当前位置:文档之家› 第五章数值积分

第五章数值积分

第五章数值积分

第五章数值积分

计算方法 第5章 数值积分

第五章数值积分 §5.0 引言 §5.1 机械求积公式 §5.2 Newton-Cotes公式 §5.3 变步长求积公式及其加速收敛技巧§5.4 Gauss公式 §5.5 小结

§5.0 引 言 1. 定积分的计算可用著名的牛顿-莱布尼兹公式来计算: ()()()b a f x dx F b F a =-? 其中F (x )是f (x )的原函数之一,可用不定积分求得。 然而在实际问题中,往往碰到以下问题: (a) 被积函数f (x )是用函数表格提供的; (b) 被积函数表达式极为复杂,求不出原函数,或求出原函数后,由于形式复杂不利于计算; (c) 大量函数的原函数不容易或根本无法求出,例如 2 1 0x e dx -?,概率积分 1 0sin x dx x ?, 正弦型积分 2 22 2 2 4()1sin Ir x H x d r x r π θθ?? =- ?-?? ? 回路磁场强度公式 等根本无法用初等函数来表示其原函数,因而也就无法精确计算其定积分,只能运用数值积分。 2 所谓数值积分就是求积分近似值的方法。 而数值积分只需计算 ()f x 在节点(1,2,,)i x i n = 上的值,计算方便 且适合于在计算机上机械地实现。

§5.1 机械求积公式 1 数值积分的基本思想 区间[a ,b ]上的定积分()b a f x dx ? ,就是在区间[a,b]内取n+1个点 01,,,n x x x ,利用被积函数f (x )在这n+1个点的函数值的某一种线性组合 来近似作为待求定积分的值,即 ()()n b k k a k f x dx A f x =≈∑? 右端公式称为左边定积分的某个数值积分公式。 其中,x k 称为积分节点,A k 称为求积系数。 因此,一个数值积分公式关键在于积分节点x k 的选取和积分系数A k 的决定,其中A k 与被积函数f(x)无关。称为机械求积公式。 1.1 简单算例说明 例1 求积分1 ()x x f x dx ? 此积分的几何意义相当于如下图所示的曲边梯形的面积。 解:(1) 用f (x )的零次多项式00()()y L x f x == 来近似代替()f x ,于是, 110 0001()(()))(x x x x f x dx f x dx f x x x ≈ =-? ? (为左矩公式)

数值微分与数值积分练习题

第五章 数值微分与数值积分 一.分别用向前差商,向后差商和中心差商公式计算()f x =2x =的导数的近似值。其中,步长0.1h =。 【详解】 00()()(20.1)(2)=0.349 2410.10.1 f x h f x f f h +?+?===向前差商 00()()(2)(20.1)=0.358 0870.10.1 f x f x h f f h ????===向后差商 00()()(20.1)(20.1)= 0.353 664220.10.2f x h f x h f f h +??+??===×中心差商 二.已知数据 x 2.5 2.55 2.60 2.65 2.70 ()f x 1.58114 1.59687 2 1.62788 1.64317 求( 2.50),(2.60),(2.70)f f f ′′′的近似值。 【详解】 0.05h =,按照三点公式 3(2.50)4(2.55)(2.60)3 1.581144 1.59687 1.61245(2.50)0.316 10020.050.1 f f f f ?+??×+×?′≈==×(2.65)(2.55)1.627881.59687(2.60)0.310 10020.050.1 f f f ??′≈==× (2.60)4(2.65)3(2.70)241.6278831.64317(2.70) 4.179 90020.050.1 f f f f ?+?×+×′≈==× 三.已知如下数据 x 3 4 5 6 7 8 ()f x 2.937 6 6.963 213.600 0 23.500 8 37.318 4 55.705 6

第五章 数值微积分

第五章 数值微积分 一、内容分析与教学建议 本章内容是数值微积分。数值微分包括:用插值多项式求数值微分、用三次样条函数求数值微分和用Richardson 外推法求数值微分。数值积分包括:常见的Newton-Cotes 求积公式,如:梯形公式、Simpson 公式和Cotes 公式;复化求积公式;Romberg 求积公式和Gauss 型求积公式等内容。 (一) 数值微分 1、利用Taylor 展开式建立数值微分公式,实际上是利用导数的离散化,即用差商近似代替导数,在由Taylor 公式的余项估计误差;由于当步长h 很小时,回出现两个非常接近的数相减,因此,在实际运用中往往采用事后估计的方法来估计误差。 2、用插值多项式求数值微分,主要是求插值节点处的导数的近似值。借助第二章的Lagrange 插值公式及其余项公式,确定插值节点处的导数的近似值及其误差。常用的有三点公式和五点公式。 3、阐明用三次样条函数()s x 求数值微分的优点:由第三章的三次样条函数()s x 的性质知:只要()f x 的4阶导数连续,则当步长0h →时, ()s x 收敛到()f x ,()s x '收敛到()f x ',()s x ''收敛到()f x ''. 因此,用三次样 条函数()s x 求数值微分,效果是很好的。指出其缺点是:需要解方程组,当h 很小时,计算量较大。 4、讲解用Richardson 外推法求数值微分时,首先阐明方法的理论基础是导数的离散化,即用差商近似代替导数;然后重点讲解外推

法的思想和推导过程,因为这种方法和思路在后面的数值积分和微分方程数值解中还要用到。 (二)数值积分的一般概念 1、由定积分的几何意义引入数值积分的思想,介绍求积公式、求积节点、求积系数、余项等基本概念。 2、重点介绍代数精度以及如何求一个判定积公式的代数精度,并举例说明。 3、介绍插值型求积公式以及插值型求积公式的代数精度的特点。(三)等距节点的求积公式 1、简单介绍一般的等距节点的插值型求积公式——Newton-Cotes公式以及Cotes系数。 2、重点介绍几种常用的Newton-Cotes公式:梯形公式、Simpson 公式和Cotes公式。要求学生掌握上述三种求积公式的表达式,并了解三种求积公式各自的余项。 3、以Simpson公式为例,求出它的代数精度是3;并要求学生课后自己求出梯形公式和Cotes公式的代数精度。 (四)复化求积公式 1、结合分段插值的思想阐明复化求积公式的思想。 2、重点介绍复化梯形公式、复化Simpson公式和复化Cotes公式以及它们各自的余项,并举一、两个例子加以说明。 3、简介事后估计和自适应Simpson方法。 (五)R omberg求积法 1、Romberg求积法是一种逐步分半加速法,它是以复化梯形公

第五章 数值微积分

第五章 数值微积分 一、内容分析与教学建议 本章内容是数值微积分。数值微分包括:用插值多项式求数值微分、用三次样条函数求数值微分和用Richardson 外推法求数值微分。数值积分包括:常见的Newton-Cotes 求积公式,如:梯形公式、Simpson 公式和Cotes 公式;复化求积公式;Romberg 求积公式和Gauss 型求积公式等内容。 (一) 数值微分 1、利用Taylor 展开式建立数值微分公式,实际上是利用导数的离散化,即用差商近似代替导数,在由Taylor 公式的余项估计误差;由于当步长h 很小时,回出现两个非常接近的数相减,因此,在实际运用中往往采用事后估计的方法来估计误差。 2、用插值多项式求数值微分,主要是求插值节点处的导数的近似值。借助第二章的Lagrange 插值公式及其余项公式,确定插值节点处的导数的近似值及其误差。常用的有三点公式和五点公式。 3、阐明用三次样条函数()s x 求数值微分的优点:由第三章的三次样条函数()s x 的性质知:只要()f x 的4阶导数连续,则当步长0h →时,()s x 收敛到()f x ,()s x '收敛到()f x ', ()s x ''收敛到()f x ''. 因此,用三次样条函数()s x 求数值微分,效果是很好的。指出其缺点 是:需要解方程组,当h 很小时,计算量较大。 4、讲解用Richardson 外推法求数值微分时,首先阐明方法的理论基础是导数的离散化,即用差商近似代替导数;然后重点讲解外推法的思想和推导过程,因为这种方法和思路在后面的数值积分和微分方程数值解中还要用到。 (二) 数值积分的一般概念 1、由定积分的几何意义引入数值积分的思想,介绍求积公式、求积节点、求积系数、余项等基本概念。 2、重点介绍代数精度以及如何求一个判定积公式的代数精度,并举例说明。 3、介绍插值型求积公式以及插值型求积公式的代数精度的特点。

相关主题
文本预览
相关文档 最新文档