当前位置:文档之家› 高压负电源的设计及应用

高压负电源的设计及应用

高压负电源的设计及应用
高压负电源的设计及应用

1 引言 SLIC是一个可以构成模拟电话接口,具有摘机/挂机信号传送、铃声产生、铃流检测等功能,在传送摘机信号时需要-24V电压,而在产生铃声信号时,只需要-72V电压,对于IP电话或路由器,SLIC一般需要-48V电压,而对于xDSL线路驱动需要-5V和-15V电压,无线公用电话可能需要-24V和-48V电压,所有这些应用电源设计均可以使用MAC1856同步PWM控制器得到一个低成本的设计方案。 2 MAX1856的工作原理和特点 MAX1856内含低压差线性稳压器(LDO),内部所有电路均由内置稳压器供电,最大输入电压可达28V,内部稳压器最小压差为200mV,只要LDO输出电压高于2.7V,内部电路就可以工作,所

以MAX1856的最小输入电压为3V,LDO最大输出电流为12mA,如果外部FET的栅极驱动电流较小,则LDO也要用于其它电路供电。MAX1856内含电流模式PWM控制器,因此使用反激控制结构产生负的高压电源非常理想,其内部多输入比较器可以同时处理输出误差信号、电流检测信号以及斜率被偿信号。在PWM模式时,MAX1856使用固定开关频率,在轻负载时,MAX1856进入空闲模式以提供更高的效率。 MAX1856具有内部软启动特性,因而可以防止过流,并允许选用较小的输入电容。MAX1856的工作频率可以设置在100kHz到500kHz之间,对于低噪声应用,也可以采用外部时钟同步工作模式。 3 SLIC电源设计 图1是

为SLIC设计的电源电路,它的输入电压为12V,其中一路输出-24V/400mA,另外一路为-72V/100mA,通过改变外部分压电阻可对两路输出电压进行调节。 3.1 设置工作频率和输出电压 MAX1856的工作频率由管脚FREQ对地之间的电阻ROSC来决定,ROSC一般为50MΩ/fosc,如果选择250kHz的工作频率,

则ROSC=200kΩ。工作频率越高,ROSC可以越小,这样,峰值电流和电阻损耗也会越少,但同时会增大开关损耗、磁芯损耗,并将使栅极驱动电流增大。 FB管脚在输出端和REF引脚之间的分压电阻决定输出电压的大小。Vout=VREF R1/R3.对于双输出电压分别调整的情况,由于反馈电压门限为0,流入FB引脚的总电流是ITOTAL=IR1+IR2=VREF/R3。因为反馈电阻连接到REF,所以ITOTAL必须小于400μA,选择R3可使得ITOTAL位于200μA和250μA之间,一般可选R3为5.11kΩ。为了保证两个输出的精度相同,应使IR1/IR2=Pout1/Pout2,其中Pout1和Pout2分别为24V/400mA和72V/100mA。这样,可使IR1=4IR2/3。从上面的式子求得IR1和IR2后,R1和R2位于由下式求得:R1=Vout1/IR1=174kΩ,R2=Vout2/IR2=68kΩ。 3.2 选择变压器和MOSFET 变压器匝数比是输入输出电压比和占空比的函数,在占空比为50%,输入为12V,输出为-72时,需要有1:6的匝数比,在输出为-24V时,匝数比Np:Ns为1:2,所以变压器的匝数比是1:2:2:2。 整个电路的最大输出功率为最大输入功率与转换效率(E)的乘积。而转换效率(E)则是电阻损耗、变压器损耗、MOSFET导通电阻损耗、输入输出电容以及开关损耗的函数,一般可以假设R的典型值为80%。而最大输入功率是检流电阻、输入电压、输出电压、电感值、变压器匝数比(Np:Ns)和开关工作频率的函数。具体的计算公式可参考以下各式:

PIN(MAX)=VIND(Vcs/Pcs-VIND/(2FoscL) D=NpVOUT/(NpVOUT+NsVIN) 在最大负载电流时,其IIN=VOUTIOUT(MAX)/VIN(MIN)E。式中,E是转换效率,选80%,VOUT=24V

IOUT(MAX)=400mA,VIN(MIN)=10.8V,这个平均输入电流为1.11A,对于52.5%的占空比,平均开关电流就

是2.114A,选择初级电感波动电流△Ilo 40%,则初级电感为: Lp=VIND/(△ILfOSC)

其中△IL=0.4×2.114=0.846A,fOSC=250kHz,所以Lp=27μH时,初级峰值电流为2.5A。 由于受MAX1856内部LDO输出最大值(5V)的限制,外部功率开关需选择逻辑电平驱动的N沟道NOSFET,在输入电压低于5V时,可选择VGS为2.7V或更低的N沟道MOSFET。另外还需考虑其它特性指标,如:栅极电荷QG、导通电阻RDS、最大漏源电压VDS和最小门限电压VTH。对于IR公司的IRLL2705,其QG为17nC(VGS=5V),所以栅极驱动电流为: IGATE=Qgfosc=8.5mA 式中:fosc为500kHz 3.3 选择检流电阻以及输入输出电容和二极管 电感峰值电流确定后,检流电阻由下式确定。 Rcs=Vcs/ILPEAK=85mV/ILPEAK=33mΩ 为了避免电流检测比较器受噪声干扰,RCS

和CS管脚之间应连接100Ω电阻、CS引脚与GND之间应接1000pF的滤波电容。 整流二极管应选用高速、快恢复肖特基二极管,平均电流应满足以下要求: ID=IOUT(1+VOUT Np/(Ns VIN))+△ILNp/(2Ns) 同时关断电压要大于VOUT。 输入输出电容的串联等效电阻(ESR)应比较低。 3.4 消振电路设计 MAX1856可利用电流感应电阻来实现电流模式的控制,当开关导通时,MAX1856有100ns的浮空周期来减少噪声干扰。然后此时次级电感和输出二极管电容将形成振荡电路,并将反射回原边加到电流检测电阻上,其时间会超出100ns,从而导致噪声干扰。图1中R4和C3可以快速消振,消振电路的时间常数必须小于100ns,R4应满足50ns/C3。 4 无线终端的电源设计 图2所示是一种无线公用电话的电源电路,该电路也可以作为无线WLL终端的电源电路。若无线终端的供电电源是12V太阳能电池,则输出要求第一路为24V/200mA,另一路为-48V/100mA,第三路为5V/500mA。

高效率开关电源设计实例.pdf

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主 要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每 一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器(板载的10W降压Buck 变换器)。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在 系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙 之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使 用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。 更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+5.0V 额定输出电流: 2.0A 过电流限制: 3.0A 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +5.0V*2A=10.0W(最大) 输入功率: Pout/估计效率=10.0W/0.90=11.1W 功率开关损耗 (11.1W-10W) * 0.5=0.5W 续流二极管损耗: (1l.lW-10W)*0.5=0.5W 输入平均电流 低输入电压时 11.1W/10V=1.1lA 高输入电压时: 11.1W/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

高压大功率脉冲电源的设计

1绪论 1.1论文的研究背景 电源设备用以实现电能变换和功率传递,是一种技术含量高、知识面宽、更新换代快的产品。现今已广泛应用到工业、能源、交通、运输、信息、航空、航天、航运、国防、教育、文化等领域。在信息时代,上述各行各业都在迅猛地发展,发展的同时又对电源产业提出了更多更高的要求。显然,电源技术的发展将 带动相关技术的发展,而相关技术的发展反过来又推动了电源产业的发展。当前在电源产业,占主导地位的产品有各种线性稳压电源、通讯用的AC y DC开关电源、DC y DC开关电源、交流变频调速电源、电解电镀电源、高频逆变式整流焊接电源、中频感应加热电源、电力操作电源、正弦波逆变电源、大功率高频高压直流稳压电源、绿色照明电源、化学电源、UPS可靠高效低污染的光伏逆变电 源、风光互补型电源等。而与电源相关的技术有高频变换技术、功率转换技术、数字化控制技术、全谐振高频软开关变换技术、同步整流技术、高度智能化技术、电磁兼容技术、功率因数校正技术、保护技术、并联均流控制技术、脉宽调制技术、变频调速技术、智能监测技术、智能化充电技术、微机控制技术、集成化技术、网络技术、各种形式的驱动技术和先进的工艺技术。 1.2脉冲电源的特点及发展动态 脉冲电源是各种电源设备中比较特殊的一种,顾名思义,它的电压或电流波 形为脉冲状。按脉冲电源的输出特性分类,有高频、低频、单向、双向、高压、低压等不同的分类,具体选择怎样的输出电压、输出电流和开关频率,根据具体的应用场合而定。按脉冲波形分,有矩形波、三角波、梯形波、锯齿波等多种形式,如图1. 1所示。 图1 . 1各种脉冲波形 由于矩形波具有较好的可控性和易操作性,所以这种波形的应用居多。究其本质,

高压强脉冲电源的设计

高压强脉冲电源的设计 摘要:本文提出了一种强脉冲发生器电源的设计方案,应用此方案设 计了高压电源、IGB T控制充电、可控硅控制放电,可以自动运行的 脉冲磁场发生设备。最大直流电压达到3KV且连续可调,放电脉冲电 流高达10000A。该设备由一片AT89C52单片机控制,可实现与计算 机的连接。 关键词:高压电源; IGBT ;可控硅 The Design of High Voltage Pulsed Power Supply Abstract: This paper presents a strong pulse generator power supply design, applications for this program designed high-voltage power supply, IGBT control the charging and SCR controlled discharge, can be run automatically pulse magnetic field equipment. Maximum DC voltage 3KV and continuously adjustable discharge pulse currents up to 10000A. The device is controlled by an AT89C52 microcontroller can be realized with the computer. Key words: high voltage power supply;IGBT;SCR, 引言:强脉冲磁场对工业装置及医疗的作用[1],强脉冲磁场对金属 形成时的影响[2]以及脉冲磁场刺激对生物体的效应等已经越来越 引起人们的关注。目前国内的脉冲磁场设备,一般电压较低,频率也 较低。特别是高压充电部分采用调压器调压[3],这样体积太大也显 笨重。要产生更高的磁场强度,可以改变脉冲磁场频率的自动运行的

高压电源模块

详细信息 商品简介:·防雷设计 ·采用“预稳式”线性调节电路·可靠性好、精度高。 ·稳压、稳流连续可调 ·输出过压、过流、短路保护 ·数字显示方式 ·外加信号可实现V/A遥控(选件)·通过ISO9002认证 输出电压 DC:CV 0-2000V连续可调 输出电流;CC 0-额定值可设定 源效应 CV:≤5×10ˉ3+10mV CC:≤1×10ˉ2+15mA 负载效应 CV:≤5×10ˉ3+15mV CC:≤1×10ˉ2+20mA 纹波:≤5×10ˉ32 其它规格: 0.2A 0.5A 1A 2A 5A 10A 20A

商品名称:WWL-LDG 精密线性高压直流稳压稳流电源(超低纹波、800V~50kV、6kW以内) ?商品编号:200903 浏览次数:530 ?规格:800-50kV、0-10A、0-6kW内任选 型号:WWL-LDG 计量单位: ?产地: 商标:

? ?放大图片 ?

? ?商品描述:

单相输入、线性结构、超低纹波、超高电压 简要介绍使用说明书>>;面板示意图>>;详细规格表>> 本电源除具有WWL-LDX电源的特性外,还具有输出电压高的特点,我们可根据客户的要求制造出超高电压(最高可达50000V)的电源,且功率可达6kW,电压电流均可连续可调,可长期满载连续稳定的工作。 此电源可应用在国防上高尖端的试验、气体放电、高压电子管的测试老化,也可应用在其它电子元件的测试老化上。由于本电源输出电压较高,在未作特别要求的情况下,一般将输出负端子与机壳即地线连接,确保使用者的人身安全。 性能特点 1、规格范围:近300种规格,输出电压800-50kV、输出电流0-10A、输出功率0-6kW之内任选 2、恒压恒流:电压值从5%-100%额定值连续可调电流从零至额定值连续可调,恒压恒流自动转换 3、过压保护:电压保护值0-110%额定值连续可调,电源输出电压超过电压保护值时将跳闸保护 4、短路保护:额定电压5KV以下允许短路并声音报警,5KV以上短路跳闸保护 5、过载保护:电源或负载出现故障,输出电流超过额定值1.5倍时,电源跳闸保护 6、短路报警:当输出短路时,电源声光报警(选配) 7、自动放电:供容性负载关机放电用(选配) 8、输出显示:电压、电流同时LED数码管显示(标配);LCD液晶屏显示(选配) 9、脉冲工作:可配时间控制器构成脉冲电源(选配) 10、智能化:可与计算机连接,组成计算机监控的智能型电源(选配) 11、模拟信号接口:用户可用0~5V或4~20mA信号控制电源的输出电压和电流(选配) 主要用途 1、大专院校,科研院所实验室,电器产品检测、调试 2、电子产品检测、老化、气体放电 3、用于电子元器件的例行试验 4、速调管、磁控管、供电电源 5、各种高压试验设备配套电源 6、整机老练以及其它一切需要使用高电压输出的场合 技术指标

高效率开关电源设计实例

高效率开关电源设计实 例 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器()。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+ 额定输出电流: 过电流限制: 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +*2A=(最大) 输入功率: Pout/估计效率=/= 功率开关损耗* 0.5= 续流二极管损耗:*= 输入平均电流 低输入电压时/10V= 高输入电压时:/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

电除尘高频高压电源三种模式比对

电除尘高频高压电源三种控制模式的比对 魏文深 厦门市天源兴环保科技有限公司厦门同安工业集中区湖里园11号厂房 361100 摘要本文介绍了电除尘高频高压电源三种不同的调压控制机理,即调频控制模式;调幅控制模式;脉冲控制模式三种。从电除尘运行的角度分析了三种控制模式的特性和优势,提出几种控制模式的组合应是电除尘高频高压电源发展的方向。 关键词电除尘高频高压电源;调频控制模式;调幅控制模式;脉冲控制模式;开关频率;母线电压;间隙脉冲;闪络控制;节能模式 1 前言 近几年,随着高频高压电源在电除尘行业的应用,其功率已由原来的600—800mA/80KV发展到现在的1000---1600mA/80KV,满足了电除尘器大部分的要求,因此其应用范围和数量迅速扩大,对其应用研究也更加深入。 由于电除尘高频高压电源是一种基于高频开关技术的新型电源,与可控硅电源有着本质的不同。其体积小、节能、高效率等特性及对电除尘收尘突出的优点已被业内肯定,但由于其工作原理及控制方式也有别于其它常规电源,有必要对其控制特点作特别的分析和研究,有利于高频电源的研究和推广,满足市场的需求。 2 电除尘高频高压电源技术方案 根据国内外有关资料以及目前市场上运用的高频电源来看,电除尘高频高压电源方案虽各有特色,但总结电路上基本上相类似,主要由工频整流滤波,谐振逆变电路,高频升压整流输出以及对电源的控制部分构成。采用的开关器件有单IGBT、IGBT模块、IPM 模块;控制普遍采用DSP数字信号处理器或单片机。其不同在于触发控制模式上。 高频高压电源主回路工作原理及特点:

A 、工频整流、滤波。 三相380V 交流经三相整流得到直流电压,经LC 滤波输出530V 的直流母线电压。 B 、开关逆变:直流电压经由IPM 模块或IGBT 模块组成的全桥逆变电路。由于是大功率逆变,为减少开关损耗,降低开关模块的温升和电流电压应力,主回路均采用串联谐振拓补电路,即采用谐振电容Cs ,谐振电感Ls 及利用高频变压器漏感组成高频谐振式逆变电路。当L& C 参数选择合适,配合合适的开关频率和控制模式,能使开关模块工作在零电流开通和零电压关断模式,即软开关状态;大大降低了开关损耗,并且能有效减少进入高频变压器的高次谐波,也减少变压器及硅堆的损耗。 C 、高频升压、整流。逆变波形经高频变压器升压,再经高频整流桥整流,在ESP 负载上得到基本上纯直流电压波形。 3 电除尘高频高压电源控制方案 我们根据国内外有关资料以及目前市场上运用的高频电源分析来看,对高频触发脉冲控制主要可分为:调频控制模式;调幅控制模式;脉冲控制模式三种。 3.1 调频控制模式: 因主回路均采用串联谐振拓补电路,即软开关模式,它能大大降低开关损耗,提高逆变效能。而PWM (脉冲宽度调制)在软开关状态下较难调整,因此大多高频触发脉冲采用PFM (定脉宽调频)的方式,通过调节脉冲频率的调制控制方法将直流电压调制成一系列脉冲来调节ESP 平均电压和电流。该控制方式的核心在于控制ESP 平均电压和电流,由于频率降低相当于在单位频率下降低触发脉冲的有效占空比,通过缩短开通时间,加大关断时间来实现平均电压的调整。其特点是峰值不变,只改变平均值。其波形如下: 3.1.1谐振电流波形 20KHZ 开关频率 6KHZ 开关频率

电除尘高频高压电源三种控制模式的比对

电除尘高频高压电源三种控制模式的比对 三种控制模式:调频控制模式;调幅控制模式;脉冲控制模式 1 前言 近几年,随着高频高压电源在电除尘行业的应用,其功率已由原来的600—800mA/80KV发展到现在的1000---1600mA/80KV,满足了电除尘器大部分的要求,因此其应用范围和数量迅速扩大,对其应用研究也更加深入。 由于电除尘高频高压电源是一种基于高频开关技术的新型电源,与可控硅电源有着本质的不同。其体积小、节能、高效率等特性及对电除尘收尘突出的优点已被业内肯定,但由于其工作原理及控制方式也有别于其它常规电源,有必要对其控制特点作特别的分析和研究,有利于高频电源的研究和推广,满足市场的需求。 2 电除尘高频高压电源技术方案 根据国内外有关资料以及目前市场上运用的高频电源来看,电除尘高频高压电源方案虽各有特色,但总结电路上基本上相类似,主要由工频整流滤波,谐振逆变电路,高频升压整流输出以及对电源的控制部分构成。采用的开关器件有单IGBT、IGBT模块、IPM模块;控制普遍采用DSP数字信号处理器或单片机。其不同在于触发控制模式上。 高频高压电源主回路工作原理及特点: A、工频整流、滤波。 三相380V交流经三相整流得到直流电压,经LC滤波输出530V的直流母线电压。

B、开关逆变: 直流电压经由PM模块或IGBT模块组成的全桥逆变电路。由于是大功率逆变,为减少开关损耗,降低开关模块的温升和电流电压应力,主回路均采用串联谐振拓补电路,即采用谐振电容Cs,谐振电感Ls及利用高频变压器漏感组成高频谐振式逆变电路。当L&C参数选择合适,配合合适的开关频率和控制模式,能使开关模块工作在零电流开通和零电压关断模式,即软开关状态;大大降低了开关损耗,并且能有效减少进入高频变压器的高次谐波,也减少变压器及硅堆的损耗。 C、高频升压、整流。 逆变波形经高频变压器升压,再经高频整流桥整流,在ESP负载上得到基本上纯直流电压波形。 3电除尘高频高压电源控制方案 我们根据国内外有关资料以及目前市场上运用的高频电源分析来看,对高频触发脉冲控制主要可分为:调频控制模式;调幅控制模式;脉冲控制模式三种。 3.1 调频控制模式: 因主回路均采用串联谐振拓补电路,即软开关模式,它能大大降低开关损耗,提高逆变效能。而PWM(脉冲宽度调制)在软开关状态下较难调整,因此大多高频触发脉冲采用PFM(定脉宽调频)的方式,通过调节脉冲频率的调制控制方法将直流电压调制成一系列脉冲来调节ESP平均电压和 电流。该控制方式的核心在于控制ESP平均电压和电流,由于频率降低相当于在单位频率下降低触发脉冲的有效占空比,通过缩短开通时间,加大关断时间来实现平均电压的调整。其特点是峰值不变,只改变平均值。 3.1.1谐振电流波形 通过上述波形可以看出,该控制模式下仅在20KHZ的设计频率下,可以实现连续的电流,实现纯直流供电,输出功率最大。频率降低后,二次电压平均值降低,电压脉动系数变化不大,但电流峰值提高,平均值降低。输出平均功率下降,冲击加大,变压器效率会降低。 由于电除尘运行时较难在设计指标下运行,加上电场频繁的闪络放电,该控制模式必须在低于设计频率下运行,效能相对有所降低。该模式适应于电场相对平稳的场合,在轻载和放电频繁的场合适应性较差。 通过在模拟电场不同频率运行试验,该方式随着频率 下降,电转换效能同时降低的结论。 4.2 调幅控制模式:

高压直流电源

基于SG3525的3KW逆变电源设计 作者姓名:潘传义电子信息工程一班 指导教师:王生德 本电路利用48V直流蓄电池,可为后端提供3KW,2000V的高压直流电源。本电路设计的初衷是为电子捕鱼器后端产生脉冲波提供2000V直流电压。 本文对开关电源常用的电力电子器件做了简单介绍,重点介绍了 SG3525芯片的内部结构及其特性和工作原理,介绍了开关管MOSFET 的工作原理和开关动态特性等。设计了一款基于SG3525的推挽式DC-DC开关电源,提供高达2000V的直流电压。给出了系统的电路设计方法以及主要电路模块的原理分析和参数计算,特别是对开关电源高频变压器的设计给出了详尽的原理分析和各个参数的详细计算。 本电路采用推挽式开关变换,利用SG3525作为主要的控制芯片,产生两路互补的PWM方波脉冲控制开关管的通断。为提高PWM脉冲的驱动能力,加入桥式功率放大电路。滤波整流电路则采用桥式整流,RC滤波电路。另外,开关管工作频率高达25kHz,为此设计了RCD缓冲电路。考虑到电路环境的复杂性以及元器件的误差,电路在设计时对部分参数留有较大余量。 本电路的不同之处在于:采用两组相同的推挽变换电路且输出串联的设计,对变压器和整流滤波电路进行了有效的分压。产生高电压的同时,并没有大幅提高元器件的耐压要求,从而降低了对各种电力电子器件参数的要求。因而也使得电路的稳定性和可靠性更高。

本电路实现了从直流48V电压逆变到2000V直流电压的DC-DC变换供后续电路使用。本电路技术指标为:1)输入电压:蓄电池提供直流48V;2)输出电压:额定直流2000V;3)输出功率:最大3000W;4)输出波纹:无特殊要求,因此无需稳压电路。该系统工作过程:第一阶段:48V直流输入电压Ui经推挽电路变换成高频交流方波电压; 第二阶段:产生的交流方波电压经整流滤波电路分别产生1000V 直流电压,串联后实现2000V直流输出。 实验结果表明,该电源具有效率高,输出有效电压满足设计要求且运行可靠等优点。

200kV高压开关电源研制_周长庚

第23卷第3期强激光与粒子束Vol.23,No.3 2011年3月H IGH POWE R LASE R AND PARTICLE BEAMS M ar.,2011  文章编号: 1001-4322(2011)03-0761-04 200kV高压开关电源研制* 周长庚, 李 彦, 娄本超, 伍春雷, 胡永宏 (中国工程物理研究院核物理与化学研究所,四川绵阳621900) 摘 要: 采用软开关电源技术和叠层式倍压器方法,研制成一台200kV高压发生器,介绍了其工作原理 和结构。高压开关电源主要由功率变换器、中频升压变压器和高压倍压器组成。其主要技术指标为:高压200 kV,输出电流10mA,工作频率20kH z,电压稳定度1%,纹波系数2%,连续工作时间为8h。测试结果表明, 该高压开关电源的性能指标达了设计要求。 关键词: 功率变换; 倍压; 高压; 中频; 连续工作时间 中图分类号: T L503.5 文献标志码: A doi:10.3788/HP LP B20112303.0761 200kV以上的高压电源是氘离子加速器的关键设备之一。与线形高压电源相比,高压开关电源(也称高压发生器)[1-3],采用中频逆变技术,具有体积小、重量轻、稳定度高等特点。但目前国内许多科研单位研制生产的高压开关电源主要应用于医疗设备、高压材料和设备的绝缘性能检测等领域,工作连续时间一般不超过1 h,由于工作频率只有7kH z左右,整体体积偏大,满负载运行时噪音较大[4-6],不适合在专用氘离子加速器方面的应用和发展。为此,我们采用软开关电源技术和叠层式倍压器方法,研制成一台200kV高压发生器,采用空气绝缘,其高压部分不必放置在绝缘油内,维修方便。 1 高压开关电源的原理和结构 如图1所示,高压开关电源主要由功率变换器、中频升压变压器和高压倍压器组成。高压开关电源工作过程为:AC/DC电路把交流220V电压转换成直流电压,功率变换器中的桥式开关电路将直流电压变换成幅值约为220V的中频脉冲电压信号,中频变压器把脉冲电压转换成正弦波,并将正弦波峰值升至9kV,经过中频高压整流、中频滤波和12级倍压,形成大于200kV直流高压,当加满负载时,保证输出电压为200kV。 Fig.1 Principle block diagram of200kV high voltage switch pow er supply 图1 200kV高压开关电源原理方框图 2 功率变换器 功率变换器是高压开关电源关键部件。如图2所示,功率变换器是由整流器、滤波器、过流保护电路、全桥开关、取样电路、电源控制器和驱动器等组成。其工作原理是:交流220V电压经整流、滤波后形成+220V和-220V的直流电压,通过过流保护电路加到全桥开关。电源控制器产生的脉冲调制信号通过驱动器控制全桥开关的导通和截止,从而输出幅度约为220V的中频脉冲功率信号。图3为全桥开关电路原理图。电源控制器采用UC3875开关电源移相PWM控制集成电路。对IGBT开关管S1~S4组成的全桥开关电路进行移相控制,S1,S3为超前臂,S2,S4为滞后臂。借助开关管的输出电容C1~C4充放电,在输出电容放电结束(电压为0V)的状态下完成开关管零电压导通,功率损耗最小,这就是软开关过程。软开关过程使整个高压开关电 *收稿日期:2010-06-21; 修订日期:2010-11-11 基金项目:中国工程物理研究院预研基金项目 作者简介:周长庚(1956—),男,博士,研究员,从事核技术及应用研究;zh ou changg@https://www.doczj.com/doc/c47571625.html,。

高压直流电源技术的发展现状及应用通用版

安全管理编号:YTO-FS-PD451 高压直流电源技术的发展现状及应用 通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

高压直流电源技术的发展现状及应 用通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 1 高压直流电源的基本工作原理和应用 高压直流电源是将工频电网电能转变成特种形式的高压电源的一种电子仪器设备,高压直流电源按输出电压极性可分为正极性和负极性两种。高压直流电源已经广泛应用于各行各业,农业领域也有应用,例如农业环境静电除尘,静电喷雾杀虫,农业物料静电喷涂包裹,农产品加工中的静电植绒、农业生物静电效应研究、静电杀菌、农业种子静电处理等等。随着农业科学技术的不断发展进步,农业科学研究和农业工程应用实践对高压静电电源的需求逐年增多,对其精度、性能、规格、品种、类型、体积、智能化操作等方面都提出了许多新的要求,现有的高压直流电源已经不能满足农业领域中的许多需要,研究和开发适合农业领域要求的多种新型直流高压电源已经成为一种客观需求,而且其社会效益和经济效益都比较显著,市场前景比较光明。

恒流高压直流电源

§1 恒流高压直流电源 §1.1 恒流源供电的理论基础 对电除尘器采用恒流源供电,是八十年代中期开始的,虽然它采用了大量的无源元件:电抗器、电容组成L-C变换网络,但却改变了一种供电方式,采用电流源供电。 作为一个供电回路,一般由电源和负载组成,其表征参量为三个,电压、电流和阻抗,以电压作为电源的形式供电(电压源),则电流随负载变化;以电流作为电源的形式供电(电流源),则电压随负载变化。无论是较早的磁饱和放大器电源,还是现在的可控硅电源,均是电压源的特性,一种方式是改变回路的阻抗,进行限流,一种是改变输出电压的平均值(波形),虽然均可以做到“恒压” ,“恒流” 运行,但均是通过控制调整电压来达到的,其主变量,即能直接控制、调整的是电压μ,如图一所示:i=f(u)。而恒流源是一种电流源的概念,能直接控制、调整的是电流i,如图二所示:u=f(i),通过控制和调整电流i做到“恒压” ,“恒流” 、“最佳火花率”等工作状态下运行。 图1 电压源供电i=f(u) 图2 电流源供电u=f(i) 除尘器电场某一局部由电晕放电向火花击穿过渡是需要时间和功率,不论哪一种电源供电,电场处在电晕放电状态,电源所提供的电流则电晕电流,当电场处在火花放电状态,则电源所提供的电流为火花电流,因此在用恒流源供电时,由于电晕放电向火花放电过渡时,放电通道的等效电阻R随电离强度的增加而减小,这样注入到放电通道的功率P=I2(t)R减小,P也减小,抑制了放电的进一步发展,这相当于一个负反馈的物理过程,因此火花击穿的临界电压明显提高,

也就是说使除尘器的伏安特性的正阻区得到了大幅度的延伸,延伸的幅值取决于除尘器的状态和工况条件,一般含尘浓度大、电阻率高的烟尘,除尘器机械缺陷较大的,其伏安特性延伸幅值也大,而且延伸是在r=du/di→0附近,也就是说电压增加几千伏,电流成倍地增加。 从图一、图二的伏安特性可以看出,由于除尘器是具有气体放电特性的一个非线性特性,特别是曲线的后半段具有负阻特性,因此对于同一个电压值,电流可能是多值的,而对同一个电流值来说,电压是单值的,即在某一时刻,除尘器的工作电压是其电流的单值函数,因此,简单地从非线性电路平衡状态的稳定性来考虑,以恒流源来供电时,电压不会发生跳跃,可以稳定工作在r=du/di→0附近,即工作在高的电压和电流下,因为一个电流值,只有一个电压所对应,而电流值是由设备所决定的,因此这种稳定的工作状态不需要反馈控制回路来支撑,而且是本身回路所具有的。所以,用恒流源供电,可以使除尘器工作在较高的功率水平下

高压电源的工作原理以及应用和设计原理

工作原理 高压直流电源产生的负高压,接入电晕极(阴极),它与沉淀极(阳极)之间产生电场,电场强度超过一定极限后在阴阳两极间即产生电晕放电。此时流经电场区的气体发生电离, 产生大量的离子和电子。周围可以听见强烈的电磁风声。光线暗时可见紫兰色电晕。通过电 场的煤气中的焦油、粉尘、水雾等粒子与离子或电子结合而荷电,在电场力的作用下向两极 运动。由于电子质量小,运动速度快,空间分布广,所以主要是荷负电的粒子向沉淀极运动。到达沉淀极板中和后,依靠残存的静电引力和分子间凝聚力首先吸附于沉淀极,而后靠自身 重力沿极板下落,通过焦油出口排出。 高压电源的应用 高压直流电源是将Ac220V电网电能转变成特种形式的高压电源,高压直流电源按输出电压 极性可分为正极性和负极性两种。高压直流电源已经广泛应用于各行各业,仪器仪表各种电 子设备,农业领域也有应用,例如农业环境静电除尘,静电喷雾杀虫,农业物料静电喷涂包裹,农产品加工中的静电植绒、农业生物静电效应研究、静电杀菌、农业种子静电处理等等。随着农业科学技术的不断发展进步,农业科学研究和农业工程应用实践对高压静电电源的需 求逐年增多,对其精度、性能、规格、品种、类型、体积、智能化操作等方面都提出了许多 新的要求,现有的高压直流电源已经不能满足农业领域中的许多需要,研究和开发适合农业 领域要求的多种新型直流高压电源已经成为一种客观需求,而且其社会效益和经济效益都比 较显著,市场前景比较光明。信息来源:武汉凯琛威电子科技有限公司 回顾高压直流电源发展历史,高压直流电源最初是将工频电压直接经高压变压器升压后整流 滤波,或升压后再倍压整流后得到高压的,其基本原理如图1所示。随着科学技术的发展, 后来高压直流电源才发展到了线性高压直流电源。早期的高压直流电源通常采用220 V工频 交流经变压器升压,整流滤波获得,电源的体积和重量很大,并且纹波较大,稳定性不高, 效率低。目前的高压电源主要采用开关电源技术,PWM波的产生芯片主要用SG3525(集成PWM控制芯片)或者UC3875(移相谐振全桥软开关控制器)做成高频高压电源,大大减小 了电源体积和重量,提高了电源的稳定性和效率。但SG3525功能单一、产生的PWM波形 也没有DSP产生的PWM波形稳定性好,并不能实现与上位机通讯及智能调压等功能。此处 设计以DSP为控制核心,DSP产生的死区可调的PWM波完全可代替SG3525或UC3875所 产生的PWM波,还可实现电源输出调压和过压过流保护等功能。 高压电源的重要特点就是快速可靠保护。例如过流保护、过压保护、击穿短路保护等,这里 在新型直流高压电源研制上尝试应用新的技术手段,提出新的设计思路来解决这些问题。 2 设计原理 高压电源的总体框图如图1所示,电路主要分为主电路和控制保护电路两部分。该系统的工 作原理:先将市电220 V/50 Hz通过全桥整流滤波后,变成300 V左右直流电压,将其通过PWM的Buck变换得到0~300 V可调直流电压。然后直流电经过DC/AC逆变成高频电压,经过谐振电路和高频变压器后电压变为10 kV左右,再经倍压整流得到所需的电压。DSP系 统为DC/DC提供电压输出幅值的给定信号,同时接收DC/DC环节来的反馈信号,并实时地做出反应,控制DC/DC环节输出电压的大小。对于DC/AC环节,DSP系统通过输出4 路脉宽可调的PWM信号控制逆变环节4个IGBT的通断,并且接收反馈动作信号,控制4 路PWM的脉宽来达到控制逆变环节输出电压的目的。DSP系统还可进行输出电压测量,并 且提供一个良好的人机接口,实时地显示各个参数值,并提供操作控制

课程设计-基于51单片机的数控直流电源设计.doc

基于51单片机的数控直流电源设计 学号:XXXXXXXXXX 姓名:XXX 日期:2013年12月

目录 第1章绪论 (1) 1.1 课题的背景及意义 (1) 1.2 课程设计的主要内容 (1) 第2章系统总体设计 (3) 2.1 方案设计与论证 (3) 2.2 系统总框图 (4) 第3章硬件设计 (6) 3.1 硬件选型 (6) 3.1.1 系统供电部分 (6) 3.1.2 控制器部分 (6) 3.1.3 显示部分 (6) 3.1.4 键盘部分 (6) 3.1.5 数模/模数转换部分 (7) 3.1.6 掉电记忆部分 (7) 3.2 硬件电路设计 (7) 3.2.1 电源模块 (7) 3.2.2 DA转换模块 (8) 3.2.3 电压调整模块 (9) 3.2.4 键盘模块 (10) 3.2.5 EEPROM拓展模块 (11) 3.2.6 显示模块 (12) 第4章软件设计 (13) 4.1主程序流程 (13) 4.2 键盘程序流程图 (14) 4.3 EEPROM读写程序流程 (15) 4.4 DAC0832程序流程 (16) 4.5 TLC1543程序流程 (17) 第5章系统测试及误差分析 (18) 5.1 系统测试 (18) 5.1.1 软件测试 (18) 5.1.2 硬件测试 (18)

5.1.3 系统整体测试 (18) 5.2 误差分析 (19) 结论(心得体会) (21) 参考文献 (22) 附录一 (23) 附录二 (24)

第1章绪论 1.1 课题的背景及意义 电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。直流稳压电源是电子技术常用的仪器设备之一,广泛的应用于教学、科研等领域,是电子实验员、电子设计人员及电路开发部门进行实验操作和研究不可缺少的电子仪器。在电子电路中,通常都需要电压稳定的直流电源来供电。而整个稳压过程是由电源变压器、整流、滤波、稳压等四部分组成。然而这种传统的直流稳压电源功能简单、不好控制、可靠性低、干扰大、精度低且体积大、复杂度高。普通的直流稳压电源品种有很多,但均存在以下两个问题:输出电压是通过粗调(波段开关)及细调(电位器)来调节。这样,当输出电压需要精确输出,或需要在一个小范围内改变时,困难就较大。另外,随着使用时间的增加,波段开关及电位器难免接触不良,对输出会有影响。稳压方式均是采用串联型稳压电路,对过载进行限流或截流型保护,电路构成复杂,稳压精度也不高。在家用电器和其他各类电子设备中,通常都需要电压稳定的直流电源供电。但在实际生活中,都是由220V的交流电网供电。这就需要通过变压、整流、滤波、稳压电路将交流电转换成稳定的直流电。滤波器用于滤去整流输出电压中的纹波,一般传统电路由滤波扼流圈和电容器组成,若由晶体管滤波器来替代,则可缩小直流电源的体积,减轻其重量,且晶体管滤波直流电源不需直流稳压器就能用作家用电器的电源,这既降低了家用电器的成本,又缩小了其体积,使家用电器小型化。传统的直流稳压电源通常采用电位器和波段开关来实现电压的调节,并有电压表指示电压值的大小。因此,电压的调整精度不高,读数欠直观,电位器也易磨损。而基于单片机控制的直流稳压电源能较好地解决以上传统稳压电源的不足。 随着科学技术的不断发展,特别是计算机技术的突飞猛进,现代工业应用的工控产品均需要有低纹波、宽调整范围的高压电源,而在一些高能物理领域,更是急需电脑或单片机控制的低纹波、宽调整范围的电源。 1.2 课程设计的主要内容

开关电源PCB设计实例

开关电源PCB设计实例 标签:开关电源PCB 印制电路板的制作 所有开关电源设计的最后一步就是印制电路板(PCB)的线路设计。如果这部分设计不当,PCB也会使电源工作不稳定,发射出过量的电磁干扰(EMI)。设计者的作用就是在理解电路工作过程的基础上,保证PCB设计合理。 开关电源中,有些信号包含丰富的高频分量,因而任何一条PCB引线都可能成为天线。引线的长和宽影响它的电阻和电感量,进而关系到它们的频率响应。即使是传送直流信号的引线,也会从邻近的引线上引入RF(射频)信号,使电路发生故障,或者把这干扰信号再次辐射出去。所有传送交流信号的引线要尽可能短且宽。这意味着任何与多条功率线相连的功率器件要尽可能紧挨在一起,以减短连线长度。引线的长度直接与它的电感量和电阻量成比例,它的宽度则与电感量和电阻量成反比。引线长度就决定了其响应信号的波长,引线越长,它能接收和传送的干扰信号频率就越低,它所接收到的RF(射频)能量也越大。 主要电流环路 每一个开关电源内部都有四个电流环路,每个环路要与其他环路分开。由于它们对PCB布局的重要性,下面把它们列出来: 1.功率开关管交流电流环路。 2.输出整流器交流电流环路。 3.输入电源电流环路。 4.输出负载电流环路。

图59a、b、c画出了三种主要开关电源拓扑的环路。 通常输入电源和负载电流环路并没有什么问题。这两个环路上主要是在直流电流上叠加了一些小的交流电流分量。它们一般有专门的滤波器来阻止交流噪声进入周围的电路。输入和输出电流环路连接的位置只能是相应的输入输出电容的接线端。输入环路通过近似直流的电流对输入电容充电,但它无法提供开关电源所需的脉冲电流。输入电容主要是起到高频能量存储器的作用。类似地,输出滤波电容存储来自输出整流器的高频能量,使输出负载环能以直流方式汲取能量。因此,输入和输出滤波电容接线端的放置很重要。如果输入或输出环与功率开关或整流环的连接没有直接接到电容的两端,交流能量就会从输入或输出滤波电容上流进流出,并通过输入和输出电流环“逃逸”到外面环境中。 功率开关和整流器的交流电流环路包含非常高的PWM开关电源典型的梯形电流波形。这些波形含有延展到远高于基本开关频率的谐波。这些交流电流的峰值有可能是连续输入或输出直流电流的2~5倍。典型的转换时间大约是50ns,因而这两个环路最有可能产生电磁干扰(EMI)。 在电源PCB制作中,这些交流电流环路的布线要在其他引线之前布好。每个环路由三个主要器件组成:滤波电容、功率开关管或整流器、电感或变压器。它们的放置要尽可能靠近。这些器件的方向也要确定好,以使它们之间的电流通路尽可能短。图60就

高效率开关电源设计实例

高效率开关电源设计实例 1 0 W同步整流Buck变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路 的设计主要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PW履计实例1的再设计,它包括了如何设计同步整流器(板载的10W降压 Buck变换器)。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步 控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围:DC+10- +14V 输出电压:DC+5.0V

额定输出电流:2.0A 过电流限制:3.0A 输出纹波电压:+30mV (峰峰值) 输出调整:土1% 最大工作温度:+40 C “黑箱”预估值 输出功率:+5.0V *2A=10.0W最大) 输入功率:Pout/估计效率=10.0W^0.90=11.1W 功率开关损耗(11.1W-10W) * 0 . 5=0.5W 续流二极管损耗:(1I.IW-10W) *0.5=0.5W 输入平均电流 低输入电压时11.1W / 10V=1.1IA 高输入电压时:11.1W/ 14V=0. 8A 估计峰值电流:1 . 4lout(rated)=1 . 4X 2. 0A=2. 8A 设计工作频率为300kHz。

高压电源的工作原理及修理

高压电源的工作原理及修理 一、概况 1、深圳工厂高压电源的使用情况 高压电源在B/P,A/G,综检,ITC,三检,QA等工程广泛使用。 2、高压电源的主要生产商 1)韩国CONVER TECH公司(原SECO公司)(使用最多) 2)韩国ZEFA TECH公司(使用极少) 二、高压电源的种类 1、Eb POWER(SHV200RD-40K) 提供TUBE的阳极电压,0—40KV可调。 I/O ㈠、SHV200-40K H.V P.S 在内藏40KV 5mA H.V POWER SUPPLY ㈡、 CONTROL & DISPLAY 在前面板有电压和电流表,设置精密电位器(十圈)分别调整电压及保护电流,输出ON/OFF用SWITCH ,OVER LOAD表示用PILOT LAMP,在后面设置有把各种功能在内部或外部可以使用的端子.

㈢、后面板各功能端子连接说明 ① 输出电压调整 A. 使用内部VR 时 B. 外部跟VR 连接后使用时 ③ ⑥ 电位器 ② 输出电压显示 A. 使用内部电压表时 B. 使用外部电压表时 ⑨ ③ 输出电流显示 A.使用内部电流表时. B. 使用外部电流表时 ④ 过载信息输出 ⑤ 高压开/关及复位 A. 使用内部开关时. 注: 当出现OVER LOAD 时,按下 OFF S/W 即可复位 连接 B. 使用外部继电器时 连接 C. 使用外部开关时 连接 连接 注:当输出电压40KV 时, 输出到电压表的信号 电压为10V 连接 注:当输出电流5mA 时, 输出到电流表的信号 电压为10V

3) RACK TYPE的外观 4) MODULE TYPE的外观

开关电源的设计方案步骤

【开篇】 针对开关电源很多人觉得难,主要是理论与实践相结合;万事开头难,我在这里只能算抛砖引玉,慢慢讲解如何设计,有任何技术问题可以随时打断,我将尽力来进行解答。设计一款开关电源并不难,难就难在做精;我也不是一个很精熟的工程师,只能算一个领路人。希望大家喜欢大家一起努力!! 【第一步】 开关电源设计的第一步就是看规格,具体的很多人都有接触过;也可以提出来供大家参考,我帮忙分析。 我只带大家设计一款宽范围输入的,12V2A 的常规隔离开关电源 1. 首先确定功率,根据具体要求来选择相应的拓扑结构;这样的一个开关电源多选择反激式(flyback) 基本上可以满足要求 备注一个,在这里我会更多的选择是经验公式来计算,有需要分析的,可以拿出来再讨论【第二步】 2.当我们确定用flyback 拓扑进行设计以后,我们需要选择相应的PWM IC 和MOS 来进行初步的电路原理图设计(sch) 无论是选择采用分立式的还是集成的都可以自己考虑。对里面的计算我还会进行分解 分立式:PWM IC 与MOS 是分开的,这种优点是功率可以自由搭配,缺点是设计和调试的周期会变长(仅从设计角度来说) 集成式:就是将PWM IC 与MOS 集成在一个封装里,省去设计者很多的计算和调试分步,适合于刚入门或快速开发的环境 集成式,多是指PWM controller 和power switch 集成在一起的芯片 不限定于是PSR 还是SSR 【第三步】 3. 确定所选择的芯片以后,开始做原理图(sch),在这里我选用ST VIPer53DIP(集成了MOS) 进行设计,原因为何(因为我们是销售这一颗芯片的)? 设计之前最好都先看一下相应的datasheet,自己确认一下简单的参数 无论是选用PI 的集成,或384x 或OB LD 等分立的都需要参考一下datasheet 一般datasheet 里都会附有简单的电路原理图,这些原理图是我们的设计依据 【第四步】 4. 当我们将原理图完成以后,需要确定相应的参数才能进入下一步PCB Layout 当然不同的公司不同的流程,我们需要遵守相应的流程,养成一个良好的设计习惯,这一步可能会有初步评估,原理图确认,等等,签核完毕后就可以进行计算 一般有芯片厂家提供相关资料 【第五步】 5. 确定开关频率,选择磁芯确定变压器 芯片的频率可以通过外部的RC 来设定,工作频率就等于开关频率,这个外设的功能有利于我们更好的设计开关电源,也可以采取外同步功能。 一般AC2DC 的变换器,工作频率不宜设超过100kHz,主要是开关电源的频率过高以后,不利于系统的稳定性,更不利于EMC 的通过性 频率太高,相应的di/dt dv/dt 都会增加,除PI 132kHz 的工作频率之外,大家可以多参

相关主题
文本预览
相关文档 最新文档