当前位置:文档之家› 浅谈初等数学中的美

浅谈初等数学中的美

浅谈初等数学中的美

浅谈初等数学中的美

发表时间:2012-05-17T15:48:24.577Z 来源:《未来教育家》2012年第4期供稿作者:刘平[导读] 数学美和其它科学美一样,表现为一种抽象美。从数学内容看,有概念之美、公式之美、体系之美。刘平(河北省雄县中学 071800 ) 摘要:数学美和其它科学美一样,表现为一种抽象美。从数学内容看,有概念之美、公式之美、体系之美。从方法及思维看,有简约之

美、类比之美、演绎之美。有对称美、和谐之美和奇异之美。关键词:简洁美对称美奇异美数学美和其他学科美一样,表现为一种抽象美,要欣赏这种抽象美,需要欣赏者具有较高艺术修养。数学蕴含着丰富的美:有符号、公式和理论的概括简洁美,命题准确的清晰美,概念定义的确凿深刻美,推理运算的节奏简洁美,图形的对称美、相似美,解决数学问题的奇异美以及整个数学体系的严谨和谐、统一美等等。例如:各类数学符号,可以说是如今世界上最简洁、最明了的文字,不少几何定理的叙述,其语言的精炼,形式的整齐可以与优美的诗句相媲美。几何图形有着丰富的感性内容和审美因素:直线刚正,曲线柔美,三角形富于变化之美,四边形富有对称之美,方形稳重,圆形则流转、优柔等,黄金分割体现宇宙间和谐的比例之美等。

数字之美表现形式多种多样,从数学内容看,有概念之美、公式之美、体系之美;从数学的方法及思维看,有简约之美、类比之美、演绎之美、抽象之美等;从狭义美学上看,有对称之美、和谐之美、奇异之美等。下面对几种数学美进行初步探讨。

简洁美是数学中最引人注目的美感之一,数学问题结果应是最简洁的形式——整式中同类项要合并,分式的分子分母中无公因式,根式就化成最简根式,分母中不能保留根式等,又如三角函数值均可用单位圆中的有向线段表示出来,从而使人们能直观感觉到函数值随自变量变化的情况,也说明了三角函数的定义具有简洁美。

对称美是形式美的重要标志之一,给人们一种完善匀称的美感,注意数学形式或图形的对称性,能使解题方法简洁明快。

例:已知x、y、z不相等且x+1/y=y+1/z=z+1/x 求x2y2z2的值。此题可由字母的轮换对称性求得结果为1.再如:若函数y=sin2x+1图像关于直线x=- /8对称,那么a=( ) A B - C 1 D -1

如果利用普通方法比较麻烦,若在关键条件“对称”上认真思考,就不难发现下列方法更为简洁:在x轴上取对称的两点,最方便的莫过于x=0与x=- /4,由图形对称,他们对应函数值相等,即:sin0+acos0=sin(- )+acos(- )立即得a=-1 奇异美是数学中的新思想、新理论、新方法对原有的习惯法则和统一格局的突破,其特征是新颖、出乎意料。能突破固有思维模式,收到出奇制胜的效果。如:已知方程2sin2x-sinx+M=0有实数解,求实数的取值范围。若不改变方程的结构形式,我们面临的是一个一元二次方程根的分布问题,解答比较麻烦。注意到题意是判断方程 M取何值时有解,为此,把参变数 M分离出来。利用图像观察得到。又如:已知直线L:kx-y-3k=0圆m:x2+y2-8x-2y+9=0

(1) 求证:直线L与圆m必相交。

(2) 当圆m截直线L所得弦最长时,求m的值。

分析:若按常规思维:(1)把直线方程代入圆方程,得关于X的一元二次方程证明判别式大于零。(2)设弦长为m,利用弦长公式及(1)中方程,再转化为三角形式求得m最值,运用非常繁琐。而求异思维:(1)L化为y=k(x-3),其恒过定点(3,0),且(3,0)恰好在圆内即可得证。(2)再使弦最长,则L必过圆心,此题迎刃而解。

经常遇到的还有类比美、和谐美、节奏美和对比美。这些数学之美是比较抽象,较难为人们所理解,只有将数学之美与课堂教学活动之美相结合,才能为学生所理解,才能感染学生。在教学中有意识的培养学生感受、鉴别,欣赏数学美和创造数学美的意识和能力,“寓教于美”,“寓教于乐”,变苦学为乐学,不仅能极大的激发学生学习数学的兴趣,大面积提高教学质量,而且有助于提高学生的整体素质,达到培养全面发展的人才的目的。

数学系毕业论文《浅谈数学中的美》

哈尔滨师范大学毕业论文(函授) 浅谈数学中的美 年级:13届 学号: 姓名:颜玉娥 专业:数学教育 指导教师: 二零一三年四月 院系数学系专业数学教育 年级 xx级数学(xx)班姓名 xx 题目浅谈数学中的美 指导教师

评语 指导教师 (签章) 评阅人 评语 评阅人 (签章)成绩 答辩委员会主任 (签章) 年月日 浅谈数学中的美 【摘要】:

自然的终极秘密是用一种我们还不能阅读的语言书写的,数学为这种原文提供了注释。其中数学美感和审美能力是进行一切数学研究和创造的基础。数学追求的目标是:从混沌中找出秩序,使经验升华为规律,将复杂还原为基本。数学的无穷无尽的诱人之处还在于,它里面最棘手的悖论也能盛开出魅力的理论之花。数学美的魅力是诱人的,数学美的力量是巨大的,数学美的思想是神奇的。 数学具有简洁美、和谐美、奇异美等特征,但数学美却蕴藏于它所有的抽象符号、严格语言、演绎体系中。英国著名数学家B-A-W-罗素(1872—1970)曾说过:“数学,如果正确的看它,不但拥有真理,而且也具有至高的美。正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面。这种美虽然没有音乐或绘画的那些华丽的装饰,但是它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地”。数学就是这样一门“既美而真”的学科。 【关键词】: 美;空间;二进制;黄金分割;杨辉三角; 【正文】: 一、简洁美 简洁美是数学的重要标志。数学的语言是最简洁的语言,

用最简洁的方式揭示自然的客观规律,这正是数学最迷人的所在。爱因斯坦说过:“美,本质上终究是简单性”。他还认为,只有借助数学,才能达到简单性的美学准则。物理学家爱因斯坦的这种美学理论,在数学界也被多数人认同。朴素、简单,是其外在形式。只有既朴实清秀,又底蕴深厚,才称得上至美。 世事再纷繁,加减乘除算尽,宇宙虽广大,点线面体包完。正是数学的这种简洁性,使人们更快更准确的把握理论的精髓,促进自身学科的发展,也使数学学科具有了很强的通用性。目前数学已经成为了包括自然科学在内的所有科学的语言和工具。 为了更清楚地说明简洁美所导致的“真正的进步”,以二进位数制的建立为例来进行分析。二进位制渊源已久。作为一种系统的研究,莱布尼兹最早认为建立这样一种数制的可能性。他认为在二进位数制中,只需使用0和1这样两个数字就可表示出所有数量。他指出,1表示统一,0表示无。于是他推论道:只用0和1就可以把所有的数字都表现出来。这种记数法对于电子计算机是特别适用的。因为,在计算机中可以很方便地用一个特别按钮的“开”和“关”来分别对应数字“1”和“0”。进而,又只需适当增加按钮的数量,我们就可用按钮的组合来表示任何一个二进制数。这是多么伟大的一个构想。毫不夸张的说,没有数学的简洁,就没有现在这个互联网络四通八达、信息技术飞速发展的世界。

高中数学教学论文 挖掘数学新教材中的美学因素及其教育功能

挖掘数学新教材中的美学因素及其教育功能 摘要:数学美是高中新课程教学中极具挖掘潜力的内容之一。本文通过对高中数学新教材中教学内容的美学因素的挖掘,阐述了数学美在培养学生的审美能力、激发学生的学习兴趣和热情、启迪学生思维,开发学生智力和创造力、提高学生分析解决问题的能力和效率等方面的作用。 关键词:数学美;简洁性;对称性;和谐性;奇异性 数学美源于人们的生产与生活中,是自然美的客观反应。普通高中《数学课程标准》指出课程目标之一是“开阔数学视野,认识数学的科学价值、应用价值和文化价值,体会数学的美学意义”。数学是人类文化的重要组成部分,数学素质是公民所备必的一种基本素质,对数学的进一步认识和了解,可以使人获得美的感受,数学的美不仅有生活中的美,更有思维领域的美,它体现在数学的简洁性、和谐性、称性性、奇异性等方面。 一,挖掘新教材中的美学因素 新教材中有丰富多彩的数学美学因素,下面主要从四个方面来挖掘教材中的美学内容。 1、简洁性 简洁性是数学美的一个基本特征。它反映出自然的简单性,是自然内在的属性,而不是人为的简单规定。数学的简洁性并不是指数学内容本身简单而主要表现在数学的逻辑结构、方法 和表达式的简单性。如:5个12相乘,可以写为12×12×12×12×12,但是的表示方 法却要简单得多了,以同样的简洁表示了更复杂的内容;勾股定理,正弦正理,余弦定理等这些定理形式简洁、内容深刻、作用很大;平面的基本性质之一:“不在同一条直线上的三点确定一个平面”体现了“三点定面”的简单特性。在证明与自然数有关的问题时,数学归纳法不失为一种简洁的方法;等差、等比数列的通项、前项n和可以用公式来表示,曲线和点的轨迹可以用方程来表示等等都表现了数学的简洁美。 1、对称性 对称性是数学美的主要表现形式之一。数学中的中心对称、轴对称和镜面对称,都给人以美感,这就是数学中的对称美。例如:几何中的许多图形,圆、球、圆柱、圆锥、长方体、圆锥曲线等都体现了对称美;代数中,偶函数的图像关于y轴对称,奇函数图像的关于原点对称,反函数与原函数的图像关于直线y=x对称都给人以赏心悦目之感;二项展开式 等公式也显示一种对称美。 2、和谐性 数学的和谐性是指数学中部分与部分,部分与整体之间的和谐平衡与一致。通常表现为数学概念、规律、方法的统一,数学与其它学科的统一。例如:平面几何中梯形、三角形、平行 四边形、矩形的面积公式,可以统一为;立体几何中柱体、锥体、台体的体 积公式可以统一为;解析几何中,椭圆、双线、抛物线的定义可以简 单地统一为圆锥曲线的第二定义;引入负数,有了相反数的概念后,有理数的加法和减法得到了统一,它们可以统一为代数和的形式;数、形本是数学研究的两个独立的对象,通过坐标系的建立,使点与数对建立了一一对应,从而把它们统一为解析几何。

数学分析教学与三种基本数学能力的培养

第26卷第6期大 学 数 学V ol.26, .6 2010年12月COLLEGE M AT H EM AT ICS Dec.2010数学分析教学与三种基本数学能力的培养 钱晓元 (大连理工大学数学科学学院,大连116024) [摘 要]基本的专业数学能力可分为三个方面:数学发现能力,数学论证能力和数学表达能力.本文结合数学分析课程的教学实践,阐述通过具体教学环节,贯彻培养三种能力的有效途径和方法. [关键词]教学;数学分析;数学能力 [中图分类号]G642.0 [文献标识码]C [文章编号]1672 1454(2010)06 0203 04 1 引 言 数学类专业教育主要有两大目标,一是掌握数学知识,二是培养数学能力.由于当今知识内容的爆炸性增长,知识更新周期的加快,以及现代社会的学习型特点和创新性要求,对数学能力的重视程度则日益提高,成为数学专业教育的主导价值. 数学能力是一个笼统的概念,目前还没有公认的严格定义.就教育方面而言,数学能力,就是运用数学基本理论和方法解决数学及其应用中遇到的实际问题的能力.这种能力的培养,从初等教育甚至学前教育已经开始,但是作为大学数学类专业教育的目标,在质和量方面必然有更高的层次和追求.具体地说,就是在掌握数学科学遵循的游戏规则基础上,从事包括数学的研究、应用和教学在内的各种专业数学工作的能力. 我们认为,基本的专业数学能力可以分为以下三个方面:数学发现能力,数学论证能力和数学表达能力.数学发现能力,指的是发现未知数学事实和联系,包括理解和模仿前人发现的能力.数学论证能力,是运用逻辑演绎方法证明数学命题的能力.而数学表达能力,是用合乎数学通用规范的学术语言,准确、清晰、简洁地陈述有关数学发现和论证内容的能力.显然,要有效地解决数学及其应用问题,必须同时具备这三种能力并加以综合运用,缺一不可.从另一个角度来看,一个合格的数学类专业毕业生,其专业训练带来的技能优势,主要就体现在这三个方面. 数学分析是数学类专业最重要的一门基础课,数学类专业开设的多数专业课程都可以看成数学分析的后续课.在数学分析的教学中,系统地培养数学发现、论证和表达能力,是理所当然的.本文将就这一课题,结合数学分析课程的教学实践,阐述通过具体教学环节,贯彻培养三种能力的有效途径和方法. 2 数学分析教学与数学发现能力的培养 数学科学具备特有的思维模式,它以形式逻辑为基础,以演绎推理为手段,建立了坚固宏伟的知识体系.数学分析以实数理论奠基,首先建立严格的极限理论,次第展开微分、积分、无穷级数等内容.数学以逻辑演绎为基础的特性得到充分的体现,而数学定理基于直观、经验和数值实验的发现过程,反倒容易被忽略.数学学科的一些重大的发展,一些重要的数学思想、概念、方法及理论的提出和形成,却并 [收稿日期]2008 01 11 [基金项目]大连理工大学教改基金

浅谈数学中的美 李敬敏

浅谈数学中的美李敬敏 发表时间:2013-04-19T09:17:45.403Z 来源:《教师教育研究(教学版)》2013年3月供稿作者:李敬敏[导读] 严密。数学逻辑的严密性,既是数学的特点,又是数学所追求的目的。 河北省安平县教师进修学校李敬敏 当下学生学习数学的信心和兴趣在减弱,我想与我们的数学教师对现成的教案迷信、对教材的迷信、对程式化教学模式的迷信、对高分片面的追求从而造成数学课死气沉沉、缺乏活力不无关系。其实数学教育既是向学生传授数学知识的过程,又是一个情感的双向交流过程。而获得美的感受是这个互动过程的动力源泉。 一、数学语言的美 对数学语言存在 “严密”、“准确”、 “情感”、 “风趣”四方面的美,要把握及应用得当,可增强教学语言的穿透力,还可强化要传授的数学知识,教育者要提高水平必须设法使它们和谐统一。 1,严密。数学逻辑的严密性,既是数学的特点,又是数学所追求的目的。恩格斯说:“数学以确定的完全现实的材料作为自己的对象,不过它考察一对象时完全弃其具体内容和本质的特点。”尽管数学概念本身以及它的结论、方法都是反映现实世界的,但它仍是在纯粹形式下进行研究的。因此,数学的教学语言力求做到“严谨简约”,也就是说在教学中语言不可模棱两可,重要语句不冗长,要抓住重点,简洁概括,有的放矢。严密的逻辑结构是数学美的一个表现。 2,准确。数学教师对定义、定理、公理的叙述要准确,不应该使学生产生疑问和误解,因此,作为教师要做到如下两条:一是对概念的实质和术语的含义首先必须有个透彻的了解。例如,“对应角相等”与“角对应相等”,“切线”与“切线长”是完全不同的两个概念;又如“平分弦的直径垂直于弦”,“所有的质数都是奇数”,这类语言就缺乏准确性。二是必须用科学的数学术语来授课,不能用自己生造的土话或方言来表达概念、性质、定理等。比如,把“线段的中点”讲成“在线段中间的点”就不准确。初中学生模仿能力强,教师的语言对学生来说是一个样板,他们对学生语言习惯和能力的影响是潜移默化的,如果教师的语言不够准确规范,会使学生对数学知识产生模糊的理解。因此,数学教师必须熟练数学科学语言的表达,做到言之成序,言之有理,这对培养学生严谨的科学精神和数学思维方法也是大有益处的。 3,情感。数学教学语言应力求亲切,富有情绪。数学语言是师生双方传递和交流思想感情的载体,亲切、感人的教学语言最能使学生保持积极舒畅的学习心境,最能唤起学生的热情,从而产生不可低估的力量。正如古人讲的“感人心者,莫先乎情”。教师在教学中,无论是讲授知识,还是对待学生,语言都应亲切,富有情感。许多专家也认为:智力源于情感,情感支配智力。对人的成功而言,情感智力比通常的心智活动的进行和智力水平的提高,更具有积极的意义,这是其他任何语言所无法替代的。 4、风趣。数学教学的对象是学生,他们需要教学语言的幽默风趣、通俗易懂。在数学教学中巧妙地运用幽默,可使教师的讲课变得风趣、诙谐、睿智,具有一定的艺术魅力,有助于学生去理解、接受和记忆新知识。具体地说,幽默风趣的语言可以激活课堂气氛,调节学生情趣。例如,在讲解平面直角坐标系的过程中,教师可以先讲解数学家欧拉发明坐标系的过程:有一次,欧拉躺在床上静静地思考,如何确定事物的位置,这时发现一只苍蝇粘在了蜘蛛网上,蜘蛛迅速地爬过去把它捉住。欧拉恍然大悟:“啊!可以象蜘蛛一样用网格来确定事物的位置啊。”然后引入正题——怎样用网格来表示位置。这时学生的学习兴致被大大地调动起来了。又如,我在讲授“线段的黄金分割”时,介绍了人体中有许多黄金分割的例子,如人的肚脐是人体长的黄金分割点,而膝盖又是人体肚脐以下部分体长的黄金分割点,使学生大开眼界,学习兴趣倍增。 二、数学形式美 数学的特点决定了数学形式的简单性和应用的广泛性,简单性是美的特征,也是数学所要求的,大千世界无奇不有、杂乱无章的自然现象中抽象出数学概念,再用简单的数学形式表示,然后反过来又解释更多现象,这正是我们数学的威力美的体现。 世界上存在着何其多的三角形,形式之多令人难以想象,然而三角形面积公式12 ah(a为底边,h为底边上的高)适用于任何三角形,以次还能推出所有多边形的面积。形式多么简单,而应用如此之广泛。 众所周知,科学的发展,人类的进步,数学已渗透到了各个领域,数学影响并促进了其它科学的发展,不但像物理学、化学、生物学、天文学等自然科学要应用数学,而且像心理学、教育学、经济学,甚至考古学等社会科学也要用到数学,同样数学应用的广泛性事例在中学数学中也是俯首可拾的。 例如:利用相似三角形的原理,我们可以测量树木、建筑物等的高度;利用微积分,我们可以求得物体运动任一时的速度;利用对数计算,我们可以预测2014年我国的人口数等等……举一些数学广泛应用的实例可以强化学生对数学学习的兴趣。 三、数学对称的美 对称就是整体各部分间的相称与相适应。对称是形式美的要求,它给人们一种圆满的匀称的美感。尽管数学早已枝繁叶茂,硕果累累,但归根结底,数学来自于生产实践,来自于现实世界。因为我们的自然界本身是对称的、和谐的、有规律的,所以反映到数学上即表现为数学的对称性。 数学中的对称性处处可见:古希腊欧几里德的《几何原理》建立了一个美妙的平面几何体系,两千多年来获得了多少的赞叹,以致一些大科学家称它为“雄伟的建筑”。几何中的中心对称、轴对称、镜像对称,多能给人以舒适美观之感、呈现着对称性。当然其它还有很多,像函数和反函数的图像,关于直线y=x对称等等。 总之,数学教学不仅要发展学生对美的感受,而且要培养学生对美的事物的情绪体验。数学语言是一种特殊的语言,它简练、概括、精确,富于形象化、理想化,这就要求我们数学教师必须把握住教学语言的 “严密”、“准确”、 “情感”、 “风趣”,教育过程中使简单性和应用的广泛性、对称性和谐统一,增强学生正确的审美能力。使得优秀的数学文化,变得美丽动人,从而启发学生去观察、联想,去发现问题,以至耐心执着地去解决问题,这样数学教学会变得生气勃勃、有血有肉、光彩照人。

数学中的美学渗透

龙源期刊网 https://www.doczj.com/doc/c516889100.html, 数学中的美学渗透 作者:宋峰 来源:《考试周刊》2013年第76期 摘要:数学老师在教学中要深入挖掘并艺术地表现出数学美的特征,提高学生学习数学的兴趣,增强学生的求知欲望。本文对数学美作了具体阐述,分析了数学美的实质。 关键词:数学教学数学美和谐美 谈到美,人们往往想到江山多娇的自然美,想到的是好词好句创造的意境美,想到的是美妙的音乐带给人们心灵的震撼美,其实数学中有很多的东西可以带给我们美的体验,美的感受。美能陶冶人们的情操,增长人们的智慧,因此,感受美是培养全面发展人才的一条重要途径,提到数学,人们总认为它是一门枯燥无味的学科,对数学产生畏难和抵触心理,影响了学习数学的信心。这在一定程度上说明数学教育中美的欠缺,其实数学中蕴涵丰富的美,如果我们能在数学教育中深入挖掘并艺术地表现出数学美的特征,不仅能够提高学生对数学学习的兴趣,增强探求知识的欲望,而且能够培养学生感受美、鉴赏美、创造美和运用美的能力,使学生在美的享受中学习数学,寓教于乐,从而掌握数学的本质,这是学习数学的最高境界。 什么是数学美呢?它的本质是什么呢?从国内的研究来看,有这样一些描述:“数学美是真与善的统一”,“数学美是以数学在内容上,结构上和方法上为主要内容的科学美和艺术美,它是一种内在美,它反应的不单纯是客观的事物,而且融合了人的思维和创造力”。对于“数学美”,数学家普洛克斯曾说:“哪里有数学,哪里就有美。”古希腊最伟大的哲学家亚里士多德曾说:“虽然数学没有明显地提到善和美,但善和美也不能完全分离,因为美的主要形式就是秩序、匀称和确定性,这些正是数学研究的原则。”在中学数学教材中渗透着美,存在着美,特别是公式,解题方法,几何图形。在课堂教学中怎样引导学生发现美,认识美,加强美感培养和美学教育呢?使学生不仅得到美的享受,还可以获取知识,开发智力,激活学生的思维,促进“德”,“智”的协调发展。数学美的主要内容一般反映在对称美、简洁美、奇异美等方面。奇异美是建立在求异思维的基础上的。比如,有理数稍一扩展,新数就被称为“无理”的;实数再一扩展,新数就被叫做“虚”的。实数之后出现“超实数”,复数之后出现“超复数”,有穷数之后又有“超穷数”…… 和谐是数学美的最高境界。实际上,和谐就是一个度,是一种中庸的最佳状态。比例是关于模数与整体在测量上的协调,比例给人一种和谐,莫过于黄金分割法。数学是一座远远地超出我们想象的华丽宫殿,站在这个无比庄严、宏伟的宫殿前的数学家们,以崇敬赞叹的目光远眺着它的壮观、它的美妙,那些能够感受到这种数学美、宇宙美的人,是可以被称之为爱因斯坦所谓的“有宇宙宗教性的人”。 如果我们的数学教学能使学生感到数学的这些美,以致对数学有很浓厚的兴趣,无疑,这种教学将是极大的成功,它本身也是一种极高的艺术。我们太需要这种艺术了。数学是冷而严

高等数学中常用的初等数学知识(第一章)

第一章 函数、极限与连续 第一节 函数及其特性 (一)集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。 我们通常用大字拉丁字母A 、B 、C 、……表示集合,用小写拉丁字母a 、b 、c ……表示集合中的元素。 如果a 是集合A 中的元素,就说a 属于A ,记作:a ∈A ,否则就说a 不属于A ,记作:a ?A 。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作 N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z 。 ⑷、全体有理数组成的集合叫做有理数集。记作Q 。 ⑸、全体实数组成的集合叫做实数集。记作R 。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合中元素的个数 有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。 (二)常量与变量 ⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。 ⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。在数轴上来说,区间是指介于某两点之间的线段上点的全体。 区间的名称 区间的满足的不等式 区间的记号 区间在数轴上的表示。 闭区间 a ≤x ≤b [a ,b] 开区间 a <x <b (a ,b ) 半开区间 a <x ≤b 或a ≤x <b (a ,b]或[a ,b ) 以上我们所述的都是有限区间,除此之外,还有无限区间: [a ,+∞):表示不小于a 的实数的全体,也可记为:a ≤x <+∞; (-∞,b):表示小于b 的实数的全体,也可记为:-∞<x <b ; (-∞,+∞):表示全体实数,也可记为:-∞<x <+∞ 注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。 ⑶、邻域:00000{}(, (,) )-----x x x x x U x x δδδδδ=-<-+=一维 以为中心,以为半径的邻域 0000000{}(, )(, )------x 0(,)x x x x x x x U x δδδδδ=-<=-?+<以为中心,以为半径的空心邻域 00(),()U x U x -----0x 的某个邻域、某个空心邻域

数学分析学年论文

学年论文 题目: 学生: 学号: 院(系): 专业: 指导教师: 2011 年月日

浅谈微积分以及如何学好数学分析 什么是微积分?它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。 微积分学基本定理指出,求不定积分与求导函数互为逆运算[把上下限代入不定积分即得到积分值,而微分则是导数值与自变量增量的乘积],这也是两种理论被统一成微积分学的原因。我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。 微积分的基本原理告诉我们求导和积分是互逆的运算,微积分的精髓告诉我们我们之所以可以解决很多非线性问题,本质的原因在于我们化曲为直了,现实生活中我们会遇到很多非线性问题,那么解决这样的问题有没有统一的方法呢?经过研究思考和总结,我认为,微积分的基本方法在于:先微分,后积分。 定理:如果函数F(x)是连续函数,则f(x)在区间[a,b]上的一个原函数.牛顿--莱布尼兹公式公式进一步揭示了定积分与原函数(不定积分)之间的联系。它表明:一个连续函数在区间[a,b]上的定积分等于它的任一个原函数在[a,b]上的增量。因此它就给定积分提供了一个有效而简便的计算方法。通常也把牛顿--莱布尼兹公式称作微积分基本公式 微分学的主要内容包括:极限理论、导数、微分等。积分学的主要内容包括:定积分、不定积分等。 要学好微积分,我觉得应该注意以下3个方面: 1、基本概念 常常是这样,理解概念比理解定理更困难,而且更基本.概念不清前进.理解概念要从两个方面入手.一是概念的内涵,一是概念的外延.概念的内涵就是概念的基本属性.概念的外延就是概念所概括的一切对象.微积分的基本概念有五个:函数,极限,导数,微分和定积分. 函数概念讲的是两个实数集合间的对应关系.首先使用函数一词的是莱布尼兹,在1692年的论文中他第一次提出函数这一概念.随着数学的发展,函数的定义不断改进和明确.最先将函数概念公式化的是约翰.伯努利,他在1718年说:"一个变量的函数是指由这个变量和常量以任意一种方式组成的一种量."欧拉将伯努利的思想进一步解析化.在《无限小分析引论》(1748)中,他将函数定义为"变量的函数是一个由该变量与一些常数以任意方式组成的解析表达式.并明确宣布:"数学分析是关于函数的科学."微积分被视为建立的微分基础上的函数论.欧拉的函数定义在18世纪后期占据了统治地位.在这一定义的基础上,函数概念本身大大丰富了.欧拉还明确区分了代数函数与超越函数.他把超越函数看成是用无穷多次算术运算得到的表达式,即用无穷级数表示的函数.第一个给出函数一般定义的是

浅谈数学教育的学科特点及其研究内容的认识

谈谈你对数学教育学学科的特点及其研究内容的认识数学教育学虽是一门年轻学科,但其历史源远流长,其中数学教育学的含义:研究数学教育现象,揭示数学教育规律“教什么、学什么”;“怎样教、怎样学”;“教得怎样,学得怎样”以及相关的理论。 1、有利于提升数学教师的专业素养。高质量的数学教育需要高素质的数学师资队伍,需要数学教师专业化。高师院校数学专业肩负数学教师培养的任务,数学教育学是其中一门非常重要的专业必修课程。 2、有利于促进学生数学的学习发展。怎样让学生学好数学是数学教师的核心任务。通过学习数学教育学,教师可以根据数学教育学的相关理论自觉而有效地指导学生的数学学习。 3、有利于数学课程改革的有效实施。数学课程改革的关键是课程理念的贯彻和课程的有效实施。通过数学教育学的学习可以提高数学教师对数学课程的目的意义、内容结构、实施方法、评价标准及其各环节之间的关系的逻辑判断能力和调和能力。 4、使学生了解数学教育学的研究对象、掌握数学教育学的研究内容及学习该学科的意义。 5、了解数学教育学的研究对象、特点和研究方法,理解学习数学教育学的意义。数学教育学的结构及其相关学科数学教育学研究的对象主要是数学学习论、数学课程论、数学教学论:虽然三论是互相关联的,研究其中的一论必然会影响另外两论。但是,这三论中,学习论是基础,它提供给课程论与教学论必要的心理学根据,教学论是学习论与课程论的直接体现者。 数学教育学及其相关学科大致分为三部分: 1、基础部分其中包括哲学、数学、数学思想史、中学数学近代基础、数学方法论、教育学、心理学、逻辑学、思维科学、计算机科学、计算机辅助教学等。数学,除了包括解析几何、高等代数、数学分析的旧三基外,还要包括拓扑学、抽象代数、泛函分析的新三基,除此之外,还应有概率统计、离散数学、模糊数学、几何基础、集合论以及一些传统的初等数学。总之,数学教育工作者所需要的数学,应该是广而博,并在一个分支上有较深入的了解。数学思想史,着重研究一个数学概念或数学分支如何由孕育、成熟到发展,如何由粗糙到精确,其

初等数学研究论文

姓名:苏章燕学号:201102024002 班级:师范1班 分类思想 摘要:分类讨论的问题在这学期做高考题和中考题过程中,很多题上面都有体现。是在问题的解答出现多种情况且综合考虑无法深入时,我们往往把可能出现的所有情况分别进行讨论,得出每种情况下相应的结论,这种思想方法就是分类的思想。 关键词:分类讨论、函数、例题、集合分类 一、分类要素 分类的思想运用到每个具体数学问题中都有三个基本内容,即分类三要素,在分类的合定义中,三要素就是全集,子集和子集的分类根据。分类的逻辑定义中,三要素是母项,子项和分类标准。 二、分类的规则 在问题讨论前,首先应弄清楚我们所研究对象的范围,即全集。分类就要在这个特定范围内进行,要防止在全集不明确的情况下或全集外进行讨论。 每次分类都必须以同一本质属性为标准,被分概念或集合有若干本质属性,确定某一个作为分类标准。那么在分类过程中就要始终使用这个标准。同一次讨论中标准只能是一个。如实数在讨论绝对值时,可分为整数、负数和零;在讨论其他性质和运算时可分为有理数与无理数。又如函数按自变量个数可分为一元函数、二元函数乃至多元函数;按单调性可分为增函数、减函数和非单调函数(在某一区间内);按定义域可分为在R上都有意义的函数与定义域不是R的函数;按奇偶性可分为奇函数、偶函数和非奇非偶函数(在定义域内);按属性可分为代数函数和超级函数。诸如此类,按不同标准就有不同的分类。 分类的完整性,把集合A分为A1、A2、···An等n个子集的分类,集合A应是这n 个子集的并集,集合的每一个元素都属于且仅属于其中的一个子集,分类时必须防止遗漏,如把角分为第一象限角、第二象限角、第三象限角、第四象限角,就不是一个完整的分类,因为终边落在坐标轴上的角就不在其中。 分类的互斥性,分类中分成的各部分必须是互相排斥的,即分类中各个子集的交集是空集,如平面几何中把三角形分为锐角三角形、等腰三角形······的分类就是不正确的分类,因为存在着等腰锐角三角形,这是由于破坏了分类的互斥性。 分类的逐级性,被分概念必须分成与它最邻近的概念。有些问题必须要连续分类,这就要求严格按层次逐级进行划分、讨论。 分类的种类,人们对事物的认识有一个由现象到本质逐步深化的无线过程,因此分类也有一个从现象分类到本质这样一个逐步深化的过程。 现象分类就是根据事物的外部标志或外部联系所进行的分类,这种分类往往会把本质上相同的事物分为不同的类别,而把本质上不相同的事物归为同一类别。如平面几何中多边形按边数分类就是一个现象分类,因为凸多变形和凹多边形即使边数相同其性质也大相径庭,而正多边形(不管它边数多少)都具有很多共性,它们本质上是相同的。 本质分类就是根据事物的本质特征或内部联系所进行的分类,本质分类能够揭示数学对象之间的规律,如含角的三角函数的绝对值,用零点分段法对角进行的分类就属于本质分类。 分类方法的解题步骤,确定分类标准,这就是要运用辩证的逻辑思维,对具体事物作具体分析,从表面上极为相似的事物之间看出它们本质的相同点,发现事物的本质特征,只有这样才能揭示数学对象之间的规律,对数学对象进行有意义的分类。 恰当地进行分类,在确定分类标准的基础上,遵守分类的五条规则,对所讨论的问题恰当地分类,问题能否顺利讨论的关键是对所讨论对象进行正确的分类。 逐类讨论,根据分好的各类情况,逐类地加以研究,深入进行讨论,分门别类逐一把

初等数学研究复习题

1、 因式分解:32 35113x x x ---= 2、 已知21x a x x =++,则2 421 x x x =++ 3、 已知1abc =,求 111a b c a ab b bc c ca ++++++++的值; 4、 已知 111a b c a ab b bc c ca ++++++++=1,求证1abc =;

5、 = 6、 解不等式: 2233132 x x x x +-≤-+ 7、 求一个方程,使其各根分别等于方程43 67620x x x x -++-=的各根减去2。

8、 解方程22223223132231 x x x x x x x x ++++=-+-+。 9、 求不定方程7517x y -=的整数解。 10、 定义在R 上的函数()f x 满足()()()2(f x y f x f y x y x y R +=++∈、,(1)2f =,则(3)f -等于 11、 若函数()y f x =的定义域是[]0,2,则函数(2)()1f x g x x =-的定义域是 12、 0= 13、 将多项式32 22x x x -++表示成(1)x -的方幂形式是 14、 将分式22233(1)(25) x x x x x ----+分解成部分分式之和

15、 求函数2 y =的值域 16、 已知5,4x <求函数14245 y x x =-+-的最大值。 17、 解方程:4322316320x x x x +-++=

18、 已知x y z 、、是互不相等的正数,且1,x y z ++=求证:111(1)(1)(1)8x y z ---> 19、 利用多项式对称性因式分解: (1)555()()()()f x y z x y y z z x =-+-+-、、 设222(,,)()()()[()()],f x y z x y y z z x L x y z M xy yz xz =---+++++ (2)5555 ()()f x y z x y z x y z =++---、、 设222()()()[()()]x y y z z x k x y z m xy yz zx ++++++++

数学分析

第一讲 微积分思想的产生与发展历史 在微积分产生之前,数学发展处于初等数学时期。人类只能研究常量,而对于变量则束手无策。在几何上只能讨论三角形和圆,而对于一般曲线则无能为力。到了17世纪中叶,由于科学技术发展的需要,人们开始关注变量与一般曲线的研究。在力学上,人们关心如何根据路程函数去确定质点的瞬时速度,或者根据瞬时速度去求质点走过的路程。在几何上,人们希望找到求一般曲线的切线的方法,并计算一般曲线所围图形的面积。令人惊讶的是,不同领域的问题却归结为相同模式的数学问题:求因变量在某一时刻对自变量的变化率;因变量在一定时间过程中所积累的变化。前者导致了微分的概念;后者导致了积分的概念。两者都包含了极限与无穷小的思想。 1.极限、无穷小、微分、积分的思想在中国古代早已有之 公元前4世纪,中国古代思想家和哲学家庄子在《天下篇》中论述:“至大无外,谓之大一;至小无内,谓之小一。”其中大一和小一就是无穷大和无穷小的概念。而“一尺之棰,日取其半,万世不竭。”更是道出了无限分割的极限思想。 公元3世纪,中国古代数学家刘徽首创的割圆术,即用无穷小分割求面积的方法,就是古代极限思想的深刻表现。他用圆内接正多边形的边长来逼近圆周,得到了 142704.3141024.3<<π , 并深刻地指出:“割之弥细,所失弥少;割之又割,以至于不可割,则与圆周合体而无所失矣。”

我国南北朝时期的数学家祖暅(中国古代数学家祖冲之之子)发展了刘徽的思想,在求出球的体积的同时,得到了一个重要的结论(后人称之为“祖暅原理”):“夫叠基成立积,缘幂势既同,则积不容异。”用现在的话来讲,一个几何体(“立积”)是由一系列很薄的小片(“基”)叠成的;若两个几何体相应的小片的截面积(“幂势”)都相同,那它们的体积(“积”)必然相等。 利用祖暅原理求球体的体积:取一个几何体为上半球体 {};将圆柱体 {2222,x y z R z ++≤≥0222x y R +≤,0z R ≤≤}减去 (即挖去)倒立的圆锥{222x y z +≤,0z R ≤≤}视为另一个几何体。则对任意的0z R ≤≤,过(0,0,)z 点作水平截面,得到的截口面积相等, 都为,由此得到球体的体积为(22R z π?)34 3 V R π=。 2.十七世纪前微分学与积分学的发展历史 公元前5世纪,古希腊数学家安提丰(Antiphon )创立了“穷竭法”,认为圆内接正多边形当边数不断增加,最后多边形就与圆相合。公元前2世纪,古希腊数学家阿基米德(Archimedes )对“穷竭法”作出了巧妙的应用,他在《论抛物线求积法》中用“穷竭法”求抛物弓形的面积,他构造一系列三角形使它们的面积和不断接近抛物弓形的面积,这就是极限理论的最初形式。在《论球和柱体》一书中,阿基米德首先得到了球和球冠的表面积、球和球缺的体积的正确公式。阿基米德的著作代表了古希腊数学的顶峰。 1615年,德国数学家开普勒(J. Kepler, 1571-1630)用无穷小微元来确定曲边形的面积与体积。他把圆看作边数无限多的多边形,圆

浅谈数学中的美

毕业论文(函授) 浅谈数学中的美 年级:13届 学号: 姓名: 专业: 指导教师: 二零一三年四月 院系数学系专业数学教育 年级 xx级数学(xx)班姓名 xx 题目浅谈数学中的美 指导教师 评语

指导教师 (签章) 评阅人 评语 评阅人 (签章)成绩 答辩委员会主任 (签章) 年月日 浅谈数学中的美 【摘要】: 自然的终极秘密是用一种我们还不能阅读的语言书写的,数学为这种原

文提供了注释。其中数学美感和审美能力是进行一切数学研究和创造的基础。数学追求的目标是:从混沌中找出秩序,使经验升华为规律,将复杂还原为基本。数学的无穷无尽的诱人之处还在于,它里面最棘手的悖论也能盛开出魅力的理论之花。数学美的魅力是诱人的,数学美的力量是巨大的,数学美的思想是神奇的。 数学具有简洁美、和谐美、奇异美等特征,但数学美却蕴藏于它所有的抽象符号、严格语言、演绎体系中。英国著名数学家B-A-W-罗素(1872—1970)曾说过:“数学,如果正确的看它,不但拥有真理,而且也具有至高的美。正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面。这种美虽然没有音乐或绘画的那些华丽的装饰,但是它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地”。数学就是这样一门“既美而真”的学科。 【关键词】: 美;空间;二进制;黄金分割;杨辉三角; 【正文】: 一、简洁美 简洁美是数学的重要标志。数学的语言是最简洁的语言,用最简洁的方式揭示自然的客观规律,这正是数学最迷人的所在。

爱因斯坦说过:“美,本质上终究是简单性”。他还认为,只有借助数学,才能达到简单性的美学准则。物理学家爱因斯坦的这种美学理论,在数学界也被多数人认同。朴素、简单,是其外在形式。只有既朴实清秀,又底蕴深厚,才称得上至美。 世事再纷繁,加减乘除算尽,宇宙虽广大,点线面体包完。正是数学的这种简洁性,使人们更快更准确的把握理论的精髓,促进自身学科的发展,也使数学学科具有了很强的通用性。目前数学已经成为了包括自然科学在内的所有科学的语言和工具。 为了更清楚地说明简洁美所导致的“真正的进步”,以二进位数制的建立为例来进行分析。二进位制渊源已久。作为一种系统的研究,莱布尼兹最早认为建立这样一种数制的可能性。他认为在二进位数制中,只需使用0和1这样两个数字就可表示出所有数量。他指出,1表示统一,0表示无。于是他推论道:只用0和1就可以把所有的数字都表现出来。这种记数法对于电子计算机是特别适用的。因为,在计算机中可以很方便地用一个特别按钮的“开”和“关”来分别对应数字“1”和“0”。进而,又只需适当增加按钮的数量,我们就可用按钮的组合来表示任何一个二进制数。这是多么伟大的一个构想。毫不夸张的说,没有数学的简洁,就没有现在这个互联网络四通八达、信息技术飞速发展的世界。 数学中有个非常漂亮的公式,那就是欧拉公式。这个式子把数

浅谈初等数学与高等数学的关系

浅谈初等数学与高等数学的关系 【摘要】初等数学是高等数学不可或缺的基础,高等数学是初等数学的继续和提高.高等数学解释了许多初等数学未能说清楚的问题,这对用现代数学的观点、原理和方法指导数学教学是十分有用的。 【关键词】初等数学;高等数学;关系 从数学这门学科的建立直至十七世纪这整个阶段,数学只能解释一些静止的现象和计算一些定量(例如,它只能用于计算直边所围成的面积,以及固定的高度和距离等)这个阶段被称为初等数学阶段。初等数学远远不能满足社会发展的需要,因此人们寻求新方法,解释那些运动现象(例如,变速运动的瞬时速度、任意曲边所围成的面积等)于是建立了高等数学。高等数学的出现,显示出了巨大威力,许多初等数学束手无策的问题,至此迎刃而解了。 本文介绍了初等数学与高等数学的一些相关内容及它们之间的关系。 1.初等数学简介及其研究内容 代数的最早起源可追溯到公元前1800年左右。那时代的巴比伦数学文献里已经含有二次方程和某些很特殊的三次方程。从那时直到15世纪的三千多年里,中国﹑印度﹑阿拉伯和欧洲都在不同的方面对代数学的发展作出了不同贡献。特别是中国的代数获得了比较系统的﹑高水平的发展。例如,约在公元前1世纪前后成书的《九章算术》,其中记载了“方程术”和“正负术”等重要成就。到了13世纪后,中国数学在高次方程的数值解法﹑同余式理论以及高阶等差数列等方面又再放异彩,取得令人惊异的成就。 纵观数学发展的整个历史过程,大体上经历了初等代数的形成﹑高等代数的创建以及抽象代数的产生和发展三个阶段。随着这门学科的不断发展,人们对于代数学的研究对象问题的认识也不断深化,逐步形成下面几个观点。 (1)代数学是研究方程解法和字母运算的科学 (2)代数学是研究多项式和线性代数的科学 (3)代数学是研究各种代数结构的科学 (4)代数是推动数学发展、解决科学问题的有利工具 初等数学中主要包含两部分:初等几何与初等代数。初等几何是研究空间形式的学科,而初等代数则是研究数量关系的学科。初等数学基本上是常量的数学。 1.1数的概念及其运算1.2解析式及其恒等变换1.3方程1.4不等式1.5函

浅谈数学思想方法教学

浅谈数学思想方法教学 发表时间:2015-06-17T17:13:25.433Z 来源:《少年智力开发报》2014-2015学年第13期供稿作者:黄娜 [导读] 数学思想是分析、处理和解决数学问题的根本想法,是对数学规律的理性认识. 山东郯城县郯城街道办事处初级中学黄娜 一、数学思想方法教学的心理学意义 “不论我们选教什么学科,务必使学生理解该学科的基本结构.”所谓基本结构就是指“基本的、统一的观点,或者是一般的、基本的原理.”“学习结构就是学习事物是怎样相互关联的.”数学思想与方法为数学学科的一般原理的重要组成部分.下面从基本结构学说中来看数学思想、方法教学所具有的重要意义. 第一.“懂得基本原理使得学科更容易理解”.心理学认为“由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的知识,因而新知识与旧知识所构成的这种类属关系又可称为下位关系,这种学习便称为下位学习.”当学生掌握了一些数学思想、方法,再去学习相关的数学知识,就属于下位学习了.下位学习所学知识“具有足够的稳定性,有利于牢固地固定新学习的意义,”即使新知识能够较顺利地纳入到学生已有的认知结构中去.学生学习了数学思想、方法就能够更好地理解和掌握数学内容. 第二.有利于记忆.除非把一件件事情放进构造得好的模型里面,否则很快就会忘记.学习基本原理的目的,就在于保证记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来.高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具. 由此可见,数学思想、方法作为数学学科的“一般原理”,在数学学习中是至关重要的.无怪乎有人认为,对于中学生“不管他们将来从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、数学的思维方法、研究方法,却随时随地发生作用,使他们受益终生.” 第三.学习基本原理有利于“原理和态度的迁移”.这种类型的迁移应该是教育过程的核心——用基本的和一般的观念来不断扩大和加深知识.曹才翰教授也认为,“如果学生认知结构中具有较高抽象、概括水平的观念,对于新学习是有利的,”“只有概括的、巩固的和清晰的知识才能实现迁移.”美国心理学家贾德通过实验证明,“学习迁移的发生应有一个先决条件,就是学生需先掌握原理,形成类比,才能迁移到具体的类似学习中.”学生学习数学思想、方法有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力. 第四.强调结构和原理的学习,“能够缩短‘高级’知识和‘初级’知识之间的间隙.”一般地讲,初等数学与高等数学的界限还是比较清楚的,特别是中学数学的许多具体内容在高等数学中不再出现了,有些术语如方程、函数等在高等数学中要赋予它们以新的涵义.而在高等数学中几乎全部保留下来的只有中学数学思想和方法以及与其关系密切的内容,如集合、对应等.因此,数学思想、方法是联结中学数学与高等数学的一条红线. 二、中学数学教学内容的层次 中学数学教学内容从总体上可以分为两个层次:一个称为表层知识,另一个称为深层知识.表层知识包括概念、性质、法则、公式、公理、定理等数学的基本知识和基本技能,深层知识主要指数学思想和数学方法. 表层知识是深层知识的基础,是教学大纲中明确规定的,教材中明确给出的,以及具有较强操作性的知识.学生只有通过对教材的学习,在掌握和理解了一定的表层知识后,才能进一步的学习和领悟相关的深层知识. 深层知识蕴含于表层知识之中,是数学的精髓,它支撑和统帅着表层知识.教师必须在讲授表层知识的过程中不断地渗透相关的深层知识,让学生在掌握表层知识的同时,领悟到深层知识,才能使学生的表层知识达到一个质的“飞跃”,从而使数学教学超脱“题海”之苦,使其更富有朝气和创造性.那种只重视讲授表层知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略表层知识的教学,就会使教学流于形式,成为无源之水,无本之木,学生也难以领略到深层知识的真谛.因此,数学思想、方法的教学应与整个表层知识的讲授融为一体,使学生逐步掌握有关的深层知识,提高数学能力,形成良好的数学素质. 三、中学数学中的主要数学思想和方法 数学思想是分析、处理和解决数学问题的根本想法,是对数学规律的理性认识.由于中学生认知能力和中学数学教学内容的限制,只能将部分重要的数学思想落实到数学教学过程中,而对有些数学思想不宜要求过高.我们认为,在中学数学中应予以重视的数学思想主要有三个:集合思想、化归思想和对应思想.其理由是: (1)这三个思想几乎包摄了全部中学数学内容; (2)符合中学生的思维能力及他们的实际生活经验,易于被他们理解和掌握; (3)在中学数学教学中,运用这些思想分析、处理和解决数学问题的机会比较多; (4)掌握这些思想可以为进一步学习高等数学打下较好的基础. 此外,符号化思想、公理化思想以及极限思想等在中学数学中也不同程度地有所体现,应依据具体情况在教学中予以渗透. 数学方法是分析、处理和解决数学问题的策略,这些策略与人们的数学知识,经验以及数学思想掌握情况密切相关.从有利于中学数学教学出发,本着数量不宜过多原则,我们认为目前应予以重视的数学方法有:数学模型法、数形结合法、变换法、函数法和类分法等.一般讲,中学数学中分析、处理和解决数学问题的活动是在数学思想指导下,运用数学方法,通过一系列数学技能操作来完成的. 四、数学思想方法的教学模式 数学表层知识与深层知识具有相辅相成的关系,这就决定了他们在教学中的辩证统一性.基于上述认识,我们给出数学思想方法教学的一个教学模式: 操作——掌握——领悟 对此模式作如下说明: (1)数学思想、方法教学要求教师较好地掌握有关的深层知识,以保证在教学过程中有明确的教学目的; (2)“操作”是指表层知识教学,即基本知识与技能的教学.“操作”是数学思想、方法教学的基础; (3)“掌握”是指在表层知识教学过程中,学生对表层知识的掌握.学生掌握了一定量的数学表层知识,是学生能够接受相关深层知识

相关主题
文本预览
相关文档 最新文档