当前位置:文档之家› 220kV线路保护与高频收发信机接口方式的现场应用探讨

220kV线路保护与高频收发信机接口方式的现场应用探讨

220kV线路保护与高频收发信机接口方式的现场应用探讨
220kV线路保护与高频收发信机接口方式的现场应用探讨

第35卷第9期继电器Vol.35 No.9 2007年5月1日 RELAY May.1, 2007

220 kV线路保护与高频收发信机接口方式的现场应用探讨

柏兴山

(云南电网公司曲靖供电局,云南 曲靖 655000)

摘要:为防止在由旁路代供线路操作过程中由于接口方式发生变化而引起的高频保护异常事件,通过对220 kV线路保护与高频收发信机两种不同接口方式的现场接线分析,找出了在旁代线路过程中接口方式发生变化后操作中的关键环节在于高频收发信机“远方启信”功能的投、退,为避免此类问题的发生提出了意见和建议,对接口方式发生改变后现场应用中的注意事项作了深入探讨。

关键词:保护;收发信机;接口;应用

Research on the application of the 220 kV line protection and interface way of

high-frequency transmitter-receiver

BAI Xing-shan

(Qujing Power Supply Branch, State Power Grid Corporation of Yunan Province, Qujing 655000,China)

Abstract: To prevent the exceptional incident of high frequency relay caused by the change of the interface way, two kinds of different connection of the220kV line protection and interface way of high-frequency transmitter-receiver are carefully analysed. It finds out that the key link is the cast or exit of the function of “far obtaining information” about high-frequency transmitter-receiver after the interface way changed during the channel change-over.Some methods and suggestions are proposed to avoid the similar problems. Several aspects are discussed which needs to pay attention during the local application after the interface way changed. Key words: protection; high-frequency transmitter-receiver; interface; application

中图分类号: TM773 文献标识码: B 文章编号: 1003-4897(2007)09-0068-02

0 引言

在现场实际应用中,特别是在用旁路代供线路时,在目前广泛采用的旁路保护与线路保护共用高频收发信机方式下,高频收发讯机由“本线”切换至“旁路”方式后,因旁路保护和线路保护装置不同而引起高频收发信机与继电保护的接口方式发生了改变,从而导致在高频通道交换中出现的通道异常事件时有发生。本文就单接点接口方式和双接点接口方式下高频收发信机的现场接线,以目前配置较为典型的220 kV三岔变电站为例,对运行中容易出现的问题进行分析,找出了现场应用中的关键环节,并就高频收发信机装置在接口方式发生改变时的操作提出了建议。

1 单、双接点接口方式的现场接线

继电保护与收发讯机的接口方式中,在“四统一”高频闭锁逻辑上存在有继电保护装置自身实现还是由收发信机实现两种情况,这两种方式可简单称为单接点和双接点方式。图1为目前广泛使用的高频收发信机装置典型开入接线图,图中所示为单接点方式下引进装置的开入量,在“单接点”接口方式下,高频闭锁逻辑、远方启信、通道交换由继电保护装置提供,由图1中可看出,继电保护只有一对接点“FA-1”来控制高频收发信机的停信与发信,接点闭合时发信,接点断开时停信,在此方式下“停信”开入14、“其它保护动作停信”开入17、“断路器位置停信”开入20 由保护装置逻辑完成,不需引入。

双接点接口方式时,高频闭锁逻辑、远方启信、通道交换由高频收发信机实现,继电保护另外提供具有优先权的两对接点(或空光藕)来控制装置的发信和停信。其中“启动发信”开入10闭合时高频收发信机发信,“停信”开入14闭合时收发信机装置停信,并且高频收发信机装置还要引入“其它保护动作停信”开入17、“断路器位置停信”开入20,这样高频收发信机装置才能完成高频闭锁逻辑。因此,引入装置的开入量满足上述要求后,该装置同

柏兴山 220 kV 线路保护与高频收发信机接口方式的现场应用探讨 - 69 -

样能实现双接点方式。

图1 “单接点”方式下高频收发信机装置开入接线图 Fig.1 Connecting of high-frequency transmitter-receiver

equipment in the “single-link”way

2 接口方式变化时的运行注意事项

由以上分析可见:造成继电保护与高频收发信机接口方式变化的主要原因在于继电保护装置自身逻辑功能的不同。在微机保护发展初期,构成保护智能核心部分的CPU 大多使用的是16位的8098或8位的8031单片机,其有限的位数无暇顾及已经能由高频收发信机完成的高频闭锁逻辑,只能实现双接点方式(如11型微机保护)。目前新一代微机保护采用32位及以上浮点DSP 处理器,为使保护可靠性更高,比如能在运行中检查到线路两侧继电保护装置及整个高频通道的完好性等,保护与高频收发信机接口采用的都是单接点方式(如RCS901)。

由于高频闭锁逻辑、通道交换功能已在保护改造时的现场接线中得到充分解决,因此,在运行过程中两种接口方式变化后操作时的关键环节在于高频收发信机“远方启信”功能的投、退。单接点方式下必须退出高频收发信机装置的“远方启信”功能,反之则应投入该功能。

对接口方式变化后的高频收发信机“远方启信”功能投、退选择的重要性,以高频通道检查过程为例说明,在如图2所示高频闭锁式通道检查逻辑中,正常运行时需进行通道信号交换,在正确设置下,由人工在保护屏上按下通道试验按钮,本侧首先发信200 ms 后停止发信;对侧被动检查侧收到信号后远方启信,发信10 s ;本侧主动检查侧收对侧信号达5 s 后本侧再次发信,10 s 后停止发信。在主动检查一侧由于高频收发信机“远方启信”功能未投入时,本侧在完成AC 时间段工作后,将不能发信10 s ,而

出现此情况时两侧高频收发信机往往不会发出告警

信号,此时现场运行人员很难发现问题,容易在高频通道存在问题的情况下将高频投入运行,一旦线路发生复杂故障,高频保护将发生误动、拒动。

图2 高频通道检查收、发信过程图 Fig.2 Process of checking transmission-reception of

high-frequency channel

图3 主接线及保护配置图

Fig.3 Main connection and protection configuration

图3为220 kV 三岔变电站一次接线及保护配置简图,由图中可见,在旁代带路过程中接口方式存在着由单接点变为双接点方式的情况;同理,在旁路保护经技术改造更换为单接点方式保护后,又存在着由双接点方式变为单接点方式问题。

3 对接口方式发生变化后的几点建议

由于各种原因,在同一个变电站内往往不能实现旁路与线路为同一种接口方式,因此,继电保护与高频收发信机接口方式发生改变的情况较为普遍。对此,提出建议如下:

1)必须高度重视在旁路代供线路时,由于旁路保护与线路保护共用收发信机而带来的接口方式变化问题。此问题涉及二次回路设计、施工、调试及运行交接等环节,对有不同接口方式配合要求的高频收发信机,各环节应充分考虑,防患未然。

2)现场运行人员应熟悉各型高频收发信机装置的原理性能,熟练掌握接口方式变化后投、退“远方启信功能”对装置进行的相关操作。

3)对高频收发信机“远方启信”功能的投、退操作,建议列入操作票内,严格操作流程。由于在对

(下转第78页 continued on page 78)

- 78 - 继电器

从表2可以看出,系统M的零序阻抗越大,线路2的接地距离越容易误动。故障后阻抗的相角与故障前阻抗的相角相差不多。极端情况下,当

M0

Z=∞时,系统M成为中性点不接地系统,接地距离感受的阻抗最小。

仿真结果证明了理论分析的正确性。

3 对策

针对接地距离继电器误动的原因和误动时候所具有的电气量特征,可以采用如下两个方法避免误动:

1) 相邻线路发生接地故障时,本线路对侧中性点不接地。利用这个特征,可以采用零序电流闭锁,即当零序电流较小的时候闭锁接地距离元件。该方法需要考虑如下问题:①若选取固定门槛,零序电流的门槛应该如何选取?②对于电缆线路或长距离的架空线路,对地电容较大,相邻线路发生接地故障时本线路的零序电流较大,若超过门槛值,同样可能导致接地距离元件误动。

2) 发生单相接地故障的时候,故障线路的故障相电流一定会增大。而对于非故障线路,由前面的理论分析和仿真可知,非故障线路的三相电流都会减少(对于两相接地故障,该结论依然成立,篇幅所限读者可自行证明),且故障相的同名相电流减少会较多。因此可以通过判定保护启动后一周波电流幅值是否减少来闭锁接地距离,避免接地距离误动。

方法2与方法1相比,只比较保护启动前后电流幅值是否增大,更容易实现。因此,建议采用方法2避免接地距离误动。 4 结语

本文针对一起接地距离保护误动的事故,对误

动的原因进行了详尽的理论分析,并用EMTP仿真进

行验证。并给出了导致接地距离误动的几个影响因

素和该情况下的电气特征,针对电气特征给出了避

免接地距离保护误动的辅助闭锁判距。

参考文献

[1] 王梅义.电网继电保护应用[M].北京:中国电力出版

社,1999.

WANG Mei-yi.Application of Power System Protective

Relay[M].Beijing:China Electric Power Press,1999.

[2] 朱声石.高压电网继电保护原理与技术(第三版)[M].

北京:中国电力出版社,2005.

ZHU Sheng-shi.Principle and Technology of High-voltage Power System Protective Relay,the Third

Edition[M]. Beijing:China Electric Power Press,2005. [3] 李晓明.现代高压电网继电保护原理[M].北京:中国电

力出版社,2005.

LI Xiao-ming.Theroy of Relay Protection of Modern HV

Transmission System[M]. Beijing:China Electric Power

Press,2005.

收稿日期:2006-10-11;修回日期:2006-11-23

作者简介:

承文新(1969-),男,高级工程师,主要从事继电保护

方面的工作;

范春艳(1981-)女,助工,主要从事水电自动化、继

电保护方面的工作;

姚 斌(1977-),男,硕士,主要从事电力系统故障分析,微机继电保护算法研究和装置开发工作。Email: yaobin@

https://www.doczj.com/doc/649175880.html,

(上接第69页 continued from page 69)

“远方启信”功能投、退选择上需改变高频收发信机装置定值设置内控制字(如PSF631),但此定值又未纳入保护定值管理,由现场根据需要设置。因此,接口方式变化后,在调度部门要求检查高频通道前,需现场对此设置进行更改,同时必须做好更改前原设置记录,以便接口方式恢复后及时恢复设置。

4)由于接口方式发生变化后,在高频收发信机未进行相应设置的情况下,将带有缺陷的保护投入工作或在检查高频通道时才发现异常的情况时有发生,建议调度部门对相关设置及操作纳入管理,加强监督。

4 结束语

旁路、线路保护为不同的接口方式存在于各220 kV变电站内,本文就继电保护与高频收发信机不同接口方式的现场接线以及两种接口方式的产生根源作了阐述;对旁路代供线路时,在接口方式发生改变后,对现场运行中的注意事项、如何解决问题作了探讨。

参考文献

[1]DL/T 584-95,3-110 kV电网继电保护装置运行整定

规程[S].

DL/T 584-95,3-110 kV Operation Condition and Setting

Regulation for Protective in Power Supply Network[S]. [2]中国南方电网公司十项重点反事故措施[Z].

Ten Emphasis Measures Against Accident for China Southern Power Grid[Z].

收稿日期:2006-09-08;修回日期:2006-12-12

作者简介:

柏兴山(1975-),男,大专,从事继电保护的现场检修、调试工作。E-mail:bdgsbxs@https://www.doczj.com/doc/649175880.html,

收发信机试验方法

1.简述 专用高频收发信机一般为单频制。即发信和收信为同一频率信号,且能够自发自收。线路对端的收发信机与本侧收发信机型号、频率完全相同。因此,本侧的收发信机除能够自发自收外,也能够接收对端的信号。 发信部分包括:晶体振荡、前置放大、功率放大、输出滤波等收信部分包括:收信滤波、混频、变频、放大、检波、收信输出等 对于LFX—912型收发信机,测试项目不多,对于有些收发信机,则需要测试较多项目,如许昌继电器厂生产的SF—600型收发信机,还要测试收信带宽、混频变频输出等一些项目。现在只以LFX—912为例,叙述它的测试项目和方法。 2.测试项目和方法 发信输出电平测试: 收发信机的输出就是指高频信号的输出。输出信号的单位用“dB”或“dBm”即:电压电平或功率电平。收发信机高频信号输出端子为装置背面的“38”和“40”号端子。“38”为高频电缆的“芯”,“40”为高频电缆的“地(即屏蔽层)”。测试输出电平时,用选频电平表的“∞”档,测试档位要放的大些(防止撞表针),测试线加在“38”和“40”上,也可以将测试线插在装置前面的测试插孔上。如果没有接入通道,则要将收发信机背面的插头选择在“本机—负载”上。选频表频率选在收发信机的工作频率上。然后启动发信。读选频表的指针读数。所读的选频表读数为电压电平。 高频收发信机的输出阻抗为75Ω,因此,若要将所读的电压电平换算为功率电平,则应按下列公式换算: 式中:Pu:电压电平 Pg:功率电平 对于与RCS—901A组屏的LFX—912收发信机,在测试发信电平时(未接入通道,选择“本机—负载”),应短接发信机背面“10”和“12”端子,使发信机发信。 收信灵敏电平测试: 收信灵敏电平也称为收信启动电平。即能使收信回路正常工作的最小电平,称为收信启动电平。 正确的测试方法按下图接线:

射频接收系统的设计与仿真

1 前言 (2) 2 工程概况 (2) 3 正文 (2) 3.1零中频接收系统结构性能和特点 (3) 3.2基于ADS2009对零中频接收系统设计与仿真 (3) 3.3超外差接收系统结构性能和特点 (12) 3.4基于ADS2009对超外差接收系统设计与仿真 (13) 4 有关说明 (16) 5 心得体会 (18) 6 致谢 (18) 7 参考文献 (19)

射频是一种频谱介于75kHz-3000GHz之间的电波,当频谱范围介于20Hz-20kHz之间时,这种低频信号难以直接用天线发射,而是要利用无线电技术先经过转换,调制达到一定的高频范围,才可以借助无线电电波传播。射频技术实质是一种借助电磁波来传播信号的无线电技术。 无线电技术应用最早从18世纪下半段开始,随着应用领域的扩大,世界已经对频谱进行了多次分段波传播。当前,被广泛采用的频谱分段方式是由电气和电子工程师学会所规定的。随着科学技术的不断发展,射频所含频率也不断提高。到目前为止,经过两个多世纪的发展,射频技术也已经在众多领域的到应用。特别是高频电路的应用。其中在通信领域,射频识别是进步最快的重要方面。 工程概况 近年来随着无线通信技术的飞速发展,无线通信系统产品越来越普及,成为当今人类信息社会发展的重要组成部分。射频接收机位于无线通信系统的最前端,其结构和性能直接影响着整个通信系统。优化设计结构和选择合适的制造工艺,以提高系统的性能价格比,是射频工程师追求的方向。由于零中频接收机具有体积小、成本低和易于单片集成的特点,已成为射频接收机中极具竞争力的一种结构,在无线通信领域中受到广泛的关注。本文在介绍超外差结构和零中频结构性能和特点的基础上,对超外差结构和零中频结构进行设计与仿真。 正文 下面设计一个接收机系统,使用行为级的功能模块实现收信机的系统级仿真。

基站射频收发信机指标分解

美信Maxim技术文档《基站收发信机设计》,以WCDMA为例进行讲解基站收发信机射频前端指标分解和设计。虽然文档以WCDMA为例进行讲解,但宽带收发信机射频前端原理基本一致,因此适用于LTE等其他制式的设计。以下为学习笔记和总结。 1.接收机 接收机主要射频指标包括Reference Sensitivity Level,Adjacent Channel Selectivity(ACS),Blocking(In-Band和Out-of-Band),Receiver Inter-modulation。其中带内blocking指标和ACS 分析类似,考量的都是工作带内信道外干扰信号对接收机影响的分析,因此Bolcking指标支队Out-of-band指标进行了讲解和说明。 1.1Reference Sensitivity Level 接收机的最小可接收电平(接收机灵敏度)= -174dBm/Hz + 10logBW + NF + Eb/N0 1.Eb/No由基带解调能力决定,与射频前端无关; 2.BW由无线系统协议标准定义; 3.-174dBm/Hz及总的热噪声; 因此针对某一无线系统设计,灵敏度指标的分解即根据协议灵敏度指标要求来设计接收机的噪声系数(Noise Figure)要求,以保证满足灵敏度指标允许的最大输入噪声(总噪声,包括输入热燥和引入的系统噪声) 上图说明如下: Step1:系统要求灵敏度指标为-121dBm/3.84MHz; Step2:Eb/No = 5dB ——不考虑编码增益允许的总输入噪声=-121dBm – 5dB = -126dBm Step3:12.2Kbps数据速率到3.84Mcps码片速率的扩频增益为:10*log(3.84M/12.2K) ≈25dB,考虑扩频增益后总的输入噪声要求为-101dBm; Step4:3.84MHz带内总的热噪声= -174dBm + 10log3.86MHz/1Hz = -108.1dBm 所以为满足灵敏度指标要求,系统接收机连续噪声系数需要≤-101dBm+108.1dBm

线路保护介绍

基本配置 保护配置 系统差异 接地系统和不接地系统的差异 分相保护和不分相保护的差异:不一致、单跳、单重 电压的差异:电容电流和末端过电压、网架中心和重要程度 功能介绍 距离保护: 距离元件采用比相式姆欧继电器,即由工作电压Uop与极化电压Up构成比相方程。 比相式距离继电器的通用动作方程为:-900

这里: Φ = A , B , C ; OP Φ 为工作电压; 正序电压同故障前保持一致,继电器具有很好的方向性。 jX 距离保护正方向故障动作特性 应用于较短输电线路时,为了提高抗过渡电阻能力,极化电压中使用了接地距离偏移 角如图中所示θ1,该定值可以由用户整定为0°, 15° 或 30°。接地距离偏移角会使动作特 性圆向第一象限移动。 虽然这可提高测量过渡电阻的能力,在高阻接地故障条件下保证很好的动作性能,但 是如果在线路对侧存在助增电源的情况下,对于经过渡电阻接地的故障可能会出现超越现 象。为了防止超越,通常距离保护Ⅰ、Ⅱ段和零序电抗元件配合使用。 零序电抗 工作电压: 极化电压: U OP Φ = U Φ - (I Φ + K ? 3I 0 )? Z set U P Φ = -I 0 ? Z D ,式中 Z D 为模拟阻抗,幅值为1,角度为78°。 比相方程为 - 900 < Arg U Φ - (I Φ + K ? 3I 0 )? Z set - I 0 ? Z D < 900 低压距离继电器 保护采用记忆电压作为极化电压,通过比较极化电压与工作电压之间的相位关系来判 别是否满足动作条件。 工作电压: 极化电压: U OP Φ = U Φ - I Φ ? Z set U P Φ = -U 1ΦM U U 1ΦM 为记忆故障前正序电压。 负荷限制 U P Φ 为极化电压 ; Z set 为整定阻抗;

线路保护介绍

保护配置 基本配置 系统差异 接地系统和不接地系统的差异 分相保护和不分相保护的差异:不一致、单跳、单重 电压的差异:电容电流和末端过电压、网架中心和重要程度 功能介绍 距离保护: 距离元件采用比相式姆欧继电器,即由工作电压Uop 与极化电压Up 构成比相方程。 比相式距离继电器的通用动作方程为:0 09090<<-P OP U U Arg 式中:工作电压 OP set U U I Z =-?,极化电压1P U U =-。 对接地距离继电器,工作电压为: ()set OP Z I K I U U ??+-=ΦΦΦ03 对相间距离继电器,工作电压为: set OP Z I U U ?-=ΦΦΦΦΦΦ 装置中三段式接地与相间距离继电器,在正序极化电压较高时由正序电压极化否则进入三相低压程序,此时采用记忆正序电压作为极化电压。 采用非记忆的正序电压作为极化电压,故障期间,正序电压主要由健全相电压形成,正

序电压同故障前保持一致,继电器具有很好的方向性。 距离保护正方向故障动作特性 应用于较短输电线路时,为了提高抗过渡电阻能力,极化电压中使用了接地距离偏移角如图中所示θ1,该定值可以由用户整定为0°, 15° 或 30°。接地距离偏移角会使动作特性圆向第一象限移动。 虽然这可提高测量过渡电阻的能力,在高阻接地故障条件下保证很好的动作性能,但是如果在线路对侧存在助增电源的情况下,对于经过渡电阻接地的故障可能会出现超越现象。为了防止超越,通常距离保护Ⅰ、Ⅱ段和零序电抗元件配合使用。 零序电抗 工作电压: ()s e t OP Z I K I U U ??+-=ΦΦΦ03 极化电压: D P Z I U ?-=Φ0,式中D Z 为模拟阻抗,幅值为1,角度为78°。 比相方程为 ()0 00090390

通信系统建模与仿真课程设计

1 任务书 试建立一个基带传输模型,采用曼彻斯特码作为基带信号, 发送滤波器为平方根升余弦滤波器,滚降系数为0.5,信道为加性高 斯信道,接收滤波器与发送滤波器相匹配。发送数据率为1000bps , 要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据 与恢复数据波形,并统计误码率。另外,对发送信号和接收信号的功 率谱进行估计。假设接收定时恢复是理想的。 2 基带系统的理论分析 2.1基带系统传输模型及工作原理 基带系统传输模型如图1所示。 发送滤波器 传送信道 接收滤波器 {an} n(t) 图1 基带系统传输模型 1)系统总的传输特性为(w)()()()H GT w C w GR w ,n (t )是信道中 的噪声。 2)基带系统的工作原理:信源是不经过调制解调的数字基带信号, 信源在发送端经过发送滤波器形成适合信道传输的码型,经过含有加

性噪声的有线信道后,在接收端通过接收滤波器的滤波去噪,由抽样 判决器进一步去噪恢复基带信号,从而完成基带信号的传输。 2.2 基带系统设计中的码间干扰及噪声干扰 码间干扰及噪声干扰将造成基带系统传输误码率的提升,影响基 带系统工作性能。 1)码间干扰及解决方案 a ) 码间干扰:由于基带信号受信道传输时延的影响,信号波形 将被延迟从而扩展到下一码元,形成码间干扰,造成系统误码。 b) 解决方案: ① 要求基带系统的传输函数H(ω)满足奈奎斯特第一准则: 2(),||i i H w Ts w Ts Ts ππ+ =≤∑ 不出现码间干扰的条件:当码元间隔T 的数字信号在某一理想低通 信道中传输时,若信号的传输速率位Rb=2fc (fc 为理想低通截止频 率),各码元的间隔T=1/2fc ,则此时在码元响应的最大值处将不 产生码间干扰。传输数字信号所要求的信道带宽应是该信号传输速 率的一半:BW=fc=Rb/2=1/2T ② 基带系统的系统函数H(ω)应具有升余弦滚降特性。 如图2所示:滚降系数:a=[(fc+fa)-fc]/fc

高频收发讯机

第二章 高频收发讯机 第一节 收发讯机的工作概况 本局所用的收发讯机大部分为南瑞公司的LFX 系列,另有几台国电南自的PSF 系列。 有关该两种类型的收发讯机的工作原理等基本概念如外差、频谱向上搬移等已在其技术说明书上有详细的讲解。这里只讲述其在电网中的工作特点。在图4.1中,当K 点发生故障 瞬间,所有地点保护都会启动发讯,然后M 、 N 、Q 处保护判定为正方向故障停讯,P 点保 护判定为反方向故障而一直让收发讯机发讯 闭锁本侧保护与对端的Q 保护。必须等到M 、 N 保护把故障隔离后才停讯。所以若工作需要 要退出P 点收发讯机时,必须通知Q 点也退 出收发讯机,不然有可能K 点故障时因Q 点 保护收不到闭锁信号而越级跳闸。 由于保护启动值比动作值灵敏,故障量一旦达到启动值所有收发讯机都发讯,高频讯号一方面闭锁自己保护,一方面去闭锁对端保护,P 点的反方向元件一直保持,M 、N 、Q 三处保护都要发讯10ms 之后才投入各自的正方向元件,这样可以防止Q 处保护正方向元件先动作而误跳闸。这也可以看出高频保护的动作时间大于10ms ,一般在15ms 左右。 反方向元件D -比正方向元件D+优先动作,如果是从区内到区外的转换性故障,无论开关跳闸与否,D+都立刻返回,D -立刻动作,收发讯机立刻重新发讯。 收发讯机发出的高频讯号电平40dB ,这40dB 分以下几个部分: 1、对侧收发讯机远方启动所需要的最小灵敏启动电平4 dB 。 2、收发讯机不确定动作电平6 dB 。 3、收发讯机正常工作所需要的最小工作电平9 dB 。 4、线路传输允许的最大衰耗21 dB 。 这里的最小工作电平9 dB 即通常说的1奈倍(NB )(1NB ≈8.686 dB )。两侧通道联调时,本侧收讯回路收到的电平不能小于9dB ,最好也不能超过18 dB ,收到电平过大,也不利于收发讯机装置的工作。收到电平过大,可以人为投入衰耗,在收发讯机上有跳线设计,按照说明书上每个跳线的衰耗根据需要投入。这里本侧收讯回路收到的电平,并不是是指装置背后端子处的电平,而是指高频波进入装置内部经人为衰耗之后的电平。 电平与频率的概念是不一样的。频率表示高频波振荡周期的快慢,电平是指高频波振荡能量的大小,所以高频波只衰耗电平不改变频率。 测试到本侧收到对侧高频波电平值后就需要在收发讯机上整定好该电平值,这是正常时候收讯应该达到的电平,如果今后通道实验时收到的电平比整定值低3 dB ,装置发“3 dB 告警”信号。3 dB 告警是一个很重要的概念,它不是指收到的电平小于3dB ,而是指收到的电平比正常电平要少3个dB 以上。此时就应该检查高频通道,找出衰耗增大的原因。 作通道试验时两侧的收发讯机工作情况可以用图4.2表示。M 侧先按下试验按钮,M 侧收发讯机发讯200 ms 后停止,N 侧收发讯机收到讯后立刻被M 侧远方起讯而发讯10s ,M 侧停讯5s 后再重新发讯10s 。 从图4.2也可看到大约有近5s 的时间内是处于两侧收发讯机都发讯的状态,此时若功放面板上的指针晃动比较剧烈(LFX 系列),说明两侧装置的差拍比较大。接口面板上“OP ”图4.1 M N ~ ~ K E N E M P Q

高频保护

什么是高频保护? 答:高频保护包括相差高频保护和功率方向闭锁高频保护。相差高频保护是测量和比较被保护线路两侧电流量的相位,是采用输电线路载波通信方式传递两侧电流相位的。 功率方向闭锁高频保护,是比较被保护线路两侧功率的方向,规定功率方向由母线指向某线路为正,指向母线为负,线路内部故障,两侧功率方向都由母线指向线路,保护动作跳闸,信号传递方向相同。 高频保护基本原理是什么? 答:高频保护基本原理是反映并比较被保护线路两端电流的大小和相位。即将两端的电气量调制成高频信号,利用高频通道将高频信号相互送到对侧,再由各自的保护装置将收到的对侧信号与本侧的信号进行比较,判断是内部还是外部的,从而决定保护是否动作。一般利用输电线路本身,采取“相—地”制方式作为高频通道。高频通道工作方式一般采用短路时发信方式(即正常时通道中无高频信号)。 构成高频保护通道的元件有哪些? 答:构成高频保护通道的元件有:高频收发信机、高频电缆、结合滤波器、耦合电容器、阻波器和单相输电线路等。 什么是相差高频保护的闭锁角? 答:如图F-5(a)所示,当k点发生穿越性故障时,在理想情况下,IM与IN 相差180°,保护装置不动作。而实际上,当线路外部故障时,由于各种因素的影响,IM与IN的相角差不是180°,收信机收到的信号有一个间断角。根据相差高频保护的原理,当线路故障而出现间断角时,保护装置将动作。为此,应找出外部故障可能出现的最大间断角,并按此值进行闭锁,以保证当线路外部故障时保护不误动。这个最大间断角就叫相差高频保护的闭锁角。如图F-5(b>所示保护的动作区φop为(180°-β)>φop>(180°+β),闭锁角即为β。 在具有远方起动的高频保护中为什么要设置断路器三跳停信回路? 答:(1)在发生区内故障时,一侧断路器先跳闸,如果不立即停信,由于无操作电流,发信机将发生连续的高频信号,对侧收信机也收到连续的高频信号,则闭锁保护出口,不能跳闸。 (2)当手动或自动重合于永久性故障时,由于对侧没有合闸,于是经远方起动回路,发出高频连续波,使先合闸的一侧被闭锁,保护拒动。为了保证在上述情况下两侧装置可靠动作,必须设置断路器三跳停信回路。 耦合电容器在高频保护中的作用是什么? 答:耦合电容器是高频收发信机和高压输电线路之间的重要连接设备。由于它的电容量很小,对工频电流具有很大的阻抗,可防止工频高电压对收发信机的侵袭,而对高频信号呈现的阻抗很小,不妨碍高频电流的传送。耦合电容器的另一个作用是与结合滤过器组成带通滤过器。 相差高频保护有何特点? 答:(1)在被保护线路两侧各装半套高频保护,通过高频信号的传送和比较,以实现保护的目的。它的保护区只限于本线路,其动作时限不需与相邻元件保护相配合,在被保护线路全长范围内发生各类故障,均能无时限切除。 (2)因高频保护不反应被保护线路以外的故障,不能作下-段线路的后备保护,所以线路上还需装设其他保护作本线及下一段线路的后备保护。 (3)相差高频保护选择性好、灵敏度高,广泛应用在110~220kV及以上高压输电线路上作主保护。 相差高频保护有何优缺点? 答:优点: 1、能反应全相状态下的各种对称和不对称故障,装置比较简单。 2、不反应系统振荡。在非全相运行状态下和单相重合闸过程中,保护能继续运行。 3、保护的工作情况与是否有串补电容及其保护间隙是否不对称击穿基本无关。 4、不受电压二次回路断线的影响。 缺点如下: 1、重负荷线路,负荷电流改变了线路两端电流的相位,对内部故障保护动作不利。 2、当一相断线接地或非全相运行过程中发生区内故障时,灵敏度变坏,甚至可能拒动。 3、对通道要求较高,占用频带较宽。在运行中,线路两端保护需联调。 4、线路分布电容严重影响线路两端电流的相位。线路长度过长限制了其使用。

电池保护电路工作原理

电池保护电路工作原理 随着科技进步与社会发展,象手机、笔记本电脑、MP3播放器、PDA、掌上游戏机、数码摄像机等便携式设备已越来越普及,这类产品中有许多是采用锂离子电池供电,而由于锂离子电池的特性与其它可充电电池不同,内部通常都带有一块电路板,不少人对该电路的作用不了解,本文将对锂离子电池的特点及其保护电路工作原理进行阐述。 锂电池分为一次电池和二次电池两类,目前在部分耗电量较低的便携式电子产品中主要使用不可充电的一次锂电池,而在笔记本电脑、手机、PDA、数码相机等耗电量较大的电子产品中则使用可充电的二次电池,即锂离子电池。与镍镉和镍氢电池相比,锂离子电池具备以下几个优点: 1.电压高,单节锂离子电池的电压可达到3.6V,远高于镍镉和镍氢电池的1.2V 电压。 2.容量密度大,其容量密度是镍氢电池或镍镉电池的1.5-2.5 倍。 3.荷电保持能力强(即自放电小),在放置很长时间后其容量损失也很小。 4.寿命长,正常使用其循环寿命可达到500 次以上。 5.没有记忆效应,在充电前不必将剩余电量放空,使用方便。 由于锂离子电池的化学特性,在正常使用过程中,其内部进行电能与化学能相互转化的化学正反应,但在某些条件下,如对其过充电、过放电和过电流将会导致电池内部发生化学副反应,该副反应加剧后,会严重影响电池的性能与使用寿命,并可能产生大量气体,使电池内部压力迅速增大后爆炸而导致安全问题,因此所有的锂离子电池都需要一个保护电路,用于对电池的充、放电状态进行有效监测,并在某些条件下关断充、放电回路以防止对电池发生损害。 下页中的电路图为一个典型的锂离子电池保护电路原理图。 如图中所示,该保护回路由两个MOSFET(V1、V2)和一个控制IC(N1)外加一些阻容元件构成。控制IC负责监测电池电压与回路电流,并控制两个MOSFET的栅极,MOSFET在电路中起开关作用,分别控制着充电回路与放电回路的导通与关断,C3为延时电容,该电路具有过充电保护、过放电保护、过电流保护与短路保护功能,其工作原理分析如下: 1、正常状态

GSF-6A高频保护收发信机调试导则.

GSF-6A型 高频保护收发信机 调试导则 SL2.131.239/240W 江苏××通信设备分公司

1.试验仪器及准备 1.1所需测试仪表 选频电平表一台,电平振荡器一台,30W、31dB/75Ω可变衰耗器一台, 75Ω测量电阻三只,万用表一只。 1.2试验前准备 按图1面板布置图检查机盘位置是否正确,再检查机盘的电压等级是否正确(逆变电源)及机器的工作频率。并查看端子接线有无松动等。在外观检查完毕后,进行以下各项试验。 图1 面板布置图 注:220V为SL2.131.239;110V为SL2.131.240。

2.电源投入 收发信机安装完毕,逆变电源盘开关置于“断”位置,加上直流220V (或110V)。将逆变电源盘开关置于“通”位置,逆变电源盘指示灯点亮,逆变电源“-30V测试孔”的输出电压应为-30V,否则调整盘面电位器。再测量-24V、-15V、+15V,将各点电平实测值记于表1中,以备维护中核对。设备加电30分钟后,再进行一次调整,即可进行测试。 表1 收发信机各部分电源实测值 3.各点电平的测量与调整(将逻辑盘和接口盘拔出) 3.1 对侧发信时,解调器输出及触发器的翻转电平。 3 1.1收发信机置于停信状态。 3.1.2在收发信机发信滤波器测试孔用电平振荡器输入+10dB/75Ω对侧工作频率信号,模拟对侧发信信号。此时,在解调器面板用选频电平表测试,选频电平表用高阻抗,频率设置为12KHz。解调器输出电平满足表2,若不满足要求,则调整控制盘内衰耗器SJ1~SJ5。 3.1.3振荡器输出电平降低到+7dB,在触发盘面板用万用表电压档测量,触发器面板测试孔2翻转电平满足表2,否则调整触发器盘内电位器W3。3.1.4振荡器输出电平降低到-5dB,在触发盘面板用万用表电压档测量,

线路主保护介绍

纵联保护是线路的主保护,因为要比较线路两端电流的大小及相位,所以需要把线路两端的信号通道连接起来。 纵联保护按信号通道的不同又分为:高频保护、微波保护、光纤保护及导引线保护。纵联距离和纵联零序就是高频保护~ 你们厂应该是专用光纤通道~主时钟形式的~ 上面的两个保护分别是线路相间和接地故障的主保护~没别的意思~ 而距离保护只是线路的后备保护~纵联保护是比较两侧电气量的保护.用距离元件判断故障是本侧还是对侧.光纤保护是本侧故障发信,高频闭锁保护就停信,再与对侧传过来的信号进行比较.决定跳闸与否.一般每侧的保护范围都是超范围的.两侧共同判断,保护线路全长距离保护只是判断本侧.在保护范围内即可根据控制字设置情况进行动作,一般一段保护范围为线路全长的80%纵联保护就是线路保护的主保护,包含纵联距离,方向,差动等等。 距离保护是线路保护的后备保护。 纵联距离和距离保护的特性是基本相同的,不同的地方在于纵联距离的出口需要本侧和对侧保护都开放才行,而后备距离保护的出口只需要本侧保护开放就可以。 在大短路电流接地系统中发生接地故障后,就有零序电流、零序电压和零序功率出现,利用这些电气量构成保 护接地短路的继电保护装置统称为零序保护。 三相电流平衡时,没有零序电流,不平衡时产生零序电流,零序保护就是用零序互感器采集零序电流,当零序电流超过一定值(综合保护中设定),综和保护接触器吸合,断开电路。 零序电流互感器内穿过三根相线矢量和零线。 正常情况下,四根线的向量和为零,零序电流互感器无零序电流。 当人体触电或者其他漏电情况下:四根线的向量和不为零,零序电流互感器有零序电流,一旦达到设定值,则保护动作跳闸。 分段 零序一段: ①躲过下一段线路出口处单相或者两相接地短路时候出现的最大零序电流。 ②躲开断路器三相触头不同期合闸时候所出现的最大零序电流。 两者比较取最大 零序二段: 与下一段线路的一段配合,即是躲过下段线路的第一段保护范围末端接地短路时,通过本保护装置的最大零序电流。 零序二段的灵敏系数要大于1.5,不满足的话要与下一段线路的二段配合,时限再抬高一个等级。 零序三段: ①与下一段线路的三段配合; ②躲开下一段线路出口处相间短路时所出现的最大不平衡电流。 两者比较取最大。 零序三段的灵敏系数要大于2(近后备);灵敏系数要大于1.5(远后备) 接地距离 两者的区别 两者的区别主要在于采用的电气量不同,接地距离保护是利用短路电压和电流的比值,即测量阻抗的变化来区分系统的故障与正常运行状态。而零序保护利用的是接地故障时产生的零序电流分量。这是两者在原理上的最主要区别。但是,两者从保护的配合上来看,都是属于阶段式的保护,即都需要各保护区的上下级配合。再一点,从保护的性能来分析。应该说,在不发生单相接地时,零序电流分量是不会出现的,所以零序电流保护具有较高的灵敏性。但在上下级的配合时,限时零序电流速断保护(零序II段)的灵敏性可能不满足要求,这时可采用接地距离保护。这也就是说接地零序保护的灵敏性高于电流保护(可以看到,距离保护利用了短路时的两个电气量,自然比单一的电流保护要灵敏)。所以保护的配备上,一般距离保护作为了主保护,那么电流保护都是作为后备保护的,即在线路发生故障时,首先距离保护动作,零序保护作为后备可能动作。

继电保护课程设计--线路距离保护原理及计算原则

电力系统继电保护课程设计 题目:距离保护 专业:电气工程及其自动化 班级: 姓名: 学号: 2017年 6月 13 日

1 设计原始资料 1.1 具体题目 如下图1.1所示网络,系统参数为 : E ?=、G210ΩX =、10ΩG3=X ,140(13%)41.2L =+=km 、403=L km , 50=BC L km 、30=CD L km 、30=DE L km ,线路阻抗/4.0Ωkm ,?Ш0.85rel rel K K ==,?? 0.8rel K =, max 300BC I =A 、max 200CD I =A 、max 150CE I =A ,5.1=ss K ,15.1=re K ,Ш1=0.5t s 。 A B 图1.1电力系统示意图 试对线路1L 、2L 、3L 进行距离保护的设计。 1.2 要完成的内容 本文要完成的内容是对线路的距离保护原理和计算原则的简述,并对线路各参数进行分析及对保护3和5进行距离保护的具体整定计算并注意有关细节。 2 分析要设计的课题内容 2.1 设计规程 根据继电保护在电力系统中所担负的任务,一般情况下,对动作于跳闸的继电保护在技术上应满足四个基本要求:选择性、速动性、灵敏性、可靠性。这几“性”之间,紧密联系,既矛盾又统一,按照电力系统运行的具体情况配置、配合、整定。 2.2 本设计的保护配置 2.2.1 主保护配置

距离保护Ⅰ段和距离保护Ⅱ段构成距离保护的主保护。 (1) 距离保护的Ⅰ段 A B C 图2.1 距离保护网络接线图 瞬时动作,Ⅰt 是保护本身的固有动作时间。 保护1的整定值应满足:AB set Z Z

高频通道元件及收发信机的测试方法

高频通道元件 及收发信机的测试方法 湖南省电力公司试验研究院 继电保护所

高频通道元件及收发信机的测试方法 一、高频阻波器 1.试验接线 图中: R1为去谐电阻;阻值1.5~3K Ω R2为无感电阻;阻值100Ω P 为选频电平表 2.阻抗特性试验 按上图接线,振荡器输出阻抗选择“0”Ω,输出电平“0”dB。选频表输入阻抗选择“∞”。从84(或60、70)kHZ~500kHZ 测试若干个点,振荡器每改变一次频率,选频表就测试一次P1、P2值。然后按下式计算阻抗值。 阻抗计算公式: 2) 21(05.0)110 (R Z p p ×?=?要求:在84kHZ ~500kHZ 的范围内,阻抗值不小于570Ω(厂家出厂标准)。 补充知识: 1、如果是相相偶合的,那么一个通道需要两相线路用来载波,那么就要两相都装.如果是两通道合用三相(一般B 相公用),那么三相都要装。 2、如果是相地偶合,那么一个通道只需要一相线路用来载波,那么就只要一相安装. 3、有的地区为了频率分区,需要全阻塞,那么相关线路(甚至该线路没有高频保护)三相都要装,此时不需结合设备。 二、结合滤波器(常规试验做线路侧和电缆侧的) *工作衰耗的定义:

R ’ (a) (b) 工作衰耗为当负载阻抗R 与电源阻抗R S 相等并直接相连时,如图所示,负载 R 所获得的最大接收功率P max 与经过四端网络后负载R’上所获得功率P 2,取Pmax 与P 2之比常用对数的10倍称为工作衰耗,即: max 2 10lg W P b P = 对于四端口网络当看进去的输入阻抗与电源阻抗相等即匹配时,输入阻抗上获得的功率最大。 用电压表测量: 因为是测量工作衰耗,所以,结合滤波器的输入阻抗与电阻R1相等。因此结合滤波 器电缆侧输入端的功率为: 1 2112 14) 2( R U R U P M == 结合滤波器线路侧负载阻抗R2所得到的功率为: 22 2 U P R = 工作衰耗为:

收发信机概述

收发信机概述 一、概述 在当前航空通信突飞猛进的今天,从小型的驻留气球、无人机、歼击机到大型的专业飞机,装机的电子设备的种类和数量在成倍地增长,短波、超短波、L波段、卫星通信等各个频段的通信设备、多种导航设备、敌我识别设备、侦察设备等均在各类平台上装备,造成了各类平台拥挤不堪,为了解决其体积、重量、功耗等问题,不得不在航行速度和续航时间等方面做出牺牲,因此小型化、综合化势在必行。全机的综合化牵涉的方面较多,成本、技术等方面的因素目前还不可逾越,但小型化的技术已日趋成熟,表面贴装、厚/薄膜集成电路技术、大规模逻辑门阵列技术均可使设备在一定程度上小型化。本文讨论的是寻求另外的一种途径,即改变收发信机的一些传统结构,来实现信道的集成化。 二、接收机体系结构 用于航空通信的接收机,已逐步走向减小功耗、降低成本、提高集成度的道路。采用单片放大,利用数字信号处理技术来完成调频调幅信号的解调、扩频信号的解扩,这些措施可以大大减少接收机系统的尺寸、成本和功率。现在已发展到探索新的拓扑结构形式来进一步小型化。近年来出现的各种各样的接收机拓扑结构,每种都有其优点和缺点。 1.超外差体系 超外差体系结构自问世以来已被广泛采用,现在仍占据了绝对地位。图1所示为一个超短波超外差接收机双变频体系结构。 低噪声放大器(LNA)对微弱信号进行了放大,其噪声系数对整机的贡献最大,但它提供的增益可减小后级引入的噪声系数。之前的射频滤波器衰减了带外信号和镜像干扰。使用可变本振,全部频谱就被下变频到一个固定的中频。通过在下变频模块之前使用一个外部镜像干扰抑制滤波器,镜像干扰可以被大大削弱到一个可接受的水平。在下变频之后使用中频滤波器可以滤除带外的杂波及噪声,对于后面的各个模块就降低了动态范围要求。第二下变频通常是正交的,以使同相和正交(I&Q)信号的数字处理变得容易。 由于有多个变频级,DC补偿和泄漏问题基本不存在,但它是以较大的硬件成本来获得较好的性能。实现镜像干扰抑制、互调等均需要的外部高Q带通滤波器,这些滤波器大都采用晶体滤波器、陶瓷滤波器和声表面波滤波器,其价格昂贵,尺寸较大。由于在第一中频就实现良好的信道选择,所以一、二本地振荡器就要求有良好的相位噪声性能。但所有的这些外部信道的要求使得在单芯片上集成收发器变得很困难。

微机线路保护原理

微机线路保护原理 1.微机保护硬件可分为:人机接口、保护 相应的软件也就分为:接口软件、保护软件 2.保护软件三种工作状态:运行、调试、不对应状态 3.实时性:在限定的时间内对外来事件能够及时作出迅速反应的性 4.微机保护算法主要考虑:计算机精度和速度 中低压线路保护程序逻辑原理 4.选项子程序原理:判别故障相(选项),判定了故障的种类及相别,才能确定阻抗计算应取用什么相别的电流和电压 5.电力系统的振荡大致分为: 一种静稳破坏引起系统振荡,另一种由于系统内故障切除时间过长,导致系统的两侧电源之间的不同步引起的 超高压线路保护程序逻辑原理 6.高频闭锁方向保护的启动元件两个任务: 一是启动后解除保护的闭锁 二是启动发信回路,因此要求启动元件灵敏度高,以防止故障时不能启动发信 7.(1)闭锁式高频方向保护基本原理: 闭锁式高频方向保护原则上规定每端短路功率方向为正时,不送高频信号。 因此在故障时收不到高频信号表示两侧都为正方向,允许出口跳闸;在一段相对较长时间内收到高频信号时表示两侧中有一侧为负方向,就闭锁保护。 (2)允许式高频方向保护基本原理: 当两侧均发允许信号时,可判断是区内故障,但就每一侧而言,其程序逻辑是收到对侧允许信号及本侧视正方向,同时满足经延时确认后发跳闸脉冲。 8.综合重合闸四种工作方式:单相、三相、综合、停用 综合重合闸两种启动方式:①由保护启动②由断路器位置不对应启动 电力变压器微机线路保护 9.比率制动式差动保护的基本概念:比率制动式差动保护的动作电流是随外部短路电流按比率增大,既能保证外部短路不误动,又能保证内部短路有效高的灵敏度 10.二次谐波制动原理:

YY-40收发信机安装调试说明

YY-40收发信机安装调试说明 火腿歪歪(BG6QBY) YY-40也就是“夜鹰-40”,是一款40m波段,QRP小功率,CW模式的收发信机。本机电路是在美国“Small Wonder Labs”公司的的SW-40+收发信机的基础上,修改完善而成,主要是将固定的收发本振部分改为可调式,收发频率容易调整到最佳位置;改进了原机功放管的输出匹配部分,提升了功率;改进了原机低通部分,让发射频谱更干净;调整了PCB元件布局,将功放管平卧安装于铝合金机壳上,改善了功放管散热,提高了可靠性;增加了发射指示电路;增加了带自动键功能的频率模块,让使用更方便。在此特别要感谢BD6CR最早将这个经典的电路引入国内,并做了大量的工作;感谢BD4RG为本套件提供了自动键模块部分的技术支持;感谢BG6RDF为配套频率模块做了大量的程序设计工作;感谢BG6QBT在早期的夜鹰套件的PCB设计上提出了很多意见和建议;还要感谢BA6QH老师在“夜鹰”成长的各个阶段都提供了很多有建设性的建议,并用“夜鹰”完成了大量的QSO,向大家完美展示了DIY和QPP的魅力。本机电路板适用于80米波段、40米波段、30米波段和20米波段(需要修改部分元器件参数,这个就留给朋友们自己DIY啦)。 此机使用可变频率振荡器(VFO),可调频率范围30-60kHz。一次变频接收,灵敏度高。三个晶体的中频窄带晶体滤波器,选择性好。发射功率3W左右。全插入(Full QSK),带侧音,是实用的简易QRP 机器。

下面以40米波段机为例,介绍工作原理和元件选择。 工作原理 电路图见附一。接收机RF输入通过T1和C1组成的7MHz选频电路加到U1。U1是一个带增益的平衡混频器,除了将RF输入变换成4M中频,还提供了大约13dB的混频增益。C11与RFC1构成的电路用于将U1的高输出阻抗匹配到晶体滤波器的低输入阻抗。 晶体滤波器使用三个经过挑选的4MHz晶体。由于中频频率低,三个晶体组成的滤波器就能有不错的性能。如果晶体性能良好,插入损耗小于2dB,-6dB通带为700Hz左右。虽然中频滤波器比较简单,但是加上音频滤波器,总体性能已经很好。 滤波器输出的负载是接于U3(差拍检波器)输入的470欧姆电阻。U3把4MHz中频变换到音频,同时又提供大概13dB的增益。通过调整C16,使差拍振荡器(BFO)晶体Y4与中频频率可产生合适的音频频率。U3的第4与第5引脚间的0.033uF电容是音频低通滤波器的第一级。 U4的每个单元都提供30dB左右增益。利用U3的差分输出,U4第一单元接成差分放大器,切除1.5kHz以上的音频响应。二极管D3与 D4用于抑制发射时的信号摆幅,以免造成后续FET开关电路的不正常工作。 由一个FET场效应管组成的音频开关电路非常简单,虽然原理上很难完全避免开关声,但是实际使用中效果却很好。在电键抬起时,FET是零偏置的,就像一个小电阻一样,可以让音频信号顺利通过。在电键按下时,FET处于截止状态(栅极比源级电压低7-8V),就像

matlab通信仿真课程设计样本

《matlab通信仿真设计》课程设计指导书 11月

课程设计题目1: 调幅广播系统的仿真设计 模拟幅度调制是无线电最早期的远距离传输技术。在幅度调制中, 以声音信号控制高频率正弦信号的幅度, 并将幅度变化的高频率正弦信号放大后经过天线发射出去, 成为电磁波辐射。 波动的电信号要能够有效地从天线发送出去, 或者有效地从天线将信号接收回来, 需要天线的等效长度至少达到波长的1/4。声音转换为电信号后其波长约在15~1500km之间, 实际中不可能制造出这样长度和范围的天线进行有效信号收发。因此需要将声音这样的低频信号从低频率段搬移到较高频率段上去, 以便经过较短的天线发射出去。 人耳可闻的声音信号经过话筒转化为波动的电信号, 其频率范围为20~20KHz。大量实验发现, 人耳对语音的频率敏感区域约为300~3400Hz, 为了节约频率带宽资源, 国际标准中将电话通信的传输频带规定为300~3400Hz。调幅广播除了传输声音以外, 还要播送音乐节目, 这就需要更宽的频带。一般而言, 调幅广播的传输频率范围约为100~6000Hz。 任务一: 调幅广播系统的仿真。 采用接收滤波器Analog Filter Design模块, 在同一示波器上观察调幅信号在未加入噪声和加入噪声后经过滤波器后的波形。采用另外两个相同的接收滤波器模块, 分别对纯信号和纯噪声滤波, 利用统计模块计算输出信号功率和噪声功率, 继而计算输出信噪比, 用Disply显示结果。 实例1: 对中波调幅广播传输系统进行仿真, 模型参数指标如下。

1.基带信号: 音频, 最大幅度为1。基带测试信号频率在100~6000Hz 内可调。 2.载波: 给定幅度的正弦波, 为简单起见, 初相位设为0, 频率为550~1605Hz 内可调。 3.接收机选频放大滤波器带宽为12KHz, 中心频率为1000kHz 。 4.在信道中加入噪声。当调制度为0.3时, 设计接收机选频滤波器输出信噪比为20dB, 要求计算信道中应该加入噪声的方差, 并能够测量接收机选频滤波器实际输出信噪比。 仿真参数设计: 系统工作最高频率为调幅载波频率1605KHz, 设计仿真采样率为最高工作频率的10倍, 因此取仿真步长为 8max 1 6.2310(1-1)10step t s f -==? 相应的仿真带宽为仿真采样率的一半, 即 18025.7(1-2)2step W KHz t == 设基带测试正弦信号为m(t)=Acos2πFt, 载波为c(t)=cos2πf c t, 则调制度为m a 的调制输出信号s(t)为 ()(1cos 2)cos 2(1-3)a c s t m Ft f t ππ=+ 容易求出, s(t)的平均功率为 21(1-4)24a m P =+ 设信道无衰减, 其中加入的白噪声功率谱密度为N 0/2, 那么仿真带宽(-W, W)内噪声样值的方差为 2002(1-5)2N W N W σ=?=

高频保护

高频闭锁保护原理高频闭锁保护原理闭锁保护第一节概述电网中运行的所有线路均需配备继电保护来切除故障,对于不同电压等级的线路而言,对继电保护的要求也不同。110 千伏及以下电压等级线路,通常配备以输电线路单侧电流、电压、零序电流等电气量作为判据的距离保护、零序保护、过流保护等。而对于220 千伏及以上电压等级线路,由于系统稳定的要求,必须能快速切除线路上任一点故障,这是普通的距离、零序保护所无法实现的。这就需要配置利用两端电气量的纵联保护来作为线路主保护。1、纵联保护的构成纵联保护的核心原理是利用某种通道将线路两端的保护装置连接起来,将两端的电气量进行比较,判断故障为区内还是区外故障。2、纵联保护的分类按通道类型可以划分为导引线、载波(高频)、微波、光纤纵联保护;按构成原理分为纵联方向、距离、差动保护。3、纵联保护的通道类型目前我省主要应用的通道是高频通道和光纤通道。4、纵联保护的信号分类纵联保护通道传输的信号分为闭锁信号、允许信号和跳闸信号。(1)闭锁信号:阻止保护动作于跳闸,收不到闭锁信号是跳闸的必要条件。平时通道内不传输信号,保护启动后发闭锁信号。线路两侧收、发频率一样,只要有一侧线路发出闭锁信号,两侧都能收到闭锁信号。高频闭锁保护的动作原理是:保护启动――两侧发闭锁信号――正方向元件启动――停信――出口跳闸。举例说明:A B C D E F 如上图:如果AB 线路发生故障,ABCDEF 保护启动(解释反方向也启动以及启动原理),同时发闭锁信号,A、B、D、F 正方向元件启动,停信,而C、E 则继续发闭锁信号。因此AB 线路保护出口跳闸,而CD、EF 两条线路保护则分别由于C、E 侧保护发闭锁信号而不跳闸。这也是我们平时在工作中经常会遇到的现象:系统发生事故,与之联络的线路高频保护会启动发信而不会跳闸。再如下图:A B C D E F 如果CD 线路发生故障,ABCDEF 保护启动,同时发闭锁信号。A、C、D、F 正方向元件启动,停信,而B、E 则继续发闭锁信号。因此CD 线路保护出口跳闸,AB、两条线路保护则分别由于B、而EF E 侧保护发闭锁信号而不跳闸。(2)允许信号:允许保护动作跳闸,收到允许信号是跳闸的必要条件。与闭锁信号相比较,允许信号对通道的要求更高,且只能接收对侧的允许信号,而闭锁信号不然,可以自发自收,同时对侧也能收到。因为一旦通道有异常,对于闭锁信号而言,充其量是区外故障保护失去闭锁越跳,而区内故障正常动作。允许信号则在线路发生区内故障时由于不能发送允许信号而拒动,这是绝对不允许的,因此允许式高频保护通道平时就一直在交换信号,而闭锁式高频保护只要定期交换信号就可以了。A B C D E F 允许式高频保护的动作原理是:保护启动――两侧发允许信号――正方向元件启动――――出口跳闸。如图CD 线路发生故障,A、C、D、F 保护发出允许信号,A、C、D、F 正方向元件启动。CD 线路两侧保护启动且收到允许信号,对于AB 线路而言,A 侧收不到允许信号、B 侧收到允许信号而本身保护未动作,因此AB 两侧开关均不跳闸,同样EF 线路也是如此。(3)跳闸信号:只要收到跳闸信号即出口跳闸。目前我国还没有使用,主要是对通道要求和对元件测量精度要求太高。. 第二节高频闭锁保护的动作原理目前我们南通电网中使用的高频保护均是采用闭锁信号,称为高频闭锁保护。该保护的动作条件是本侧保护动作且收不到闭锁信号,整个保护动作的过程包括:保护启动――两侧发闭锁信号――正方向元件启动――停信――出口跳闸,对应的保护装置部分是启动元件、收发信元件、方向元件、停信元件、跳闸元件。下面对以上5 个元件逐一加以介绍:一、启动元件启动元件是当系统发生事故时启动收发信机工作的元件。在我们系统中配置的高频保护启动元件都是以相电流突变量或者零序电流作为启动元件的,无论系统发生什么类型的故障,只要相电流发生突变或者产生零序电流(一般整定为0.1-0.5In)启动元件就会动作。,二、收发信元件高频保护收发信机收信和发信是独立的功能,收信由收信机独立完成,发信则包括保护启动发信、远方启动发信和通道检查发信。保护启动发信是在保护启动后和保护整组复归前进行的强制发信。远方启动发信是对侧发信后启动本侧发信机发信。使用远方发信的作用主要有:(1)提高被保护线路两侧装置配合的可靠性,防止在下列情况下保护误动作:发生区外故障,近故障侧保护启动发信元件未能启动发信,此时远故障侧保护将误动(见图,无闭锁信号)。具备了远方启动条件后,只要一侧发信机启动,则另一侧发信机也发信,确保区外故障不会误动作。(2)可以方便通道检查,不必由两侧值班人员同时配合进行,尤其是在改成监控中心值班模式之后,显得更加方便了。通道检查发信是用来进行通道检测的,必须满足以要

相关主题
文本预览