助,可是魏晋人的风格规模,究已扫地无遗。至柳氏的大字偏旁,清劲可喜,更为奇妙,近代也有效学的,那就免不了俗和浊,变得毫不可观,所以说字与其写得肥,还不如写得瘦些好。 【解读】这一段主要讨论书法用笔的肥瘦问题。关于这一问题,古代书家多有讨论。所谓“古肥而今瘦”,常与“古质而今妍”对举。诗圣杜甫关于开元之前书法“书贵瘦硬”的判断,常被人误解为所有的书法都应该以瘦硬为上。杜甫在其论书诗《李潮八分小篆歌》中,写到: 苍颉鸟迹既茫昧,字体变化如浮云。陈仓石鼓又已讹,大小二篆生八分。秦有李斯汉蔡邕,中间作者寂不闻。峄山之碑野火焚,枣木传刻肥失真。苦县光和尚骨立,书贵瘦硬方通神。……吴郡张颠夸草书,草书非古空雄壮。 在杜甫看来,使用枣木传刻《峄山碑》而使其点画丰肥,坏了风气,书风不古。诗中对仓颉石鼓文、秦相李斯、东汉蔡邕书法的赞叹,对李潮“小篆逼秦相”的赞叹和对当时著名书家张旭“草书非古”的贬斥都反映出杜甫崇尚“瘦硬”的观念。杜甫的这种观念在论及初唐褚薛书风的时候更为突出,如《寄刘峡州伯华使君四十韵》云:“学并卢王敏,书偕禇薛能。”《发潭州》赞曰:“贾傅才未有,禇公书绝伦。”杜甫书贵瘦硬说,主要是就初唐书风而言。“书贵瘦硬”在作为他自己的审美概括的同时,也是初唐书风的真实写照。众所周知,初唐欧、虞、褚、薛四家、盛中唐颜真卿书风、中晚唐柳公权书风代表了唐楷演变三阶段。正如康有为所说: 唐世书凡三变,唐初,欧、虞、褚、薛、王、陆,并辔叠轨,皆尚爽健。开元御宇,天下平乐,明皇极丰肥,故李北海、颜平原、苏灵芝辈并驱时主之好,皆宗肥厚。元和后沈传师柳公权出,矫肥厚之病,专尚清劲,然骨存肉削,天下病矣。 从此角度来说,唐代书法史似乎可以看作肥瘦的演变史。这与姜夔的看法基

左传《齐晋鞌之战》原文+翻译+注释

左传《齐晋鞌之战》原文+翻译+注释 楚癸酉,师陈于鞌(1)。邴夏御侯,逢丑父为右②。晋解张御克,郑丘缓 为右(3)。侯日:“余姑翦灭此而朝食(4)”。不介马而驰之⑤。克伤于矢, 流血及屦2未尽∧?6),曰:“余病矣(7)!”张侯曰:“自始合(8),而矢贯余手 及肘(9),余折以御,左轮朱殷(10),岂敢言病?吾子忍之!”缓曰:“自始合,苟有险,余必下推车,子岂_识之(11)?然子病矣!”张侯曰:“师之耳目,在 吾旗鼓,进退从之。此车一人殿之(12),可以集事(13),若之何其以病败君之大事也?擐甲执兵(14),固即死也(15);病未及死,吾子勉之(16)!”左并辔(17) ,右援拐?鼓(18)。马逸不能止(19),师从之,师败绩。逐之,三周华不注(20) 韩厥梦子舆谓己曰:“旦辟左右!”故中御而从齐侯。邴夏曰:“射其御者,君子也。”公曰:“谓之君子而射之,非礼也。”射其左,越于车下;射其右,毙于车中。綦毋张丧车,从韩厥,曰:“请寓乘。”从左右,皆肘之,使立于后。韩厥俛,定其右。逢丑父与公易位。将及华泉,骖絓于木而止。丑父寝于轏中,蛇出于其下,以肱击之,伤而匿之,故不能推车而及。韩厥执絷马前,再拜稽首,奉觞加璧以进,曰:“寡君使群臣为鲁、卫请,曰:‘无令舆师陷入君地。’下臣不幸,属当戎行,无所逃隐。且惧奔辟而忝两君,臣辱戎士,敢告不敏,摄官承乏。”丑父使公下,如华泉取饮。郑周父御佐车,宛茷为右,载齐侯以免。韩厥献丑父,郤献子将戮之。呼曰:“自今无有代其君任患者,有一于此,将为戮乎?”郤子曰:“人不难以死免其君,我戮之不祥。赦之,以劝事君者。”乃免之。 在癸酉这天,双方的军队在鞌这个地方摆开了阵势。齐国一方是邴夏为齐侯赶车,逢丑父当车右。晋军一方是解张为主帅郤克赶车,郑丘缓当车右。齐侯说:“我姑且消灭了这些人再吃早饭。”不给马披甲就冲向了晋军。郤克被箭射伤,血流到了鞋上,但是仍不停止擂鼓继续指挥战斗。他说:“我受重伤了。”解张说:“从一开始接战,一只箭就射穿了我的手和肘,左边的车轮都被我的血染成了黑红色,我哪敢说受伤?您忍着点吧!”郑丘缓说:“从一开始接战,如果遇到道路不平的地方,我必定(冒着生命危险)下去推车,您难道了解这些吗?不过,您真是受重伤了。”daier解张说:“军队的耳朵和眼睛,都集中在我们的战旗和鼓声,前进后退都要听从它。这辆车上还有一个人镇守住它,战事就可以成功。为什么为了伤痛而败坏国君的大事呢?身披盔甲,手执武器,本来就是去走向死亡,伤痛还没到死的地步,您还是尽力而为吧。”一边说,一边用左手把右手的缰绳攥在一起,用空出的右手抓过郤克手中的鼓棰就擂起鼓来。(由于一手控马,)马飞快奔跑而不能停止,晋军队伍跟着指挥车冲上去,把齐军打得打败。晋军随即追赶齐军,三次围绕着华不注山奔跑。

嗜酸性粒细胞

嗜酸性粒细胞 嗜酸性粒细胞是白细胞的一种。白细胞根据形态差异可分为颗粒和无颗粒两大类。颗 粒白细胞(粒细胞)中含有特殊染色颗粒,用瑞氏染料染色可分辨出三种颗粒白细胞 即中性粒细胞、嗜酸性粒细胞和嗜碱性粒细胞;无颗粒白细胞包括单核细胞和淋巴细 胞。嗜酸性粒细胞具有粗大的嗜酸性颗粒,颗粒内含有过氧化物酶和酸性磷酸酶 【参考值】:嗜酸性粒细胞占白细胞总数的0.5%-3%;其绝对值为0-0.7×10^9/L。 血液中嗜酸性粒细胞的数目有明显的昼夜周期性波动,清晨细胞数减少,午夜时细胞 数增多。这种细胞数的周期性变化是与肾上腺皮质释放糖皮质激素量的昼夜波动有关 的。当血液中皮质激素浓度增高时,嗜酸性粒细胞数减少;而当皮质激素浓度降低时, 细胞数增加。嗜酸性粒细胞的胞质内含有较大的、椭圆形的嗜酸性颗粒。这类白细胞 也具有吞噬功能。 1.嗜酸性粒细胞增多 (1).过敏性疾病 2).寄生虫病(3).皮肤病(4).血液病(5).某些恶性肿瘤(6). 某些传染病 7).其他:风湿性疾病、脑腺垂体功能减低症、过敏性间质性肾炎等也常 伴有嗜酸性粒细胞增多 2.嗜酸性粒细胞减少(eosinopenia): 常见于伤寒、副伤寒初期,大手术、烧伤等应激状态,或长期应用肾上腺皮质激 素后,其临床意义甚小。 红细胞平均体积 【参考值】自动分析仪法为男性83~93FL;女性82~92FL 生理学变异】 1.升高新生儿升高约12%,妊娠约高5%。饮酒约升高4%,吸烟约升高3%。口服避孕药约升高1%。 2.降低激烈的肌肉活动约降低4%,6个月以前的儿童约降低10%。 【药物影响】 1.升高可引起巨幼红细胞贫血的药物有巴比妥酸盐、鲁米那(叶酸代谢障碍)、导眠能、苯妥英钠、非那西丁(偶尔)、氨苯喋啶、雌激素、降糖灵(致叶酸或 vitB12缺乏)、呋喃类、新霉素、异烟肼、环丝氨酸、氨基苯甲酸(诱致消化道吸收障碍所致)、氨基水杨酸、氨甲喋呤、秋水仙碱(伴vitB12缺乏),其中抗惊厥药约升高3%。 2.降低新双香豆素可发生小细胞低色素性贫血。 【病理学变异】

相关主题
文本预览
相关文档 最新文档