当前位置:文档之家› 研究生矩阵论复习提纲(全)

研究生矩阵论复习提纲(全)

研究生矩阵论复习提纲(全)
研究生矩阵论复习提纲(全)

南航矩阵论等价关系

Student’s Name: Student’s ID No.: College Name: The study of Equivalence Relations Abstract According to some relative definitions and properties, to proof that if B can be obtained from A by performing elementary row operations on A, ~ is an equivalence relation, and to find the properties that are shared by all the elements in the same equivalence class. To proof that if B is can be obtained from A by performing elementary operations, Matrix S A ∈ is said to be equivalent to matrix S B ∈, and ~A B means that matrix S A ∈ is similar to S B ∈, if let S be the set of m m ? real matrices. Introduction The equivalence relations are used in the matrix theory in a very wide field. An equivalence relation on a set S divides S into equivalence classes. Equivalence classes are pair-wise disjoint subsets of S . a ~ b if and only if a and b are in the same equivalence class.This paper will introduce some definitions and properties of equivalence relations and proof some discussions. Main Results Answers of Q1 (a) The process of the proof is as following,obviously IA=A,therefore ~ is reflexive;we know B can be obtained from A by performing elementary row operations on A,we assume P is a matrix which denote a series of elementary row operations on A.Then ,we have PA=B,(A~B),and P is inverse,obviously we have A=P -1B,(B~A).So ~ is symmetric.We have another matrix Q which denote a series of elementary row operations on B,and the result is C,so we have QB=C.And we can obtain QB=Q(PA)=QPA=C,so A~C.Therefore,~ is transitive. Hence, ~ is an equivalence relation on S . (b) The properties that are shared by all the elements in the same equivalence class are as followings: firstly,the rank is the same;secondly,the relation of column is not changed;thirdly,two random matrices are row equivalent;fourthly,all of the matrices

硕士研究生课程考试试题矩阵论答案

华北电力大学硕士研究生课程考试试题(A 卷) 2013~2014学年第一学期 课程编号:50920021 课程名称:矩阵论 年 级:2013 开课单位:数理系 命题教师: 考核方式:闭卷 考试时间:120分钟 试卷页数: 2页 特别注意:所有答案必须写在答题册上,答在试题纸上一律无效 一、判断题(每小题2分,共10分) 1. 方阵 A 的任意一个特征值的代数重数不大于它的几何重数。 见书52页,代数重数指特征多项式中特征值的重数,几何重数指不变子空间的维数,前者加起来为n ,后者小于等于n 2. 设12,,,m αααL 是线性无关的向量,则12dim(span{,,,})m m ααα=L . 正确,线性无关的向量张成一组基 3.如果12,V V 是V 的线性子空间,则12V V ?也是V 的线性子空间. 错误,按照线性子空间的定义进行验证。 4. n 阶λ-矩阵()A λ是可逆的充分必要条件是 ()A λ的秩是n . 见书60页,需要要求矩阵的行列式是一个非零的数 5. n 阶实矩阵A 是单纯矩阵的充分且必要条件是A 的最小多项式没有重根. 二、填空题(每小题3分,共27分) (6)210021,003A ?? ?= ? ???则A e 的Jordan 标准型为223e 1 00e 0 ,00 e ?? ? ? ?? ?。 首先写出A e 然后对于若当标准型要求非对角元部分为1. (7)301002030λλλ-?? ?+ ? ?-??的Smith 标准型为10003000(3)(2)λλλ?? ?- ? ?-+?? 见书61-63页,将矩阵做变换即得

矩阵论武汉理工大学研究生考试试题科学硕士

武汉理工大学研究生考试试题(2010) 课程 矩阵论 (共6题,答题时不必抄题,标明题目序号) 一,填空题(15分) 1、已知矩阵A 的初级因子为223 ,(1),,(1)λλ-λλ-,则其最小多项式为 2、设线性变换T 在基123,,εεε的矩阵为A ,由基123,,εεε到基123,,ααα的过渡矩阵为P ,向量β在基123,,εεε下的坐标为x ,则像()T β在基123,,ααα下的坐标 3、已知矩阵123411102101,,,00113311A A A A -????????==== ? ? ? ?--???????? ,则由这四个矩阵所生成的子空间的维数为 4、已知0100001000011 000A ?? ? ?= ? ???,则1068A A A -+= 5、已知向量(1,2,0,)T i α=--,21i =-,则其范数 1α= ;2α= ;∞α= ; 二,(20)设1112112121220a a V A a a a a ??????==-=?? ?????? ?为22?R 的子集合, 1、证明:V 是22?R 的线性子空间; 2、求V 的维数与一组基; 3、对于任意的1112111221222122,a a b b A B a a b b ????== ? ????? V ∈,定义 2222212112121111234),(b a b a b a b a B A +++= 证明:),(B A 是V 的一个内积; 4、求V 在上面所定义的内积下的一组标准正交基。 三、(15分)设{} 23210[](),0,1,2i F t f t a t a t a a R i ==++∈=为所有次数小于3的实系数 多项式所成的线性空间,对于任意的22103()[]f t a t a t a F t =++∈,定义:

研究生矩阵论课后习题答案(全)习题二

习题二 1.化下列矩阵为Smith 标准型: (1)222211λλλλ λλλλλ?? -?? -????+-?? ; (2)2222 00 000 00(1)00000λλλλλλ ?? ?? -? ? ??-?? -?? ; (3)2222 232321234353234421λλλλλλλλλλλλλλ?? +--+-??+--+-????+---?? ; (4)23014360220620101003312200λλλλλλλλλλλλλλ????++??????--????---?? . 解:(1)对矩阵作初等变换 23221311(1)100 10 000000(1)00(1)c c c c c c r λλλλλλλλλ+--?-???????????→-???→? ??? ????-++???? , 则该矩阵为Smith 标准型为 ???? ? ?????+)1(1λλλ; (2)矩阵的各阶行列式因子为 44224321()(1),()(1),()(1),()1D D D D λλλλλλλλλλ=-=-=-=, 从而不变因子为 22 2341234123()()() ()1,()(1),()(1),()(1)()()() D D D d d d d D D D λλλλλλλλλλλλλλλλ== =-==-==-故该矩阵的Smith 标准型为

2210000(1)0000(1)00 00(1)λλλλλλ?? ??-????-?? -??; (3)对矩阵作初等变换 故该矩阵的Smith 标准型为 ?? ?? ??????+--)1()1(112 λλλ; (4)对矩阵作初等变换 在最后的形式中,可求得行列式因子 3254321()(1),()(1),()()()1D D D D D λλλλλλλλλ=-=-===, 于是不变因子为 2541234534()() ()()()1,()(1),()(1)()() D D d d d d d D D λλλλλλλλλλλλλ==== =-==-故该矩阵的Smith 标准形为 2 1 0000 010 0000100000(1)00 00 0(1)λλλλ?????????? -?? ??-?? . 2.求下列λ-矩阵的不变因子: (1) 21 0021002λλλ--????--????-??; (2)100 1000 λαββλα λαββ λα+????-+? ???+??-+?? ;

南航矩阵论2013研究生试卷及答案

南京航空航天大学2012级硕士研究生

二、(20分)设三阶矩阵,,. ????? ??--=201034011A ????? ??=300130013B ???? ? ??=3003003a a C (1) 求的行列式因子、不变因子、初等因子及Jordan 标准形; A (2) 利用矩阵的知识,判断矩阵和是否相似,并说明理由. λB C 解答: (1)的行列式因子为;…(3分)A 2121)1)(2()(,1)()(--===λλλλλD D D 不变因子为; …………………(3分)2121)1)(2()(,1)()(--===λλλλλd d d 初等因子为;……………………(2分) 2)1(,2--λλJordan 标准形为. ……………………(2分) 200011001J ?? ?= ? ??? (2) 不相似,理由是2阶行列式因子不同; …………………(5分) 0,a = 相似,理由是各阶行列式因子相同. …………………(5分) 0,a ≠共 6 页 第 4 页

三、(20分)已知线性方程组不相容. ?? ???=+=+++=++1,12,1434321421x x x x x x x x x (1) 求系数矩阵的满秩分解; A (2) 求广义逆矩阵; +A (3) 求该线性方程组的极小最小二乘解. 解答:(1) 矩阵,的满秩分解为 ???? ? ??=110021111011A A . …………………(5分)10110111001101A ??????=?????????? (2) . ……………………(10分)51-451-41-52715033A +?? ? ?= ? ??? (3) 方程组的极小最小二乘解为. …………(5分)2214156x ?? ? ?= ? ??? 共 6 页 第 5 页

#研究生矩阵论第1讲 线性空间

矩阵论 1、意义 随着科学技术的发展,古典的线性代数知识己不能满足现代科技的需要,矩阵的理论和方法业巳成为现代科技领域必不可少的工具.有人认为:“科学计算实质就是矩阵的计算”.这句话概括了矩阵理论和方法的重要性及其使用的广泛性.因此,学习和掌握矩阵的基本理论和方法,对于理、工科研究生来说是必不可少的数学工具.2、内容 《矩阵论》和工科《线性代数》课程在研究矩阵的内容上有较大的差异: 线性代数:研究行列式、矩阵的四则运算(加、减、乘、求逆 ) 以及第一类初等变换 (非正交的)、对角标准形 (含二次型) 以及n阶线性方程组的解等基本内容. 矩阵论:研究矩阵的几何理论(线性空间、线性算子、内积空间等)、第二和第三类初等变换(正交的)、分析运算(矩阵微积分和级数)、矩阵的范数和条件数、广义逆和分解、若尔当标准形以及几类特殊矩阵和特殊运算等,内容十分丰富. 3、方法 在研究的方法上,矩阵论和线性代数也有很大的不同: 线性代数:引入概念直观,着重计算. 矩阵论:着重从几何理论的角度引入矩阵的许多概念和运算,把矩阵看成是线性空间上线性算子的一种数量表示.深刻理解它们对将

来正确处理实际问题有很大的作用. 第1讲 线性空间 内容: 1.线性空间的概念; 2.基变换和坐标变换; 3.子空间和维数定理; 4.线性空间的同构 线性空间和线性变换是矩阵分析中经常用到的两个极其重要的概念,也是通常几何空间概念的推广和抽象,线性空间是某类客观事物从量的方面的一个抽象. §1 线性空间的概念 1. 群,环,域 代数学是用符号代替数(或其它)来研究数(或其它)的运算性质和规律的学科,简称代数. 代数运算:假定对于集A 中的任意元素a 和集B 中的任意元素b ,按某一法则和集C 中唯一确定的元素c 对应,则称这个对应为A 、B 的一个(二元)代数运算. 代数系统:指一个集A 满足某些代数运算的系统. 1.1群 定义1.1 设V 是一个非空集合,在集合V 的元素之间定义了一种代数运算,叫做加法,记为“+”.即,对V 中给定的一个法则,对于V 中任意元素βα,,在V 中都有惟一的一个元ν和他们对应,称ν为βα,的和,记为βαν+=.若在“+”下,满足下列四个条件,则称V 为一个群. 1)V 在“+”下是封闭的.即,若,,V ∈βα有 V ∈+βα; 2) V 在“+”下是可结合的.即,)()(γβαγβα++=++ ,V ∈γ;

南航双语矩阵论 matrix theory第三章部分题解

Solution Key to Some Exercises in Chapter 3 #5. Determine the kernel and range of each of the following linear transformations on 2P (a) (())'()p x xp x σ= (b) (())()'()p x p x p x σ=- (c) (())(0)(1)p x p x p σ=+ Solution (a) Let ()p x ax b =+. (())p x ax σ=. (())0p x σ= if and only if 0ax = if and only if 0a =. Thus, ker(){|}b b R σ=∈ The range of σis 2()P σ={|}ax a R ∈ (b) Let ()p x ax b =+. (())p x ax b a σ=+-. (())0p x σ= if and only if 0ax b a +-= if and only if 0a =and 0b =. Thus, ker(){0}σ= The range of σis 2()P σ=2{|,}P ax b a a b R +-∈= (c) Let ()p x ax b =+. (())p x bx a b σ=++. (())0p x σ= if and only if 0bx a b ++= if and only if 0a =and 0b =. Thus, ker(){0}σ= The range of σis 2()P σ=2{|,}P bx a b a b R ++∈= 备注: 映射的核以及映射的像都是集合,应该以集合的记号来表达或者用文字来叙述. #7. Let be the linear mapping that maps 2P into 2R defined by 10 ()(())(0)p x dx p x p σ?? ?= ??? ? Find a matrix A such that ()x A ασαββ?? += ??? . Solution 1(1)1σ?? = ??? 1/2()0x σ?? = ??? 11/211/2()1010x ασαβαββ???? ???? +=+= ? ? ??????????? Hence, 11/210A ?? = ??? #10. Let σ be the transformation on 3P defined by (())'()"()p x xp x p x σ=+ a) Find the matrix A representing σ with respect to 2[1,,]x x b) Find the matrix B representing σ with respect to 2[1,,1]x x + c) Find the matrix S such that 1B S AS -= d) If 2012()(1)p x a a x a x =+++, calculate (())n p x σ. Solution (a) (1)0σ=

研究生矩阵论试题与答案

中国矿业大学 级硕士研究生课程考试试卷 考试科目矩阵论 考试时间年月 研究生姓名 所在院系 学号 任课教师

一(15分)计算 (1) 已知A 可逆,求 10 d At e t ? (用矩阵A 或其逆矩阵表示) ; (2)设1234(,,,)T a a a a =α是给定的常向量,42)(?=ij x X 是矩阵变量,求T d()d X αX ; (3)设3阶方阵A 的特征多项式为2(6)I A λλλ-=-,且A 可对角化,求k k A A ??? ? ??∞→)(lim ρ。

二(15分)设微分方程组 d d (0)x Ax t x x ?=???? ?=?,508316203A ?? ?= ? ?--??,0111x ?? ? = ? ??? (1)求A 的最小多项式)(λA m ; (3)求At e ; (3)求该方程组的解。

三(15分)对下面矛盾方程组b Ax = 312312 111x x x x x x =?? ++=??+=? (1)求A 的满秩分解FG A =; (2)由满秩分解计算+A ; (3)求该方程组的最小2-范数最小二乘解LS x 。

四(10分)设 11 13A ?=?? 求矩阵A 的QR 分解(要求R 的对角元全为正数,方法不限)。 五(10分) 设(0,,2)T n A R n αβαβ=≠∈≥ (1)证明A 的最小多项式是2 ()tr()m A λλλ=-; (2)求A 的Jordan 形(需要讨论)。

六(10分)设m n r A R ?∈, (1)证明rank()n I A A n r + -=-; (2)0Ax =的通解是(),n n x I A A y y R +=-?∈。 七(10分)证明矩阵 21212123 111222222243333 33644421(1)(1)n n n n n n n n n n ---? ? ? ? ? ? ?= ? ? ? ? ? ?+++? ? A (1)能与对角矩阵相似;(2)特征值全为实数。

研究生矩阵论课后习题答案(全)习题三

习题三 1.证明下列问题: (1)若矩阵序列{}m A 收敛于A ,则{}T m A 收敛于T A ,{} m A 收敛于A ; (2)若方阵级数∑∞ =0m m m A c 收敛,则∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 证明:(1)设矩阵 ,,2,1,)() ( ==?m a A n n m ij m 则 ,)()(n n m ji T m a A ?=,)()(n n m ij m a A ?=,,2,1 =m 设 ,)(n n ij a A ?= 则 n n ji T a A ?=)(,,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1, =,有 ij m ij m a a =∞ →) (lim , 则 ji m ji m a a =∞ →)(lim ,ij m ij m a a =∞ →)(lim ,n j i ,,2,1, =, 故{} T m A 收敛于T A ,{} m A 收敛于A . (2)设方阵级数 ∑∞ =0 m m m A c 的部分和序列为 ,,,,21m S S S , 其中m m m A c A c c S +++= 10.

若 ∑∞ =0 m m m A c 收敛,设其和为S ,即 S A c m m m =∑∞ =0 ,或S S m m =∞ →lim , 则 T T m m S S =∞ →lim . 而级数∑∞ =0 )(m m T m A c 的部分和即为T m S ,故级数∑∞ =0 )(m m T m A c 收敛,且其和为T S , 即 ∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 2.已知方阵序列{}m A 收敛于A ,且{} 1-m A ,1 -A 都存在,证明: (1)A A m m =∞ →lim ;(2){}1 1 lim --∞ →=A A m m . 证明:设矩阵 ,,2,1,)() ( ==?m a A n n m ij m ,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1, =,有 ij m ij m a a =∞ →) (lim . (1) 由于对任意的n j j j ,,,21 ,有 ,lim ) (k k kj m kj m a a =∞ → n k ,,2,1 =, 故 ∑-∞ →n n n j j j m nj m j m j j j j m a a a 2121)()(2)(1) ()1(lim τ = ∑-n n n j j j nj j j j j j a a a 21212121) ()1(τ , 而 ∑-= n n n j j j m nj m j m j j j j m a a a A 2121) ()(2)(1)()1(τ,

南京航空航天大学研究生课程《矩阵论》内容总结与习题选讲

《矩阵论》复习提纲与习题选讲 Chapter1 线性空间和内积空间 内容总结: z 线性空间的定义、基和维数; z 一个向量在一组基下的坐标; z 线性子空间的定义与判断; z 子空间的交 z 内积的定义; z 内积空间的定义; z 向量的长度、距离和正交的概念; z Gram-Schmidt 标准正交化过程; z 标准正交基。 习题选讲: 1、设表示实数域3]x [R R 上次数小于3的多项式再添上零多项式构成 的线性空间(按通常多项式的加法和数与多项式的乘法)。 (1) 求的维数;并写出的一组基;求在所取基下 的坐标; 3]x [R 3]x [R 221x x ++ (2) 在中定义 3]x [R , ∫?=1 1)()(),(dx x g x f g f n x R x g x f ][)(),(∈ 证明:上述代数运算是内积;求出的一组标准正交基; 3][x R (3)求与之间的距离; 221x x ++2x 2x 1+?(4)证明:是的子空间; 2][x R 3]x [R (5)写出2[][]3R x R x ∩的维数和一组基;

二、 设22R ×是实数域R 上全体22×实矩阵构成的线性空间(按通常矩阵的加 法和数与矩阵的乘法)。 (1) 求22R ×的维数,并写出其一组基; (2) 在(1)所取基下的坐标; ?? ??????3111(3) 设W 是实数域R 上全体22×实对称矩阵构成的线性空间(按通常矩阵 的加法和数与矩阵的乘法)。 证明:W 是22R ×的子空间;并写出W 的维数和一组基; (4) 在W 中定义内积 , )A B (tr )B ,A (T =W B ,A ∈ 求出W 的一组标准正交基; (5)求与之间的距离; ??????0331?? ?????1221 (6)设V 是实数域R 上全体22×实上三角矩阵构成的线性空间(按通常矩 阵的加法和数与矩阵的乘法)。 证明:V 也是22R ×的子空间;并写出V 的维数和一组基; (7)写出子空间的一组基和维数。 V W ∩

矩阵论研究生复习题

矩阵理论及应用证明题复习题 正规矩阵(包括Hermite 矩阵;Hermite 正定矩阵等) 1. 设()ij n n A a ?=是n 阶Hermite 矩阵,12,,,n λλλ 是A 的特征值,且12n λλλ≥≥≥ , 证明:(1)1H n H x Ax x x λλ≤≤ ;(2){}11max n kk k n a λλ≤≤≤≤. 2.假设n 阶Hermite 矩阵A 是正定的。证明:(1)存在正定矩阵S 使得2 A S =; (2)对任意n 维列向量,X Y ,有2 H H H Y AX X AX Y AY ≤,并且,等号成立当 且仅当,X Y 线性相关。 3.证明:设,A B 都是Hermite 矩阵,A 的特征值都大于a ,B 的特征值都大于b , 则A B +的特征值都大于a b +。 4.设A 为n 阶正定Hermite 矩阵,证明(1)H nn A G a ββ?? = ??? 是正定的的充分必要条件为1H nn a A ββ->,(2)H nn A G a ββ ?? = ??? 正定时有不等式:nn G a A ≤. 5.A 是n 阶Hermite 矩阵,证明:2 46A A I -+是正定Hermite 矩阵 6.A 、B 都为n 阶正定Hermite 矩阵,且AB BA =,则AB 亦为正定Hermite 矩阵 范数 1.设?为n n C ?上的矩阵范数,λ为复矩阵A 的特征值,证明:m m A λ ≤(m 为正整数) 2.设λ是n 阶可逆矩阵A 的特征值,A 是A 的任意一种范数 证明:1 1 A λ -≥ 3.设A 是n 阶可逆矩阵,A 是A 的任意一种范数.证明:A 的谱半径()1 1A A ρ-≥ 4.A 是n 阶复矩阵,证明22 1A A A ∞ ≤ 5.假设A 是s n ?矩阵,,U V 分别是s s ?、n n ?酉矩阵。证明:F F A UAV =, 22A UAV =。 6.设() ij n n A a ?=为n 阶Hermite 矩阵,证明:(1)2()A A ρ=;(2)()ij a A ρ≤.

南航双语矩阵论matrixtheory第三章部分题解

Solution Key to Some Exercises in Chapter 3 #5. Determine the kernel and range of each of the following linear transformations on 2P (a) (())'()p x xp x σ= (b) (())()'()p x p x p x σ=- (c) (())(0)(1)p x p x p σ=+ Solution (a) Let ()p x ax b =+. (())p x ax σ=. (())0p x σ= if and only if 0ax = if and only if 0a =. Thus, ker(){|}b b R σ=∈ The range of σis 2()P σ={|}ax a R ∈ (b) Let ()p x ax b =+. (())p x ax b a σ=+-. (())0p x σ= if and only if 0ax b a +-= if and only if 0a =and 0b =. Thus, ker(){0}σ= The range of σis 2()P σ=2{|,}P ax b a a b R +-∈= (c) Let ()p x ax b =+. (())p x bx a b σ=++. (())0p x σ= if and only if 0bx a b ++= if and only if 0a =and 0b =. Thus, ker(){0}σ= The range of σis 2()P σ=2{|,}P bx a b a b R ++∈= 备注: 映射的核以及映射的像都是集合,应该以集合的记号来表达或者用文字来叙述. #7. Let be the linear mapping that maps 2P into 2R defined by 10 ()(())(0)p x dx p x p σ?? ?= ??? ? Find a matrix A such that ()x A ασαββ?? += ??? . Solution 1(1)1σ?? = ??? 1/2()0x σ?? = ??? 11/211/2()1010x ασαβαββ???? ???? +=+= ? ? ??????????? Hence, 11/21 0A ?? = ??? #10. Let σ be the transformation on 3P defined by (())'()"()p x xp x p x σ=+ a) Find the matrix A representing σ with respect to 2[1,,]x x b) Find the matrix B representing σ with respect to 2[1,,1]x x + c) Find the matrix S such that 1B S AS -= d) If 2012()(1)p x a a x a x =+++, calculate (())n p x σ. Solution (a) (1)0σ= ()x x σ=

南航07-14矩阵论试卷

南京航空航天大学07-14硕士研究生矩阵论试题 2007 ~ 2008学年《矩阵论》 课程考试A 卷 一、(20分)设矩阵 ?? ??? ??-----=111322211 A , (1)求A 的特征多项式和A 的全部特征值; (2)求A 的行列式因子、不变因子和初等因子; (3)求A 的最小多项式,并计算I A A 236 -+; (4)写出A 的Jordan 标准形。 二、(20分)设2 2?R 是实数域R 上全体22?实矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。 (1)求2 2?R 的维数,并写出其一组基; (2)设W 是全体22?实对称矩阵的集合, 证明:W 是2 2?R 的子空间,并写出W 的维数和一组基; (3)在W 中定义内积W B A BA tr B A ∈=,),(),(其中,求出W 的一组标准正交基; (4)给出22?R 上的线性变换T : 22,)(?∈?+=R A A A A T T 写出线性变换T 在(1)中所取基下的矩阵,并求T 的核)(T Ker 和值域)(T R 。 三、(20分) (1)设 ? ??? ??-=121312A ,求1A ,2A ,∞A ,F A ; (2)设n n ij C a A ?∈=)(,令 ij j i a n A ,*max ?=, 证明: *是 n n C ?上的矩阵范数并说明具有相容性; (3)证明:*2*1 A A A n ≤≤。 四、(20分)已知矩阵 ?????? ? ??-=10010001111 1A ,向量 ??? ??? ? ??=2112b , (1)求矩阵A 的QR 分解;

华中科技大学硕士研究生矩阵论2012年试题

矩陣論2012年試題 一、 填空題:(每個空3分,共27分) 1、設矩陣??????????+---=i i i i i A 1013122131,??????????=111X ,其中1-=i ,則 ______,1=AX .______ 1=A 2、設矩陣1000030012-???? ??????=P P A ,則______;)(dim =A N .______)(λA m 3、矩陣???? ??????=000a a a a a a A ,則a 滿足條件______時,矩陣冪級數∑∞=0k k A 收斂. 4、論矩陣???? ??????-??????????=221132332211A ,則A 的LDV 分解為.______= 5、設???? ??????=3/10002/10001A ,)sin(A 的Jordan 矩陣______;)sin(=A J .______)sin(lim =∞>-n n A 6、設??????=201a A ,?? ????=1203B ,則矩陣方程0=+XB AX 有非零解的條件是.______≠a 二、(15分)設線性空間3R 上的線性變換T 在基},,{321e e e 下的變換矩陣為 ???? ??????=3332312322 211312 11a a a a a a a a a A , (1) 求變換T 在基},3,{321e e e 下的變換矩陣. (2) 求變換T 在基},,{3211e e e e +下的變換矩陣.

三、(15分)設矩陣???? ??????=000012A (1)求矩陣A 的奇異值分解. (2)求矩陣A 的P M -廣義逆+A . 四、(15分)設?? ????????????????????????????=111,011L W 是空間3R 的子空間, (1)求空間3R 上的正交投影變換P ,使得P 的象空間.)(W P R = (2)求空間3R 的向量T ]3,2,1[=α在投影變換P 下的象. 五、(15分)設???? ??????---=502613803A ,計算矩陣函數.At e 六、證明題: (1)(7分)設A 是可逆矩陣,n σ是矩陣A 的最小奇異值,證明 n A σ121 =- (2)(6分)設矩陣A 和B 都是n 階方正,證明)()()(B rank A rank B A rank ?=?

南航双语矩阵论 matrix theory第一章部分题解

Solution Key (chapter 1) #2. Take S , 2=. But 2S ?. If 2S ∈, then there are rational numbers a and b , such that 2=0a ≠ and 0b ≠.) This will lead to 22 423 2a b ab --= The right hand is a rational number and the left hand side is an irrational number. This is impossible. Thus, S is not closed under multiplication. Hence, S is not a field. #13. (a) Denote the set by S . Take 2()p x x x S =+∈, 2()q x x x S =-+∈. Then ()()2p x q x x S +=?. S is not closed under addition. Hence, S is not a subspace. (Or: The set S does not contain the zero polynomial, hence, is not a subspace.) (b) Denote the set by S . Take 3()1p x x S =+∈, 3()1p x x S =-+∈. Then ()()2p x q x S +=?. S is not closed under addition. Hence, S is not a subspace. (Or: The set S does not contain the zero polynomial, hence, is not a subspace.) (d) Denote the set by S . Take ()1p x x S =+∈, ()1p x x S =-+∈, ()()2p x q x S +=?. S is not closed under addition. Hence, S is not a subspace. #15. (c) Denote the set by S . Take ()p x x S =∈. But ()p x x S -=-?. Thus, the set S is not closed under scalar multiplication. Hence, S is not a subspace. (e) Denote the set by S . Take ()1p x x S =-∈ ()1q x x S =+∈. But ()()2p x q x x S +=?. S is not closed under addition. Hence, S is not a subspace. #17. Since 12{,,,}u v v v i s span ∈ for each i , all combinations of 12,,,u u u r are also in 12{,,,}v v v s span . Thus, 12{,,,}u u u r span is a subspace of 12{,,,}v v v s span . Therefore, 12dim({,,,})u u u r span ≤ 12dim({,,,})v v v s span . #25. (a) Let 12(,,,)b b b n B = . Then 12(,,,)b b b n AB A A A = . If AB O =, then b 0i A = for 1,2,,i n = . ()b i N A ∈ for 1,2,,i n = . All lineawr combinations of 12,,,b b b n are also in ()N A . Thus, ()()R B N A ?. ()R B is a subspace of ()N A .

上海交大研究生矩阵理论答案

习题 一 1.(1)因 cos sin sin cos nx nx nx nx ?? ? ? -?? cos sin sin cos x x x x ????-??= cos(1) sin(1)sin(1) cos(1)n x n x n x n x ++?? ??-++?? ,故由归纳法知 cos sin sin cos n nx nx A nx nx ?? =??-?? 。 (2)直接计算得4A E =-,故设4(0,1,2,3)n k r r =+=,则4(1)n k r k r A A A A ==-,即只需算出2 3 ,A A 即可。 (3)记J=0 1 0 1 1 0 ?????? ?????????? ,则 , 1122111 11 () n n n n n n n n n n n n n n i i n i n n i n n n a C a C a C a C a C a A aE J C a J a C a a -----=-?????? ??=+==?? ???????? n ∑。 2.设112 2 (1,0),0 a A P P a A E λλ-??===???? 则由得 2 1112111 1 1 210 0 0 a λλλλλλλ?? ????==?????????????? 1时,不可能。 而由2 112 222 0 0 000 0 0 a λλλλλλ??????==?????????????? 1时,知1i λ=±所以所求矩阵为1 i PB P -, 其中P 为任意满秩矩阵,而 1231 0 1 0 1 0,,0 10 1 0 1B B B -?????? ===?????? --?????? 。 注:2A E =-无实解,n A E =的讨论雷同。 3.设A 为已给矩阵,由条件对任意n 阶方阵X 有AX=XA ,即把X 看作2 n 个未知数时线 性方程AX -XA=0有2 n 个线性无关的解,由线性方程组的理论知其系数矩阵为零矩阵,

矩阵论研究生课程研究报告

“矩阵论”课程研究报告 科目:矩阵论教师: 姓名:学号: 专业:类别: 上课时间: 考生成绩: 阅卷评语: 阅卷教师(签名)

矩阵分析在问卷扫描识别中的应用 摘要: 图像处理主要研究图像变换、图像增强、图像缩放以及图像的分割分解等内容。通过像素矩阵把图像处理归结到了矩阵分析的方法中来,通过分析矩阵的方式来对图像进行相应的处理,实现了图像处理与矩阵分析的融合,为各种图像处理提供了一种良好的数学实现途径。图像像素矩阵的产生,为图像处理提供了一种新的途径,许多对图像的处理,都可以转化为对矩阵的分析。因此,在问卷扫描识别中图像像素的矩阵分析起到了至关重要的作用。 正文 一、问题描述 目前,考试客观题部分的评阅长期以来一直采用基于光学标记识别技术(OMR)的选项图像信息识别系统,而现实生活中利用标准的答题卡对问卷数据进行采集存在工作量大、误差大等问题。因此,如何将大量普通调查问卷的信息进行电子化处理成为关键。本文通过将普通调查问卷进行图像扫描,通过位图图像实现对像素矩阵的提取,以此对图像的分析都可以转化为对矩阵的分析,完成了由二维图像数字矩阵的变换,从而使问题变得准确、简便、易行。 二、实验基本原理 1、图像边缘检测 图像理解是图像处理的一个重要分支,研究为完成某一任务需要从图像中提取哪些有用的信息,以及如何利用这些信息解释图像。边缘检测技术对于处理数字图像非常重要,因为边缘是所要提取目标和背景的分界线,提取出边缘才能将目标和背景区分开来。在图像中,边界表明一个特征区域的终结和另一个特征区域的开始,边界所分开区域的内部特征或属性是一致的,而不同的区域内部的特征或属性是不同的,边缘检测正是利用物体和背景在某种图像特性上的差异来实现的,这些差异包括灰度,颜色或者纹理特征。边缘检测实际上就是检测图像特征发生变化的位置。图像边缘检测必须满足两个条件:一、能有效地抑制噪声; 二、必须尽量精确确定边缘的位置。

相关主题
文本预览
相关文档 最新文档