当前位置:文档之家› 失效分析技术及其应用第十讲蠕变断裂失效分析

失效分析技术及其应用第十讲蠕变断裂失效分析

失效分析技术及其应用第十讲蠕变断裂失效分析
失效分析技术及其应用第十讲蠕变断裂失效分析

电子产品失效分析大全

电子产品失效分析大全 继电器失效分析 1、样品描述 所送样品是3种继电器,其中NG样品一组15个,OK样品2组各15个,代表性外观照片见图1。委托单位要求分析继电器触点的元素成分、各部件浸出物的成分,确认是否含有有机硅。 图1 样品的代表性外观照片 2、分析方法 2.1 接触电阻 首先用毫欧计测试所有继电器A、B接点的接触电阻,A、B接点的位置见图2所示,检测结果表示NG样品B点的接触电阻均大于100 mΩ,而2种OK样品的A、B点的接触电阻均小于100 mΩ。 图2 样品外观照片

2.2 SEM&EDS分析 对于NG品,根据所测接点电阻的结果,选取B接点接触电阻值高的2个继电器,对于2种OK品,每种任选2个继电器,在不污染触点及其周围的前提下,将样品进行拆分后,用SEM&EDS分析拆分后样品的触点及周围异物的元素成分。触点位置标示如图3所示。所检3种样品共6个继电器的触点中,NG品的触点及触点周围检出大量的含碳(C)、氧(O)、硅(Si)等元素的异物,而OK品的触点表面未检出异物。典型图片如图4、图5所示。 图3 触点位置标识(D指触点C反面) 图4 NG样品触点周围异物SEM&EDS检测结果典型图片

图5 OK样品触点的SEM&EDS检测结果典型图片 2.3 FT-IR分析 在不污染各部件的前提下,将2.2条款中剩下的继电器进行拆分,并将拆分后的部件分成3组,即A组(接点、弹片(可动端子、固定端子))、B组(铁片、铁芯、支架、卷轴)、C组(漆包线),分别将A、B、C组部件装入干净的瓶中,见图6所示,处理后用FT-IR分析萃取物的化学成分,确认其是否含有有机硅。 图6 拆分后样品的外观照片 结果表明,所检3种样品各部件的萃取物中,NG样品B组(铁片、铁芯、支架、卷轴)和C 组(漆包线)检出有机硅,其他样品的部件未检出有机硅。典型图片见图7所示。

金属--断裂与失效分析报告 刘尚慈

金属断裂与失效分析(尚慈编) 第一章概述 失效:机械装备或机械零件丧失其规定功能的现象。 失效类型:表面损伤、断裂、变形、材质变化失效等。 第二章金属断裂失效分析的基本思路 §2—1 断裂失效分析的基本程序 一、现场调查 二、残骸分析 三、实验研究 (一)零件结构、制作工艺及受力状况的分析 (二)无损检测 (三)材质分析,包括成分、性能和微观组织结构分析 (四)断口分析 (五)断裂力学分析 以线弹性理学为基础,分析裂纹前沿附近的受力状态,以应力强度因子K作为应力场的主要参量。 K I=Yσ(πα)1/2 脆性断裂时,裂纹不发生失稳扩展的条件:K I<K IC 对一定尺寸裂纹,其失稳的“临界应力”为:σc=K IC / Y(πα)1/2 应力不变,裂纹失稳的“临界裂纹尺寸”为:αc=(K IC / Yσ)2/π 中低强度材料,当断裂前发生大围屈服时,按弹塑性断裂力学提出的裂纹顶端开位移[COD(δ)]作为材料的断裂韧性参量,当工作应力小于屈服极限时: δ=(8σsα/πE)ln sec(πσ/2σs) 不发生断裂的条件为:δ<δC(临界开位移) J积分判据:对一定材料在大围屈服的情况下,裂纹尖端应力应变场强度由形变功差率J来描述。开型裂纹不断裂的判据为:

J<J IC K IC——断裂韧性;K ISCC——应力腐蚀门槛值 (六)模拟试验 四、综合分析 分析报告的涵:①失效零部件的描述;②失效零部件的服役条件;③失效前的使用记录;④零部件的制造及处理工艺;⑤零件的力学分析;⑥材料质量的评价;⑦失效的主要原因及其影响因素;⑧预防措施及改进建议等。 五、回访与促进建议的贯彻 §2—2 实效分析的基本思路 一、强度分析思路 二、断裂失效的统计分析 三、断裂失效分析的故障树技术 第三章金属的裂纹 §3—1 裂纹的形态与分类 裂纹:两侧凹凸不平,偶合自然。裂纹经变形后,局部磨钝是偶合特征不明显;在氧化或腐蚀环境下,裂缝的两侧耦合特征也可能降低。 发纹:钢中的夹杂物或带状偏析等在锻压或轧制过程中,沿锻轧方向延伸所形成的细小纹缕。发纹的两侧没有耦合特征,两侧及尾端常有较多夹杂物。 裂纹一般是以钢中的缺陷(发纹、划痕、折叠等)为源发展起来的。 一、按宏观形态分为: (1)网状裂纹(龟裂纹),属于表面裂纹。产生的原因,主要是材料表面的化学成分、金相组织、力学性能、应力状态等与中心不一致;或者在加工过程中发生过热与过烧,晶界性能降低等,导致裂纹沿晶界扩展。如: ①铸件表面裂纹:在1250~1450℃形成的裂纹,沿晶界延伸,

高温蠕变疲劳试验机

高温蠕变疲劳试验机 一、主要技术参数 工作介质液压油 试验压力范围0.5-10MPa,,1-20Mpa,21-30 Mpa 试验环境温度室温 时间显示电脑显示 压力曲线显示数据采集软件实时显示 打印报告试验完毕可以打印试验报告并保存 试验数据 试验数据保存可以保存报告及试验过程记录 压力显示精度0.01MPa 控压精度1% 工作温度高温 电源380V 应用范围容器 二、产品介绍 高温蠕变疲劳试验机主要用于各种容器、管件、阀门、管道等的脉冲试验。可对试验压力,试验温度,试验次数等进行控制,最大试验压力30Mpa,支持断电自动保存数据。 试验机箱体是由液压系统和热交换系统,控制仪表等组成的一个有机体。在门都安装闭合检测开关,进行测量检测,以满足试验安全性。整个控制系统采用工业控制计算机+二次控制仪表系统+传感器开关控制模式,并对所有的开关量进行闭合PLC监控,采用逻辑关系,保证系统的安全和可靠,能够进行故障记录,

自动系统锁定逻辑,保证无人值班的试验安全。 三、典型应用: 换热器高温蠕变疲劳试验 热交换器高温蠕变持久松弛试验 四、特点 1.使用安全。工件自动检漏和停机; 2.可存储最近30万次循环的脉冲压力波形。 3.实验数据可回访,可以按照实验时间、实验次数等查询实验结果。 4.支持断电自动保存数据; 5.计算机数据采集处理,打印输出压力、疲劳次数和疲劳压力波形; 6.可实时显示脉冲压力波形(设定波形和实际波形)、压力值、循环次数、流体 温度、环境温度等参数; 7.拆卸被试管路后的泄漏介质自动回收; 8.试验压力-时间曲线能够在屏幕上显示并能打印或存储在存储器内,计算机 控制,存储器有USB接口,可打印实验压力曲线; 9.内部采用保温层,可以控制环境温度与液体温度。 五、高温蠕变疲劳试验机安全保护 1.回路中设有过滤装置,在过滤器的两端装有压差发讯报警器。 2.设备设有过压报警功能,试验回路中的压力发生突变时,设备自动报警,其 超过安全范围时,设备自动停机。 3.设备设有试验间内管道、工件失效的泄漏报警功能。 4.超温保护:设备设置了超温保护装置,当油温超过设定极限温度时,自动停

疲劳断裂行为High

超高频强度钢的疲劳断裂行为 J. Mater. Sci. Technol., Vol.24 No.5, 2008 1) 国家重点实验室的先进加工钢材和产品,北京100081,中国 2) 国家工程研究中心,北京100081钢铁技术先进,中国 3) ,燕山大学,秦皇岛,中国 ⑷对金属的中国社会,北京100711,中国 疲劳断裂行为的超高强度钢与不同熔化过程,研究了夹杂物尺寸不同通过用在旋转弯曲疲劳机上多达107循环加载。观察骨折面发射扫描电子显微镜(FESEM。当它被发现时已经尺寸的夹杂物对疲劳行为未清除。对钢在AISI 4340夹杂物尺寸小于5.5微米,所有的疲劳裂纹除的确做到了包含但不引发的地表和传统从标本的s - n曲线的存在。对65Si2MnW在100和Aermet钢平均12.2和14.9米,疲劳裂纹在较低的夹杂物引发的s - n曲线应力幅值和逐步进行观测。弯曲疲劳 强度的s - n曲线显示一个不断下降和疲劳失效的大型氧化物夹杂源于对60Si2CrVA 钢平均夹杂物的尺寸44.4米。在案件的内部骨折在周期超越约1X 106 65Si2MnWI?60Si2CrVA钢、夹杂物sh-eye经常发现里面和颗粒状明亮的方面(GBF)进行了观察附近约夹杂。GB尺寸的增加这个循环数的增加对失败的长寿命的政权。结构应力强度因子的价值范围内裂纹萌生施工现场对GBI与Nf几乎不变, 几乎是相等的表面夹杂物和内部包含在周期低于约1X 106。既不sh-eye GBF也 没有观察到100 Aermet钢在目前的研究中。 关键词:High-cycle超高强度钢疲劳,夹杂物s - n曲线,鱼眼骨折 1、介绍 High-cycle疲劳(HCF)失败是普通的实用的建筑工程项目的土石方作业。因此,广泛的研究已进行多年了令人满意的理解和解决方案尚未达成。众所周知,有一个很好的旋转弯曲疲劳强度之间的关系,如光滑的标本和抗拉强度、维氏 硬度、高压、或低或中等强度。对于低或中等强度钢如下 (T w 心 0.5Rm (T w 心 1.6HV (1) 在这种情况下,从疲劳裂纹倾向于表面,因此被称为表面的结构。然而,在较高 的拉伸强度范围或维氏硬度、线性相关性没发生,有了更多的散射或甚至星体疲劳强度值。疲劳断裂的起源的高强度钢的表面并不总是,但经常还有一定距离尤其是forhigh-cycle 疲劳,因此被称为内部断裂。断裂表面经常展现一个小光滑斑裂纹起

金属力学性能与失效分析

五,金属的断裂韧性 传统的机械设计是建立在一个基本假设的基础上,即认为材料是连续的、均匀的、各项同性的可变形体。设计构件时不仅要满足强度、刚度和稳定性这三点要求,同时还要满足成本低、重量轻、耗能小、容量大的要求。而原来的传统设计方法已不能合理的解决以上问题,断裂力学则是为适应这一要求而发展起来的学科,是现代强度学科的重要组成部分。 断裂力学是从实际材料中存在缺陷和裂纹出发,把构建看成是连续和间断的统一体。研究带裂纹材料中裂纹拓展的规律,分析裂纹尖端应力、应变分布,并建立断裂判据,用以解决工程构建中的低应力脆性断裂问题。这一整套计算方法和设计原则,使工程中低应力脆断得到合理的说明和解决,使灾难性事故减少发生。宏观断裂理论包括线弹性断裂理论和弹塑性断裂理论。线弹性断裂理论主要研究脆性断裂。而脆性断裂主要以格里菲斯(Griffith)理论为基础。格里菲斯关系式是根据弹性材料和非常尖锐裂纹的应力分布推导出来的。平面应力下的格里菲斯公式为: σ= (5-1) 平面应变下的格里菲斯公式: σ= 5-2) 式中σ—工作应力; E—弹性模量; a—裂纹半长; r s ——比表面能; 图5-1 裂纹扩展三种类型 a-张开型;b-滑开型;c-撕开型 5.1.1应力强度因子 5.1.1.1 裂纹扩展方式 根据裂纹面的位移方式,将裂纹分为三种类型:Ⅰ型或张开型(拉伸型);Ⅱ型

或滑开型(面内剪切型);Ⅲ型或撕开型(面外剪切型);如图5-1所示。 5.1.1.2裂纹尖端的应力场和位移场 (1)Ⅰ型裂纹尖端的应力分量,如图5-2所示。 ) 23 s i n 2s i n 1(2c o s 2y θ θθπσ+=r K I 23c o s 2s i n 2c o s 2θ θθπτr K I xy = 图5-2 双向拉伸作用下的格里菲斯裂纹 图5-3 Ⅱ型Griffithlith 裂纹 Ⅰ型裂纹中y σ是引起断裂的关键性的应力。当0=θ时,则 r K I y πσ2= ) 23sin 2sin 1(2cos 2x θ θθπσ-= r K I

材料断裂理论与失效分析知识点

作业:(8)航空发动机涡轮盘-叶片结构 ◆材料为镍基高温合金,为什么? ◆服役环境的要素有哪些? ◆有可能发生的失效类型是什么? ◆如何设计实验确定失效的类型? ◆改进的建议和措施 一.涡轮叶片的材料 涡轮叶片处于温度最高、应力最复杂、环境最恶劣的部位,是一种特殊的零件,它的数量多,形状复杂,要求高,加工难度大,而且是故障多发的零件,一直以来各发动机厂的生产的关键。所以对涡轮叶片材料就有更高的要求。 涡轮叶片的材料一般选择镍基高温合金。镍基合金就是以镍为基础,加入其他的金属,比如钨、钴、钛、铁等金属,做成以镍为基础的合金。有的镍基高温合金含镍量达到70%左右,其次Cr含量也比较高。其性能主要有: 1.物理性能。具有较高的熔点和弹性模量;各温度下均有较低的热膨胀系数,且随温度变化不大;没有磁性。 2.耐腐蚀性。镍基合金由于含Cr,在氧化性的腐蚀环境中的耐腐蚀性优于纯镍。同时,由于Ni含量高,在还原性腐蚀环境下也能维持良好的耐腐蚀性能。还具有良好的耐应力腐蚀开裂性能,也能抵抗氨气和渗氮、渗碳气氛。 3.机械性能。镍基高温合金在零下、室温及高温时都具有很好的机械性能。 4.高温特性。高温下耐氧化性极佳,对氮、氢以及渗碳也具有极佳的耐受性。 5.热处理及加工、焊接性。高温镍基合金不能通过热处理进行失效硬化,但可以进行固溶热处理和退火处理等。高温镍基合金比较容易进行热加工,冷加工性能比奥氏体不锈钢好。焊接性能与标准奥氏体钢一样,可采用TIG焊接、MIG焊接以及手工电弧焊。 总的来说,镍基合金具有优良的热强热硬性能、热稳定性能及热疲劳性能,可以承受复杂应力,组织稳定,有害相少,高温时抗氧化热腐蚀性好,蠕变特性出色,能够在相当苛刻的高温环境下进行服役。所以涡轮叶片的材料选择高温镍基合金。 二.涡轮叶片的服役环境 涡轮处于燃烧室后面的一个高温部件,而涡轮叶片处于温度最高、应力最复杂、环境最恶劣的部位,即涡轮叶片的服役环境特别的复杂与恶劣。总得来说,涡轮叶片服役环境的要素主要有: 1.不均匀的高温条件下工作。涡轮处于燃烧室后面的一个高温部件,涡轮工作叶片的工作温度大约在720℃~1120℃,其在工作时已达到红热状态,并且其温度场不均匀,随着飞行状态的变化而承受不同的温度,而且还存在高温氧化,这些都使得涡轮叶片的服役环境非常恶劣。 2.高转速条件下工作。涡轮发动机靠涡轮叶片快速旋转将燃气压缩排出,装化为机械能,为航天器提供动力。 3.高应力和复杂应力条件下工作。涡轮工作叶片承受很大的离心力及其弯矩,还要承受燃气施加的很高的弯曲载荷、热应力,还有振动应力和气动力等复杂的应力作用。 4.受到燃气高频脉动及燃气腐蚀的影响。涡轮工作叶片直接接触高温高压燃气,燃烧产生的燃气含有大量的Na,V,S等热腐蚀性元素,使得涡轮工作叶片的工作环境更为苛刻。 三.可能发生的失效类型 根据涡轮叶片的服役环境,可以推断出涡轮叶片的失效方式大概分为正常失效和非正常失效两种。 1.正常失效中的叶片损伤包括由磨损、掉块、内裂等构成的表观损伤和内部冶金组织损伤两类。其中,内部冶金组织损伤是指叶片在低于规定使用温度和应力的服役环境下发生的诸如γ'相粗化,晶界及晶界碳化物形貌的变化,脆性相生成等显微组织的变化。导致的主要失效形式是蠕变失效,但同时还有高温腐蚀、热疲劳和低周疲劳及其交互作用等。蠕变损伤主要表现为蠕变孔洞和蠕变裂纹的产生。 大多数涡轮叶片的失效方式为正常失效方式,即蠕变失效、蠕变-疲劳交互作用导致的失效和腐蚀失效。 2.非正常失效是由于叶片设计不当、制备缺陷或人员操作不当引起的失效行为,主要表现为高周疲劳、超温服役引起的过热甚至过烧等失效形式。 总的来说,涡轮叶片可能的失效类型主要为:疲劳失效、蠕变失效和过载断裂等。 四.设计实验确定失效的类型 1.疲劳失效。金属零件再使用中发生的疲劳断裂具有突发性、高度局部性及对各种缺陷的敏感性等特点;引起疲劳断裂的应力一般很低,端口上经常可观察到特殊的、反映断裂各阶段宏观及微观过程的特殊花样。典型的疲劳端口的宏观形貌结构可分为疲劳核心、疲劳源区、疲劳裂纹的选择发展区、裂纹的快速扩展区及瞬时断裂区等五个区域。 2.蠕变失效。蠕变断裂是材料在恒定应力(应力水平低于材料的断裂强度)作用下应变时间逐渐增加,最后发生断裂。明显的塑性变形是蠕变断裂的主要特征,在端口附近产生许多裂纹,使断裂件的表面呈现龟裂现象。

电子产品失效模式分析

电子产品失效模式分析 失效分析是一门发展中的新兴学科,近年开始从军工向普通企业普及,它一般根据失效模式和现象,通过分析和验证,模拟重现失效的现象,找出失效的原因,挖掘出失效的机理的活动。在提高产品质量,技术开发、改进,产品修复及仲裁失效事故等方面具有很强的实际意义。 01、失效分析流程 图1 失效分析流程 02、各种材料失效分析检测方法 1、PCB/PCBA失效分析

PCB作为各种元器件的载体与电路信号传输的枢纽已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。 图2 PCB/PCBA 失效模式 爆板、分层、短路、起泡,焊接不良,腐蚀迁移等。 常用手段 无损检测:外观检查,X射线透视检测,三维CT检测,C-SAM检测,红外热成像 表面元素分析: ?扫描电镜及能谱分析(SEM/EDS) ?显微红外分析(FTIR)

?俄歇电子能谱分析(AES) ?X射线光电子能谱分析(XPS) ?二次离子质谱分析(TOF-SIMS) 热分析: ?差示扫描量热法(DSC) ?热机械分析(TMA) ?热重分析(TGA) ?动态热机械分析(DMA) ?导热系数(稳态热流法、激光散射法) 电性能测试: ?击穿电压、耐电压、介电常数、电迁移 ?破坏性能测试: ?染色及渗透检测 2、电子元器件失效分析 电子元器件技术的快速发展和可靠性的提高奠定了现代电子装备的基础,元器件可靠性工作的根本任务是提高元器件的可靠性。 图3 电子元器件 失效模式开路,短路,漏电,功能失效,电参数漂移,非稳定失效等

常用手段电测:连接性测试电参数测试功能测试 无损检测: ?开封技术(机械开封、化学开封、激光开封) ?去钝化层技术(化学腐蚀去钝化层、等离子腐蚀去钝化层、机械研磨去钝化层) ?微区分析技术(FIB、CP) 制样技术: ?开封技术(机械开封、化学开封、激光开封) ?去钝化层技术(化学腐蚀去钝化层、等离子腐蚀去钝化层、机械研磨去钝化层) ?微区分析技术(FIB、CP) 显微形貌分析: ?光学显微分析技术 ?扫描电子显微镜二次电子像技术 表面元素分析: ?扫描电镜及能谱分析(SEM/EDS) ?俄歇电子能谱分析(AES) ?X射线光电子能谱分析(XPS) ?二次离子质谱分析(SIMS) 无损分析技术: ?X射线透视技术 ?三维透视技术 ?反射式扫描声学显微技术(C-SAM)

失效分析

失效分析 第三章失效分析的基本方法 1.按照失效件制造的全过程及使用条件的分析方法:(1)审查设计(2)材料分析(3)加工制 造缺陷分析(4)使用及维护情况分析 2.系统工程的分析思路方法:(1)失效系统工程分析法的类型(2)故障树分析法(3)模糊故 障树分析及应用 3.失效分析的程序:调查失效时间的现场;收集背景材料,深入研究分析,综合归纳所有信息 并提出初步结论;重现性试验或证明试验,确定失效原因并提出建议措施;最后写出分析报告等内容。 4.失效分析的步骤:(1)现场调查①保护现场②查明事故发生的时间、地点及失效过程③收集 残骸碎片,标出相对位置,保护好断口④选取进一步分析的试样,并注明位置及取样方法⑤询问目击者及相关有关人员,了解有关情况⑥写出现场调查报告(2)收集背景材料①设备的自然情况,包括设备名称,出厂及使用日期,设计参数及功能要求等②设备的运行记录,要特别注意载荷及其波动,温度变化,腐蚀介质等③设备的维修历史情况④设备的失效历史情况⑤设计图样及说明书、装配程序说明书、使用维护说明书等⑥材料选择及其依据⑦设备主要零部件的生产流程⑧设备服役前的经历,包括装配、包装、运输、储存、安装和调试等阶段⑨质量检验报告及有关的规范和标准。(3)技术参量复验①材料的化学成分②材料的金相组织和硬度及其分布③常规力学性能④主要零部件的几何参量及装配间隙(4)深入分析研究(5)综合分析归纳,推理判断提出初步结论(6)重现性试验或证明试验 5.断口的处理:①在干燥大气中断裂的新鲜断口,应立即放到干燥器内或真空室内保存,以防 止锈蚀,并应注意防止手指污染断口及损伤断口表面;对于在现场一时不能取样的零件尤其是断口,应采取有效的保护,防止零件或断口的二次污染或锈蚀,尽可能地将断裂件移到安全的地方,必要时可采取油脂封涂的办法保护断口。②对于断后被油污染的断口,要进行仔细清洗。③在潮湿大气中锈蚀的断口,可先用稀盐酸水溶液去除锈蚀氧化物,然后用清水冲洗,再用无水酒精冲洗并吹干。④在腐蚀环境中断裂的断口,在断口表面通常覆盖一层腐蚀产物,这层腐蚀产物对分析致断原因往往是非常重要的,因而不能轻易地将其去掉。 6.断口分析的具体任务:①确定断裂的宏观性质,是延性断裂还是脆性断裂或疲劳断裂等。② 确定断口的宏观形貌,是纤维状断口还是结晶状断口,有无放射线花样及有无剪切唇等。③查找裂纹源区的位置及数量,裂纹源的所在位置是在表面、次表面还是在内部,裂纹源是单个还是多个,在存在多个裂纹源区的情况下,它们产生的先后顺序是怎样的等。④确定断口的形成过程,裂纹是从何处产生的,裂纹向何处扩展,扩展的速度如何等。⑤确定断裂的微观机理,是解理型、准解理型还是微孔型,是沿晶型还是穿晶型等。⑥确定断口表面产物的性质,断口上有无腐蚀产物,何种产物,该产物是否参与了断裂过程等。 7.断口的宏观分析(1)最初断裂件的宏观判断①整机残骸的失效分析;②多个同类零件损坏的 失效分析;③同一个零件上相同部位的多处发生破断时的分析。(2)主断面(主裂纹)的宏观判断①利用碎片拼凑法确定主断面;②按照“T”形汇合法确定主断面或主裂纹;③按照裂纹

工程力学中断裂理论在材料中的应用

工程力学中断裂理论在材料中的应用 11级粉体(2)张子龙 1103012022 摘要:介绍了工程力学中的断裂力学发展史及它的主要内容,线弹性和弹塑性断裂力学。它被广泛的应用于现代材料研究中。它的发展解决了许多工程中灾难性的低应力脆断问题,已成为失效分析的重要研究方法之一。 关键词:断裂材料应用 断裂是材料或构件最危险的失效形式,在很多情况下可能造成灾难性的后果。材料的断裂是一个很复杂的过程,受很多因素影响,如材料本身的性质、环境因素、工作应力状态、构件形状及材料的尺寸、结构及缺陷等控制,所以断裂一般是多种因素综合作用的结果。这使得对断裂过程的分析增加了更多的不确定因素,增加了对断裂控制的难度。特别是二次世界大战以来,随着高强材料和大型结构的广泛应用,一些按传统强度理论和常规设计方法、制造的产品,先后发生了不少灾难性断裂事故,特别是国防尖端产品的脆断,引起了人们的震惊和警觉。因为事故往往发生在断裂应力远远Sn 的情况δ/]=甚至低于许用应力[δ低于材料的屈服应力Sδ下。从大量的断裂事故分析中发现,断裂皆与结构中存在缺陷或裂纹有关。传统的设计思想把材料视为无缺陷的理想连续体,而现今工程实际中的构件或材料都不可避免地存在着缺陷和裂纹,因而实际构件的真实强度大大低于理想模型的强度。断裂力学则是从构件或材料内部存在的缺陷或裂纹发了传

统设计思想的严重不足。断裂. 力学是以变形体力学为基础,研究含缺陷(或裂纹)材料和结构的抗裂纹性能,以及在各种工作条件下裂纹的平衡、扩展、失稳及止裂规律的一门学科[1]。断裂力学的发展解决了许多工程中灾难性的低应力脆断问题,已成为失效分析的重要研究方法之一。 1 断裂力学的发展历史 断裂力学理论最早是在1920 年提出。当时Griffith为了研究玻璃、陶瓷等脆性材料的实际强度比理论强度低的原因,提出了在固体材料中或在材料的运行过程中存在或产生裂纹的设想,计算了当裂纹存在时,板状构件中应变能的变化进而得出了一个十分重要的结C a Ca 为裂纹半长常数其中,δ是裂纹扩展的临界应力;果:δ= 度。他成功的解释了玻璃等脆性材料的开裂现象但是应用于金属材料时却并不成功。1949 年Orowan在分析了金属构件的断裂现象后对Griffith 的公式提出了修正,他认为产生裂纹所释放的应变能不仅能转化为表面能,也应转化为裂纹前沿的塑性应变功,而且由于塑性应变功比表面能大得多以至于可以不考虑表面能的影响,其提出的公式为 C a EU/λ)1/δ2 =(2=常数该公式虽然有所进步,但仍U是Griffith 公式范围,而且同表面能一样,应变功未超出经典的难以测量的,因而该公式仍难以应用在工程中。断裂力学的重大突破应归功于Irwin 应力场强度因子概念的提出,以及以后断裂韧性概念的形成。1957 年,Irwin 应用Westergaard·H·M在1939年提出的解

材料断裂理论与失效分析知识点

?材料为镍基高温合金,为什么? ?服役环境的要素有哪些? ?有可能发生的失效类型是什么? ?如何设计实验确定失效的类型? ?改进的建议和措施 一.涡轮叶片的材料涡轮叶片处于温度最高、应力最复杂、环境最恶劣的部位,是一种特殊的零件,它的数量多,形状复杂,要求高,加工难度大,而且是故障多发的零件,一直以来各发动机厂的生产的关键。所以对涡轮叶片材料就有更高的要求。 涡轮叶片的材料一般选择镍基高温合金。镍基合金就是以镍为基础,加入其他的金属,比如钨、钴、钛、铁 等金属,做成以镍为基础的合金。有的镍基高温合金含镍量达到70殊右,其次Cr含量也比较高。其性能主要有: 1. 物理性能。具有较高的熔点和弹性模量;各温度下均有较低的热膨胀系数,且随温度变化不大;没有磁性。 2. 耐腐蚀性。镍基合金由于含Cr,在氧化性的腐蚀环境中的耐腐蚀性优于纯镍。同时,由于Ni含量高,在还原性腐蚀环境下也能维持良好的耐腐蚀性能。还具有良好的耐应力腐蚀开裂性能,也能抵抗氨气和渗氮、渗碳气 氛。 3. 机械性能。镍基高温合金在零下、室温及高温时都具有很好的机械性能。 4. 高温特性。高温下耐氧化性极佳,对氮、氢以及渗碳也具有极佳的耐受性。 5. 热处理及加工、焊接性。高温镍基合金不能通过热处理进行失效硬化,但可以进行固溶热处理和退火处理等。高温镍基合金比较容易进行热加工,冷加工性能比奥氏体不锈钢好。焊接性能与标准奥氏体钢一样,可采用TIG焊接、MIG旱接以及手工电弧焊。 总的来说,镍基合金具有优良的热强热硬性能、热稳定性能及热疲劳性能,可以承受复杂应力,组织稳定,有害相少,高温时抗氧化热腐蚀性好,蠕变特性出色,能够在相当苛刻的高温环境下进行服役。所以涡轮叶片的材料选择高温镍基合金。 二. 涡轮叶片的服役环境涡轮处于燃烧室后面的一个高温部件,而涡轮叶片处于温度最高、应力最复杂、环境最恶劣的部位,即涡轮叶片的服役环境特别的复杂与恶劣。总得来说,涡轮叶片服役环境的要素主要有: 1. 不均匀的高温条件下工作。涡轮处于燃烧室后面的一个高温部件,涡轮工作叶片的工作温度大约在720°C- 1120C,其在工作时已达到红热状态,并且其温度场不均匀,随着飞行状态的变化而承受不同的温度,而且还存在高温氧化,这些都使得涡轮叶片的服役环境非常恶劣。 2. 高转速条件下工作。涡轮发动机靠涡轮叶片快速旋转将燃气压缩排出,装化为机械能,为航天器提供动力。 3. 高应力和复杂应力条件下工作。涡轮工作叶片承受很大的离心力及其弯矩,还要承受燃气施加的很高的弯曲载荷、热应力,还有振动应力和气动力等复杂的应力作用。 4. 受到燃气高频脉动及燃气腐蚀的影响。涡轮工作叶片直接接触高温高压燃气,燃烧产生的燃气含有大量的Na, V, S等热腐蚀性元素,使得涡轮工作叶片的工作环境更为苛刻。 三.可能发生的失效类型根据涡轮叶片的服役环境,可以推断出涡轮叶片的失效方式大概分为正常失效和非正常失效两种。 1. 正常失效中的叶片损伤包括由磨损、掉块、内裂等构成的表观损伤和内部冶金组织损伤两类。其中,内部冶金组织损伤是指叶片在低于规定使用温度和应力的服役环境下发生的诸如丫/相粗化,晶界及晶界碳化物形貌的变化,脆性相生成等显微组织的变化。导致的主要失效形式是蠕变失效,但同时还有高温腐蚀、热疲劳和低周疲劳及其交互作用等。蠕变损伤主要表现为蠕变孔洞和蠕变裂纹的产生。 大多数涡轮叶片的失效方式为正常失效方式,即蠕变失效、蠕变-疲劳交互作用导致的失效和腐蚀失效。 2. 非正常失效是由于叶片设计不当、制备缺陷或人员操作不当引起的失效行为,主要表现为高周疲劳、超温服役引起的过热甚至过烧等失效形式。 总的来说,涡轮叶片可能的失效类型主要为:疲劳失效、蠕变失效和过载断裂等。四.设计实验确定失效的类型 1. 疲劳失效。金属零件再使用中发生的疲劳断裂具有突发性、高度局部性及对各种缺陷的敏感性等特点;引起疲劳断裂的应力一般很低,端口上经常可观察到特殊的、反映断裂各阶段宏观及微观过程的特殊花样。典型的疲劳端口的宏观形貌结构可分为疲劳核心、疲劳源区、疲劳裂纹的选择发展区、裂纹的快速扩展区及瞬时断裂区等五个区域。 2. 蠕变失效。蠕变断裂是材料在恒定应力(应力水平低于材料的断裂强度)作用下应变时间逐渐增加,最后发生断裂。明显的塑性变形是蠕变断裂的主要特征, 在端口附近产生许多裂纹, 使断裂件的表面呈现龟裂现象。

汽机高温蠕变和低周疲劳对转子寿命的影响.

汽轮机转子低周疲劳与高 温蠕变的寿命计算及应用 前言 随着经济的快速发展,我国电力行业已经发展到历史上最为辉煌的时期。电力工业是现代化国家的基本工业,电力生产量更是一个国家家经济发展水平的重要指标。截止到2009年底,我国总装机容量达到87407万kw,超超临界压力1000mw机组已有数十台投入运行。与此同时,国家对于节能减排的重视,使得我们面临新的机遇,新设备,新技术的不断涌现,同时也给我们提出了更高的要求。目前各国都不同程度的遭遇或将遭遇的主要问题是电网发电量不足、电峰谷差逐渐增大及火电机组老化等[2][3]。因此,世界各主要发达国家都非常重视火电机组寿命管理的研究,尤其是研究汽轮机转子寿命评估。对此作了大量的工作,并取得不少成果。

目录 摘要 (1) 第一章绪言 1.1 课题意义 (2) 1.2 汽轮机转子寿命研究现状 (3) 1.3 目前存在的问题 (3) 第二章本文的研究内容 2.1 研究对象 (4) 2.2 研究内容 (5) 第三章转子热应力的计算模型 3. 1 转子温度场的数学模型 (7) 3. 2 应力场的数学模型 (10) 3. 3 有限元理论分析 (12) 第四章转子蠕变损耗寿命 4.1 金属疲劳机理及高温力学性能的研究 (14) 4.2 材料硬度和机组蠕变寿命损耗之间的关系 (16) 4. 3 蠕变寿命损耗计算 (18) 第五章转子低周疲劳寿命损耗计算 5 .1 汽轮机转子低周疲劳失效 (21) 5. 2 转子低周疲劳损伤及寿命计算 (23) 第六章疲劳——蠕变计算的应用及价值 6.1 疲劳——蠕变计算的应用及价值 (24) 结论 (25) 参考文献 (25)

金属断裂与失效分析刘尚慈

金属断裂与失效分析(刘尚慈编) 第一章概述 失效:机械装备或机械零件丧失其规定功能的现象。 失效类型:表面损伤、断裂、变形、材质变化失效等。 第二章金属断裂失效分析的基本思路 §2—1 断裂失效分析的基本程序 一、现场调查 二、残骸分析 三、实验研究 (一)零件结构、制作工艺及受力状况的分析 (二)无损检测 (三)材质分析,包括成分、性能和微观组织结构分析 (四)断口分析 (五)断裂力学分析 以线弹性理学为基础,分析裂纹前沿附近的受力状态,以应力强度因子K作为应力场的主要参量。 K I=Yσ(πα)1/2 脆性断裂时,裂纹不发生失稳扩展的条件:K I<K IC 对一定尺寸裂纹,其失稳的“临界应力”为:σc=K IC / Y(πα)1/2 应力不变,裂纹失稳的“临界裂纹尺寸”为:αc=(K IC / Yσ)2/π 中低强度材料,当断裂前发生大范围屈服时,按弹塑性断裂力学提出的裂纹顶端张开位移[COD(δ)]作为材料的断裂韧性参量,当工作应力小于屈服极限时: δ=(8σsα/πE)ln sec(πσ/2σs) 不发生断裂的条件为:δ<δC(临界张开位移) J积分判据:对一定材料在大范围屈服的情况下,裂纹尖端应力应变场强度由形变功差率J来描述。张开型裂纹不断裂的判据为:

J<J IC K IC——断裂韧性;K ISCC——应力腐蚀门槛值 (六)模拟试验 四、综合分析 分析报告的内涵:①失效零部件的描述;②失效零部件的服役条件;③失效前的使用记录;④零部件的制造及处理工艺;⑤零件的力学分析;⑥材料质量的评价;⑦失效的主要原因及其影响因素;⑧预防措施及改进建议等。 五、回访与促进建议的贯彻 §2—2 实效分析的基本思路 一、强度分析思路 二、断裂失效的统计分析 三、断裂失效分析的故障树技术 第三章金属的裂纹 §3—1 裂纹的形态与分类 裂纹:两侧凹凸不平,偶合自然。裂纹经变形后,局部磨钝是偶合特征不明显;在氧化或腐蚀环境下,裂缝的两侧耦合特征也可能降低。 发纹:钢中的夹杂物或带状偏析等在锻压或轧制过程中,沿锻轧方向延伸所形成的细小纹缕。发纹的两侧没有耦合特征,两侧及尾端常有较多夹杂物。 裂纹一般是以钢中的缺陷(发纹、划痕、折叠等)为源发展起来的。 一、按宏观形态分为: (1)网状裂纹(龟裂纹),属于表面裂纹。产生的原因,主要是材料表面的化学成分、金相组织、力学性能、应力状态等与中心不一致;或者在加工过程中发生过热与过烧,晶界性能降低等,导致裂纹沿晶界扩展。如: ①铸件表面裂纹:在1250~1450℃形成的裂纹,沿晶界延伸,周围有严重的氧化和脱碳。

PCB失效分析技术与案例

PCB失效分析技术与典型案例 2009-11-18 15:10:05 资料来源:PCBcity 作者: 罗道军、汪洋、聂昕 摘要| 由于PCB高密度的发展趋势以及无铅与无卤的环保要求,越来越多的PCB出现了润湿不良、爆板、分层、CAF等等各种失效问题。本文首先介绍针对PCB在使用过程中的这些失效的分析技术,包括扫描电镜与能谱、光电子能谱、切片、热分析以及傅立叶红外光谱分析等。然后结合PCB的典型失效分析案例,介绍这些分析技术在实际案例中的应用。PCB失效机理与原因的获得将有利于将来对PCB的质量控制,从而避免类似问题的再度发生。 关键词| 印制电路板,失效分析,分析技术 一、前言 PCB作为各种元器件的载体与电路信号传输的枢纽已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。随着电子信息产品的小型化以及无铅无卤化的环保要求,PCB也向高密度高Tg以及环保的方向发展。但是由于成本以及技术的原因,PCB在生产和应用过程中出现了大量的失效问题,并因此引发了许多的质量纠纷。为了弄清楚失效的原因以便找到解决问题的办法和分清责任,必须对所发生的失效案例进行失效分析。本文将讨论和介绍一部分常用的失效分析技术,同时介绍一些典型的案例。 二、失效分析技术 介于PCB的结构特点与失效的主要模式,本文将重点介绍九项用于PCB失效分析的技术,包括:外观检查、X射线透视检查、金相切片分析、热分析、光电子能谱分析、显微红外分析、扫描电镜分析以及X射线能谱分析等。其中金相切片分析是属于破坏性的分析技术,一旦使用了这两种技术,样品就破坏了,且无法恢复;另外由于制样的要求,可能扫描电镜分析和X射线能谱分析有时也需要部分破坏样品。此外,在分析的过程中可能还会由于失效定位和失效原因的验证的需要,可能需要使用如热应力、电性能、可焊性测试与尺寸测量等方面的试验技术,这里就不专门介绍了。 2.1 外观检查

材料失效分析

1.零件失效即失去其原有功能的含义包括三种情况:(1)零件由于断裂、腐蚀、磨损、变形等,从而完全丧失其功能。(2)零件在外部环境作用下,部分的失去其原有功能,虽然能够工作,但不能完成规定功能,如由于磨损导致尺寸超差等。(3)零件虽然能够工作,也能完成规定功能,但继续使用时,不能确保安可靠性。如经过长期高温运行的压力容器及其管道,其内部组织已经发生变化当达到一定的运行时间,继续使用就存在开裂的可能。 2.首先制定一个科学的分析程序,是保证失效分析工作顺利而有效进行的前提条件. 3.断口分析的任务(l)确定断裂的宏观性质。塑性断裂/脆住断裂/疲劳断裂等(2)确定断口的宏观形貌。纤维状断口/结晶状断口;有无放射线花样及有无剪切唇等;(3)查找裂纹源区的位置及数量.裂纹源区的所在位置是在表面、次表面还是在内部,裂纹源区的数目,在存在多个裂纹源区的情况下,它们产生的先后顺序是怎样的等;(4)确定断口的形成过程。裂纹是从何处产生的,裂纹向何处扩展,扩展的速度如何等(5)确定断裂的微观机制. 解理型/准解理型/微孔型,沿晶型/穿晶型等;(6)确定断口表面产物的性质。断口上有无腐蚀产物或其他产物,何种产物,该产物是否参与了断裂过程等 4. 查找断裂源区是宏观分析的最重要环节 5.断口分析(1)利用碎片拼凑法确定主断面. 密合程度好的为后断的,密合最差的断面为最先开裂的断面,即主断面。(2)按照“T”型汇合法确定主断面或主裂纹. 如果在最初断裂件上分成几块或是存在两条以上的相互连接的裂纹,此时可以按照“T”形汇合法的原则加以判断.(3)按照裂纹的河流花样确定主裂纹. 通常的情况是,主裂纹较宽、较深、较长,即河流花样的主流。 6. (1)利用断口上的“三要素”特征确定裂纹源(静载断裂或过载断裂)a.纤维区:位于断裂的起始部位;b放射区:是裂纹的快速扩展区;c剪切唇:最后断裂区。(2)利用断口上的“人”字纹特征确定裂纹源区.板装试件或矩形截面----静载断裂----一组人字纹指向末端------裂纹源区(3)根据断口上的放射花样确定裂纹源区.圆形试件、缺口冲击试件的静载断裂(或应力腐蚀及氢脆断裂)其撕裂棱线通常呈放射线状,其放射线中心----裂纹源(4)根据断口上的“贝纹”线确定裂纹源区.疲劳断裂----贝纹花样特征条---贝纹线形似一组同心圆---该圆心即为裂纹源(5)将断开的零件的两部分相匹配,则裂缝的最宽处为裂纹源(6)根据断口上的色彩程度确定裂纹源区——氧化色(程度),锈蚀情况,油污等(7)断口表面的损伤情况碰撞,摩擦等(8)断口的边缘情况剪切唇,毛刺等 7. 断裂源区的位置一般应与最大应力所在平面相对应。 8. 导致金属零件发生脆性的解理断裂的原因(l)通常只有冷脆金属才能发生解理断裂。面心立方金属一般不会发生解理断裂。仅在腐蚀介质存在的特殊条件下,奥氏体钢、铜及铝等才可能发生此种断裂。(2)构件的工作温度较低,即处在脆性转折温度以下。(3)只有在平面应变状态(三向拉应力状态)/几何尺寸属于厚板情况。(4)晶粒尺寸粗大。因为解理断裂单元为一个晶粒尺寸,粗晶使解理断裂应力显著降低,粗晶使脆性转折温度向高温方向推移,故易促使解理断裂。(5)宏观裂纹的存在。裂纹顶端应力集中并使构件的脆性转折温度移向高温,均促使冷脆金属发生解理断裂。(6)加载速度大及活性介质的吸附作用都促进解理断裂的发生 9. 微孔型断裂(1)微孔型断裂的微观形貌微孔型断裂,又叫微孔聚集型断裂,它是指塑性变形起主导作用的一种延性断裂。微孔型断裂的微观电子形貌呈孔坑、塑坑、韧窝、迭波花样。在孔坑的内部通常可以看到第二相质点或其脱落后留下的痕迹,这是区别断裂的主要微观特征。(2)宏观脆性微孔型断裂的特点其微观电子形貌为细小、均匀分布的等轴型微孔,微孔的形成和连接时的塑性变量很小。这种断裂的特点是由高强度材料的组织特点决定的,----在固溶强化的基础上弥散分布着细小的第二相质点,质点的平均间距很小。----这种组织对于裂纹的敏感性非常大;裂纹顶端的应力集中现象很严重,其断裂的名义应力低于材料的

金属--断裂与失效分析 刘尚慈

.. 金属断裂与失效分析(刘尚慈编) 第一章概述 失效:机械装备或机械零件丧失其规定功能的现象。 失效类型:表面损伤、断裂、变形、材质变化失效等。 第二章金属断裂失效分析的基本思路 §2—1 断裂失效分析的基本程序 一、现场调查 二、残骸分析 三、实验研究 (一)零件结构、制作工艺及受力状况的分析 (二)无损检测 (三)材质分析,包括成分、性能和微观组织结构分析 (四)断口分析 (五)断裂力学分析 以线弹性理学为基础,分析裂纹前沿附近的受力状态,以应力强度因子K作为应力场的主要参量。 K I=Yσ(πα)1/2 脆性断裂时,裂纹不发生失稳扩展的条件:K I<K IC 对一定尺寸裂纹,其失稳的“临界应力”为:σc=K IC / Y(πα)1/2 应力不变,裂纹失稳的“临界裂纹尺寸”为:αc=(K IC / Yσ)2/π 中低强度材料,当断裂前发生大范围屈服时,按弹塑性断裂力学提出的裂纹顶端张开位移[COD(δ)]作为材料的断裂韧性参量,当工作应力小于屈服极限时: δ=(8σsα/πE)ln sec(πσ/2σs) 不发生断裂的条件为:δ<δC(临界张开位移) J积分判据:对一定材料在大范围屈服的情况下,裂纹尖端应. . . 资

力应变场强度由形变功差率J来描述。张开型裂纹不断裂的判据为: J<J IC K IC——断裂韧性;K ISCC——应力腐蚀门槛值 (六)模拟试验 四、综合分析 分析报告的内涵:①失效零部件的描述;②失效零部件的服役条件;③失效前的使用记录;④零部件的制造及处理工艺;⑤零件的力学分析;⑥材料质量的评价;⑦失效的主要原因及其影响因素;⑧预防措施及改进建议等。 五、回访与促进建议的贯彻 §2—2 实效分析的基本思路 一、强度分析思路 二、断裂失效的统计分析 三、断裂失效分析的故障树技术 第三章金属的裂纹 §3—1 裂纹的形态与分类 裂纹:两侧凹凸不平,偶合自然。裂纹经变形后,局部磨钝是偶合特征不明显;在氧化或腐蚀环境下,裂缝的两侧耦合特征也可能降低。 发纹:钢中的夹杂物或带状偏析等在锻压或轧制过程中,沿锻轧方向延伸所形成的细小纹缕。发纹的两侧没有耦合特征,两侧及尾端常有较多夹杂物。 裂纹一般是以钢中的缺陷(发纹、划痕、折叠等)为源发展起来的。 一、按宏观形态分为: (1)网状裂纹(龟裂纹),属于表面裂纹。产生的原因,主要是材料表面的化学成分、金相组织、力学性能、应力状态等与中心不一致;或者在加工过程中发生过热与过烧,晶界性能降低

端子断裂失效分析

端子断裂失效分析 美信检测失效分析实验室 1. 案例背景 失效样品为某汽车接地线束的固定端子,生产流程为:原料铜管→裁剪→冲压成型→表面镀锡→装配→振动试验(19万次)→断裂;其可靠性测试中6个成品经振动试验19万次后其中一个断裂,委托方要求分析该断裂失效端子的失效机理,并给出改进建议。 2. 分析方法简述 外观检查中可观察到失效样品断裂的2部分能无缝对接,断裂位置在冲压形成的台阶折线处。 断裂位置 正常样品失效样品将失效样品断口用超声波清洗干净,然后在SEM下放大观察断口形貌,高倍下发现断口存在明显的疲劳条带;低倍下观察到断口两侧低中间高,为两侧先开裂再向中间扩展形成的中间凸起断口形貌,结合据委托方提供的样品振动19万次后断裂信息,判断样品为双向高周疲劳断裂模式。 中间凸起失效样品先去镀层,再进行化学成分分析,结果表明失效样品材质为纯铜,材料不存在异常。

失效样品和正常样品分别镶样,进行金相分析,失效样品腐蚀前金相观察未发现明显缺陷,腐蚀后可观察到大变形区域的纤维状α相,小变形量区域为α相组织,伴有较多孪晶;正常样品腐蚀前金相观察发现样品表面的折弯处存在微裂纹,裂纹填充满锡,推断裂纹为冷加工成型造成的,腐蚀后可观察到金相组织为α相组织,伴有较多孪晶。 纤维状α相 铜管内壁裂纹 从断口分析可知,样品断口形貌主要为高周期疲劳断裂特征,根据客户提供的震动试验资料,样品试验过程是振幅为12mm左右的周期振动,19万次后断裂,符合低应力高疲劳周期的双向高周疲劳断裂特征,两侧裂纹无锡填充,说明为镀锡后开裂,为冷机加工造成应力折叠形成的开裂。 从化学成分可知失效样品的铜含量在99.99%,材质为纯铜,材料不存在异常。 从金相图片可知,失效样品与正常样品的金相组织都为α相组织,伴有较多孪晶,为冷机加工残留内应力较大的特征;正常样品可观察到填充锡的微裂纹,为冷机加工缺陷,这些表面微裂纹可能会成为开裂源。 4. 结论

相关主题
文本预览
相关文档 最新文档