当前位置:文档之家› 线路旁代时高频保护与收发信机配合问题探讨

线路旁代时高频保护与收发信机配合问题探讨

线路旁代时高频保护与收发信机配合问题探讨
线路旁代时高频保护与收发信机配合问题探讨

收发信机试验方法

1.简述 专用高频收发信机一般为单频制。即发信和收信为同一频率信号,且能够自发自收。线路对端的收发信机与本侧收发信机型号、频率完全相同。因此,本侧的收发信机除能够自发自收外,也能够接收对端的信号。 发信部分包括:晶体振荡、前置放大、功率放大、输出滤波等收信部分包括:收信滤波、混频、变频、放大、检波、收信输出等 对于LFX—912型收发信机,测试项目不多,对于有些收发信机,则需要测试较多项目,如许昌继电器厂生产的SF—600型收发信机,还要测试收信带宽、混频变频输出等一些项目。现在只以LFX—912为例,叙述它的测试项目和方法。 2.测试项目和方法 发信输出电平测试: 收发信机的输出就是指高频信号的输出。输出信号的单位用“dB”或“dBm”即:电压电平或功率电平。收发信机高频信号输出端子为装置背面的“38”和“40”号端子。“38”为高频电缆的“芯”,“40”为高频电缆的“地(即屏蔽层)”。测试输出电平时,用选频电平表的“∞”档,测试档位要放的大些(防止撞表针),测试线加在“38”和“40”上,也可以将测试线插在装置前面的测试插孔上。如果没有接入通道,则要将收发信机背面的插头选择在“本机—负载”上。选频表频率选在收发信机的工作频率上。然后启动发信。读选频表的指针读数。所读的选频表读数为电压电平。 高频收发信机的输出阻抗为75Ω,因此,若要将所读的电压电平换算为功率电平,则应按下列公式换算: 式中:Pu:电压电平 Pg:功率电平 对于与RCS—901A组屏的LFX—912收发信机,在测试发信电平时(未接入通道,选择“本机—负载”),应短接发信机背面“10”和“12”端子,使发信机发信。 收信灵敏电平测试: 收信灵敏电平也称为收信启动电平。即能使收信回路正常工作的最小电平,称为收信启动电平。 正确的测试方法按下图接线:

输电线路的距离保护习题答案

:___________ 班级: ___________ 序号:___________ 输电线路的距离保护习题 一、填空题: 1、常规距离保护一般可分 为、和三部分。 2、距离保护I段能够保护本线路全长的。 3、距离保护第Ⅲ段的整定一般按照躲开来整定。 4、阻抗继电器按比较原理的不同,可分为式 和式。 5、方向阻抗继电器引入非故障相电压的目的是为了__________________________________。 6、若方向阻抗继电器和全阻抗继电器的整定值相同,___________继电器受过渡电阻影响 大,继电器受系统振荡影响大。 7、全阻抗继电器和方向阻抗继电器均按躲过最小工作阻抗整定,当线路上发生短路时, _______________继电器灵敏度更高。 8、校验阻抗继电器精工电流的目的是__________________。 9、阻抗继电器的0°接线是指_________________,加入继电器的___________________。 10、助增电流的存在,使距离保护的测量阻抗,保护范 围,可能造成保护的。 11、根据《220~500kV电网继电保护装置运行整定规程》的规定,对50km以下的线路,相间距离保护中应有对本线末端故障的灵敏度不小于的延时保护。 二、选择题: 1、距离保护装置的动作阻抗是指能使阻抗继电器动作的。

(A)最小测量阻抗;(B)最大测量阻抗;(C)介于最小与最大测量阻抗之间的一个定值;(D)大于最大测量阻抗的一个定值。 2、为了使方向阻抗继电器工作在状态下,故要求继电器的最大灵敏角等于被保护线路的阻抗角。最有选择;(B)最灵敏;(C)最快速;(D)最可靠。 3、距离保护中阻抗继电器,需采用记忆回路和引入第三相电压的 是。 (A)全阻抗继电器;(B)方向阻抗继电器;(C)偏移特性的阻抗继电器;(D)偏移特性和方向阻抗继电器。 4、距离保护是以距离元件作为基础构成的保护装置。 (A)测量;(B)启动;(C)振荡闭锁;(D)逻辑。 5、从继电保护原理上讲,受系统振荡影响的有。 (A)零序电流保护;(B)负序电流保护;(C)相间距离保护;(D)相间过流保护。 6、单侧电源供电系统短路点的过渡电阻对距离保护的影响是。 (A)使保护范围伸长;(B)使保护范围缩短;(C)保护范围不变;(D)保护范围不定。 7、方向阻抗继电器中,记忆回路的作用是。 (A)提高灵敏度;(B)消除正向出口三相短路的死区;(C)防止反向出口短路动作;(D)提高选择性。 8、阻抗继电器常用的接线方式除了00接线方式外,还有。(A)900接线方式? (B)600接线方式? (C)300接线方式? (D)200接线方式 三、判断题: 1、距离保护就是反应故障点至保护安装处的距离,并根据距离的远近而确定动作时间的一种保护装置。() 2、距离Ⅱ段可以保护线路全长。() 3、距离保护的测量阻抗的数值随运行方式的变化而变化。() 4、方向阻抗继电器中,电抗变压器的转移阻抗角决定着继电器的最大灵敏角。() 5、阻抗继电器的最小精确工作电压,就是最小精确工作电流与电抗变压器转移阻抗值的乘积。() 6、在距离保护中,“瞬时测定”就是将距离元件的初始动作状态,通过起动元件的动作而固定下来,以防止测量元件因短路点过渡电阻的增大而返回,造成保护装置拒绝动作。()

基站射频收发信机指标分解

美信Maxim技术文档《基站收发信机设计》,以WCDMA为例进行讲解基站收发信机射频前端指标分解和设计。虽然文档以WCDMA为例进行讲解,但宽带收发信机射频前端原理基本一致,因此适用于LTE等其他制式的设计。以下为学习笔记和总结。 1.接收机 接收机主要射频指标包括Reference Sensitivity Level,Adjacent Channel Selectivity(ACS),Blocking(In-Band和Out-of-Band),Receiver Inter-modulation。其中带内blocking指标和ACS 分析类似,考量的都是工作带内信道外干扰信号对接收机影响的分析,因此Bolcking指标支队Out-of-band指标进行了讲解和说明。 1.1Reference Sensitivity Level 接收机的最小可接收电平(接收机灵敏度)= -174dBm/Hz + 10logBW + NF + Eb/N0 1.Eb/No由基带解调能力决定,与射频前端无关; 2.BW由无线系统协议标准定义; 3.-174dBm/Hz及总的热噪声; 因此针对某一无线系统设计,灵敏度指标的分解即根据协议灵敏度指标要求来设计接收机的噪声系数(Noise Figure)要求,以保证满足灵敏度指标允许的最大输入噪声(总噪声,包括输入热燥和引入的系统噪声) 上图说明如下: Step1:系统要求灵敏度指标为-121dBm/3.84MHz; Step2:Eb/No = 5dB ——不考虑编码增益允许的总输入噪声=-121dBm – 5dB = -126dBm Step3:12.2Kbps数据速率到3.84Mcps码片速率的扩频增益为:10*log(3.84M/12.2K) ≈25dB,考虑扩频增益后总的输入噪声要求为-101dBm; Step4:3.84MHz带内总的热噪声= -174dBm + 10log3.86MHz/1Hz = -108.1dBm 所以为满足灵敏度指标要求,系统接收机连续噪声系数需要≤-101dBm+108.1dBm

高频保护习题

高频保护 一、选择题 1、切除线路任一点故障的主保护是(B) A:相间距离保护B:纵联保护C:零序电流保护D:接地距离保护 2、高频阻波器所起的作用是(C) A:限制短路电流B:阻止工频信号进入通信设备 C:阻止高频电流向变电站母线分流D:增加通道衰耗 3、高频保护采用相—地制通道是因为(A) A:所需加工设备少,比较经济B:相—地制通道衰耗小 C:减少对通信的干扰D:相—地制通道衰耗大 4、闭锁式纵联保护跳闸的必要条件是(A) A:正方向元件动作,反方向元件不动作,收到闭锁信号后信号又消失; B:正方向元件动作,反方向元件不动作,没有收到闭锁信号; C:正、反方向元件均动作,没有收到闭锁信号; D:正、反方向元件均不动作,没有收到闭锁信号。 5、高频闭锁保护,保护停信需带一短延时,这是为了(C) A:防止外部故障时因暂态过程而误动;B:防止外部故障时因功率倒向而误动; C:与远方启动相配合,等待对端闭锁信号的到来,防止区外故障时误动; D:,防止区内故障时拒动。 6、纵联保护电力载波高频通道用(C)方式来传送被保护线路两侧的比较信号。 A:卫星传输;B:微波通道;C:相—地高频通道;D:电话线路。 7.在电路中某测试点的功率P和标准比较功率P =lmW之比取常用对数的10 倍,称为该点的(C)。 A:电压电平B:功率电平C:功率绝对电平 8.高频保护载波频率过低,如低于50kHz,其缺点是(A)。 A:受工频干扰大,加工设备制造困难B:受高频干扰大C:通道衰耗大

9.当收发信机利用相一地通道传输高频信号时,如果加工相的高压输电线对地短路,则(B)。 A:信号电平将下降很多,以至于本侧收不到对侧发出的信号 B:本侧有可能收得到,也有可能收不到对侧发出的信号 C:由于高频信号能耦合到另外两相进行传输,所以信号电平不会下降很多,本侧收信不会受影响 10.相—地制高频通道组成元件中,阻止高频信号外流的元件是(A)。 A:高频阻波器B:耦合电容器C:结合滤波器 11.高频通道中结合滤波器与耦合电容器共同组成带通滤波器,其在通道中的作用是(B)。 A:使输电线路和高频电缆的连接成为匹配连接 B:使输电线路和高频电缆的连接成为匹配连接,同时使高频收发信机和高压线路隔离 C:阻止高频电流流到相邻线路上去 12.在高频保护的通道加工设备中的(C)主要是起到阻抗匹配的作用,防止反射,以减少衰耗。 A:阻波器B:耦合电容器C:结合滤波器 13.高频保护的同轴电缆外皮应(A)。 A:两端接地B:一端接地C:不接地 14.线路分相电流差动保护采用(B)通道最优。 A:数字载波B:光纤C:数字微波 15.纵联保护相地制电力载波通道由(C)部件组成。 A:输电线路,高频阻波器,连接滤波器,高频电缆 B:高频电缆,连接滤波器,耦合电容器,高频阻波器,输电线路 C:收发信机,高频电缆,连接滤波器,保护间隙,接地刀闸,耦合电容器,高频阻波器,输电线路 16.在纵联方向保护中,工频变化量方向元件在正方向短路时正方向元件?F)的相角为(C) ( + A:90°B:0°C:180°

线路保护介绍

基本配置 保护配置 系统差异 接地系统和不接地系统的差异 分相保护和不分相保护的差异:不一致、单跳、单重 电压的差异:电容电流和末端过电压、网架中心和重要程度 功能介绍 距离保护: 距离元件采用比相式姆欧继电器,即由工作电压Uop与极化电压Up构成比相方程。 比相式距离继电器的通用动作方程为:-900

这里: Φ = A , B , C ; OP Φ 为工作电压; 正序电压同故障前保持一致,继电器具有很好的方向性。 jX 距离保护正方向故障动作特性 应用于较短输电线路时,为了提高抗过渡电阻能力,极化电压中使用了接地距离偏移 角如图中所示θ1,该定值可以由用户整定为0°, 15° 或 30°。接地距离偏移角会使动作特 性圆向第一象限移动。 虽然这可提高测量过渡电阻的能力,在高阻接地故障条件下保证很好的动作性能,但 是如果在线路对侧存在助增电源的情况下,对于经过渡电阻接地的故障可能会出现超越现 象。为了防止超越,通常距离保护Ⅰ、Ⅱ段和零序电抗元件配合使用。 零序电抗 工作电压: 极化电压: U OP Φ = U Φ - (I Φ + K ? 3I 0 )? Z set U P Φ = -I 0 ? Z D ,式中 Z D 为模拟阻抗,幅值为1,角度为78°。 比相方程为 - 900 < Arg U Φ - (I Φ + K ? 3I 0 )? Z set - I 0 ? Z D < 900 低压距离继电器 保护采用记忆电压作为极化电压,通过比较极化电压与工作电压之间的相位关系来判 别是否满足动作条件。 工作电压: 极化电压: U OP Φ = U Φ - I Φ ? Z set U P Φ = -U 1ΦM U U 1ΦM 为记忆故障前正序电压。 负荷限制 U P Φ 为极化电压 ; Z set 为整定阻抗;

输电线路的距离保护

课程设计题目35kv输电线路的继电保护 专业: 班级: 学号: 学生姓名: 指导教师:

目录 第一章:任务的提出与方案的提出 1.1前言 (3) 1.2绪论 (4) 1.3摘要 (5) 1.4基本原理 (6) 第二章:详细设计: 2.1最大负荷电流的计算 (7) 2.2短路电流的计算 (7) 2.3线路距离保护的设计 (7) 第三章:总体设计 3.1距离保护的优缺点 (10) 3.2继电保护装置的选择 (10) 3.3结论 (12) 第四章:结束 4.1设计感言 (22) 4.2参考文献 (13)

第一章 1.1前言: 《电力系统继电保护》作为电气工程及其自动化专业的一门主要课程,主要包括课堂讲学、课程设计等几个主要部分。电能是现代社会中最重要、也是最方便的能源。而发电厂正是把其他形式的能量转换成电能,电能经过变压器和不同电压等级的输电线路输送并被分配给用户,再通过各种用电设备转换成适合用户需要的其他形式的能量。在输送电能的过程中,电力系统希望线路有比较好的可靠性,因此在电力系统受到外界干扰时,保护线路的各种继电装置应该有比较可靠的、及时的保护动作,从而切断故障点极大限度的降低电力系统供电范围。电力系统继电保护就是为达到这个目的而设置的。本次设计的任务主要包括了五大部分,电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。其中短路电流的计算和电气设备的选择是本设计的重点。

1.2、绪论 (一)电力系统继电保护的作用 电力系统在运行中,可能发生各种故障和不正常运行状态,最常见同时也是最危险的故障是发生各种型式的短路。在发生短路时可能产生以下的后果. 1.通过故障点的很大的短路电流和所燃起的电弧,使故障元件损坏; 2.短路电流通过非故障元件,由于发热和电动力的作用,引起它们的损坏或缩短它们的使用寿命; 3.电力系统中部分地区的电压大大降低,破坏用户工作的稳定性或影响工厂产品质量; 4.破坏电力系统并列运行的稳定性,引起系统振动,甚至使整个系统瓦解; 电气元件的正常工作遭到破坏,但没有发生故障,这种情况属于不正常运行状态。例如,因负荷超过电气设备的额定值而引起的电流升高(一般又称过负荷),就是一种最常见的不正常运行状态。由于过负荷,使元件载流部分和绝缘材料的温度不断升高,加速绝缘的老化和损坏,就可能发展成故障。此外,系统中出现功率缺额而引起的频率降低,发电机突然甩负荷而产生的过电压,以及电力系统发生振荡等,都属于不正常运行状态。 故障和不正常运行状态,都可能在电力系统中引起事故。事故,就是指系统或其中一部分的正常工作遭到破坏,并造成对用户少送电或电能质量变坏到不能容许的地步,甚至造成人身伤亡和电气设备的损坏。 系统事故的发生,除了由于自然条件的因素(如遭受雷击等)以外,一般者是由于设备制造上的缺陷、设计和安装的错误、检修质量不高或运行维护不当而引起的。因此,只要充分发挥人的主观能动性,正确地掌握客观规律,加强对设备的维护和检修,就可能大大减少事故发生的机率,把事故消灭在发生之前。 在电力系统中,除应采取各项积极措施消除或减少发生故障的可能性以外,故障一旦发生,必须迅速而有选择性地切除故障元件,这是保证电力系统安全运行的最有效方法之一。

高频收发讯机

第二章 高频收发讯机 第一节 收发讯机的工作概况 本局所用的收发讯机大部分为南瑞公司的LFX 系列,另有几台国电南自的PSF 系列。 有关该两种类型的收发讯机的工作原理等基本概念如外差、频谱向上搬移等已在其技术说明书上有详细的讲解。这里只讲述其在电网中的工作特点。在图4.1中,当K 点发生故障 瞬间,所有地点保护都会启动发讯,然后M 、 N 、Q 处保护判定为正方向故障停讯,P 点保 护判定为反方向故障而一直让收发讯机发讯 闭锁本侧保护与对端的Q 保护。必须等到M 、 N 保护把故障隔离后才停讯。所以若工作需要 要退出P 点收发讯机时,必须通知Q 点也退 出收发讯机,不然有可能K 点故障时因Q 点 保护收不到闭锁信号而越级跳闸。 由于保护启动值比动作值灵敏,故障量一旦达到启动值所有收发讯机都发讯,高频讯号一方面闭锁自己保护,一方面去闭锁对端保护,P 点的反方向元件一直保持,M 、N 、Q 三处保护都要发讯10ms 之后才投入各自的正方向元件,这样可以防止Q 处保护正方向元件先动作而误跳闸。这也可以看出高频保护的动作时间大于10ms ,一般在15ms 左右。 反方向元件D -比正方向元件D+优先动作,如果是从区内到区外的转换性故障,无论开关跳闸与否,D+都立刻返回,D -立刻动作,收发讯机立刻重新发讯。 收发讯机发出的高频讯号电平40dB ,这40dB 分以下几个部分: 1、对侧收发讯机远方启动所需要的最小灵敏启动电平4 dB 。 2、收发讯机不确定动作电平6 dB 。 3、收发讯机正常工作所需要的最小工作电平9 dB 。 4、线路传输允许的最大衰耗21 dB 。 这里的最小工作电平9 dB 即通常说的1奈倍(NB )(1NB ≈8.686 dB )。两侧通道联调时,本侧收讯回路收到的电平不能小于9dB ,最好也不能超过18 dB ,收到电平过大,也不利于收发讯机装置的工作。收到电平过大,可以人为投入衰耗,在收发讯机上有跳线设计,按照说明书上每个跳线的衰耗根据需要投入。这里本侧收讯回路收到的电平,并不是是指装置背后端子处的电平,而是指高频波进入装置内部经人为衰耗之后的电平。 电平与频率的概念是不一样的。频率表示高频波振荡周期的快慢,电平是指高频波振荡能量的大小,所以高频波只衰耗电平不改变频率。 测试到本侧收到对侧高频波电平值后就需要在收发讯机上整定好该电平值,这是正常时候收讯应该达到的电平,如果今后通道实验时收到的电平比整定值低3 dB ,装置发“3 dB 告警”信号。3 dB 告警是一个很重要的概念,它不是指收到的电平小于3dB ,而是指收到的电平比正常电平要少3个dB 以上。此时就应该检查高频通道,找出衰耗增大的原因。 作通道试验时两侧的收发讯机工作情况可以用图4.2表示。M 侧先按下试验按钮,M 侧收发讯机发讯200 ms 后停止,N 侧收发讯机收到讯后立刻被M 侧远方起讯而发讯10s ,M 侧停讯5s 后再重新发讯10s 。 从图4.2也可看到大约有近5s 的时间内是处于两侧收发讯机都发讯的状态,此时若功放面板上的指针晃动比较剧烈(LFX 系列),说明两侧装置的差拍比较大。接口面板上“OP ”图4.1 M N ~ ~ K E N E M P Q

高频保护

什么是高频保护? 答:高频保护包括相差高频保护和功率方向闭锁高频保护。相差高频保护是测量和比较被保护线路两侧电流量的相位,是采用输电线路载波通信方式传递两侧电流相位的。 功率方向闭锁高频保护,是比较被保护线路两侧功率的方向,规定功率方向由母线指向某线路为正,指向母线为负,线路内部故障,两侧功率方向都由母线指向线路,保护动作跳闸,信号传递方向相同。 高频保护基本原理是什么? 答:高频保护基本原理是反映并比较被保护线路两端电流的大小和相位。即将两端的电气量调制成高频信号,利用高频通道将高频信号相互送到对侧,再由各自的保护装置将收到的对侧信号与本侧的信号进行比较,判断是内部还是外部的,从而决定保护是否动作。一般利用输电线路本身,采取“相—地”制方式作为高频通道。高频通道工作方式一般采用短路时发信方式(即正常时通道中无高频信号)。 构成高频保护通道的元件有哪些? 答:构成高频保护通道的元件有:高频收发信机、高频电缆、结合滤波器、耦合电容器、阻波器和单相输电线路等。 什么是相差高频保护的闭锁角? 答:如图F-5(a)所示,当k点发生穿越性故障时,在理想情况下,IM与IN 相差180°,保护装置不动作。而实际上,当线路外部故障时,由于各种因素的影响,IM与IN的相角差不是180°,收信机收到的信号有一个间断角。根据相差高频保护的原理,当线路故障而出现间断角时,保护装置将动作。为此,应找出外部故障可能出现的最大间断角,并按此值进行闭锁,以保证当线路外部故障时保护不误动。这个最大间断角就叫相差高频保护的闭锁角。如图F-5(b>所示保护的动作区φop为(180°-β)>φop>(180°+β),闭锁角即为β。 在具有远方起动的高频保护中为什么要设置断路器三跳停信回路? 答:(1)在发生区内故障时,一侧断路器先跳闸,如果不立即停信,由于无操作电流,发信机将发生连续的高频信号,对侧收信机也收到连续的高频信号,则闭锁保护出口,不能跳闸。 (2)当手动或自动重合于永久性故障时,由于对侧没有合闸,于是经远方起动回路,发出高频连续波,使先合闸的一侧被闭锁,保护拒动。为了保证在上述情况下两侧装置可靠动作,必须设置断路器三跳停信回路。 耦合电容器在高频保护中的作用是什么? 答:耦合电容器是高频收发信机和高压输电线路之间的重要连接设备。由于它的电容量很小,对工频电流具有很大的阻抗,可防止工频高电压对收发信机的侵袭,而对高频信号呈现的阻抗很小,不妨碍高频电流的传送。耦合电容器的另一个作用是与结合滤过器组成带通滤过器。 相差高频保护有何特点? 答:(1)在被保护线路两侧各装半套高频保护,通过高频信号的传送和比较,以实现保护的目的。它的保护区只限于本线路,其动作时限不需与相邻元件保护相配合,在被保护线路全长范围内发生各类故障,均能无时限切除。 (2)因高频保护不反应被保护线路以外的故障,不能作下-段线路的后备保护,所以线路上还需装设其他保护作本线及下一段线路的后备保护。 (3)相差高频保护选择性好、灵敏度高,广泛应用在110~220kV及以上高压输电线路上作主保护。 相差高频保护有何优缺点? 答:优点: 1、能反应全相状态下的各种对称和不对称故障,装置比较简单。 2、不反应系统振荡。在非全相运行状态下和单相重合闸过程中,保护能继续运行。 3、保护的工作情况与是否有串补电容及其保护间隙是否不对称击穿基本无关。 4、不受电压二次回路断线的影响。 缺点如下: 1、重负荷线路,负荷电流改变了线路两端电流的相位,对内部故障保护动作不利。 2、当一相断线接地或非全相运行过程中发生区内故障时,灵敏度变坏,甚至可能拒动。 3、对通道要求较高,占用频带较宽。在运行中,线路两端保护需联调。 4、线路分布电容严重影响线路两端电流的相位。线路长度过长限制了其使用。

输电线路的距离保护习题答案42806资料

输电线路的距离保护习题答案42806

姓名:___________ 班级: ___________ 序号:___________ 输电线路的距离保护习题 一、填空题: 1、常规距离保护一般可分 为、和三部分。 2、距离保护I段能够保护本线路全长的。 3、距离保护第Ⅲ段的整定一般按照躲开来整定。 4、阻抗继电器按比较原理的不同,可分为式 和式。 5、方向阻抗继电器引入非故障相电压的目的是为了__________________________________。 6、若方向阻抗继电器和全阻抗继电器的整定值相同,___________继电器受过渡电阻影响 大,继电器受系统振荡影响大。 7、全阻抗继电器和方向阻抗继电器均按躲过最小工作阻抗整定,当线路上发生短路时, _______________继电器灵敏度更高。 8、校验阻抗继电器精工电流的目的是__________________。 9、阻抗继电器的0°接线是指_________________,加入继电器的___________________。 10、助增电流的存在,使距离保护的测量阻抗,保护范 围,可能造成保护的。 11、根据《220~500kV电网继电保护装置运行整定规程》的规定,对50km以下的线路,相间距离保护中应有对本线末端故障的灵敏度不小于的延时保护。 二、选择题: 1、距离保护装置的动作阻抗是指能使阻抗继电器动作的。

(A)最小测量阻抗;(B)最大测量阻抗;(C)介于最小与最大测量阻抗之间的一个定值;(D)大于最大测量阻抗的一个定值。 2、为了使方向阻抗继电器工作在状态下,故要求继电器的最大灵敏角等于被保护线路的阻抗角。最有选择;(B)最灵敏;(C)最快速;(D)最可靠。 3、距离保护中阻抗继电器,需采用记忆回路和引入第三相电压的 是。 (A)全阻抗继电器;(B)方向阻抗继电器;(C)偏移特性的阻抗继电器;(D)偏移特性和方向阻抗继电器。 4、距离保护是以距离元件作为基础构成的保护装置。 (A)测量;(B)启动;(C)振荡闭锁;(D)逻辑。 5、从继电保护原理上讲,受系统振荡影响的有。 (A)零序电流保护;(B)负序电流保护;(C)相间距离保护;(D)相间过流保护。 6、单侧电源供电系统短路点的过渡电阻对距离保护的影响是。 (A)使保护范围伸长;(B)使保护范围缩短;(C)保护范围不变;(D)保护范围不定。 7、方向阻抗继电器中,记忆回路的作用是。 (A)提高灵敏度;(B)消除正向出口三相短路的死区;(C)防止反向出口短路动作;(D)提高选择性。 8、阻抗继电器常用的接线方式除了00接线方式外,还有。 (A)900接线方式? (B)600接线方式? (C)300接线方式? (D)200接线方式 三、判断题: 1、距离保护就是反应故障点至保护安装处的距离,并根据距离的远近而确定动作时间的一种保护装置。() 2、距离Ⅱ段可以保护线路全长。( ) 3、距离保护的测量阻抗的数值随运行方式的变化而变化。() 4、方向阻抗继电器中,电抗变压器的转移阻抗角决定着继电器的最大灵敏角。()

GSF-6A高频保护收发信机调试导则.

GSF-6A型 高频保护收发信机 调试导则 SL2.131.239/240W 江苏××通信设备分公司

1.试验仪器及准备 1.1所需测试仪表 选频电平表一台,电平振荡器一台,30W、31dB/75Ω可变衰耗器一台, 75Ω测量电阻三只,万用表一只。 1.2试验前准备 按图1面板布置图检查机盘位置是否正确,再检查机盘的电压等级是否正确(逆变电源)及机器的工作频率。并查看端子接线有无松动等。在外观检查完毕后,进行以下各项试验。 图1 面板布置图 注:220V为SL2.131.239;110V为SL2.131.240。

2.电源投入 收发信机安装完毕,逆变电源盘开关置于“断”位置,加上直流220V (或110V)。将逆变电源盘开关置于“通”位置,逆变电源盘指示灯点亮,逆变电源“-30V测试孔”的输出电压应为-30V,否则调整盘面电位器。再测量-24V、-15V、+15V,将各点电平实测值记于表1中,以备维护中核对。设备加电30分钟后,再进行一次调整,即可进行测试。 表1 收发信机各部分电源实测值 3.各点电平的测量与调整(将逻辑盘和接口盘拔出) 3.1 对侧发信时,解调器输出及触发器的翻转电平。 3 1.1收发信机置于停信状态。 3.1.2在收发信机发信滤波器测试孔用电平振荡器输入+10dB/75Ω对侧工作频率信号,模拟对侧发信信号。此时,在解调器面板用选频电平表测试,选频电平表用高阻抗,频率设置为12KHz。解调器输出电平满足表2,若不满足要求,则调整控制盘内衰耗器SJ1~SJ5。 3.1.3振荡器输出电平降低到+7dB,在触发盘面板用万用表电压档测量,触发器面板测试孔2翻转电平满足表2,否则调整触发器盘内电位器W3。3.1.4振荡器输出电平降低到-5dB,在触发盘面板用万用表电压档测量,

输电线路的距离保护习题答案

姓名:___________ 班级: ___________ 序号:___________ 输电线路的距离保护习题 一、填空题: 1、常规距离保护一般可分为、和三部分。 2、距离保护I段能够保护本线路全长的。 3、距离保护第Ⅲ段的整定一般按照躲开来整定。 4、阻抗继电器按比较原理的不同,可分为式和式。 5、方向阻抗继电器引入非故障相电压的目的是为了__________________________________。 6、若方向阻抗继电器和全阻抗继电器的整定值相同,___________继电器受过渡电阻影响大,继电器受系统振荡影响大。 7、全阻抗继电器和方向阻抗继电器均按躲过最小工作阻抗整定,当线路上发生短路时, _______________继电器灵敏度更高。 8、校验阻抗继电器精工电流的目的是__________________。 9、阻抗继电器的0°接线是指_________________,加入继电器的___________________。 10、助增电流的存在,使距离保护的测量阻抗,保护范围,可能造成保护的。 11、根据《220~500kV电网继电保护装置运行整定规程》的规定,对50km以下的线路,相间距离保护中应有对本线末端故障的灵敏度不小于的延时保护。 二、选择题: 1、距离保护装置的动作阻抗是指能使阻抗继电器动作的。 (A)最小测量阻抗;(B)最大测量阻抗;(C)介于最小与最大测量阻抗之间的一个定值;(D)大于最大测量阻抗的一个定值。 2、为了使方向阻抗继电器工作在状态下,故要求继电器的最大灵敏角等于被保护线路的阻抗角。最有选择;(B)最灵敏;(C)最快速;(D)最可靠。

某输电线路距离保护设计方案

某输电线路距离保护设计方案 1.1输电线路距离保护概述 输电线路距离保护是指利用阻抗元件来反应短路故障的保护装置,阻抗元件的阻抗值是接入该元件的电压与电流的比值,也就是短路点至保护安装处的阻抗值。因线路的阻抗值与距离成正比,所以叫距离保护或阻抗保护。系统在正常运行时,不可能总工作于最大运行方式下,因此当运行方式变小时,电流保护的保护范围将缩短,灵敏度降低;而距离保护测量的是短路点至保护安装处的距离,受系统运行方式影响较小,保护范围稳定,常用于线路保护 电力系统稳定运行主要有符合要求电网结构、系统运行方式和电力系统继电保护来保证。高压及以上等级电网中,继电装置可靠性和速动性有双重主保护来保证,其选择性和灵敏性主要由相间接地故障后被保护延时段来保证。距离保护是以距离测量元件为基础构成保护装置,称阻抗保护。系统正常运行时,保护装置安装处的电压为系统的额定电压,电流负载电流,发生短路故障时,电压降低、电流增大。因此,电压和电流比,正常状态和故障状态有很大变化。由于线路阻抗和距离成正比,保护安装处的电压与电流之比反映了保护安装处到短路点的阻抗,也反映保护安装处到短路点距离。所以按照距离远近来确定保护动作时间,这样就能有选择地切除故障。 当前微计算机硬件的更新和网络化发展在计算机控制领域。单片机与DSP芯片二者技术上的融合,主要体现在运算能力的提高及嵌入式网络通信芯片的出现和应用等方面。这些发展使硬件设计更加方便。高性价比使冗余设计成为可能,为实现灵活化、高可靠性和模块化的通用软硬件平台创造了条件。硬件技术的不断更新和微机保护设计网络化,将为距离保护的设计和发展带来一种全新的理念和创新,它会大大简化硬件设计、增强硬件的可靠性,使装置真正具有了局部或整体升级的可能。 1.2本文研究内容 本次课程设计的主要是输电线路的距离保护。计算和分析主要内容是计算保护1距离保护Ⅰ段、Ⅱ段和Ⅲ段整定值和灵敏度,计算灵敏度同时要注意每个保护的动作时间要精确,上述工作完成后接下来对设计提出的系统震荡和短路过渡电阻对系统的影响进行相应的计算分析,并确定距离保护的范围,并分析系统在最小运行方式下振荡时,保护1各段距离保护的动作情况。后用MATLAB仿真,验证计算的正确性。

高频通道元件及收发信机的测试方法

高频通道元件 及收发信机的测试方法 湖南省电力公司试验研究院 继电保护所

高频通道元件及收发信机的测试方法 一、高频阻波器 1.试验接线 图中: R1为去谐电阻;阻值1.5~3K Ω R2为无感电阻;阻值100Ω P 为选频电平表 2.阻抗特性试验 按上图接线,振荡器输出阻抗选择“0”Ω,输出电平“0”dB。选频表输入阻抗选择“∞”。从84(或60、70)kHZ~500kHZ 测试若干个点,振荡器每改变一次频率,选频表就测试一次P1、P2值。然后按下式计算阻抗值。 阻抗计算公式: 2) 21(05.0)110 (R Z p p ×?=?要求:在84kHZ ~500kHZ 的范围内,阻抗值不小于570Ω(厂家出厂标准)。 补充知识: 1、如果是相相偶合的,那么一个通道需要两相线路用来载波,那么就要两相都装.如果是两通道合用三相(一般B 相公用),那么三相都要装。 2、如果是相地偶合,那么一个通道只需要一相线路用来载波,那么就只要一相安装. 3、有的地区为了频率分区,需要全阻塞,那么相关线路(甚至该线路没有高频保护)三相都要装,此时不需结合设备。 二、结合滤波器(常规试验做线路侧和电缆侧的) *工作衰耗的定义:

R ’ (a) (b) 工作衰耗为当负载阻抗R 与电源阻抗R S 相等并直接相连时,如图所示,负载 R 所获得的最大接收功率P max 与经过四端网络后负载R’上所获得功率P 2,取Pmax 与P 2之比常用对数的10倍称为工作衰耗,即: max 2 10lg W P b P = 对于四端口网络当看进去的输入阻抗与电源阻抗相等即匹配时,输入阻抗上获得的功率最大。 用电压表测量: 因为是测量工作衰耗,所以,结合滤波器的输入阻抗与电阻R1相等。因此结合滤波 器电缆侧输入端的功率为: 1 2112 14) 2( R U R U P M == 结合滤波器线路侧负载阻抗R2所得到的功率为: 22 2 U P R = 工作衰耗为:

收发信机概述

收发信机概述 一、概述 在当前航空通信突飞猛进的今天,从小型的驻留气球、无人机、歼击机到大型的专业飞机,装机的电子设备的种类和数量在成倍地增长,短波、超短波、L波段、卫星通信等各个频段的通信设备、多种导航设备、敌我识别设备、侦察设备等均在各类平台上装备,造成了各类平台拥挤不堪,为了解决其体积、重量、功耗等问题,不得不在航行速度和续航时间等方面做出牺牲,因此小型化、综合化势在必行。全机的综合化牵涉的方面较多,成本、技术等方面的因素目前还不可逾越,但小型化的技术已日趋成熟,表面贴装、厚/薄膜集成电路技术、大规模逻辑门阵列技术均可使设备在一定程度上小型化。本文讨论的是寻求另外的一种途径,即改变收发信机的一些传统结构,来实现信道的集成化。 二、接收机体系结构 用于航空通信的接收机,已逐步走向减小功耗、降低成本、提高集成度的道路。采用单片放大,利用数字信号处理技术来完成调频调幅信号的解调、扩频信号的解扩,这些措施可以大大减少接收机系统的尺寸、成本和功率。现在已发展到探索新的拓扑结构形式来进一步小型化。近年来出现的各种各样的接收机拓扑结构,每种都有其优点和缺点。 1.超外差体系 超外差体系结构自问世以来已被广泛采用,现在仍占据了绝对地位。图1所示为一个超短波超外差接收机双变频体系结构。 低噪声放大器(LNA)对微弱信号进行了放大,其噪声系数对整机的贡献最大,但它提供的增益可减小后级引入的噪声系数。之前的射频滤波器衰减了带外信号和镜像干扰。使用可变本振,全部频谱就被下变频到一个固定的中频。通过在下变频模块之前使用一个外部镜像干扰抑制滤波器,镜像干扰可以被大大削弱到一个可接受的水平。在下变频之后使用中频滤波器可以滤除带外的杂波及噪声,对于后面的各个模块就降低了动态范围要求。第二下变频通常是正交的,以使同相和正交(I&Q)信号的数字处理变得容易。 由于有多个变频级,DC补偿和泄漏问题基本不存在,但它是以较大的硬件成本来获得较好的性能。实现镜像干扰抑制、互调等均需要的外部高Q带通滤波器,这些滤波器大都采用晶体滤波器、陶瓷滤波器和声表面波滤波器,其价格昂贵,尺寸较大。由于在第一中频就实现良好的信道选择,所以一、二本地振荡器就要求有良好的相位噪声性能。但所有的这些外部信道的要求使得在单芯片上集成收发器变得很困难。

YY-40收发信机安装调试说明

YY-40收发信机安装调试说明 火腿歪歪(BG6QBY) YY-40也就是“夜鹰-40”,是一款40m波段,QRP小功率,CW模式的收发信机。本机电路是在美国“Small Wonder Labs”公司的的SW-40+收发信机的基础上,修改完善而成,主要是将固定的收发本振部分改为可调式,收发频率容易调整到最佳位置;改进了原机功放管的输出匹配部分,提升了功率;改进了原机低通部分,让发射频谱更干净;调整了PCB元件布局,将功放管平卧安装于铝合金机壳上,改善了功放管散热,提高了可靠性;增加了发射指示电路;增加了带自动键功能的频率模块,让使用更方便。在此特别要感谢BD6CR最早将这个经典的电路引入国内,并做了大量的工作;感谢BD4RG为本套件提供了自动键模块部分的技术支持;感谢BG6RDF为配套频率模块做了大量的程序设计工作;感谢BG6QBT在早期的夜鹰套件的PCB设计上提出了很多意见和建议;还要感谢BA6QH老师在“夜鹰”成长的各个阶段都提供了很多有建设性的建议,并用“夜鹰”完成了大量的QSO,向大家完美展示了DIY和QPP的魅力。本机电路板适用于80米波段、40米波段、30米波段和20米波段(需要修改部分元器件参数,这个就留给朋友们自己DIY啦)。 此机使用可变频率振荡器(VFO),可调频率范围30-60kHz。一次变频接收,灵敏度高。三个晶体的中频窄带晶体滤波器,选择性好。发射功率3W左右。全插入(Full QSK),带侧音,是实用的简易QRP 机器。

下面以40米波段机为例,介绍工作原理和元件选择。 工作原理 电路图见附一。接收机RF输入通过T1和C1组成的7MHz选频电路加到U1。U1是一个带增益的平衡混频器,除了将RF输入变换成4M中频,还提供了大约13dB的混频增益。C11与RFC1构成的电路用于将U1的高输出阻抗匹配到晶体滤波器的低输入阻抗。 晶体滤波器使用三个经过挑选的4MHz晶体。由于中频频率低,三个晶体组成的滤波器就能有不错的性能。如果晶体性能良好,插入损耗小于2dB,-6dB通带为700Hz左右。虽然中频滤波器比较简单,但是加上音频滤波器,总体性能已经很好。 滤波器输出的负载是接于U3(差拍检波器)输入的470欧姆电阻。U3把4MHz中频变换到音频,同时又提供大概13dB的增益。通过调整C16,使差拍振荡器(BFO)晶体Y4与中频频率可产生合适的音频频率。U3的第4与第5引脚间的0.033uF电容是音频低通滤波器的第一级。 U4的每个单元都提供30dB左右增益。利用U3的差分输出,U4第一单元接成差分放大器,切除1.5kHz以上的音频响应。二极管D3与 D4用于抑制发射时的信号摆幅,以免造成后续FET开关电路的不正常工作。 由一个FET场效应管组成的音频开关电路非常简单,虽然原理上很难完全避免开关声,但是实际使用中效果却很好。在电键抬起时,FET是零偏置的,就像一个小电阻一样,可以让音频信号顺利通过。在电键按下时,FET处于截止状态(栅极比源级电压低7-8V),就像

输电线路距离保护

输电线路距离保护 齐广振 20071626 一、引言 保护系统的组成及其功能 输电线路的保护有主保护与后备保护之分。 主保护一般有两种纵差保护和三段式电流保护。而在超高压系统中现在主要采用高频保护。 后备保护主要有距离保护,零序保护,方向保护等。 电压保护和电流保护由于不能满足可靠性和选择性现在一般不单独使用一般是二者配合使用。且各种保护都配有自动重合闸装置。而保护又有相间和单相之分。如是双回线路则需要考虑方向。 在整定时则需要注意各个保护之间的配合。还要考虑输电线路电容,互感,有无分支线路。和分支变压器,系统运行方式,接地方式,重合闸方式等。还有一点重要的是在220KV 及以上系统的输电线路,由于电压等级高故障主要是单相接地故障,有时可能回出现故障电流小于负荷电流的情况。而且受各种线路参数的影响较大。在配制保护时尤其要充分考虑各种情况和参数的影响。 二、阻抗测量的原理 假设一根均匀电缆无限延伸,在发射端的在某一频率下的阻抗称为“特性阻抗”。 测量特性阻抗时,可在电缆的另一端用特性阻抗的等值电阻终接,其测量结果会跟输入信号的频率有关。 特性阻抗的测量单位为欧姆。在高频段频率不断提高时,特性阻抗会渐近于固定值。 例如同轴线将会是50或75欧姆;而双绞线(用于电话及网络通讯)将会是100欧姆(在高于1MHz时)。 粗同轴电缆与细同轴电缆是指同轴电缆的直径大还是小。粗缆适用于比较大型的局部网络,它的标准距离长、可靠性高。由于安装时不需要切断电缆,因此可以根据需要灵活调整计算机的入网位置。但粗缆网络必须安装收发器和收发器电缆,安装难度大,所以总体造价高。相反,细缆安装则比较简单,造价低,但由于安装过程要切断电缆,两头须装上基本网络连接头(BNC),然后接在T型连接器两端,所以当接头多时容易产生接触不良的隐患,这是目前运行中的以太网所发生的最常见故障之一。 国内标准 计算机网络一般选用RG-8以太网粗缆和RG-58以太网细缆。(50欧) RG-59 用于电视系统。(75欧) RG-62 用于ARCnet网络和IBM3270网络。(93欧) 三、故障类型与相别判断原理 一种输电线路故障点定位方法,其特征在于,该方法包括以下各步骤: (1)数据采集以获得被保护线路两端的电压电流信号:①输电线路母线一次侧的三相高电压大电流经二次CT/PT变换后,转变成可进行采集和测量的低电压信号,经A/D采样得到相应数字信号保存;②输电线路两侧利用GPS(全球卫星定位系统)获得误差小于一微秒的秒脉冲,经分频后以得到相应采样脉冲,作为A/D数据采集的触发脉冲,使两侧数据保持采样同步;③根据A/D 采样所得的电流电压数字信号,判断线路是否发生故障,若线路无故障,则重复以上过程,故障是否发生的判断依据为:Ⅰ:利用半波积分算法将采样得到的半个周波的电压电流数据计算得到一有效值,并将其与启动定值相比较,如果相电流或零序电流大于设定定值、或相电压或零序电压小于设定值,则认为发生故障;或Ⅱ:将采样得到的瞬时时刻的相电流值、

高频保护

高频闭锁保护原理高频闭锁保护原理闭锁保护第一节概述电网中运行的所有线路均需配备继电保护来切除故障,对于不同电压等级的线路而言,对继电保护的要求也不同。110 千伏及以下电压等级线路,通常配备以输电线路单侧电流、电压、零序电流等电气量作为判据的距离保护、零序保护、过流保护等。而对于220 千伏及以上电压等级线路,由于系统稳定的要求,必须能快速切除线路上任一点故障,这是普通的距离、零序保护所无法实现的。这就需要配置利用两端电气量的纵联保护来作为线路主保护。1、纵联保护的构成纵联保护的核心原理是利用某种通道将线路两端的保护装置连接起来,将两端的电气量进行比较,判断故障为区内还是区外故障。2、纵联保护的分类按通道类型可以划分为导引线、载波(高频)、微波、光纤纵联保护;按构成原理分为纵联方向、距离、差动保护。3、纵联保护的通道类型目前我省主要应用的通道是高频通道和光纤通道。4、纵联保护的信号分类纵联保护通道传输的信号分为闭锁信号、允许信号和跳闸信号。(1)闭锁信号:阻止保护动作于跳闸,收不到闭锁信号是跳闸的必要条件。平时通道内不传输信号,保护启动后发闭锁信号。线路两侧收、发频率一样,只要有一侧线路发出闭锁信号,两侧都能收到闭锁信号。高频闭锁保护的动作原理是:保护启动――两侧发闭锁信号――正方向元件启动――停信――出口跳闸。举例说明:A B C D E F 如上图:如果AB 线路发生故障,ABCDEF 保护启动(解释反方向也启动以及启动原理),同时发闭锁信号,A、B、D、F 正方向元件启动,停信,而C、E 则继续发闭锁信号。因此AB 线路保护出口跳闸,而CD、EF 两条线路保护则分别由于C、E 侧保护发闭锁信号而不跳闸。这也是我们平时在工作中经常会遇到的现象:系统发生事故,与之联络的线路高频保护会启动发信而不会跳闸。再如下图:A B C D E F 如果CD 线路发生故障,ABCDEF 保护启动,同时发闭锁信号。A、C、D、F 正方向元件启动,停信,而B、E 则继续发闭锁信号。因此CD 线路保护出口跳闸,AB、两条线路保护则分别由于B、而EF E 侧保护发闭锁信号而不跳闸。(2)允许信号:允许保护动作跳闸,收到允许信号是跳闸的必要条件。与闭锁信号相比较,允许信号对通道的要求更高,且只能接收对侧的允许信号,而闭锁信号不然,可以自发自收,同时对侧也能收到。因为一旦通道有异常,对于闭锁信号而言,充其量是区外故障保护失去闭锁越跳,而区内故障正常动作。允许信号则在线路发生区内故障时由于不能发送允许信号而拒动,这是绝对不允许的,因此允许式高频保护通道平时就一直在交换信号,而闭锁式高频保护只要定期交换信号就可以了。A B C D E F 允许式高频保护的动作原理是:保护启动――两侧发允许信号――正方向元件启动――――出口跳闸。如图CD 线路发生故障,A、C、D、F 保护发出允许信号,A、C、D、F 正方向元件启动。CD 线路两侧保护启动且收到允许信号,对于AB 线路而言,A 侧收不到允许信号、B 侧收到允许信号而本身保护未动作,因此AB 两侧开关均不跳闸,同样EF 线路也是如此。(3)跳闸信号:只要收到跳闸信号即出口跳闸。目前我国还没有使用,主要是对通道要求和对元件测量精度要求太高。. 第二节高频闭锁保护的动作原理目前我们南通电网中使用的高频保护均是采用闭锁信号,称为高频闭锁保护。该保护的动作条件是本侧保护动作且收不到闭锁信号,整个保护动作的过程包括:保护启动――两侧发闭锁信号――正方向元件启动――停信――出口跳闸,对应的保护装置部分是启动元件、收发信元件、方向元件、停信元件、跳闸元件。下面对以上5 个元件逐一加以介绍:一、启动元件启动元件是当系统发生事故时启动收发信机工作的元件。在我们系统中配置的高频保护启动元件都是以相电流突变量或者零序电流作为启动元件的,无论系统发生什么类型的故障,只要相电流发生突变或者产生零序电流(一般整定为0.1-0.5In)启动元件就会动作。,二、收发信元件高频保护收发信机收信和发信是独立的功能,收信由收信机独立完成,发信则包括保护启动发信、远方启动发信和通道检查发信。保护启动发信是在保护启动后和保护整组复归前进行的强制发信。远方启动发信是对侧发信后启动本侧发信机发信。使用远方发信的作用主要有:(1)提高被保护线路两侧装置配合的可靠性,防止在下列情况下保护误动作:发生区外故障,近故障侧保护启动发信元件未能启动发信,此时远故障侧保护将误动(见图,无闭锁信号)。具备了远方启动条件后,只要一侧发信机启动,则另一侧发信机也发信,确保区外故障不会误动作。(2)可以方便通道检查,不必由两侧值班人员同时配合进行,尤其是在改成监控中心值班模式之后,显得更加方便了。通道检查发信是用来进行通道检测的,必须满足以要

相关主题
文本预览
相关文档 最新文档