当前位置:文档之家› 高压电源的设计_毕业设计

高压电源的设计_毕业设计

高压电源的设计_毕业设计
高压电源的设计_毕业设计

高压电源的设计

摘要

高压电源在日常的生产、生活中有着广泛的应用,尤其在军事、医疗、射线类探测器和静电喷涂等技术领域。传统的高压电源多采用线性技术,这种结构形式造成电源变换效率低,体积大,重量沉,操作维修不方便。随着电源技术的发展,人们对高压电源的转换效率和带负载能力提出了更高的要求。开关电源相对于线性电源有体积小,重量轻,效率高的优点,已经成为电源行业的主流形式。本论文设计研究了一种以单片机和脉宽调制(PWM)技术为基础的高压开关电源。该电源由飞思卡尔MC9S12XS128单片机产生和控制PWM波形,采用全桥变换,经高频变压器升压,输出1000V电压。该电源采用数字调节,模数电路相互结合,具有输出电压高,纹波小,输出功率较高等优点。

关键词:开关电源桥式变换器高频变压器单片机

Abstract

High-voltage power supply is applied broadly in daily life and production, especially used in military, medical, class-ray detector and electrostatic spraying. Traditional high-voltage power supply mainly adopt technology of linear power supply such type of structure makes the whole Efficiency of power supply below, large, heavy and operation and maintenance which is not convenient.With the development of power technology, people have a higher demand on the conversion efficiency of the the high-voltage power and load capacity.Switching power supply have the advantages of small size, light weight, high efficiency relative to the linear power.,it have become a mainstream form of the Power industry.This paper studies a single-chip design and pulse width modulation (PWM) technology-based high-voltage switching power supply.PWM waveform of the the power supply was generated and controlled by by Freescale MC9S12XS128 m icrocontroller,using full bridge,the high-frequency step-up transformer,1000V output voltage.The power supply with digital adjustment,modulus combined circuit,it has the advantage of a high output voltage, ripple, the higher power output and so on.

Keywords: Switching power supply Bridge converter High-frequency transformer

Microcontroller

目录

摘要 (1)

Abstract (2)

第1章绪论 (4)

1.1 课题研究的背景 (4)

1.2 研究的目的及意义 (5)

1.2.1课题研究的目的 (5)

1.2.2课题研究的意义 (5)

1.3 高频开关电源的发展情况 (5)

1.3.1开关电源的发展情况 (5)

1.3.2高频开关电源的主要新技术标志 (6)

1.4 隔离式高频开关电源简介 (7)

第2章高频开关电源的总体设计 (9)

2.1 主电路的选择 (9)

2.2 控制电路的选择 (9)

2.3 电流工作模式的方案选择 (9)

2.3.1电流连续模式分析 (9)

2.3.2电流断续模式分析 (9)

2.4 综合结构电路图 (10)

第3章开关电源输入电路设计 (11)

3.1 整流技术 (11)

3.1.1 交流输入整流滤波电路原理 (11)

3.2整流电路 (11)

3.3输入尖峰电压保护 (11)

第4章开关电源主电路设计 (12)

4.1 全桥变换器电路的工作原理 (12)

4.2 开关晶体管的设计 (13)

4.2.1器件介绍 (13)

4.2.2.功率MOSFET的结构和工作原理 (14)

4.2.3.功率MOSFET的主要特点 (14)

4.2.4MOSFET的导通特性 (15)

4.3 高频变压器的设计 (16)

4.3.1磁芯材料和结构 (16)

4.3.2绕阻计算 (16)

4.3.3绕阻的绕制 (17)

第5章开关电源控制电路设计 (18)

5.1基本原理 (18)

5.2器件简介 (18)

5.3脉冲宽度调制模块 (20)

5.4 A/D模块 (21)

5.5软件设计部分概述 (22)

5.5.1 程序设计方法 (22)

5.5.2 软件设计步骤 (23)

5.6单片机系统设计时应注意的问题 (23)

第6章辅助电路的设计 (24)

6.1辅助电源的设计 (24)

6.2MOSFET驱动电路 (24)

6.2.1器件介绍 (25)

6.2.2电路结构分析 (25)

6.3输出滤波电路的选择 (26)

第7章展望与总结 (26)

致谢 (27)

参考文献 (28)

第1章绪论

1.1 课题研究的背景

开关电源已有几十年的发展历史。1955年发明的自激推挽式晶体管单变压

器直流变换器,率先实现了高频转换控制功能;1957年发明的自激推挽式双变

压器,1964提出的无工频变压器式开关电源设计方案,有力地推动了开关电源

技术进步。1977年脉宽调制(PWM)控制器集成电路的问世,1994年单片开关电

源的问世,为开关电源的推广和普及创造了条件。与此同时,开关电源的频率也

从最初的20KHz提高到几千赫兹至几兆赫兹。目前,开关电源正朝高效节能,安

全环保、短、小、轻、薄的方向发展。各种新技术、新工艺和新器件如雨后春笋,

不断问世,开关电源的应用也日益普及。

开关电源技术发展趋势可以归纳以下几点:

①小型化、薄型化、轻量化、高频化是开关电源的主要发展方向。

②提高可靠性,提高集成度,增加保护功能,拓宽输入电压范围,提高平均无故障时间。

③随着频率提高,开关电源的噪声随之增大,降低噪声也是高频开关电源的研究方向。

④提高电源装置和系统的电磁兼容性(EMC)。

⑤用计算机软件进行辅助设计与控制,具有高效、高精度、高经济性和高可靠性的优点,可以使开关电源具有最佳电路结构与最佳工作状况。开关电源高频化的实现,与磁性元件和半导体功率器件的发展状况有着密切的关系。

1.2 研究的目的及意义

1.2.1课题研究的目的

随着社会经济的发展,人类已经进入工业时代,并正在转入高新技术产业迅猛发展的时期,电源是向负载提供优质电能的供电设备,是工业的基础。

本论文的目的就是查阅相关资料,掌握开关电源的内部结构,学习怎样设计小功率开关电源的方法,这以后从事相关事业打下基础,开阔视野,从而提高自身的能力。

1.2.2课题研究的意义

课题研究的意义在于:当代许多高新技术均与电源的电压、电流、频率、相位和波形等基本技术参数的变换和控制相关,电源技术能够实现对这些参数的精确控制和高效率的处理,因此,电源技术不但本身是一种高新技术,而且还是其评它多项高新技术的发展基础。电源技术及其产业的进一步发展必将为大幅度节约电能、降低材料消耗以及提高生产效率提供重要的手段,并为现代生产和现代生活带来为深远的影响。

1.3 高频开关电源的发展情况

1.3.1开关电源的发展情况

目前我国通信、信息、家电和国防等领域的电源普遍采用高频开关电源,相控电源将逐渐被淘汰。国内开关电源技术的发展,基本上起源于20世纪70年代末和80年代初。当时引进的开关电源技术,在高等院校和一些科研院所停留在实验开发和教学阶段。20世纪80年代中期开关电源产品开始推广和应用。20世纪80年代开关电源的特点是采用20kHz脉宽调制(PWM)技术,效率可达65%-70%。经过20多年的不断发展,开关电源技术有了重大进步和突破。新型功率器件的开发促进了开关电源的高频化,功率MOSFET和IGBT可使小型开关电源的工作频率达到400kHz(AC/DC)或1MHz(DC/DC);软开关技术使高频开关电源的实现有了可能,它不仅可以减少电源的体积和重量,而且提高了电源的效率(国产6kW通信开关电源采用软开关技术,效率可达93%);控制技术的发展以及专用控制芯

片的生产,不仅使电源电路大幅度简化,而且使开关电源的动态性能和可靠性大大提高;有源功率因数校正技术(APFC)的开发,提高了AC/DC开关电源的功率因数,既治理了电网的谐波污染,又提高了开关电源的整体效率。

1.3.2高频开关电源的主要新技术标志

新型磁性材料和新型变压器的开发、新型电容器和EMI滤波器技术的进步以及专用集成控制芯片的研制成功,使开关电源实现了小型化,并提高了EMC性能。微处理器监控技术的应用,提高了电源的可靠性,也适应了市场对其智能化的要求。

新型半导体器件的发展是开关电源技术进步的龙头。目前正在研究高性能的碳化硅半导体器件,一旦开发成功,对电源技术的影响将是革命性的。此外,平面变压器、压电变压器及新型电容器等元器件的发展,也将对电源技术的发展起到重要作用。

另外,集成化是开关电源的一个重要发展方向。通过控制电路的集成、驱动电路的集成以及保护电路的集成,最后达到整机的集成化生产。集成化和模块化减少了外部连线和焊接,提高了设备的可靠性,缩小了电源的体积,减轻了重量。目前。

总之,回顾开关电源技术的发展过程,可以看到,高效率、小型化、集成化、智能化以及高可靠性是大势所趋,也是今后的发展方向,因此高频开关电源的发展很具研究意义!

在开关电源领域,我国的民族产业在国内一直占有举足轻重的地位。在开关电源应用的起步阶段,很多生产厂家采取的都是小作坊的生产模式。经过20余年的不懈努力,逐步向大规模生产转化,产品也从单一品种走向系列化。现在,我国已形成一批上亿元甚至10亿元以上产值的电源企业,有些产品已进入国际市场。这是我国开关电源技术不断成熟的表现。

从技术上看,几十年来推动开关电源性能和技术水平不断提高的主要标志如下所述:

(1)新型高频功率半导体器件的开发使实现开关电源高频化有了可能

功率MOSFET和IGBT已完全可以取代功率晶体管和晶闸管,从而使中小型开关电源工作频率可以达到400KHz(AC-DC)和1MHz(DC-DC)的水平。超快恢复功率极管,MOSFET同步整流技术的开发也使高效低电压输出(例如3V)开关电源的研制有了可能。现在正在探索研制耐高温的高性能炭化硅功率半导体器件。

(2)软开关技术使高频率开关变换器的实现有了可能

PWM开关电源按硬开关模式工作(开/关过程中电压下降/上升和电流上升/下降波形有交叠),因而开关损耗大。开关电源高频化可以缩减体积重量,但开关损耗却更大了(功率与频率成正比)。为此必须研究开关电压/电流波形不交叠的技术,即所谓零电压开关(ZVS)/零电流开关(ZCS)技术,或称软开关技术。小功率软开关电源效率可以提高到80-85%。

70年代谐振开关电源奠定了软开关技术的基础,以后新的软开关技术不断涌现,如准谐振(80年代中),全桥ZVS-PWM 、恒频ZVS-PWM/ZCS-PWM (80年代末)、ZVS-PWM有源钳位;ZVT-PWM/ZVCT-PWM(90年代初);全桥移相ZV-ZCS-PWM(90年代中)等,我国己将最新软开关技术应用于6KW通信电源中,效率达93%。

(3)控制技术研究的进展

例如电流型控制及多环控制,电荷控制,一周期控制,功率因数控制,DSP 控制及相应专用集成控制芯片的研制成功等,使开关电源动态性能有很大提高,电路也大幅度简化。

(4)有源功率因数校正技术(APFC)开发,提高了AC-DC开关电源功率因数由于输入端有整流电容组件,AC-DC开关电源及一大类整流电源供电的电子设备(如逆变器,UPS)等的电网侧功率因数仅为0.65。80年代用APFC技术后可以提高到0.95-0.99。既治理了电网的谐波“污染”,又提高了开关电源的整体效率。

(5)磁性组件新型材料和新型变压器的开发,例如集成磁路,平面型磁心,超薄型(Low profile)变压器。新型变压器如压电式,无磁心印制电路(PCB)变压器等,使开关电源的尺寸重量都可减少许多。

(6)新型电容器和EMI滤波器技木的进步,使开关电源小型化并提高了EMC 性能。

(7)微处理器监控和开关电源系统内部通信技术的应用,提高了电源系统的可靠性。90年代末又提出了新型开关电源的研制开发,这也是新世纪开关电源的远景。如用一级AC-DC开关变换器实现稳压或稳流,并具有功率因数校正功能,称为单管单级(Single Switch Single Stage)或4S高功率因数AC-DC开关变换器;输出1V, 50A的低电压大电流DC-DC变换器,又称电压调节模块VRM,以适应下一代超快速微处理器供电的需求。

1.4 隔离式高频开关电源简介

隔离式开关电源的变换器具有多种形式。主要分为半桥式、全桥式、推挽式、单端反激式、单端正激式等等。

在设计电源时,设计者采取那种变换器电路形式,主要根据成本、要达到的性能指标等因素来决定。各种形式的电源电路的基本功能块是相同的,只是完成这些功能的技术手段有所不同。隔离式高频开关电源电路的共同特点就是具有高频变压器,直流稳压是从变压器次级绕组约脉冲电压整流滤波而来。开关电源的基本功能方框如图1.1所示。

图1.1 隔离式开关电源的方框图

在图1.1中,交流线路电压无论是来自电网的,还是经过变压器降压的.首先要经过整流、滤波电路变成含有一定脉动电压成分的直流电压,然后进入高频变换部分。高频变换部分的核心是有一个高频功率开关组件,比如开关晶体管、场效应管(MOSFET)等组件,高频变换部分产生高频(20kHz以上)高压方波,所得到的高压方波送给高频隔离降压变压器的初级,在变压器的次级感应出的电压被整流、滤波后就产生了低压直流。为了调节输出电压,使得在输入交流和输出负载发生变化时,输出电压能保持稳定,在这里采用一个叫做脉冲宽度调制器(FWM)的电路,通过对输出电压采样,并把采样的结果反馈给控制电路,控制电路把它与基准电压进行比较,根据比较结果来控制高频功率开关组件的开关时间比例(占空比),达到调整输出电压的目的,在方波的上升沿和下降沿。有很多高次谐波,如果这些高次TB波反馈到输入交流线,就会对其它电子设备产生干扰。因此,在交流输入端必须要设置无线频率干扰(RFI)滤波器,把高频干扰减少到可接收的范围。

第2章高频开关电源的总体设计

2.1 主电路的选择

开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

DC-DC变换有隔离和非隔离两种。输入输出隔离的方式由于隔离变压器的漏磁和损耗等会造成效率的降低,但是却很安全,为了提高开关电源的安全性,所以此设计选择隔离方式。考虑输出电压等级和功率选择全桥式电路来实现。2.2 控制电路的选择

根据论文题目要求,本设计是采用单片机控制的,单片机控制产生PWM波,控制开关的导通与截止。根据A/D后的反馈电压程控改变占空比,使输出电压稳定在设定值。负载电流在康铜丝上的取样经A/D后输入单片机,当该电压达到一定值时关闭开关管,形成过流保护。采用的单片机型号为飞思卡尔MC9S12XS128。

2.3 电流工作模式的方案选择

2.3.1电流连续模式分析

电流连续模式。电流连续工作状态,在下一周期到来时,电感中的电流还未减小到零,电容的电流能够得倒及时的补充,输出电流的峰值较小,输出纹波电压小。这种模式的设计要考虑电感的储能时间,不容易控制,所发实现起来是很复杂的。

2.3.2电流断续模式分析

电流断续模式。断续模式下,电感能量释放完时,下一周期尚未到来,电容能量得不到及时补充,二极管的峰值电流非常大,对开关管和二极管的要求就非常高,二极管的损耗非常大,而且由于电流是断续的,输出电流交流成分比较大,会增加输出电容上的损耗。由于对于相同功率的输出,断续工作模式的峰值电流要高很多,而且输出直流电压的纹波也会增加,损耗大。但是这种模式工作设计不复杂。

鉴于上面分析,本设计采用电流断续模式。

图2.1综合结构电路图

2.4 综合结构电路图

工频交流AC 220V 经过EMI滤波后进行不控整流得到直流电压VDC,再进过电容的平波稳压之后送给H桥进行斩波。通过高频PWM信号来控制H桥对直流电压VDC 斩波,通过隔直电容输入到高频变压器的原边,完成升压。高频升压之后经过高频整流二极管进行整流,之后经LC滤波送负载。输出端通过采样电阻把输出电压送到电压电子显示器实时显示。

第3章开关电源输入电路设计

3.1 整流技术

3.1.1 交流输入整流滤波电路原理

在前面已经提到,隔离式开关电源是直接对输入的交流电压进行整流,而不需要低频线性隔离变压器。现代的电子设备生产厂家一般都要满足国际市场的需求,所以他们所设计的开关电源必须要适应世界范围的交流输入电压,通常是交流90 ——130V和180——260V的范围。

图3.1 输入滤波、整流电路原理

输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对 C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

3.2整流电路

本设计采用四个二极管进行不控整流,再由滤波器滤波得到直流电。

3.3输入尖峰电压保护

在一般情况下,交流电网上的电压为220v左右,但有时也会有高压的尖峰出现。比如电网附近有电感性开关,暴风雨天气时的雷电现象,都是产生高尖峰的因素。受严重的雷电影响,电网上的高压尖峰可达5kv。

另一方面,电感性开关产生的电压尖峰的能量满足下面的公式:

I L W ?=22

1 (3-1) 式3-1中L 是电感器的漏感,I 是通过线圈的电流。

由此可见,虽然电压尖峰持续的时间很短,但是它确有足够的能量使开关电源的输入滤波器、开关晶体管等造成致命的损坏,所以必须要采取措施加以避免 。

用在这种环境中最通用的抑制干扰器件是金局氧化物压敏电阻(MOV)瞬态电压抑制器。当高压尖峰瞬间出现在压敏电阻两端时,它的阻抗急剧减小到一个低值,消除了尖峰电压使输入电压达到安全值。瞬间的能量消耗在压敏电阻上,在选择压敏电阻时应按下述步骤进行。

(1)选择压敏电阻的电压额定值,应该比最大的电路电压稳定值大10%-20%;

(2)计算或估计出电路所要承受的最大瞬间能量的焦尔数;

(3)查明器件所需要承受的最大尖峰电流。

上述几步完成后,就可以根据压敏电阻参数资料选择合适的压敏电阻器件。

第4章 开关电源主电路设计

4.1 全桥变换器电路的工作原理

全桥变换器电路如图4.1:

图5-53 4

图4.1全桥电路工作原理图

换器初级承受相当于半桥变换器变压器初级两倍的输入电压,所以其匝数为半桥的两倍。但当输出功率和输入直流电压相同时,全桥变换器初级电流峰值和有效值只有半桥电压型全桥逆变电路的原理如图4-1,它共有四个桥臂,可以看成由两个半桥电路组合而成。把桥臂1和桥臂4作为一对,桥臂2和桥臂3作为另一对,组成的两个桥臂同时导通,两对交替各导通180°。桥式变换器的特点:桥式变换器由四个功率晶体管组成,相对于半桥而言,功率晶体管及驱动装置个数要增加一倍,成本较高,但可用在要求功率较大的场合。全桥的优点:主变压器只需要一个原边绕组,通过正反向的电压得到正反向的磁通,副边有一个中心抽头绕组用于整流输出,因此变压器铁芯和绕组最佳利用,使功率,功率密度得到提高。另一个优点是:功率开关在非常安全的情况下运作,在一般情况下最大的反向电压不会超过电源电压,四个能量恢复二极管能消除一部分有漏感产生的瞬时电压。这样无需设置能量恢复绕组反激能量便得到恢复利用。全桥变换器初级施加的是幅值为 V dc的方波电压,是半桥变换器的2倍,但其晶体管承受的关断电压却与半桥变换器相同,等于最大输入直流电压。所以在晶体管承受相同的峰值电流和电压的条件下,全桥变换器输出功率是半桥变换器的两倍。当然,由于全桥变的一半。所以相同功率下,两种变换器的变压器大小是一样的。但若使用较大体积的变压器,全桥变换器可在相同晶体管电流电压额定下得到两倍于半桥的功率输出。

4.2 开关晶体管的设计

4.2.1器件介绍

本设计整流环节采用二极管实现不控整流在逆变环节为了实现输出达到高频采用电力MOSFET,MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。

功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的MOS 型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor--SIT)。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,

耐压低,一般只适用于功率不超过10kW的电力电子装置。

4.2.2.功率MOSFET的结构和工作原理

功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET主要是N沟道增强型。

1.功率MOSFET的结构

功率MOSFET的内部结构和电气符号如图4.2所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。导电机理与小功率MOS管相同,但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET, 大大提高了MOSFET器件的耐压和耐电流能力。

(a)内部结构断面示意图(b)电气图形符号

图4.2功率MOSFET的结构和电气图形符号

2.功率MOSFET的工作原理

截止:漏源极间加正电源,栅源极间电压为零。P基区与N漂移区之间形成的PN结J1反偏,漏源极之间无电流流过。

导电:在栅源极间加正电压UGS,栅极是绝缘的,所以不会有栅极电流流过。但栅极的正电压会将其下面P区中的空穴推开,而将P区中的少子-电子吸引到栅极下面的P区表面。当UGS大于UT(开启电压或阈值电压)时,栅极下P区表面的电子浓度将超过空穴浓度,使P型半导体反型成N型而成为反型层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电。

4.2.3.功率MOSFET的主要特点

功率MOSFET的主要特点有以下几点:

1,输入阻抗高,可达 106Ω以上;

2,工作频率范围宽,开关速度快 ( 开关时间为几十纳秒到几百秒 )开关损耗小;3,有较优良的线性区,并且 MOSFET 的输入电容比双极型的输入电容小得多,所以它的交流输入阻抗极高;噪声也小。

4,功率 MOSFET 可以多个并联使用,增加输出电流而无需均流电阻。

5,MOSFET 是电压控制型器件因此在驱动大电流时无需推动级,电路较简单。

4.2.4MOSFET的导通特性

功率MOSFET和双极型晶体管不同,它的栅极电容比较大,在导通之前要先对该电容充电,当电容电压超过阈值电压(VGS-TH)时MOSFET才开始导通。因此,栅极驱动器的负载能力必须足够大,以保证在系统要求的时间内完成对等效栅极电容(CEI)的充电。

功率MOSFET以其导通电阻低和负载电流大的突出优点,已经成为SMPS控制器中开关组件的最佳选择,专用MOSFET驱动器的出现又为优化SMPS控制器带来了契机。那些与SMPS控制器集成在一起的驱动器只适用于电路简单、输出电流小的产品;而那些用分立的有源或无源器件搭成的驱动电路既不能满足对高性能的要求,也无法获得专用单片式驱动器件的成本优势。专用驱动器的脉冲上升延时、下降延时和传播延迟都很短暂,电路种类也非常齐全,可以满足各类产品的设计需要。

在计算栅极驱动电流时,最常犯的一个错误就是将MOSFET的输入电容(CISS)和CEI混为一谈,于是会使用下面这个公式去计算峰值栅极电流。

I = C(d

v /d

t

) (4-1)

实际上,CEI的值比CISS高很多,必须要根据MOSFET生产商提供的栅极电荷(QG)指标计算。

QG是MOSFET栅极电容的一部分,计算公式如下:

QG = QGS + QGD + QOD (4-2)QG--总的栅极电荷

QGS--栅极-源极电荷

QGD--栅极-漏极电荷(Miller)

QOD--Miller电容充满后的过充电荷

典型的MOSFET曲线如图4.3所示,很多MOSFET厂商都提供这种曲线。可以看到,为了保证MOSFET导通,用来对CGS充电的VGS要比额定值高一些,而且CGS也要比VTH高。栅极电荷除以VGS等于CEI,栅极电荷除以导通时间等于所

需的驱动电流(在规定的时间内导通)。

图4.3 典型的MOSFET 曲线

用公式表示如下:

QG = (CEI)(VGS) (4-3)

IG = QG/t (4-4)

其中:

QG 总栅极电荷,定义同上。

CEI 等效栅极电容

VGS 栅-源极间电压

IG 使MOSFET 在规定时间内导通所需栅极驱动电流

4.3 高频变压器的设计

高频变压器是高压开关电源的核心部件之一,由于高压电源的变压器工作时的频率较高,它要求磁芯材料在频率下功率损耗尽可能小;此外,还要求饱和磁通密度高;随着工作温度的升高,饱和磁通密度的降低尽量小等等。

4.3.1磁芯材料和结构

根据电源对变压器的要求,大部分高压电源主要采用铁氧体磁芯材料。用铁 氧体磁芯材料结构选择的因素有下列几个方面:

1、漏磁要小,以便能获得小的绕阻漏感。

2 、便于绕制,引出线及整个变压器的安装方便,这样有利于生产维护,有利于散热。

3、铁氧体磁芯材料的结构形式如环形、U 形、E 形、EI 形、EE 形以及E 形带有圆柱形中心柱和外腿带有螺钉固定位置等大功率铁氧体磁芯。环形磁芯的漏磁小,但绕阻的绕制,尤其是副边大电流绕阻的绕制以及引出线和整个变压器的固定均较麻烦,磁芯的散热也不好,而U 形磁芯的漏磁较大,E 形磁芯具有圆柱形中心柱的结构,绕阻的绕制更普通电力变压器的绕阻绕制一样方便,而且在整个绕阻高度耦合良好从而减小了漏感。

4.3.2绕阻计算

高频变压器原副边绕阻计算包括按输入输出电压确定匝数,根据功率确定导线截面以及校核空载励磁电流等。

1绕组匝数计算

对于进行方波转换的高频变压器,其基本设计公式为式(4-5):

f BS V N E 4108

11?= (4-5)

式中N 1为变压器原边绕组匝数(T )

V 1为施加在该绕组上的压幅值,这里即为输入整流滤波电压(V )

B 为工作磁通密度(GS ),

S e 为磁芯有效面积,

f 为高频变压器电工作频率(Hz )

或者用导通脉冲宽度来计算,如式(4-6)所示:

211102?=e

ON BS t V N (4-6) 其中t ON 为半周期内导通脉冲宽度(us )。

2、校核励磁电流

原边绕组电感量L 1可按式(4-7)求得:

e e

l S N 2101L γμμ= (4-7)

其中μ0为真空导磁率,μ0=4π×10-9H/cm

μr 为磁芯材料的相对导磁率,它不是常数,铁氧体的数值约为800-5000,一般可取1500

S e 为磁芯有效截面积

l e 为平均磁路长度

励磁电流的计算公式为式(4-8):

(4-8)

其中V 1 单位为伏(V ),t ON 为秒,L 1用亨(H )。式中求出的励磁电流I u 是时间

t=t ON 时、即半个周期内脉冲终了时励磁电流的幅值,不宜太大,一般在额定工作

电流的10% 以下。

4.3.3绕阻的绕制

高频变压器绕制时需要特别注意分布参数给予的影响,它的绕组匝数不多,同时对波形的要求也不严格,因而,由绕组本身的的分布电容引起问题相应之下不是主要的。如前所述,漏感将会引起关断电压尖峰,虽然可以用RC 吸收网络加以抑制,但最根本的办法还是在选择磁芯和绕阻绕制时尽可能的减小漏感。为了得到低漏感,磁芯和绕组的形状应选择设计成径向厚度较小的长绕组,采用高导磁率、杂散场小的磁芯。但是磁芯形状的选择还需在易于绕制绕组、减小漏感、便于散热以及体积等方面折衷考虑。无论何种磁芯形状都应使原副边绕组尽可能的紧密耦合,这样才能减小漏感。

第5章开关电源控制电路设计

5.1基本原理

以飞思卡尔MC9S12XS128为核心组成了电源系统的控制电路,它对控制电路各环节的工作进行整合,而且需要对电压、电流、脉宽等数据进行处理和计算。这些任务包括:

1 、系统初始化:各个模块的初始化,给重复控制器设定起始运行参数,各误差项的清零,设置软件定时中断。

2、实时采样输出的电压值,通过函数的运算得到运算量。

3、根据实时的电流电压等值,经过运算更新显示值。

4、PID控制算法得到的控制量,得到相应的控制PWM脉宽输出。

5、如果有故障发生,立即启动软件程序进行保护。

上面说明了系统软件需要完成的任务,这些任务对于单片机来数无疑是很大的,而电源的控制对控制速度要求是很高的,系统的控制量的变化是很快的,这就要求系统的采样周期应该尽可能短,以便对被控制量进行及时的控制。因此在设计和编制系统软件时,应该对各个软件的模块结构和相互间的时序进行有效配合,以满足系统的实时性的要求。

5.2器件简介

器件引脚图如下

图5.1 端口整合模块

端口 A,B和K为通用I/O接口

端口 E 整合了IRQ,XIRQ中断输入

端口 T 整合了1个定时模块

端口 S 整合了2个SCI模块和1个SPI模块

端口 M 整合了1个MSCAN

端口 P 整合了 PWM 模块,同时可用作外部中断源输入

端口 H 和 J 为通用I/O接口,同时可用作外部中断源输入

端口 AD 整合了1个16位通道ATD模块

大部分I/O引脚可由相应的寄存器位来配置选择数据方向、驱动能力,使能上拉或下拉式装置。

当用作通用IO口时,所有的端口都有数据寄存器和数据方向寄存器。

对于端口T, S, M, P, H, 和 J 有基于每个针脚的上拉和下拉控制寄存器。

对于端口 AD 有基于每个针脚的上拉寄存器。

对于端口A、B、E 和 K,有一个基于端口的上拉控制寄存器。

对于端口T, S, M, P, H, J, 和 AD,有基于每个针脚的降额输出驱动控制寄存器。

对于端口A, B, E, 和 K,有一个基于端口的降额输出驱动控制寄存器。

对于端口S、M,有漏极开路(线或)控制寄存器。

对于端口P、H 和 J,有基于每个针脚的中断标志寄存器。

纯通用IO端口共计有41个,分别是:

PA[7:0]

PB[7:0]

PE[6:5]

PE[3:2]

PK[7,5:0]

PM[7:6]

PH[7:0] (带中断输入)

PJ[7:6] (带中断输入)

PJ[1:0] (带中断输入)

5.3脉冲宽度调制模块

XS128具有8位8通道的PWM,相邻的两个通道可以级联组成16位的通道。

PWME:

PWM通道使能寄存器。PWMEx=1将立即使能该通道PWM波形输出。若两个通道级联组成一个16位通道,则低位通道(通道数大的)的使能寄存器成为该级联通道的使能寄存器,高位通道(通道数小的)的使能寄存器和高位的波形输出是无效的。PWMPOL:

PWM极性寄存器。PPOLx=1,则该通道的周期初始输出为高电平,达到占空比后变为低电平;相反,若PPOLx=0,则初始输出为低电平,达到占空比后变为高电平。PWMCLK:

PWM时钟源选择寄存器。0、1、4、5通道,PCLKx=0使用Clock A,PCLKx=1使用Clock SA;2、3、6、7通道,PCLKx=0使用Clock B,PCLKx=1使用Clock SB。PWMPRCLK:

PWM预分频时钟源选择寄存器。

控制Clock A、Clock B的值。

PWMCAE:

PWM中心对齐使能寄存器。CAEx=1,该通道为中心对齐;CAEx=0,该通道为左对齐。PWMCTL:

PWM控制寄存器。CONxx=1,则相应的两个通道级联使用,否则单独使用。级联后,整个级联通道由低位通道(通道数大的)的各个寄存器控制,高位通道(通道数小的)不起作用。

级联模式下,向高位通道或低位通道计数器寄存器写值,等同于向16位级联计数器寄存器写值,也即重置为0。

PWMSCLA:

PWM标度A寄存器。用于控制Clock SA的值,Clock SA = Clock A / (2 * PWMSCLA),当PWMSCLA=0x00时,相当于PWMSCLA=256。

PWMSCLB:

PWM标度B寄存器。用于控制Clock SB的值,Clock SB = Clock A / (2 * PWMSCLB),

开关电源设计与实现毕业设计(论文)

毕业论文(设计) 题目开关电源设计 英文题目switch source design

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

不间断电源设计毕业设计

不间断电源设计毕业设计

摘要 随着现代工业的发展,供电网络的负载越来越复杂,特别是大型用电负载的启动和停止,大型可控电力电子设备的应用以及网络内部噪声会使交流正弦波发生畸变。另外,自然界的雷电,电网的接地不良等因素均能够影响到电网的供电质量。一套好的UPS系统可以提高运行的稳定性,随着单片机,DSP等的应用,UPS已经可以实现全数字化和智能化。同时,电力电子器件的飞速发展也为主功率部分的简化以及先进控制策略的应用提供了必要条件。目前,以电力电子器件组成的逆变器,以单片机为控制核心的UPS电源已普遍应用于我国的各行各业,而本课题就是以IGBT组成的逆变器,以单片机为控制核心的不间断电源为基础展开研究和设计的。 目录 摘要 (1) ABSTRACT (2) 1.绪论 (5) 1.1引言 (5) 1.2UPS发展现状 (5) 1.3不间断电源UPS的分类和结构 (6) 1.3.1动态UPS工作原理 (6) 1.3.2静止式UPS (6) 1.4本设计技术参数 (9) 2.UPS总体结构和整流、逆变主电路 (10) 2.1UPS总体结构 (10) 2.2UPS整流、逆变主电路的设计 (10) 2.2.1三相电源变压器 (10) 2.2.2三相不控整流桥 (11) 2.2.3单相倍频逆变桥 (12) 2.2.4阻容吸收装置 (13) 3.控制电路 (14) 3.1正弦脉宽调制电路 (14) 3.2驱动电路 (16)

3.3调整电路 (17) 4.转换开关 (20) 4.1转换开关的主电路 (20) 4.2触发电路 (22) 4.3控制电路 (24) 5.充电电路 (26) 5.1充电电路的主电路 (26) 5.2充电电路的控制电路 (28) 5.3充电过程 (31) 6.保护电路 (33) 6.1过压保护 (33) 致谢 (35) 参考文献 (36) 附录一:整流逆变主电路 (37) 附录二:触发电路 (37) 附录三:控制电路 (38) 附录四:充电电路 (40)

UC3842开关电源毕业论文

UC3842开关电源毕业论文 目录 第一章开关电源概述 第一节开关电源的产生与发展 第二节隔离式高频开关电源 第三节开关电源所用的术语 第二章输入电路 第一节电压倍压整流技术 第二节输入保护器件 第三节输入阳间电压保护 第三章隔离单端反激式变换器电路 第一节单端反激式变换器电路中的开关晶体管 第二节单端反激式变换器电路中的变压器绕组 第四章 UC3842的原理及技术参数 第一节原理与特点 第二节工作描述 第三节技术参数 第五章 UC3842常用的电压反馈电路的选用 第一节概述 第二节 UC3842常用的电压反馈电路 2.1 输出电压直接分压作为误差放大器的输入 2.2 辅助电源输出电压分压作为误差放大器的输入 2.3 采用线性光偶改变误差放大器的输入误差电压 2.4 结语 第六章UC3842在开关电源电路的应用 第一节UC3842 组成的开关电源电路 1.1 启动过程 1.2 稳压过程 1.3 过流保护原理 1.4 过压保护原理 1.5 开关管保护电路 1.6 设计中的注意事项 第二节显示器开关电源电路 2.1 特点 2.2 采用开关稳压电源激励行输出的优缺点如下: 2.3 UC3842在显示器电路的应用 第七章电源市场的概况

第一节直流稳压电源(出口)购市场概况 第二节开关电源的市场概况 参考文献 开关电源概述 第一节开关电源的产生与发展 随着大规模和超大规模集成电路的快速发展,特别是微处理器和半导体存储器的开发利用,孕育了电子系统的新一代产品。显然,那种体积大而笨重的使用工频变压器的线性调节稳压电源已经过时。取而代之的是小型化、重量轻、效率高的隔离式开关电源。 隔离式开关电源的核心是一种高频电源变换电路。它使交流电源高效率地产生一路或多路经调整的稳定直流电压。 早在70年代,随着电子技术的不断发展,集成化的开关电源就已被广泛地应用于电子计算机、彩色电视机、卫星通信设备、程控交换机、精密仪表等电子设备。这是由于开关电源能够满足现代电子设备对多种电压和电流的需求。 随着半导体技术的高度发展,高反压快速开关晶体管使无工频变压器的开关电源迅速实用化。而半导体集成电路技术的迅速发展又为开关电源控制电路的集成化奠定了基础,适应各类开关电源控制要求的集成开关稳压器应运而生,其功能不断完善,集成化水平也不断提高,外接元件越来越少,使得开关电源的设计、生产和调整工作日益简化,成本也不断下降。目前己形成了各类功能完善的集成开关稳压器系列。近年来高反压Mos大功率管的迅速发展,又将开关电源的工作频率从20kHz提高到150一200kHz,其结果是使整个开关电源的体积更小,重量更轻,效率更高。开关电源的性能价格比达到了前所未有的水平,使它在与线性电源的竞争中具有先导之势。当然开关电源能被工业所接受,首先是它在体积、重量和效率上的优势。在70年代后期,功率在100w以上的开关电源是有竞争力的。到1980年,功率在50w以上就具有竞争力了。随着开关电源性能的改善,到80年代后期,电子设备的消耗功率在20w以上,就要考虑使用开关电源了。过去,开关电源在小功率范围内成本较高,但进入90年代后,其成本下降非常显著‘当然这包括了功率元件,控制元件和磁性元件成本的大幅度下降。此外,能源成本的提高也是促进开关电源发展的因素之一* 第二节隔离式高频开关电源 隔离式开关电源的变换器具有多种形式。主要分为半桥式、全桥式、推挽式、单端反激式、单端正激式等等。在设计电源时,设计者采取那种变换器电路形式,主要根据成本、要达到的性能指标等因素来决定。各种形式的电源电路的基本功能块是相同的,只是完成这些功能的技术手段有所不同。隔离式高频开关电源电路的共同特点就是具有高频变压器,直流稳压是从变压器次级绕组约脉冲电压整流滤波而来。开关电源的基本功能方框如图1—1所示。 在图1—l中,交流线路电压无论是来自电网的,还是经过变压器降压的.首先要经过整流、滤波电路变成含有””定脉动电压成分的直流电压,然后进入高频变换部分。高频变换部分的核心是有一个高频功率开关元件,比如开关晶体管、场效应管(MOsFE丁)等元件,高频变换部分产生高频(20kHz以上)高压方波,所

(完整版)高频开关电源设计毕业设计

目录 引言......................................................... 1本文概述 ................................................. 1.1选题背景............................................................................................................................ 1.2本课题主要特点和设计目标 ........................................................................................... 1.3课题设计思路.................................................................................................................... 2SABER软件................................................ 2.1SABER简介 ..................................................................................................................... 2.2SABER仿真流程 ............................................................................................................. 2.3本章小结............................................................................................................................ 3三相桥式全控整流器的设计.................................. 3.1工作原理............................................................................................................................ 3.1.1 三相桥式全控整流电路的特点 ..................................................................................... 3.2保护电路............................................................................................................................ 3.2.1 过电压产生的原因.......................................................................................................... 3.2.2 过压保护 (1) 3.2.3 过电流产生的原因 (1) 3.2.4 过流保护 (1) 3.3SABER仿真 (1) 3.3.1 设计规范 (1) 3.3.2 建立模型 (1)

毕业设计--12V5A开关电源设计

毕业综合实践 课题名称: 12V/5A开关电源设计 作者:学号: 09034224系别:电气电子工程系 专业:电子工程信息技术 指导老师:专业技术职务教授

毕业综合实践开题报告 姓名:学号: 09034224 专业:电子信息工程技术 课题名称: 12V/5A开关电源设计 指导教师: 2011 年 12 月 19 日

本课题意义及现状、需解决的问题和拟采用的解决方案 随着电子技术的高速发展、电子系统的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系日益紧密,任何电子设备都离不开可靠的电源,他们对电源的要求也越来越高。特别是随着小型电子设备的应用越来越广泛,也要求能够提供稳定的电源,以满足小型电子设备的用电需要。现状:电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。 本设计基于这个思想,设计、制作了一个开关稳压电源,输入交流电220V,输出12V/5A的直流稳压电源,具有过电流、过电压、短路保护。 本电路采用自激式震荡电路(RCC),它是经济开关电源、安装方便、调试简单,元器件少。这个电路的功能适用于手机充电器和一些仪表电源是很实用的一个电路。 指导教师意见: 指导教师: 年月日 专业教研室审查意见: 教研室负责人: 年月日

课题摘要 随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用, 人们对其需求量日益增长, 并且对电源的效率、体积、重量及可靠性等方面提出了更高的要求。开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。电力电子技术的发展,特别是大功率器件IGBT和MOSFET的迅速发展,将开关电源的工作频率提高到相当高的水平,使其具有高稳定性和高性价比等特性。开关电源技术的主要用途之一是为信息产业服务,信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。本次设计采用典型的正激式开关电源结构设计形式,以(RCC)作为控制核心器件,运用脉宽调制的基本原理,并采用辅助电源供电方式为其供电,有利于增大主电源的输出功率。采用场效应管作为开关器件,其导通和截止速度很快,导通损耗小,这就为开关电源的高效性提供保障。同时,电路中辅以过压过流保护电路,为系统的安全工作提供保障,本电路注意改善负载调整率,降低了电磁串扰,达到绿色环保的目的。输出电压可调,使其可适用于不同场合。 关键词高频变压器场效应管正激式变换器脉宽调制

变电站备用电源自动投入装置课程设计

变电站备用电源自动投入装置课程设 计 1 2020年4月19日

1.概述 1.1概念 为保证供电的可靠性,电力系统经常采用两个或两个以上的电源进行供电,并考虑相互之间采取适当的备用方式。当工作电源失去电压时,备用电源由自动装置立即投入,从而保证供电的连续性,这种自动装置称为备用电源自动投入装置,简称AAT。备用电源自动投入是保证电力系统连续可靠供电的重要措施。 备用电源自动投入装置遵循的基本原则如下: ①当工作母线上的电压低于检无压定值,而且持续时间大于时间定值时,备自投装置方可起动。备自投的时间定值应与相关的保护及重合闸的时间定值相配合。 ②备用电源的电压应工作于正常范围,或备用设备应处于正常的准备状态,备自投装置方可动作,否则应予以闭锁。 ③必须在断开工作电源的断路器之后,备自投装置方可动作。

工作电源消失后,不论其进线断路器是否已被断开,备自投装置在起动延时到了以后总是先跳该断路器,确认该断路器在跳位后,方能合备用电源的断路器。按照上述逻辑动作,能够避免工作电源在别处被断开,备自投动作后合于故障或备用电源倒送电的情况发生。 ④人工切除工作电源时,备自投装置不应动作。 装置引入进线断路器的手跳信号作为闭锁量,一旦采到手跳信号,立即使备自投放电,实现闭锁。 ⑤避免备用电源合于永久性故障 在考虑运行方式和保护配置时,应避免备自投装置动作使备用电源合于永久性故障的情况发生,一般经过引入闭锁量或检开关位置使备自投发电。例如,就主变低压侧分段开关备自投而言,变压器差动保护动作跳主变各侧时,一般表明主变本体发生故障,此时无需闭锁主变低压侧分段开关备自投;而变压器后备保护动作时,可能是低压侧母线或其出线上发生了故障,此时一般应闭锁低压侧分段开关备自投。 ⑥备自投装置只允许动作一次。 以往常规的备用电源自动投入装置经过装置内部电容器的充放电过程来保证只动作一次。为了便于理解,微机装置 1 2020年4月19日

开关电源课程设计

太原理工大学课程设计任务书 指导教师签名:日期:

前言 随着电力电子技术的发展,开关电源的应用越来越广泛。反激式开关电源以其设计简单,体积小巧等优势,广泛应用于小功率场合。开关电源以其小型、轻量和高效率的特点,被广泛地应用于各种电气设备和系统中,其性能的优劣直接关系到整个系统功能的实现。开关稳压电源有多种类型,其中单端反激式开关电源由于具有线路简单,所需要的元器件少,能够提供多路隔离输出等优点而广泛应用于小功率电源领域。 本论文根据输入电压经EMI滤波设计整流桥,再与直流变压器开关管构成反激电路。通过输出反馈经UC3842控制占空比,从而使输出电压稳定。反激电路中开关管开通原边线圈储存能量,副边不导通。原边关断时,线圈储存的能量通过互感向负载提供能量。输出电压反馈由TL431和光耦构成,当输出稳定时,有一个稳定的电流;当输出电压增大时,TL431分流增加,发光二极管亮度改变,使三级管电流改变,致使开关管控制导通占空比改变,从而使输出电压减小。另外,芯片UC3842引脚接一电流反馈,通过控制分压值实现截流保护,防止输出过电流。 设计中,直流变压器的设计是重点,需要计算其原边电感,原副边匝数,铁芯的选择,根据这些参数构造电路图,计算各电容电阻值及二极管承受的反压,选择合适的型号。 论文先介绍了开关电源及反激式开关电源,然后介绍器件选型,再分部分介绍主电路、控制电路和保护电路,最后附表为选择时参数参考表和总电路图。

目录 前言 第一章开关电源概述 (1) 1.1开关电源综述 (1) 1.2反激式开关电源介绍 (2) 第二章总体方案的确定 (2) 2.1总体设计思路及框图 (2) 2.2仿真原理图 (3) 第三章具体电路设计 (5) 3.1EMI滤波电路 (5) 3.2整流滤波电路设计 (6) 3.3高频变压器的设计 (7) 3.4控制反馈电路的设计 (15) 3.5保护电路的设计 (17) 3.6输出侧滤波电路设计 (18) 第四章电路仿真与结果 (19) 4.1 EMI滤波电路 (19) 4.2整流电路 (21) 4.3反激型电路 (22) 4.4反馈电路 (23) 4.5总电路 (24) 心得体会 (25) 参考文献 (26)

电源毕业设计论文

课程设计(论文)课题名称直流稳压电源 系别 专业 班级 学号 学生姓名 指导教师 完成日期 广州科技贸易职业学院教务处制

广州科技贸易职业学院 课程设计(论文)任务 系:机电系专业:通信工程应用技术 兹发给班同学课程设计(论文)任务书,内容如下: 1、课程设计(论文)题目:直流稳压电源 2、应完成的项目:制作一个完整的直流稳压电源并写设计论文 参考资料以及说明: 4、本课程设计(论文)任务书于年月日发出,应于年月日前完成。(论文:附后) 指导教师签名:年月日系主任签名:年月日

广州科技贸易职业学院 课程设计(论文)题目:直流稳压电源 系别:班级: 学生:系主任: 指导老师:职称:

摘要 摘要:目前,我国生产和使用的本质安全型直流稳压电源大都是线性电源,其输出保护电路大多采用传统的模拟保护电路。因此,本质安全电源的容量普遍比较低。随着我国煤矿机械化、自动化程度的提高, 本质安全型电气设备在井下的监控、通讯、信号、仪表和自动化系统中应用日益广泛。由于这些设备的不断投入使用,矿用直流稳压电源的需求量稳步上升,与此同时对其容量也提出了更高的要求。从一定意义上讲,隔爆兼本质安全电源输出容量的大小取决于输出保护电路的反应时间。本课题针对矿用本安电源输出保护电路进行设计,能够适应我国煤炭行业快速发展的需要,并且具有重要的实际意义。 研究结果表明,输出保护电路的设计影响到整个电源的性能,因此,应该熟悉本质安全电源的结构、检测标准、火花试验装置等相关文件和标准。在此基础上,设计保护电路的结构、选择反应速度较快的电子元器件用于保护电路主要元件。使得保护电路的反应速度满足国家标准规定的要求。 关键词:保护电路、本质安全、本质安全电源、国家标准。

DC-DC变换器设计毕业设计

绪论 一.开关电源概述 开关电源(Switch Mode Paver Supply,即SMPS)被誉为高效节能型电源,它代表着稳压电源的主流产品。半个世纪以来,开关电源大致经历了四个阶段。 早期的开关电源全部有分立元件构成,不仅开关频率低,效率高,而且电路复杂,不宜调试。在20世纪70年代研制出的脉宽调制器集成电路,仅对开关电源中的控制电路实现了集成化;80年代问世的单片开关稳压器,从本质上讲仍DC/DC电源变换器。随着各种类型单片开关电源集成电路的问世,AC/DC电源变换器的集成化才变为现实。 稳压电源是各种电子的动力源,被人称为电路的心脏,所有用电设备,包括电子仪器仪表,家用电器。等对供电电压都有一定的要求。至于精密的电子仪器,对供电电压的要求更为严格。所谓的DC——DC直流稳压是指电压或电流的变化小到可允许的程度,并不是绝对的不变。 目前,随着单片开关电源集成电源的应用,开关电源正朝着短、小、轻、薄的方向发展。单片开关电源自20世纪90年代中期问世以来便显示出来强大的生命力,它作为一项颇具发展和影响力的新产品,引起了国内外电源界的普遍重视。 尤其是最近两年来,国外一些著名的芯片厂家又竞相推出了一大批单片开关电源集成电路,更为新型开关电源的推广及奠定了良好的基础。单片开关电源具有集成度高、高性价化、最简外围电路,最佳性能等指标,现已成为开发中小功率开关电源、精密开关电源及电源模块的优选集成电路。 二. 开关电源的技术追求 1.小型化、薄型化、轻量化、高频化——开关电源的体积、重量主要是由储能元件(磁性元件和电容)决定的,因此开关电源的小型化实质上就是尽可能减小储能元件的体积。在一定范围内,开关频率的提高,不仅能有效地减小电容、电感和变压器的尺寸,而且还能抑制干扰,改善系统的动态性能。因此高频化是开关电源的主要发展方向。 2.高可能性——开关电源使用的元器件比连续工作电源少数十倍,因此提高了可靠性。从寿命角度出发,电解电容、光电偶合器及排风扇等器件的寿命决定着电

变电所电气一次系统设计(本科毕业设计)

前言 电力是国民经济发展的基础,随着人民生活水平的不断提高,现代化、自动化程度的不断加深、发展。与工农业生产和人民日常生活更加密切。电力作为国民经济的先行产业,必须加快建设。只有电力工业先行,国民经济才能以更高、更快的建设速度良性向前发展。 变电所作为联系发电厂和用户的中间环节,起着交换和分配电能的作用。它影响整个电力系统的安全经济运行。因此安全性、可靠性、灵活性就成为变电所设计的关键问题。设计中要把以上诸多因素经过充分的研究论证,综合平衡后才能最后确定方案。 本设计是以毕业设计任务书为依据,结合电力工业的安全性、经济性、可靠性、灵活性进行了设计。设计中对主接线方案进行了论证,确定了主变压器的容量和台数,并进行了短路电流计算;依据电气设备的选择原则,对设备进行了校验和选择,对室内外配电装置和防雷接地进行了设计,并配有图纸。 在设计过程中,盛四清老师给予我精心的指导和热情帮助,并提出了很多宝贵经验和建议使设计工作顺利圆满地完成,对此表示衷心的感谢!!但由于时间有限,在设计过程中难免出现错误和不妥之处,恳请老师批评,指正和修改。

第一章 原始资料分析 1.1 原始数据 上一级变电所220kV 进线4回,归算至220kV 母线的系统短路电抗为0.05,基准电压取平均电压,基准功率取100MVA. 1.2 负荷情况 1、110kV 侧:最大负荷240MW, 最小负荷180MW ,架空出线6回 cos 0.90θ= max 5500T h = 2、10kV 侧: 最大负荷 20MW ,最小负荷12MW, 出线10回 cos 0.85θ= max 5000T h = 1.3 系统情况 1、220kV 母线电压满足常调压要求; 2、220kV 母线短路电流标幺值为20(100B S MVA =) 3、110kV 母线短路电流标幺值为12(100B S MVA =) 4、10kV 线路对端无电源 1.4 环境条件 1、最高温度400C ,最低温度025C -,年平均温度200C 2、土壤电阻率 400r <欧·米 3、当地雷爆日 35日/年

开关电源系统设计方案毕业论文

开关电源系统设计方案毕业论文 目录 摘要.......................................... 错误!未定义书签。Abstract.......................................... 错误!未定义书签。 1 绪言 1.1课题背景 (2) 1.2选题的国外研究现状及水平、研究目标及意义 (2) 1.3 本课题主要的研究容 (3) 2 系统设计方案与论证 2.1课题研究的基本要求 (4) 2.2方案论证 (4) 2.2.1 DC/DC电路模块方案 (4) 2.2.2 MOSEFT驱动电路方案 (7) 2.2.3 单片机选择方案 (7) 2.2.4检测采样方案 (8) 2.2.5系统框图 (8) 3 硬件电路设计 3.1变压整流滤波电路 (9) 3.2辅助电源的设计 (11) 3.3 Buck电路参数选择原理和计算 (12) 3.3.1参数选择原理 (12) 3.3.2 电感值的计算 (15) 3.3.3 滤波电容的计算 (15) 3.3.4开关管的选择和开关管保护电路设计 (16) 3.4驱动电路的设计 (18)

3.5采样电路设计 (19) 3.6保护电路的设计 (20) 4 软件部分设计 4.1 AVR128简介 (21) 4.2 PWM波的产生 (22) 4.3 AD采样 (26) 5系统调试及结果分析 6 总结与展望 6.1 总结 (30) 6.2 展望 (30) 致谢 (31) 参考文献 (32) 附录 (34)

1 绪言 开关电源具有效率高、体积小、重量轻等特点,应用越来越广泛,从70年代开始,并用轻量高频变压器替代笨重的工频变压器。高效的开关电源飞速发展,逐步替代传统的的线性电源,开关电源不需要较大的散热器,开关电源自20世纪90年代问世以来,便显示出强大的生命力,并以其优良特性倍受人们的青睐。近年来,开关电源在通信、工业自动化、航空、仪表仪器等领域的应用越来越广泛。随着电源技术的飞速发展,开关稳压电源正朝着小型化、高频化、模块化的方向发展,高效率的开关电源已经得到越来越广泛的应用。随着高频开关电源技术和应用电子技术的高速发展,直流高频开关电源依靠它的高精度、低纹波及高效率等优越性能,正在逐步取代传统的线性电源。同时,高频开关电源系统的高速响应性能、输出短路电流限制及稳压和稳流等优点也使其负载的使用寿命大大增加。评价开关电源的质量指标应该是以安全性、可靠性为第一原则。在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过流、短路等保护电路。同时,在同一开关电源电路中,设计多种保护电路的相互关联和应注意的问题也要引起足够的重视[15]。 许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合出许多毛刺尖峰,甚至出现畸变。大量的谐波分量倒流入电网,造成对电网的谐波“污染”,一方面电流流过线路阻抗造成谐波电压降,反过来使电网电压也发生畸变;另一方面,会造成电路故障,使用设备损坏。因为它没有采用有源功率因数校正,功率因数较低,只达到 0.9,如果采用有效的功率因数校正,功率因数可以达到0.99以上。开关电源输入端产生功率因数下降问题,利用有源功率因数校正电路,成本只增加5%,成功解决了这个问题。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种校正功率因数的方法[1]。 目前市场上出售的开关电源中采用双极性晶体管制成的100kHz、用MOSFET 管制成的500kHz 电源,虽已实用化,但其频率有待进一步提高。要提高开关频率,就要减少开关损耗,而要减少开关损耗,就需要有高速开关元器件。然而,开关速度提高后,不仅会影响周围电子设备,还会大大降低电源本身的可靠性。对1MHz以上的高频,要采用谐振电路,这样既可减少开关损耗,同时也可控制浪涌的发生。现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性

直流稳压电源毕业设计

师高等专科学校 题目:直流稳压电源毕业设计系别:信息工程系 专业:应用电子技术 班级:应用电子技术1班 姓名: 指导教师: 师高等专科学校教务处印制

2016年 6 月15 日

目录 一、摘要 (1) 引言 (2) 二、设计目的 (2) 三、设计任务和要求 (2) 四、设计步骤 (3) 五、总体设计思路 (3) 六、实验设备及原器件 (7) 七、测试要求 (7) 八、设计报告要求 (7) 九、注意事项 (7) 十、此电路的误差分析 (8) 十一、心得体会 (9) 十二、参考文献 (10) 十三、致 (11)

一、摘要 直流稳压电源一般由电源变压器,整流滤波电路及稳压电路所组成。变压器把市电交流电压变为所需要的低压交流电。整流器把交流电变为直流电。经滤波后,稳压器再把不稳定的直流电压变为稳定的直流电压输出。本设计主要采用直流稳压构成集成稳压电路,通过变压,整流,滤波,稳压过程将220V交流电,变为稳定的直流电,并实现电压可在6-13V可调。 关键词:直流,稳压,变压 Abstract The direct current is steady to press the power supply general from power transformer, commutate the an electric circuit and steady ,press the electric circuit constitute.Transformer the low-pressure alternate current that electric voltage need when changing into in exchanges in electricity in https://www.doczj.com/doc/7118217230.html,mutating the machine change into the direct current to the alternate current.Through the an empress, it is steady to press the machine change into the stable direct current electric voltage exportation to the unsteady direct current electric voltage again. The main adoption in this design is steady to press the slice constitutes to gather steady to press the electric circuit, passing to change to press, commutating, the wave steady ran over the distance an alternate current, change into the stable direct current, and realizes the electric voltage can be adjustable in the 6-13 Vs. Key words: LM317; steady press; change to press

开关电源设计

& 课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)? 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 ) 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ) 引言 (1) 1设计意义及要求 (2) 设计意义 (2) 开关电源的组成部分 (2) 开关电源的工作过程 (2) 开关电源的工作方式 (3) 脉宽调制器的基本原理 (3) 2方案设计 (5) ) 设计要求 (5) 方案选择 (5) 整流滤波部分 (6) 降压斩波电路 (7) 脉宽调制电路 (8) MOSFET管的驱动电路 (9) 总电路图 (11) 3主电路参数设定 (12) { 变压器、二极管、MOSFET管选择 (12) 反馈回路的设计 (13) MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16)

附录一 (17) ]

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

发电厂电气部分毕业设计论文

1 引言 近年,我国电力工业发展迅速,电力供应能力显著增强。“十五”期间全国发电装机新增近2亿千瓦,创历史最高水平,2006年又新增装机容量1亿千瓦,总容量超过6亿千瓦,今年投产规模仍将保持在7000万千瓦以上,全国电力供应紧的局面已经得到全面缓解。但是,我国电力工业结构不合理的矛盾仍十分突出,特别是能耗高、污染重的小火电机组比重过高。因此,电力工业将“上大压小”、加快关停小火电机组放在了“十一五”期间工作的首位[9]。 据测算,火电机组容量的不同,反映在煤耗和污染物排放量上差别很大。大型高效发电机组每千瓦时供电煤耗为290克--340克,中小机组则达到380克--500克。5万千瓦机组其供电煤耗约440克/千瓦时,发同样的电量,比大机组多耗煤30--50%。与此同时,小火电机组排放二氧化硫和烟尘排放量分别占电力行业总排放量的35%和52%。国家发改委能源局局长小平算了一笔账,“现有的小机组若能够完全由大机组替代,一年可节能9000万吨标准煤,相应减少排放二氧化硫220万吨,少排放二氧化碳2.2亿吨。 目前全国10万千瓦及以下小火电机组占火电装机比重达到29.4%,这些小火电绝大部分是在我国电力供应较为紧的“八五”、“九五”期间建设的,主要分布于经济发达地区和煤炭资源丰富的省份。加速关停小火电机组,一方面是保证节能降耗指标的完成,另一方面有助于保障大机组的开工率,促进电力产业结构改造升级。 关停小火电机组是从国家大局出发,优化电力工业结构的重要举措,对提高电力工业的整体质量和效益,促进电力工业可持续发展具有十分重要的意义。 发电厂二期工程电气部分设计 ①装机容量:装机两台,总容量600MW; ②机组年利用小时数: Tmax=6000小时 ③气象条件:发电厂所在地最高气温32℃,年平均气温5.65℃,最大风速25m/s ④厂用电率:按6%考虑 ⑤ 220kV电压等级,架空线路2回与系统相连,系统电抗以100MVA为基准折算到220kV 母线为0.028 设计基本要求:

反激式开关电源理工科毕业设计开题报告(最新整理)

华南理工大学广州学院 本科生毕业设计(论文)开题报告 反激开关电源的设计 学院电气工程学院 专业班级10电力工程及其自动化5班 姓名吴宏达 学生学号201039488139 指导教师张冬梅 填表日期2014-1-10

说明 1.开题报告是保证毕业设计(论文)质量的一个重要环节,为规范毕业设计的开题报告,特印发此表。 2.学生应在开题报告前,通过调研和资料搜集,主动与指导教师讨论,在指导教师的指导下,完成开题报告。 3.此表一式三份,一份交学院装入毕业设计(论文)档案袋,一份交指导教师,一份学生自存。 4.选题需经基层教学单位(专业教研室)讨论审核、二级学院主管院长批准、报教务处备案, 方可正式进入下一步毕业设计(论文)阶段。

标等特点,现己成为开发中小功率开关电源、精密开关电源及开关电源模块的优选集成电路。 高效反激式开关电源以其电路抗干扰、高效、稳定性好、成本低廉等许多优点,特别适合小功率的电源以及各种电源适配器,具有较高的实用性。随着电力电子技术的发展,工作在高频的开关电源己经广泛应用于电气和电子设备的各个领域。开关电源设计的目的是通过能量处理将输入能量变化为所需要的能量输出,通常的形式是产生一个符合要求的输出电压,这个输出电压的值不能受输入电压或者负载电流的影响。 本设计开关电源是为满足一款实验用嵌入式开发板的供电需要,基于当前流行的单片集成开关电源芯片设计了一款反激开关电源。 二、研究目标、内容(论文提纲)及拟解决关键问题 通过学习和研究,收集和整理所设计开关电源的各项电气性能指标,计算和选取具体参数和器件,自主设计一个反激开关电源,论文提纲如下: 第一章绪论 1.1 开关电源及发展现状 1.2 课题背景和研究意义 1.3 本文主要工作和内容安排 第二章反激式开关电源简介 2.1 开关电源的分类 2.2 反激式开关电源的原理 第三章单端反激式开关电源系统级分析 3.1 电源设计指标 3.2 主电路拓扑 3.2.1 工作过程分析 3.2.2 工作方式选取 第四章单端反激式开关电源电路级设计 4.1 输入整流滤波器设计 4.1.1整流滤波器分析 4.1.2输入整流滤波器各个元器件选择和参数设置 4.2 钳位保护电路设计 4.2.1 钳位二级管的选择 4.3 反激变压器设计 4.2.1 反激变压器分析 4.2.2 反激变压器参数设置 4.4输出整流滤波电路设计

稳压电源的设计与制作-毕业设计

稳压电源的设计与制作 学生:XX 指导教师:XX 摘要:随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系益密切。任何电子设备都离不开可靠的电源,它们对电源的要求也越来越高。特别是随着小型电子设备的应用越来越广泛,也要求能够提供稳定的电源,以满足小型电子设备的用电需要。本文基于这个思想,设计和制作了符合指标要求的开关稳压电源。 开关电源具有高频率、高功率密度、高效率等优点, 被称作高效节能电源。由于开关稳压电源具有这些优点,基于这个思想设计了一个1~5V可调的低功率开关稳压电源,以满足小型电子设备的供电需要。 本文以开关电源的发展历史、发展现状以及发展趋势为线索,介绍了开关电源的一些新技术,技术指标,分类标准等。并根据这些标准设计了一种满足小型电子设备供电需要的开关稳压电源。电源设计的主要指标是:输入电压为AC220V,输入频率为50HZ,输入电压范围为AC165V~265V,输出电压为直流1~5V可调,输出最大电流为150mA,输出最大功率为2.25W。 最后在完成基本指标的基础上,本文还增加了防浪涌电流的附属功能,使电路更加满足小型电子设备的用电需要。 数控直流稳压源就是能用数字来控制电源输出电压的大小,而且能使输出的直流电压能保持稳定、精确的直流电压源;本文介绍了利用数/模转换电路、辅助电源电路、去抖电路等组成的数控直流稳压电源电路,详述了电源的基本电路结构和控制策略;它与传统的稳压电源相比,具有操作方便、电压稳定度高的特点,其结构简单、制作方便、成本低,输出电压在1~5V之间连续可调,其输出电压大小以1V步进,输出电压的大小调节是通过“+”“-”两键操作的,而且可根据实际要求组成具有不同输出电压值的稳压源电路。该电源控制电路选用89C51单片机控制主电路采用串联调整稳压技术具有线路简单、响应迅速、稳定性好、效率高等特点。详细分析了电源的拓朴图及工作原理。 关键词:稳压电源单片微型机数控直流 D/A转换

基于TL494的开关电源设计_毕业设计

毕业设计报告书设计题目:基于TL494的开关电源制作系部:电子信息系 专业:新能源应用技术 班级:能源1001

基于TL494的12V开关电源制作 摘要 随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备与人们的工作、生活的关系日益密切。近年来 ,随着功率电子器件(如GTR、MOSFET)、PWM技术以及电源理论发展 ,新一代的电源开始逐步取代传统的电源电路。该电路具有体积小,控制方便灵活,输出特性好、纹波小、负载调整率高等特点。开关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温升低、体积小等突出优点,在通信设备、数控装置、仪器仪表、视频音响、家用电器等电子电路中得到广泛应用。开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。本论文是基于TL494的12V开关电源设计,利用MOSFET管作为开关管,可以提高电源变压器的工作效率,有利于抑制脉冲干扰,同时还可以减小电源变压器的体积。 关键词:直流磁偏自激振荡TL494

目录 第1章开关电源基础技术 (1) 1.1 开关电源概述 (1) 1.1.1 开关电源的工作原理 (1) 1.1.2 开关电源的组成 (2) 1.1.3 开关电源的特点 (3) 1.2 关电源典型结构 (3) 1.2.1 串联开关电源结构 (3) 1.2.2 并联开关电源结构 (4) 第2章开关电源主控元件 (6) 2.1 功率晶体管(GTR) (6) 2.1.1 功率晶体管的结构 (6) 2.1.2 功率晶体管的工作原理 (7) 2.1.3 功率晶体管的特性与参数 (7) 2.2 电力场效应晶体管(MOSFET) (8) 2.2.1 电力场效应晶体管特点 (8) 2.2.2 MOSFET的结构和工作原理 (8) 第3章开关电源中的TL494 (10) 3.1 TL494的内部功能 (10) 3.2 TL494的特点 (10) 3.3 TL494的工作原理 (11) 3.4 TL494内部电路 (12) 第4章开关电源的原理图设计 (14) 4.1 交流滤波设计 (14) 4.2 整流桥电路设计 (14) 4.3 半桥逆变和全波整流设计 (16) 4.4 变压器电路设计 (16) 4.5 主控电路设计 (17) 4.6 滤波电路设计 (18)

相关主题
文本预览
相关文档 最新文档