当前位置:文档之家› 点云数据三维网格化

点云数据三维网格化

点云数据三维网格化
点云数据三维网格化

将雷射点云数据三维网格化以分面之研究

黄国彦R92521109

一﹒前言

激光技术(Light Amplification by Stimulated Emission of Radiation, Laser)发明于1960 年,顾名思义,雷射运作的原理即是以辐射激发光线的能量,因此也称为激光[赖志恒,2003]。雷射扫瞄到目标点反射后可由其时间差得知之间的距离,若是配合GPS等……定位仪器,便能更进一步自扫瞄时的位置推出目标点的坐标,故对于量测或重建物空间信息之应用越趋重要。

要以点的方式表现一件物体的外形需要数量繁多且密集的点群方能忠实呈现,因此要如何处理庞大的雷射点云数据即是一门重要的课题,除了大量的点数外,另一个要面对的即是点云数据为不规则散布的问题,此时最常见的方式即是以规则网格使点云数据结构化,其后再内插求得点云数据的范围与信息。然而内插后的规则网格皆会丧失空间信息,对三维分布的扫瞄点资料而言,以2.5D维度的表示法将扫瞄数据结构化,难以完整展现出扫瞄点精确描述地物的特性[赖志恒,2003]。因此本次研究的主题即着重在不破坏或是干扰原始数据的前提之下,以三维网格的结构找出点云所提供之面信息。

光达点云数据三维网格化的概念是,将每笔点云数据的集合看成是一张三维的影像,而为了利用影像处理的技术,则必须在点云所处的坐标系内进行规则的三维网格切割,且网格切割的坐标系三轴与物空间坐标系的三轴一样同为右旋坐标系统[陈英鸿,2004]。

此次研究中,每一个网格可提供的信息为:

1.网格之间的位相关系及其范围与编号

2.各网格所包含的点数及其坐标值、反射强度(Intensity)

在下一章的部份将说明要如何利用这些信息,有效的搜寻哪些光达点群为同一个平面并找出平面法向量。

二﹒原理

要直接从庞大的光达点云数据中找出共面的点群是一件极费功夫的事,若是能将点云结构化以分类,则可省去不少时间,三维网格即提供了解决之法:

首先将点云视为一个巨大的网格,并找出其在三维物空间中各坐标轴的极值,Max X 、Min X 、Max Y 、Min Y 、Max Z 、Min Z ,之后决定初始的分割次数Sort ,此时X 、Y 、Z 轴会被切成Sort ?3个区间,亦即这一个巨大的网格会被分为

)3(2Sort ?个子网格,每一个子网格皆含有各自的编号,如图 2.1 所示。

由各个子网格含盖的范围将点云数据分类时,过少的分割次数会造成一个网格内存有很多的光达点,而这些点群很有可能并不属于同一个平面,这样对往后分面的工作来说并无帮助,甚至会使情况更加复杂,因此可定义一个门坎值,若任意子网格所包含的光达点大于此一门坎值则继续切割。由于每切割一次所增加的子网格数目是以32倍在成长,换言之,不同的切割次数3=Sort 与

4=Sort ,这两者的子网格其中的光达点数也很有可能相差甚远。当然,并不是

每个子网格都一定会有光达点在内,考虑到效率的因素,这些没有光达点的子网格并不会被处理,往后的过程之中所提及的子网格皆有光达点在其中。

(2﹐1﹐2)

(2﹐2﹐2)

圖 2.1 子網格編號示意圖

之后以任意的子网格做为起始的目标网格(Target Grid ),并自临近的网格找寻适当的搜寻网格(Search Grid )进行面拟合的工作,为确保目标网格与搜寻网格之间可组成平面,因此目标网格与搜寻网格所含之总点数最少需大于三点。在此有两种搜寻法: .多重网格搜寻

第i 次的搜寻网格Search Grid i 范围为目标网格Target Grid i 同时自X 、Y 、Z 三轴六个方向扩展一层,同时计算所有搜寻网格范围中光达点群的拟合面法向量,若搜寻网格中的任意一点离拟合面的距离小于门坎值时,继续搜寻,且1+i 次的目标网格Target Grid i+1为第i 次的搜寻网格Search Grid i ;反之,若搜寻网格中的任意一点离拟合面的距离大于门坎值时,代表搜寻范围已达含有非共面点之网格,为了不影响考虑拟合的精度,此时停止搜寻,且目标网格保持不变。

举例说明,进行第一次多重网格搜寻时,当目标网格编号为)2,2,2(,搜寻网格范围自)1,1,1(到)3,3,3(,总计27格,之后这27格一起进行面拟合。若改正数皆小于门坎值时,下一次的目标网格即为从)1,1,1(到)3,3,3(的这27格再往外扩展一层,总计125格,如图 2.2 所示。

圖 2.2 多重網格搜尋示意圖 (a) 第i 次目標網格 (b) 第i 次搜尋網格 (c) 第1+i 次目標網格 (d) 第1+i 次搜尋網格

(a)

(b)

(c)

(d)

.单一网格搜寻

第i 次的搜寻网格Search Grid i 范围为目标网格Target Grid i 同时自X 、Y 、Z 三轴六个方向扩展一层,但每一次只取单一搜寻网格与目标网格进行面拟合,若搜寻网格与目标网格中的任意一点离拟合面的距离小于门坎值时判断这一个搜寻网格与目标网格中的光达点群是共面的,并将此搜寻网格加入第

1+i 次的目标网格Target Grid i+1之中;反之,判断这一个搜寻网格与目标网

格中的光达点群非共面,且第1+i 次的目标网格保持不变。重复以上的步骤直到将第i 次的目标网格与每一个搜寻网格皆计算完毕。

举例说明,当目标网格编号为)2,2,2(,进行第一次单一网格搜寻时,搜寻网格范围自)1,1,1(到)3,3,3(,总计26格,之后逐一与)2,2,2(进行面拟合。若点与面的距离皆小于门坎值时,下一次的目标网格即为从)1,1,1(到)3,3,3(的这27格再往外扩展一层,总计125格,且26个搜寻网格中的点皆与目标网格共面;但假若)2,2,3(这一格与)2,2,2(的拟合后有任意一点的距离超过门坎值,则判断)2,2,3(与)2,2,2(非共面,下一次的目标网格即为除了)2,2,3(外的26格,如图 2.3 所示。

圖 2.3 單一網格搜尋示意圖 (a) 第i 次目標網格 (b) 第i 次搜尋網格 (c) 第1+i 次目標網格 (d) 第1+i 次搜尋網格

(a)

(b)

(c)

(d)

多重与单一网格搜寻各有利弊,多重网格搜寻相较于单一网格搜寻来说,处理的速度非常快速,但却也很容易因为搜寻范围增加过快而搜寻到非共面点之网格;单一网格搜寻相较于多重网格搜寻来说,搜寻范围的判定逻辑相当严谨,虽然每一次可处理的点数较少,但却能有效的找到共面点,然而处理速度过慢是最大缺点。

有鉴于此,本次研究采两种搜寻方法并用,初始先使用多重网格搜寻快速的找到两个不同平面的边界,再切换为单一网格搜寻,逐一找寻同平面的网格,直到目标网格四周已无含共面点的网格,至此可得到一个面的法向量与共面点,如此重复搜寻与处理,即可找出光达点云中的所有面。

圖 3.1分面流程圖

实验数据为仿真数据,自行设定两个法向量后,针对各法向量随机数定出七百组x 与y ,代入式 4.1 求得对应的z 值:

0=+++d cz by ax 其中,为了不让0=a 、0=b 、0=c 的情况成立,故需使1=d 。

在求得x 、y 与z 后,再对每一个x 、y 与z 加上一界于0.05至0.005的随机数,如此可得到共1400个模拟点,点云图如图 4.1(1) 所示。

切割次数为四次,即分为161616??个子网格,其中仅有523个子网格有点,图 4.1(2) 为原始数据套上子网格之样貌,仿真数据的信息如表 4.1 所示。

……式 4.1

圖 4.1(1) 模擬資料點圖雲

圖 4.1(2) 模擬資料點圖雲

圖 4.2(1) 第一次多重網格搜尋後之分面結果

圖 4.2(2) 第一次單一網格搜尋後之分面結果

圖 4.3(1) 第二次多重網格搜尋後之分面結果

圖 4.3(2) 第二次單一網格搜尋後之分面結果

在切割前需先定义点至面的距离门坎值,于此设定门坎值为cm 5,图 4.2 至图 4.5 为第一至三次分面后之结果,绿点为原始资料、黑点为达到门坎值之点、第一至三次分面所找出之共面点分别为蓝色、红色与紫色;图 4.5 则是将第一至三次所分出之共面点展在同一张图上。。

表 4.1 模擬資料資訊

圖 4.4第三次多重網格搜尋後之分面結果圖 4.5經過三次分面後之結果

五﹒结果讨论

表 5.1为理论与实测之间的比较,由表 5.1 及图 4.2、4.3中可以看出,第一次与第二次分面后所得到的两组共面点其实为同一平面,只是在多重网格

搜寻的过程中,搜寻网格涉及到存有非共面点之网格,使得目标网格的范围被

约制住,因此有部份的点在第二次分面时才被搜寻到。

表 5.1模擬資料理論與實際法向量

此次研究仍有很大的空间可以改进及深入探讨,兹将其列于下方:

1.此逻辑能否应用于具有较复杂平面型态的实际数据?

2.由于使用的程序语言为高级语言,故在切割与分面的效率上易碰

到瓶颈。

3.承上,若应用在较大的数据量上,除了将光达点云分割为数个区

块之外,是否还有其它解决之道?

4.能否先以其它方法找出不同平面的约略边界范围,再以此约束搜

寻网格的成长?

参考文献

1.赖志恒,2003,雷射扫瞄点云数据八分树结构化之研究,国立成功大学测

量与空间信息学系研究所硕士论文,Pp.1、2-3

2.陈英鸿,2004,光达点云数据链路点匹配之研究,国立成功大学测量与空

间信息学系研究所硕士论文,Pp.23

重庆市三维两江四岸三维仿真模型数据标准-090117

重庆市城市规划三维仿真模型数据标准(试行) 1范围 本标准规定了三维仿真模型的术语、基本规定、成果内容及相关要求、建模要求及三维动画制作要求。 本标准适用两江四岸规划区及其他重点控制区域(以下简称规划控制区)的现状三维模型、城市设计三维成果,以及规划控制区内的新建、改造建设项目三维模型成果制作。 2术语 2.1现状三维模型 指真实反映现状地形、基础设施、自然景观以及建筑外观和风格的虚拟现实模型。 2.2城市设计三维模型 指侧重于城市空间形态和环境的整体构思和安排,表达规划编制范畴的城市空间布局、景观形象、地形、基础设施以及建筑设计的虚拟现实模型。 2.3建设项目三维模型 指在行政审批环节中反映的建设项目的建筑体量、建筑外形和风格、外立面及建筑布局的规划方案虚拟现实模型。 3基本规定 3.1基础地形建模要求 1)城市规划区域的数字高程模型必须采用1:500地形图,地表纹理信息根据规划设计方案的景观设计材质库中选取相应的图片。 2)城市建成区域的数字高程模型必须采用1:500地形图,地表纹理信息由实地拍摄的数码照片,拍照应使用500万像素以上的广角照相机。 3)其他区域的数字高程模型可采用用1:2000或1:1万地形图,地表纹理信息由1:2000真彩色正射影像或分辨率不小于1m的彩色卫星影像图片获取。 3.2空间参考系要求 1)大地基准:必须采用重庆市独立坐标系。 2)高程基准:必须采用1956年黄海高程系。 4成果内容及相关要求 4.1成果文件内容 三维模型成果必须经过烘培,能够真实而艺术地反映地形地貌、基础设施、自然景观以及建筑外观和设计风格。三维成果必须包含以下内容: 1)三维渲染整体效果图,图像分辨率不小于2048×2048,图片格式采用*.tif。 2)带材质贴图且经过烘培的三维仿真模型,文件格式为3DS MAX 7.0或以上的*.max,贴图为tif格式。 3)对于建设项目三维模型,必须提交项目总平面、剖面图、立面图、平面图等电子文件,文件格式为AutoCAD2005的*.dwg格式。 4)对于城市设计成果,必须提交相应三维动画(A VI)资料。

三维点云处理软件需求说明资料讲解

三维激光扫描仪点云数据处理软件需求说明 点云数据处理软件是专用扫描软件、数据处理软件、CAD软件接口及应用于检测监测、对比分析的软件。 基本描述 点云数据处理软件能够用于海量点云数据的处理(点云数量无限制,先进内存管理)及三维模型的制作。支持模型的对整、整合、编辑、测量、检测监测、压缩和纹理映射等点云数据全套处理流程。能够基于点云进行建模,拥有规则组建智能自动建模功能(一键自动建模)要求能够精细再现还原现场。具有真彩色配准模块,扫描物体点云的颜色即为物体真实的颜色。相机彩色图片可以配准贴图到三维模型。 1.可直接操作激光扫描仪进行数据采集、输入及输出。可接受多种数据格式,如AutoCAD dxf、obj、asc、dgn、pds、pdms等,可接受自定义格式的文本文件输入。 2.软件应具高精度和高可靠性,能够进行点云数据拼接、纹理贴图、特征线的提取、具有点云数据渲染、点云数据压缩、三角网模型生成、几何体建模等功能,软件快速、准确、易操作性。 3.可以智能地自动提取出特征线,同时也可提供人工方式进行特征线的提取。 4.能够提供多种断面生成方式,可以方便地生成一系列的断面线。生成的断面可以方便的导出到CAD及其它软件中做进一步加工处理和应用。应能够提供非常精确的量测物体尺寸的方法。 5.需要一体化软件且具备完整功能1). Registration模块:多种点云拼接模式、导线平差、引入地理参考、目标识别2). Office Survey模块:任意点云导入导出;点云的裁剪、取样、过滤;提取线形地物;在办公室任意量测数据;任意纵横断面;点云矢量化;3D等高线及标注;三角格网生成;任意形体建模;隧道及道路;任意体积面积计算;点云着色;纹理贴图;连续正射影像3).Modeling模块:

DEM三维模型Word版

在Arcgis中利用分层设色法实现DEM可视化分析,生成立体等高线、三维线框透视图、地形三维表面模型。 数据:汤国安ARCGIS数据里的DEM 分层设色法: 1、基于高程的分带设色 一、提取等高线 工具:空间分析里的,设置参数: 二、分层设色 对DEM进行分层设色。

生成的图: 2、基于高程数据的灰度影像 建立等立体等高线 打开ARCSCENE,添加等高线,在等高线的属性里面设置:

生成:

三维线框图 1、将等高线转换成点要素 执行命令【数据管理|要素|要素转点】 得到: 2、利用上述点建立TIN 执行命令【3D分析工具|TIN管理|建立TIN】 得到: 3、在Arcscene里面将TIN转换成三角形 执行命令【3D分析|转换|由TIN转出|TIN 三角形】,并调整填充颜色的显示得到:

地形三维表面模型 利用上述构成的三维线框图添加面的显示。 再把上述之前建立好的等高线加上来,并调整透明度【图层属性|符号系统|唯一值设置|高级|透明度】,得到 注:这里因为点数较少,所以得到的线框图比较简单,所以也就导致最后的三维表面模型有点生硬,不够贴合实际。 二、利用ARCGIS软件,基于地形晕渲法模拟一天中南京地形的光照变化(因为找到的南京地区的数据有问题,不能用,所以就用其他的DEM数据代替。) 1、提取坡度、坡向 利用【空间分析|表面|坡度、坡向】 得到:

2、利用山体阴影提取当地在不同太阳方位角和高度角(参考坡向和)得到的图: 太阳方位角=225°,高度角=15°方位角=315°,高度角=15° 太阳方位角=225°,高度角=60°方位角=315°,高度角=60° (注:可编辑下载,若有不当之处,请指正,谢谢!)

综治三维可视智能管理平台介绍

综治三维可视智能管理平台介绍 北京正安维视科技股份有限公司 2017年12月

1、综治信息化需求 随着信息化建设的不断发展,越来越多的监控摄像机被应用于综合治理工作中,但是摄像机数量的增长却与综合治理工作所需的快速反应需求呈现出反比趋势。随着空间离散视频的急剧增长,对管理人员的要求日益增高,相似场景混淆的概率亦在增加,对于整合优化空间离散视频数据的需求应运而生。 1. 综治重点区域无盲区无死角监控 在传统视频监控建设模式下,为了实现重点区域从全局到微观的无缝监控,一般是重叠和重复部署监控摄像机,而随着监控摄像机数量的增多并没有完全解决无盲区全覆盖的问题,既存在部分区域监控摄像机过多的问题,也存在部分区域由于前期不合理规划或者后期不及时维护带来的监控盲区,需提供有效的分析监控盲区工具,对摄像机资源进行优化布置,以便及时补充,彻底解决监控死角和盲点问题。 2.对综治全区域的实时动态有效掌控 现有综治指挥中心视频监控系统显示分镜头画面过多,指挥中心受到屏幕数量的制约,需要轮流切换多个分镜头画面。摄像机轮询模式与实际场景的空间位置没有关联,监控视角和轮巡切换方式不符合人的视觉习惯。指挥中心管理人员有限、精力有限,在海量视频数据冲击下,导致管理人员应接不暇,身心俱疲,使得视频监控沦为事后责任追究的被动工具,无法对综治重点区域整体场景进行连续的实时监测和有效掌控。同时,传统分镜头视频监控系统缺乏有效的手段识别多个体、多区域、跨镜头的协同活动,从而有可能造成分析的偏差或错误,决断的延迟或错漏,乃至应急响应的迟误。 3.突发异常情况下重点目标的快速锁定 综治区域一旦出现紧急警情,指挥人员需要快速锁定关注目标所在的位置,并选择最佳视角的实时视频以获得重要信息,尽快做出判断和响应。现有指挥中心视频监控系统中由于缺乏快速定位目标的方法,无法快速锁定重点目标位置,也无法快速调取重点目标最佳视角视频,不便于指挥协调和查处。 4.对综治全区域可疑行为的快速反查 在现有综治指挥中心视频监控系统中,主要依靠手工查验海量分镜头视频进行逐一回放和查询,以实现历史事件反查。分镜头监控视频方向感差,依靠分镜头进行事后追查不仅费时费力,而且公共区域现场历史事件整体布局难以体现,无法清晰的看出关注目标在全场景中的整体运动轨迹,需要提供一种能够直观的、全景的呈现历史事件发生始末的方法。 随着综治网格化管理工作的日益繁重,如何在不增加人力的情况下,依托现有视频监控

三维点云数据处理的技术研究

三维点云数据处理的技术研究 中国供求网 【摘要】本文分析了大数据领域的现状、数据点云处理技术的方法,希望能够对数据的技术应用提供一些参考。 【关键词】大数据;云数据处理;应用 一、前言 随着计算机技术的发展,三维点云数据技术得到广泛的应用。但是,受到设备的影响,数据获得存在一些问题。 二、大数据领域现状 数据就像货币、黄金以及矿藏一样,已经成为一种新的资产类别,大数据战略也已上升为一种国家意志,大数据的运用与服务能力已成为国家综合国力的重要组成部分。当大数据纳入到很多国家的战略层面时,其对于业界发展的影响那是不言而喻的。国家层面上,发达国家已经启动了大数据布局。2012年3月,美国政府发布《大数据研究和发展倡议》,把应对大数据技术革命带来的机遇和挑战提高到国家战略层面,投资2亿美元发展大数据,用以强化国土安全、转变教育学习模式、加速科学和工程领域的创新速度和水平;2012年7月,日本提出以电子政府、电子医疗、防灾等为中心制定新ICT(信息通讯技术)战略,发布“新ICT计划”,重点关注大数据研究和应用;2013年1月,英国政府宣布将在对地观测、医疗卫生等大数据和节能计算技术方面投资1(89亿英镑。 同时,欧盟也启动“未来投资计划”,总投资3500亿欧元推动大数据等尖端技术领域创新。市场层面上,美通社发布的《大数据市场:2012至2018年全球形势、发展趋势、产业

分析、规模、份额和预测》报告指出,2012年全球大数据市场产值为63亿美元,预计2018年该产值将达483亿。国际企业巨头们纷纷嗅到了“大数据时代”的商机,传统数据分析企业天睿公司(Teradata)、赛仕软件(SAS)、海波龙(Hy-perion)、思爱普(SAP)等在大数据技术或市场方面都占有一席之地;谷歌(Google)、脸谱(Facebook)、亚马逊(Amazon)等大数据资源企业优势显现;IBM、甲骨文(Oracle)、微软(Microsoft)、英特尔(Intel)、EMC、SYBASE等企业陆续推出大数据产品和方案抢占市场,比如IBM公司就先后收购了SPSS、发布了IBMCognosExpress和InfoSphereBigInsights 数据分析平台,甲骨文公司的OracleNoSQL数据库,微软公司WindowsAzure 上的HDInsight大数据解决方案,EMC公司的 GreenplumUAP(UnifiedAnalyticsPlat-form)大数据引擎等等。 在中国,政府和科研机构均开始高度关注大数据。工信部发布的物联网“十二五”规划上,把信息处理技术作为四项关键技术创新工程之一提出,其中包括了海量数据存储、数据挖掘、图像视频智能分析,这都是大数据的重要组成部分,而另外三项:信息感知技术、信息传输技术、信息安全技术,也都与大数据密切相 关;2012年12月,国家发改委把数据分析软件开发和服务列入专项指南;2013年科技部将大数据列入973基础研究计划;2013年度国家自然基金指南中,管理学部、信息学部和数理学部都将大数据列入其中。2012年12月,广东省启了《广东省实施大数据战略工作方案》;北京成立“中关村大数据产业联盟”;此外,中国科学院、清华大学、复旦大学、北京航空航天大学、华东师范大学等相继成立了近十个从事数据科学研究的专门机构。中国互联网数据中心(IDC)对中国大数据技术和服务市场2012,2016年的预测与分析指出:该市场规模将会从2011年的7760万美元增长到2016年的6。17亿美元,未来5年的复合增长率达51(4%,市场规模增长近7倍。数据价值链和产业链初显端倪,阿里巴巴、百度、腾

试论3D建模数据的类型、采集方式及建模方法

试论3D建模数据的类型、采集方式及建模方法 1.3D建模数据类型 由于二维GIS数据模型与数据结构理论和技术的成熟,图形学理论、数据库理论技术及其它相关计算机技术的进一步发展,加上应用需求的强烈推动,三维GIS的大力研究和加速发展现已成为可能。因为地理空间在本质上就是三维的,在过去的几十年里,二维制图和GIS的迅速发展和广泛应用,使得不同领域的人们大都接受了将三维世界中的空间实体转化为二维投影的概念数据模型。但随着应用的深入和实践的需要又渐渐暴露出二维GIS简化世界和空间的缺陷,所以有关人员又不得不重新思考地理空间的三维本质特征和在三维空间概念下的一系列地理处理方法。 从三维GIS的角度出发考虑,三维地理空间应有如下不同于二维空间的基本特征: (1)几何坐标增加了第三维信息(Z坐标信息或H坐标信息),即垂向坐标信息。 (2)垂向坐标的增加导致了复杂的空间拓扑关系。其中突出的一点是无论是零维、一维、二维还是三维,在垂向上都具有复杂的拓扑关系;如果说二维拓扑关系在平面上是呈圆状发散伸展的话,那么三维拓扑关系就是在三维空间中的无穷延伸。 (3)三维地理空间中的地理对象具有丰富的内部信息(如属性分布,结构形式、关联特征等)。 过去十来年中,国内外学者围绕三维地理空间构模、三维地质空间构模、以及三维地理空间与三维地质空间集成构模,研究提出了二十余种三维空间数据模型。围绕这些不同特色的,模型的研究和比较,人们试图对三维空间模型机三维空间构模方法进行某种分类,如基于几何描述的分类和基于拓扑描述的分类等。 1.1基于几何描述的分类 若不区分准三维和真三维,则根据三维空间模型对地学空间目标的几何特征的描述是以表面描述方式还是以空间剖分方式,可以分为面元模型和体元模型两类。其中,面元模型采用面元对三维空间对象的表面进行连续或非连续几何描述和特征描述,不研究三维空间对象的内部特征;体元模型采用体元对三维空间对象的内部空间进行无缝完整的空间剖分,不仅描述三维空间对象的表面几何,还研究三维空间对象的内部特征。 基于这两类三维空间模型,形成了3类三维空间模型构模方法,即单一三维构模(single 3Dmodeling)、混合三维构模(compound 3D modeling)和集成三维构模( intergral 3D modeling)。其中,单一三维构模是指采用单一的面元

三维网格分割的经典方法

三维网格分割的经典方法 摘要:本文针对三维网格分割问题,提出一个经典的方法。该方法基于微分几何和测地距离。在算法中,将面片类型相同的顶点分割在一起。测地距离利用顶点之间的最短路径表示,这里可以利用一些经典的算法求最短路径,如Dijkstra 算法。但是当网格的数量很多时,Dijkstra 算法的效率很低。因此,此算法避免了在整个网格上应用最短路径算法,在局部网格中求最短路径,从而减少了计算量。 本文在人造物体的三维网格模型以及分子结构中验证了该方法的有效性。 关键字:几何算法 面片分割 测地距离 简介 3D 物体的三维网格表示法具有很多的应用。例如,在图像分析中,表示利用深度图像重建的物体表面。此外,在复杂物体和场景的建模和可视化中也有广泛的应用。在网格面片的分析中,网格分割已经成为一个关注的问题。网格分割也就是将网格上相互接近并且具有相似曲率的顶点分成一组。网格分割在很多方面具有重要的应用。特征提取,模型匹配等。 Mangan 和Whitaker 提出三维网格分割的分水岭算法。Razdan 和Bae 扩展了此算法,将基于点元(voxel-based )和分水岭算法相结合,来分割三角网格。这两种方法在分割中都需要计算整个曲率,然后在局部曲率最小处建立初始分割。然而,在某些物体中,局部曲率的最小值是很难确定的。因此,在这里提出一个初始分割的新方法。 在该算法中,应用基于面片的类型信息的网格区域增长方法,对顶点进行初始分割。利用高斯曲率和平均曲率对顶点所在的面片进行分类。这里利用离散微分几何计算高斯曲率和平均曲率。通过本文提出的新方法来求得测地距离。 文章结构:第二部分,介绍网格面片的曲率分析和面片分类。第三部分,详述本文的分割算法。第四部分,实验以及其分割结果。第五部分,结论。 2 面片分析 在面片分析中,首先计算高斯曲率和平均曲率,然后利用它们进行面片分类。顶点P 0的高斯曲率K 的计算公式如下: , A K θ ρ?= ,∑-=?i i 2θπθ ∑=i i A A , A 为相邻三角形T i ( i =1,2,3,…)的面积总和。ρ为常量3。如图1所示。

第五章 三维实体网格划分

第五章三维实体网格划分 本章讲述三维实体网格划分。包括三部分内容: ●生成四面体网格零件:对实体指定线性或者2次四面体网格。 ●四面体网格填充器:通过从曲面网格生成四面体网格来对实体划分网格。 ●扫描实体网格:通过从曲面网格生成六面体或者楔形网格对实体划分网格。 5.1 生成3D零件网格 本节说明如何使用四面体网格划分方法生成3D网格。在【Generative Structural Analysis】(通用结构分析)工作台和【Advanced Meshing Tools】(高级网格划分工具)工作台都有本命令。根据用户安装的产品不同,显示的选项是不同的: ●【Generative Structural Analysis】(通用结构分析)或者【FEM Surface】(曲面网格划分) 系列产品。 ●【FEM Solid】(有限元实体划分)系列产品。 5.1.1 【Generative Structural Analysis】(通用结构分析)或者【FEM Surface】(曲面网格划 分)系列产品 在通常的用户中,一般安装的是第一种情形。在这种设置下,无论是在通用结构分析工作台还是高级划分工具工作台,定义3D网格的零件时,弹出的对话框只有两个选项卡。(1)点击【Meshing Methods】(网格划分方法)工具栏内的【Octree Tetrahedron Mesher】 (四面体网格划分器)按钮,如图5-1所示。如果用户在【Generative Structural Analysis】(通用结构分析)工作台,则需要点击【Model Manager】工具栏内的【Octree Tetrahedron Mesher】(四面体网格划分器)按钮,如图5-2所示。 图5-1【Octree Tetrahedron Mesher】(四面体网格划分器)按钮图5-2 (2)在图形区选择要划分网格的实体零件。选择后弹出【OCTREE Tetrahedron Mesh】(四面体网格划分器)对话框,如图5-3所示。 注意!只能选择属于【PartBody】下的元素。 ●【Global】选项卡:可以修改网格全局参数。 ●【Local】选项卡:创建局部网格参数。 (3)在对话框的选项内输入相应的数值。在本例中,在【Size】 (尺寸)数值栏内输入20mm。(4)点击对话框内的【确定】按钮,生成新的网格零件,并且在模型树上显示出新的网格零件名称,如图5-4所示。

数据处理点云处理

非接触三维扫描测量数据的处理研究 1 点云数据的处理 1.1 噪声点的剔除和失真点的查找.在非接触三维扫描测量过程中,受测量方式、被测量物体材料性质、外界干扰等因素的影响,不可避免地会产生误差很大的点(噪声点)和失真点(跳点).因此在数据处理的第一步,就应利用相关专用软件所提供的去噪声点功能除去那些误差大的噪声点和找出可能存在的失真点[3].失真点的查找需要一定的技巧和经验,下面介绍3种方法供大家参考:①直观检查法.通过图形显示终端,用肉眼直接将与截面数据点集偏离较大的点或存在于屏幕上的孤点剔除.这种方法适合于数据的初步检查,可从数据点集中筛选出一些比较大的异常点.②曲线检查法.通过截面的首末数据点,用最小二乘法拟合得到一条样条曲线,曲线的阶次可根据曲面截面的形状决定,通常为3~4阶,然后分别计算中间数据点pi到样条曲线的距离‖e‖,如果‖e‖大于等于[ε]([ε]为给定的允差),则认为pi是坏点,应予以剔除(见图1).③弦高差方法.连接检查点的前后2点,计算中间数据点pi到弦的距离‖e‖,如果‖e‖ [ε]([ε]为给定的允差),则认为pi是坏点,应予以剔除.这种方法适合于测量点均匀且较密集的场合,特别是在曲率变化较大的位置(见图2). 图1 曲线检查法剔除坏点 图2 弦高差方法 1.2 数据精简.非接触三维扫描测量的突出特点是点云十分密集,数据量极其庞大(在1m2的范围内有数十万个点).若将如此庞大的数据量直接用于曲面构建不仅需要巨大的计算机资源(普通微机可能无法胜任)和很长的计算时间,而且整个处理过程也将变得难以控制,更何况并非所有的测试数据对曲面的构建都有用.因此,有必要在保证一定精度的前提下,对测试数据进行精简.数据精简的原则是在扫描曲率较大的地方保持较多的数据点,在曲率变化较小的地方保持较少的数据点.不同类型的点云采用不同的精简方式.散乱点云可通过随机采样的方法来精简,而对于扫描线点云和多边形点云可采用等间距、倍率、等量及弦偏差等方法进行精减.此外均匀网格法与非均匀网格法也可用来精减点云数据.其中均匀网格法只需选取其中的某些点,无需改变点的位置,可以很好地保留原始数据,特别适合简单零件表面瑕点的快速剔除.由于均匀网格法没有考虑被测物体的表面形状特征,因此它不适合对形状复杂的重要工程部件测试数据的处理.与之相反,非均匀网格法可以根据被测工程部件外部形状特征的实际需要来确定网格的疏密,因此它可在保证后继曲面构建精度的前提下减少数据量,这在处理尺寸变化较大的自由形体方面显得十分有效. 1.3 数据的平滑处理.点云数据中的随机误差将影响到后续曲面的构建及生成三维实体模

平安城市三维网格化安全隐患排查管理信息平台

智慧平安城市建设—三维网格化安全隐患排查管理信息平台 模 块 及 功 能 设 计

为规范全国安全隐患排查治理信息系统建设,满足政企 安全隐患排查治理工作对信息系统的功能需求,实现城市安 全网格化监管和隐患排查治理 标准化、信息化,结合“天眼” 工程,从静态到动态监管。打造出立体、可视化的智慧平安 城市,推进平安、维稳的社会服务体系建设, 深化安全隐患排 查治理建设全国最平安城市。 平台优势 三维网格化安全隐患排查管理信息平台具有以下几点特色优势: 1. 安全日常管理与应急管理的有效结合; 2. 确保与上级、同级应急指挥平台的互联互通; 3. 解决应急预案,满足“实战”需要,即快速有效调出相关信 息供有关人员使用; 5. 平台提供科学的决策工具; 6. 统一的规划,信息共享,多部门互用互享。 二、应急系统业务需求分析 平安城市三维网格化安全隐患排查管理信息平台整体划分为两 大功能模块,即:基础信息管理、应急指挥系统。 平安城市安全隐患排查管理信息系统

1.基础信息管理模块主要是系统管理员对企业重大危险源、应急资源、GIS地理信息、应急预案、知识库、传感器信息、“天眼” 视频监控点信息、事故响应级别分级标准信息以及应急生产调度方案的管理和维护。 应急资源管理模块实现对企业应急救援人员、救援物资、救援装备、医疗救护、专家信息的管理和更新。 GIS地理信息管理模块实现对企事业单位内部及周边地区人口分布、道路属性、建筑物、城市部件、生产装置和管线等信息的管理、更新和地图定位。其中,周边地区是指企业周边2公里的范围。系 统电子地图包括并不限于如下图层:三维地图层、影像(二维)地图层、危险源图层、应急资源图层、道路图层、电话分布图层、传感器分布图层、视频监控点分布图层、避难场所图层和人员分布图层。 应急预案管理模块是对企业应急预案的数字化管理维护。用户可以通过系统完成对应急预案的编制、评审、分级、发布、统计分析、演练、培训等工作。 系统提供知识库管理功能,用户可以在知识库管理界面进行新建、修改、删除和打印等操作。系统知识库包括:常见危险化学品理化性质表、常见危险化学品事故处置程序、常见危化品事故救援人员防护措施和危化品中毒人员救治措施等内容。 系统提供传感器信息管理功能,用户可以在传感器信息管理界面进行浏览、新建、修改、删除和查询等操作,其中传感器信息主要包括:传感器编号、传感器类型和传感器状态等信息。 系统提供视频监控点信息管理功能,用户可以在视频监控点信息管理界面进行浏览、新建、修改、删除和查询等操作。其中,视频监控点信息主要包括视频监控点编号和状态等信息。 系统提供事故响应级别分级标准信息管理功能,用户可以在事故响应级别分级标准信息管理界面进行浏览、新建、修改、删除和查询等操作。其中,事故响应级别分级标准信息主要包括级别名称和分级标准等信息。 系统提供应急生产调度方案管理功能,用户可以在应急生产调度方案管理界面进行浏览、新建、修改、删除和查询等操作。其中,应急生产调度

【WO2019216707A1】使用点云数据处理三维物体图像的方法和设备【专利】

( 1 (51)International Patent Classification:(81)Designated States(unless otherwise indicated,for every G06T15/10(2006.01)G06T15/08(2011.01)kind o f national protection av ailable).AE,AG,AL,AM, AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ, (21)International Application Number: CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO, PCT/KR2019/005655 DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN, (22)International Filing Date:HR,HU,ID,IL,IN,IR,IS,JO,JP,KE,KG,KH,KN,KP, 10May2019(10.05.2019)KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME, MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ, (25)Filing Language:English OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW, SA, (26)Publication Language:English SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN, TR,TT,TZ,UA,UG,US,UZ,VC,VN,ZA,ZM,ZW. (30)Priority Data: 20184101767910May2018(10.05.2018)IN(84)Designated States(unless otherwise indicated,for every 20184101767930April2019(30.04.2019)IN kind o f regional protection available).ARIPO(BW,GH, GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ, (71)Applicant:SAMSUNG ELECTRONICS CO.,LTD.UG,ZM,ZW),Eurasian(AM,AZ,BY,KG,KZ,RU,TJ, [KR/KR];129,Samsung-ro,Yeongtong-Gu,Suwon-Si,TM),European(AL,AT,BE,BG,CH,CY,CZ,DE,DK, Gyeonggi-do16677(KR).EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV, (72)Inventors:VELAPPAN,Raghavan;A204,Rajini Ashish MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM, Apartments,Tuberahalli,Varthur Road,Bangalore,Kar?TR),OAPI(BF,BJ,CF,CG,Cl,CM,GA,GN,GQ,GW, nataka,560066(IN).VETTUKUZHYPARAMBHIL,KM,ML,MR,NE,SN,TD,TG). Suresh Kumar KrishnanKutty;VettuKuzhiParambhil, Kottamuri P O,Throkkodithanam Changanacherry,Kerala,Published: 686105(IN).DUSI,Pavan Kumar;202,Shivaganga Com?—with international search report(Art.21(3)) plex,Kaggadasapura Main road,Bangalore,Karnataka, 560065(IN).HOLLA,Raghavendra;28/180,15th Main Road,J C Nagar,Bengalur,Karnataka,560086(IN).YA- DAV,Amit;Flat002,Pragathi Corel,K.G.F.Munireddy Layout,B Narayanapura,Mahadevapura,Bangalore,Kar? nataka,560048(IN).DAS,Nachiketa;F6,Chennu homes, 1st cross,Kaggadasapura main road,Bangalore,Karnata? ka,560093(IN).CHUCHRA,Divyanshu;A-302,Nagar- juna Greenwoods Apts,Kadubeesnahalli,Outer Ring Road, Bangalore,Karnataka,560103(IN). (74)Agent:Y.P.LEE,MOCK&PARTNERS;12F Daelim Acrotel,13Eonju-ro30-gil,Gangnam-Gu,Seoul06292 (KR). (54)Title:METHOD AND APPARATUS FOR PROCESSING THREE DIMENSIONAL OBJECT IMAGE USING POINT CLOUD DATA (57)Abstract:An apparatus and method are provided for compressing a three-dimensional(3D)object image represented by point cloud data.The method includes positioning the3D object image into a plurality of equi-sized cubes for compression;determining3D local coordinates in each of the plurality of equi-sized cubes and a cube index for each point of the3D object image positioned in the plurality of equi-sized cubes;generating two-dimensional(2D)image data based on the3D local coordinates and the cube indexes;and storing the2D image data in a memory.The2D image data includes at least one of2D geometry data,2D meta data,or2D color data.

004071三维模型分割(下)

展望 三维模型分割(下) 关键词:三维模型分割 三维网格模型分割应用 三维检索中的网格模型分割算法 随着万维网的发展,在三维VRML1数据库中寻找一个与给定物体形状相似的模型的应用需求正变得越来越广泛,比如:计算生物学、CAD、电子商务等等。形状描述子和基于特征的表示是实体造型领域中基本的研究问题,它们使对物体的识别和处理变得容易。因为形状相似的模型有着相似的分割,所以基于分割的形状描述子可以用于形状匹配。 2002年毕斯乔夫[37]提出从三维模型分割得到的椭球集合中得到的某种统计信息(比如椭球半径的平均方差或者标准方差,以及它们的比率)。由于这些信息在不同的形状修改中都保持不变,因此可以作为一种检索特征。但是这个想法没有得到严格的理论或者实验证明。 2002年,扎克伯吉[65]在一个拥有388个VRML三维网格模型的数据库上进行检索。首先他们将三维网格模型分割为数目不多的有意义的分割片。然后评价每一个分割片形状,确定它们之间的关系。为每个分割片建立属性图,看作是与原模型关联的索引。当在数据库中检索与给定网格模型相似的物体时,只是去比较属性图相似的程度。 该方法检索结果的精确性较差;分割片属性图比较采用图同构的匹配,计算量较大,且是一个很困难的问题;从实验结果看,分割效果显然还不够有意义,出现飞机、灯座等模型被检索为与猫相似的结果;区分坐、立等姿态不同的人体模型效果显然也很差(如图19)。 2003年戴伊[9]基于网格模型的拓扑信息,给出名为“动力学系统”的形状特征描述方法,并模拟连续形状给出了离散网格模型形状特征的定义。实验表明,该算法十分有效地分割二维及三维形状特征。 目前,基于几何以及拓扑信息的中轴线或骨架等形状描述子也得到了广泛的研究,如基于水平集[55]、拓扑持续性[69]、Shock图[15]、Reeb 图[54]和中轴线[56]等方法。这些形状描述可以从 孙晓鹏 中国科学院计算技术研究所 认知心理学、心理物理学认为:人类对形状的识别过程部分地基于分割,复杂形状往往被看作是若干简单元素的组合。同时,在视觉识别过程中,显著形状特征以很高的 优势屏蔽了其它不显著特征。为了获取形状的显著特征,首先必须进行分割。 1 Virtual Reality Modeling Language,虚拟现实建模语言,一种在WWW中描述虚拟现实(VR)的工 具,用来描述三维物体及其行为。其基本目标是建立互联网上的交互式三维多媒体,具有三维性、交互性、动态性、实时性等特征,能够在互联网或局域网上快速传递。该语言于1998年1月被正式批准为国际标准(ISO/IEC14772-1:1997),是第一个用HTML发布的国际标准。 (接上期)

网格化三维数字社区管理创建

网格化三维数字社区管理系统创建 为了创新社会管理,进一步完善社区服务管理体系,强化服务功能,提高工作效能,各个城市均在实行试点社区全力推行网格化覆盖,以求达到“精细化管理、人性化服务、多元化参与、信息化支撑”的网格化社会服务管理新模式。 何谓社区网格化管理?从广义上说是依托统一的社区管理数字化平台,将社区管理辖区按照一定的标准划分成为单元网格。通过加强对单元网格的部件和事件巡查,建立一种监督和处置互相分离的形式,将过去被动应对问题的社会管理模式转变为主动发现问题、解决问题的新模式。 从落实方面来说,就是将社区按50-100户、人口150-300人(数量各社区自定),划成若干个网格管理责任区,每个网格都有专人负责,承办民政、计生、就业、社保等社会事务,并负责信息收集、便民服务、问题处理等,力求做到每一寸土地都有人管、每一项服务都有人落实,还包括辖区内的企业和学校。一个社区,就是由一个个“格子”组成的“网”,所有居民都被一一“定位”到单元网格中,每个网格都配备了社区居干为主的服务团队,主动联系服务居民,并帮助协调解决居民反映的问题和困难,居民的大事小事将一“网”管尽。突破以前条线管理模式,创立一个网格化管理和条线管理相结合的新模式。 系统突出功能 1、三维地图信息平台

目前网上有卫星地图,系统数据无法与地图关联,更无法在地图上直接操作。因此网格化管理最亮眼的地方是三维仿真地图,通过三维立体仿真地图展示辖区内标注楼栋,人口信息,事件,企业基本信息,学校和其他服务性行业等网格数据,达到直观、立体的显示效果。 (以下为示例图,取自网络) 2、手持终端平台 通过手机、pad等终端,及时录入和上报采集的信息、受理的服务申请、发现的问题、接收信息平台发出的任务指令,可以随时反馈社情民意。

(完整版)三维信息系统模型数据标准(转)

三维信息系统模型数据标准 总则 为了提高规划审批决策的科学性、规范性和高效性,为规范廊坊市报建单位项目方案三维数据的提交,特制定本技术规定。 范围 本规范适用建筑新建方案、改扩建项目方案虚拟三维模型制作及项目周边现状建筑物三维模型制作。方案三维模型是指在行政审批环节中反映建设项目的建筑体量、建筑外形风格、小区环境及建筑布局的规划方案虚拟现实模型。建设项目方案虚拟实景三维模型必须与报建方案总平图包含内容一致。 空间参照系要求 建成的方案三维模型场景空间参照系必须与系统中所用平面坐标系统和高程系统相一致。 平面坐标系统:1980西安坐标系。 高程系统:1985国家高程基准。 三维模型总体要求 1.1制作软件: 3ds max9 1.2 模型单位:必须采用米(m)作为单位,所有模型必须按照实际尺寸制作且模型坐标必须定位准确,不得存在闪面及

漏面现象,模型的scale值为1。模型坐落位置坐标要与项目用地红线图、地形图一致。(整数部分:X坐标6位,Y坐标7位,小数点后保留3-6位) 1.3 模型要求:能够完整反映出三维模型的外观及楼体上的的附属结构,精度控制合理,在保证三维模型视觉效果的前提下,减少模型面数、数据量和材质数,做到数据的精简(单体建筑物模型面数控制在2500以内)。 三维模型具体要求 2.1模型制作位置的确定(坐标必须定位准确) 导入模型的边界dwg文件,最终完成的模型位置必须与给定的范围位置保持一致。 2.2材质和贴图 2.2.1使用standard标准材质,材质类型使用blinn。除diffuse通道后可加贴图其他通道不能加贴图,其他参数也不能调节,用max默认设置。 2.2.2不能在max材质编辑器里对贴图进行裁切。 2.2.3纹理图片的格式采用tif文件格式,纹理图片的单位尺寸必须采用2的n次方。例如:32x32,64x128等。但图片的最大尺寸不要超过512x512,最小尺寸不要小于16。纹理图片的命名不能含有空格。 2.2.4不能在材质编辑器中对材质的透明度进行调节。表现

点云数据实现三维实体建模方法探索

第43卷第15期山西建筑Vol.43No.15 2 0 1 7 年 5 月SHANXI ARCHITECTURE May.2017 ? 257 ??计算机技术及应用? 文章编号:1009-6825 (2017)15-0257-02 点云数据实现三维实体建模方法探索 赵吉潘永刚陈佳慧 (新疆大学建筑工程学院,新疆乌鲁木齐830000) 摘要:介绍了三维激光扫描技术的特点,以奇台县半截沟镇镇大门为研究对象,阐述了基于三维激光扫描数据的镇大门三维建 模流程与方法,指出利用该技术创建的模型精度符合测量要求。 关键词:三维激光扫描,点云数据,三维建模,纹理贴图 中图分类号:TP319 文献标识码:A 〇引言 三维激光扫描技术又被称为实景复制技术,它是测绘技术领 域内继G P S技术之后的又一次技术革命。它不同于传统的单次 单点测绘方法,而是使用激光束进行整条线上的扫描,一次获取 目标物上一整条的数据信息,具有效率高、精度高的特点。利用 这种线式的高速扫描测量方法,结合激光扫描仪自身配备的C D D 专业相机,可以在很大范围内快速获取对象表面具有高分辨率的 点云数据,这种新的结合模式为外业测绘提供了一种全新的技术 手段。 近年来,国内外学者将地面三维激光扫描系统用于物质文化 遗产的研究、保护和文化旅游综合服务中。Pesci等[1]对将三维 激光扫描技术应用于比萨斜塔的研究之中;Teza等[2]利用点云 数据监测了意大利倾斜钟楼情况;Hinzen等[3]利用点云数据分析 了古罗马大剧场看台石阶的倾斜特征。在国内,赵煦等[4]在研究 云冈石窟时使用了三维激光扫描技术;李德仁等研究的敦煌石窟 项目,采用双目立体相机与激光扫描相结合进行三维建模[5];王 茹[6]采用三维激光扫描结合人工作业和照片的形式完成古建筑 3D模型重建。 1点云数据三维建模基本流程 通过野外现场数据采集过程得到了镇大门建筑表面的原始 点云数据。要对原始的多站点数据进行配准拼接、去噪简化等处 理,才能获得完整的镇大门点云数据。然后进行镇大门的三维实 体重建,具体包括基本几何体创建、平面创建和纹理贴图三个部 分(见图1)。三维实体重建利用3ds M a x建模软件,对镇大门的 所有部分进行建模。 |原始点云@ 点云数据处理 |配准拼接噪简化 实体点云数据| I模型三维实体重建 | !|几何体创建|—?|平面创建P{纹理贴图| ! 1r————: J I实体模型生成1 图1基于三维激光扫描数据的镇大门三维建模流程本文着重讲解建筑物基本几何体的创建、平面创建和纹理贴 图部分。对于点云数据的处理,包括配准拼接和去噪简化不加以介绍。 2点云数据的三维实体建模过程 2.1 点云数据导入 我们所使用的建模软件版本是Autodesk 3ds Max 2017,在新 版本中,创建面板增加了对点云系统的支持。通过三维激光扫描 仪扫描出来的点云数据生成格式为.res的数据库文件,将该种格 式的文件导人到3ds M a x中进行建模。 在界面右上方呈“十”字形的“创建”面板中点击“几何体”按 钮,在下拉栏中点击“加载点云”按钮。在弹出的对话框中找到镇 大门点云文件并将其打开。在m a x任意视窗中创建点云对象。 2_ 2模型三维实体重建 本文以奇台县某镇的镇大门为例,经过实地调研以及使用三 维激光扫描仪扫描测量后。得到了该大门格式为.res的点云数 据文件(见图2)。 图2镇大门点云数据 点云数据只包含物体表面测点的空间坐标信息,经过对点云 数据的处理后,便可对镇大门进行三维实体重建,使其具有实体 三维造型。三维重建包括基本几何体创建、平面创建和纹理贴图三个步骤。 2.2.1 基本几何体创建 由实地调研可知,该大门的主要构成部分可分为下部左右两 边的梯形台、4根长立柱、若干横长柱以及大门上部的斗拱和房 顶等。 首先,我们可以看到大门下部主体为左右两个大致对称的梯 形台,在m a x中没有可以直接使用的标准几何体,所以我们选择 先建立一个长方体,然后对长方体使用修改器列表中的F F D2 x 2 x2工具。选中建立的长方体体块,点击右侧命令面板F F D2 x 2 x2工具下的控制点按钮。我们会发现长方体的8个顶点处于 可移动的状态,接下来分别将各个顶点移动至对应位置,在移动 的过程中要将捕捉开关打开,方便选取点云顶点。对该长方体的 顶点进行位置变化后,便得到了我们所需要的梯形台。这里需要 收稿日期:2017-03-13 作者简介:赵吉(1991-),男,在读硕士;潘永刚(1966-),男,硕士生导师,副教授;陈佳慧(1992-),女,在读硕士

网格化管理系统简介

网格化管理系统简介-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一、什么是社区网格化管理系统 根据属地管理、地理布局、现状管理等原则,将管辖地域划分成若干网格状的单元,并对每一网格实施动态、全方位管理,实现网格内“人、地、事、物、组织”等全要素信息的常态化管理,为辖区内的居民提供主动、高效、有针对性的服务,从而达到提高公共管理服务职能、密切党群干群关系、完善为民办实事长效机制的目的。 二、建设社区网格化系统的意义 1.由原来的单一模式向组团式模式转变。 2.网格化的定位。 3.由原来的单一模式的服务向多元化服务模式转变。 4.信息化管理代替手工操作,增加了效率,减少了错误。 5.由原来单方面的覆盖向全方位的覆盖转变。 三、社区网格化管理能解决的问题 1.实现网格内“人、地、事、物、组织”等全要素信息的常态化管理。 2.小事化解不出网格,大事调解不出街道 3.粗放型管理向精细型管理转变。 4.防范控制型管理向人性化、服务型管理转变。 四、系统功能模块简介 (一)地图管理模块 1、反映辖区内真实的地形地貌 2、能直观的反映出各网格的管理范围 3、三维地图上能实际的标出各网格管理的每一栋建筑物,对建筑物 形态能更加直观的管理 4、选择相应建筑物能对建筑物内人口信息、单位信息等可以进行详 细的查询。 5、通过地图的管理,能非常直观的对事、地、人、物、组织等进行 更加方便的管理 (二)基础信息管理 1、小区信息资料管理 2、楼栋信息资料管理 3、房屋信息资料管理 4、单位信息资料管理 5、人口信息资料管理 6、党建信息查询 7、民政信息查询 8、计划生育信息查询 9、重点人群信息查询 10、人口移入、移出、人口注销:能实时的管理辖区内每一建筑物内 每一个房间的内的人口信息情况。例:自住房、空置房、出租房的管 理,固定人口、流动人口的管理、对房屋内的家庭、单位能进行很好的管理。

相关主题
文本预览
相关文档 最新文档