当前位置:文档之家› 不确定度与误差

不确定度与误差

误差与不确定度在定义上的区别:

误差定义是测量值与真值之差,是一个确定值,但真值是一个理想的概念,真值的传统定义为:当某量能被完善地确定并能而且已经排除了所有测量上的期限时,通过测量所得到的量值。真值虽然客观存在,但通过测量却得不出,(因为测量过程中总会有不完善之处,因此一般情况下不能计算误差,只有少数情况下,可以用准确度足够高的实际值来作为量的约定真值,即对明确的量赋予的值,有时叫最佳估计值、约定值或参考值,这时才能计算误差。)误差也就无法知道。而误差加前缀的名词如标准误差,极限误差等其值是可以估算的,但它们表示的是测量结果的不确定性,与误差定义并不一致。测量不确定度是测量结果带有的一个参数,用以表征合理赋予被测量值的分散性,它是被测量真值在某一个量值范围内的一个评定。显然,不确定度表述的是可观测量——测量结果及其变化,而误差表述的是不可知量——真值与误差,所以,从定义上看不确定度比误差科学合理。

误差理论与不确定度原理在分类上的区别

以往计算误差时,首先要分清该项误差属于随机误差还是系统误差。随机误差是在同一量的多次测量中以不可预知的方式变化测量误差分量。电表轴承的摩擦力变动、螺旋测微计测力在一定范围内随机变化、操作读数时在一定范围内变动的视差影响、数字仪表末位取整数时的随机舍入过程等,都会产生一定的随机误差分量。VIM93中随机误差的定义为:测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差。(重复性条件包括:相同的测量程序;相同的观测者;在相同的条件下使用相同的测量仪器;相同地点;在短时间内重复测量)。随机误差分量是测量误差的一部分,其大小和符号虽然不知道,但在同一量的多次测量中,它们的分布常常满足一定的统计规律。系统误差:在同一被测量的多次测量过程中,保持恒定或以可预知方式变化的测量误差分量称为系统误差,简称系差。系统误差包括已定系统误差和未定系统误差。已定系统误差是指符号和绝对值已经确定的误差分量。测量中应尽量消除已定系统误差,或对测量结果进行修正,得到已修正结果。修正公式为:已修正测量结果=测得值(或其平均值)—已定系统误差。未定系统误差是指符号或绝对值未经确定的系统分量。通过方案选择、参数设计、计量器具校准、环境条件控制、计算方法改进等环节来减小未定系差的限值。因此随机误差是符合概率分布的,而系统误差经过校正后,其剩余的系统误差按原误差理论一般认为不具有概率分布。因此,实验教材在数据处理时只能将随机误差和系统误差分开计算。但在实际测量时,有相当多的情形很难区分误差的性质是“随机”的还是“系统”的,而且有的误差还具有“随机”和“系统”两重性。例如用千分尺测量钢丝直径,测的是不同位置的直径,测量误差应属系统误差,但多次测量数据又具有统计性质,说明测量又有随机误差。又如磁电式电表,其准确度等级误差是系统误差和随机误差的综合,一般无法将它们分开计算。而不确定度取消了“随机”和“系统”的分类方法,它把不确定度评定分为由观测列的统计分析评定的不确定度(A类不确定度)和由非统计分析评定的不确定度(B类不确定度)。这样的分类方法可使初、中级实验人员在处理实验数据时免除由于难以分清误差的“随机”和“系统”性而带来的困惑,使实验结果的不确定度易学可行。

误差理论虽然是客观存在的,但不能准确得到,它是属于理想条件下的一个定性的概念,反映测量误差大小的术语准确度也是一个定性的概念。误差是不以人的认识程度而改变的客观存在,而测量不确定度与人们对被测量和影响及测量过程的认识有关。测量不确定度(uncertainty of measurement)表征合理地赋予被测量之间的分散性,是与测量结果相XXX的参数。它反映了测量结果不能被肯定的程度,同时它是一个物理量,可以定量表示。不确定度是误差理论发展和完善的产物,是建立在概率论和统计学基础上的新概念,目的是为了澄清一些模糊的概念从而便于使用。测量不确定度反映的是对测量结果的不可信程度,是可以根据试验、资料、经验等信息定量评定的量。

误差与测量不确定度简要比较表:

用随机不确定度和系统不确定度分别取代了随机误差和系统误差。测量不确定度与测量误差是完全不同的概念,它不是误差,也不等于误差。

表征合理的赋予被测量之值的分散性,与测量结果相XXX的参数,称为测量不确定度。测量不确定度用标准偏差表示时称为标准不确定度,如用说明了置信水准的区间的半宽度的表示方法则成为扩展不确定度。

不确定度的A类评定:

用对观测列进行统计分析的方法来评定标准不确定度,称为不确定度A类评定;所得到的相应标准不确定度称为A类不确定度分量,用符号表示。它是用实验标准偏差来表征。

不确定度的B类评定:

用不同于对观测列进行统计分析的方法来评定标准不确定度,称为不确定度B 类评定;所得到的相应标准不确定度称为B类不确定度分量,用符号表示。它是用实验或其他信息来估计,含有主观鉴别的成分。对于某一项不确定度分量究竟用A类方法评定,还是用B类方法评定,应有测量人员根据具体情况选择。B 类评定方法应用相当广泛。

A类或B类标准不确定度与随机误差、系统误差之间不存在简单的对应关系,随机误差和系统误差是表示两种不同性质的误差,测量不确定度评定时一般不必区分其性质,A类和B类不确定度是表示两种不同的评定方法。在需要区分不确定度性质的情况下,可用“由随机误差引起的不确定度分量”和“由系统误差引起的不确定度分量”两种表述方法,这两种方法表述的不确定度分量既可能用A 类也可能用B类评定方法得到,误差性质和评定方法之间没有对应关系。

电工测量中测量不确定度与误差的区别

电工测量中测量不确定度与误差的区别 测量不确定度是指依据所用到的信息,表征给予被测量量值分散性的非负参数。 误差是指测得的量值减去参考量值。 测量不确定度表征被测量的真值所处量值范围的评定。它按某一置信概率给出真值可能落入的区间。它可以是标准差或其倍数,或是说明白置信水准的区间的半宽。它不是详细的真误差,它只是以参数形式定量表示了无法修正的那部分误差范围。它来源于偶然效应和系统效应的不完善修正,是用于表征合理给予的被测量值的分散性参数。详细到两者的区分,主要表现在下面几个方面: 一、评定目的的区分 测量不确定度为的是表明被测量值的分散性; 测量误差为的是表明测量结果偏离真值的程度。 二、评定结果的区分 测量不确定度是无符号的参数,用标准差或标准差的倍数或置信区间的半宽表示,由人们依据试验、资料、阅历等信息进行评定,可以通过A,B两类评定方法定量确定; 测量误差为有正号或负号的量值,其值为测量结果减去被测量的真值,由于真值未知,往往不能精确得到,当用商定真值代替真值时,只可得到其估量值。 三、影响因素的区分

测量不确定度由人们经过分析和评定得到,因而与人们对被测量、影响量及测量过程的熟悉有关; 测量误差是客观存在的,不受外界因素的影响,不以人的熟悉程度而转变; 因此,在进行不确定度分析时,应充分考虑各种影响因素,并对不确定度的评定加以验证。否则由于分析估量不足,可能在测量结果特别接近真值(即误差很小)的状况下评定得到的不确定度却较大,也可能在测量误差实际上较大的状况下,给出的不确定度却偏小。 四、按性质区分上的区分 测量不确定度不确定度重量评定时一般不必区分其性质,若需要区分时应表述为:“由随机效应引入的不确定度重量”和“由系统效应引入的不确定度重量”; 测量误差按性质可分为随机误差和系统误差两类,按定义随机误差和系统误差都是无穷多次测量状况下的抱负概念。 五、对测量结果修正的区分 “不确定度”一词本身隐含为一种可估量的值,它不是指详细的、准确的误差值,虽可估量,但却不能用以修正量值,只可在已修正测量结果的不确定度中考虑修正不完善而引入的不确定度; 而系统误差的估量值假如已知则可以对测量结果进行修正,得到已修正的测量结果。 一个量值经修正后,可能会更靠近真值,但其不确定度不但不减小,有时反而会更大。这主要还是由于我们不能准确的知道真值为多

误差和不确定度的区别和联系

误差与不确定度的概念比较 实验教学中关于误差和不确定度的区别和联系,是学生感到难以理解并准确掌握的概念之一,本文将对此比较总结如下。 1误差和不确定度的定义 1.1 误差的概念 各被测量量在实验当时条件下均有不依人的意志为转移的真实大小,此值被称为被测量的真值。即真值就是被测量量所具有的、客观的真实数值。然而实际测量时,总是由具体的观测者,通过一定的测量方法,使用一定的测量仪器和在一定的测量环境中进行的。由于受到观测者的操作和观察能力,测量方法的近似性,测量仪器的分辨力和准确性,测量环境的波动等因素的影响,其测量结果和客观的真值之间总有一定的差异。测量结果与真值的差为测量值的误差,即 测量值(x)-真值(a)=误差(ε) 在实验中通常要处理的来源于测量值的误差有两类:偶然误差和系统误差。 对于偶然误差,有算术平均值作为被测量真值的最佳估计值,相应的误差有标准偏差s ,它的定义为 1)(12 --=∑=n x x s n i i ------------------------------(1) 式中n 为测量值的个数。对于算术平均值的标准偏差,用来表示算术平均值的偶然误差,表达式为 n s x s /)(=------------------------------------(2) 二者的统计意义是,标准偏差小的测量值,其可靠性较高。 对于系统误差,不能用统计的方法评定不确定度,首先要对实验理论分析或对比分析之后,可以得知其系统误差的来源,并可采取一定的措施去削减系统误差。例如由于天平左右臂长不完全相同导致的系统误差,可将物体放在天平左盘、右盘上各称一次取平均去消除,而对于单摆周期与振幅有关,缩小振幅可以减小此项系统误差,在测量要求更高时,可根据理论分析得出的修正公式去补正。 1.2 不确定度的概念 测量不确定度则是评定作为测量质量指标的此量值范围,即对测量结果残存误差的评估。设测量值为x ,其测量不确定度为u ,则真值可能在量值范围(x-u ,x+u)之中,显然此量值范围越窄,即测量 不确定度越小,用测量值表示真值的可靠性就越高。 不确定度也有两类:A 类标准不确定度和B 类不确定度。 由于偶然效应,A 类标准不确定度用统计方法来评定,其就取为平均值的标准偏差,即(2)式,也可写为 n s x s x u A /)()(==-------------------------(3) B 类评定的标准不确定度为 u(x)=Δ/3--------------------------------------(4) (4)式又称为仪器的标准误差。该式是根据仪器误差概率密度函数遵从均匀分布规律,由数学计算所得。 式中Δ为极限误差或仪器误差,是在规定的使用条件下,正确使用仪器时,仪器的示值和被测量真值之间可能出现的最大误差,其可以从下列几种情况中获得:国家计量技术规范;计量仪器说明书或检定书;仪器准确度等级;仪器分度值或经验(粗略估计)等。 2 二者的比较 不同类型的误差中究竟如何来区分误差和不确定度,表达式等方面有何不同,仍然有很多教材没有说明清楚。1993年,国际标准化组织颁布了《测量不确定度表达指南》(UGM),1999年,国家技术监督局颁布了《测量不确定度的评定与表示》 (JJF1059-1999)。这两个文件的颁布,标志着我国各技术领域 在不确

不确定度和误差的关系

不确定度和误差的关系 一、引言 在科学研究和实验中,我们经常会遇到测量和计算的结果与真实值之间存在差异的情况。这种差异通常被称为误差。而对于测量结果的可信程度,则可以通过不确定度来衡量。不确定度和误差之间存在一定的关系,在本文中我们将探讨这一关系。 二、误差的定义和分类 误差可以被定义为测量结果与真实值之间的差异。在实际测量中,误差可以分为系统误差和随机误差两类。 1. 系统误差 系统误差是由于测量仪器或方法本身的固有缺陷而产生的误差。例如,仪器的刻度不准确、环境条件的影响等都可以引起系统误差。系统误差通常是可预测和可纠正的,因此在实验设计和数据处理中应该尽量避免系统误差的产生。 2. 随机误差 随机误差是由于测量过程中的各种偶然因素导致的误差。例如,人的视觉判断误差、仪器读数的波动等都属于随机误差。随机误差是不可避免的,但可以通过多次重复测量来减小其影响。 三、不确定度的定义和计算

不确定度是对测量结果的可信程度的度量。在实际测量中,不确定度可以通过多种方法来计算,例如重复测量法、类比法、标准差法等。 1. 重复测量法 重复测量法是指对同一物理量进行多次独立测量,然后计算这些测量结果的标准差作为不确定度的估计值。重复测量法适用于随机误差主导的情况,并且要求测量结果符合正态分布。 2. 类比法 类比法是指通过与已知精度的标准样品进行比较,来估计待测物理量的不确定度。例如,通过与已知质量的标准物体进行比较,来估计待测物体的质量不确定度。 3. 标准差法 标准差法是指通过对测量结果进行统计分析,计算其标准差来估计不确定度。标准差法适用于随机误差主导的情况,并且要求测量结果符合正态分布。 四、不确定度和误差的关系 不确定度和误差之间存在一定的关系。一方面,误差是指测量结果与真实值之间的差异,而不确定度则是对测量结果的可信程度的度量。因此,误差越大,不确定度也就越大。另一方面,误差可以分为系统误差和随机误差两类,而不确定度则可以通过重复测量法等

测量不确定度与测量误差

(二) 测量不确定度、误差与最佳测量能力 1 测量和测量不确定度的含义 测量给出关于某物的属性,它可以告诉我们某物体有多重、或多长、或多热,即告诉我们量值有多大。测量总是通过某种仪器或设备来实现的,尺子、秒表、衡器、温度计等都是测量仪器。被测量的测量结果通常由两部分组成(一个数和一个测量单位),他们构成了量值。 例如:人体温度37.2℃是量值,人体温度是被测量,37.2是数,℃是单位。对于比较复杂的测量,通过实际测量获得被测量的测量数据后,通常需要对这些数据进行计算、分析、整理,有时还要将数据归纳成相应的表示式或绘制成表格、曲线等等,亦即要进行数据处理,然后给出测量结果。检测/校准工作的核心是测量。 在给出测量结果的同时,必须给出其测量不确定度。测量不确定度表明了测量结果的质量:质量愈高,不确定度愈小,测量结果的使用价值愈高;质量愈差,不确定度愈大,使用价值愈低。在检测/校准工作中,不知道不确定度的测量结果,实际上不具备完整的使用价值。 测量不确定度是对测量结果存有怀疑的程度。测量不确定度亦需要用两个数来表示:一个是测量不确定度的大小,即置信区间的半宽;另一个是对其相信的程度,即置信概率(或称置信水准、置信水平、包含概率),表明测量结果落在该区间有多大把握。 例如:上述测量人体温度为37.2℃,或加或减0.1℃,置信水准为95%。则该结果可以表示为37.2℃±0.1℃,置信概率为95%。 这个表述是说,我们测量的人体温度处在37.1℃到37.3℃之间,有95%的把握。当然,还有一些其他不确定度的方式。这里表述的是最终的扩展不确定度,它是确定测量结果区间的量,合理赋予被测量之值分布的大部分可望包含于此区间。 2 测量结果及其误差和准确度 2.1 测量结果 测量结果被定义为“由测量所得到的赋予被测量的值。”它是被测量的最佳估计值,而不是真值。完整表述测量结果时,必须同时给出其测量不确定度。必要时还应说明测量所处的条件,或影响量的取值范围。 测量结果是由测量所得到的值。必要时应表明它是示值、未修正测量结果或是已修正测量结果,还应表明是否己对若干个测量结果进行了平均,即它是由单次测量所得,还是由多次测量所得。对于前者,测得值就是测量结果;对于后者,测得值的算术平均值才是测量结果。在不会引起混淆的情况下,有时也称测得值为测量结果。 2.2 测量结果的误差 误差被定义为“测量结果与被测量真值之差。”一个量的真值,是在被观测时本身所具有的真实大小,只有完善的测量才能得到真值,而实际上任何测量都有缺陷,因此真值是一个理想化的概念。由于其值无法确切地知道,所以误差也无法准确地知道。 由定义还可知误差是两个量值之差,即误差表示的是一个差值,而不是区间。当测量结果大于真值时误差为正值,当测量结果小于真值时误差为负值。因此,误差不应当以“±”号的形式出现。 误差按其性质,可以分为随机误差和系统误差两类。随机误差是“测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值(总体均值)之差。” 而系统误差是“在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值(总体均值)与被测量的真值之差。”由于它们都是对应于无限多次测量的理想概念,而实际上只能用有限次测量的结果作为无限多次测量结果的估计值,因此可以确定的只是它们的估计值。 误差经常用于已知约定真值的情况,例如经常用示值误差来表示测量仪器的特性。

测量不确定度和误差的区别

测量不确定度和误差的区别 测量不确定度和误差是计量学中研究的基本命题,也是计量测试人员经常运用的重要概念之一。它直接关系着测量结果的可靠程度和量值传递的准确一致。然而很多人由于概念不清,很容易将二者混淆或误用,本文结合学习《测量不确定度评定与表示》的体会,着重谈谈二者之间的不同之处。 首先要明确的是测量不确定度与误差二者之间概念上的差异。 测量不确定度表征被测量的真值所处量值范围的评定。它按某一置信概率给出真值可能落入的区间。它可以是标准差或其倍数,或是说明了置信水准的区间的半宽。它不是具体的真误差,它只是以参数形式定量表示了无法修正的那部分误差范围。它来源于偶然效应和系统效应的不完善修正,是用于表征合理赋予的被测量值的分散性参数。不确定度按其获得方法分为A、B两类评定分量。A类评定分量是通过观测列统计分析作出的不确定度评定,B类评定分量是依据经验或其他信息进行估计,并假定存在近似的“标准偏差”所表征的不确定度分量。 误差多数情况下是指测量误差,它的传统定义是测量结果与被测量真值之差。通常可分为两类:系统误差和偶然误差。误差是客观存在的,它应该是一个确定的值,但由于在绝大多数情况下,真值是不知道的,所以真误差也无法准确知道。我们只是在特定的条件下寻求最佳的真值近似值,并称之为约定真值。 通过对概念的理解,我们可以看出测量不确定度与测量误差的主要有以下几方面区别: 一.评定目的的区别: 测量不确定度为的是表明被测量值的分散性; 测量误差为的是表明测量结果偏离真值的程度。 二.评定结果的区别: 测量不确定度是无符号的参数,用标准差或标准差的倍数或置信区间的半宽表示,由人们根据实验、资料、经验等信息进行评定,可以通过A,B两类评定方法定量确定; 测量误差为有正号或负号的量值,其值为测量结果减去被测量的真值,由于真值未知,往往不能准确得到,当用约定真值代替真值时,只可得到其估计值。 三.影响因素的区别: 测量不确定度由人们经过分析和评定得到,因而与人们对被测量、影响量及测量过程的认识有关; 测量误差是客观存在的,不受外界因素的影响,不以人的认识程度而改变; 因此,在进行不确定度分析时,应充分考虑各种影响因素,并对不确定度的评定加以验证。否则由于分析估计不足,可能在测量结果非常接近真值(即误差很小)的情况下评定得到的不确定度却较大,也可能在测量误差实际上较大的情况下,给出的不确定度却偏小。 四.按性质区分上的区别: 测量不确定度不确定度分量评定时一般不必区分其性质,若需要区分时应表述为:“由随机效应引入的不确定度分量”和“由系统效应引入的不确定度分量”; 测量误差按性质可分为随机误差和系统误差两类,按定义随机误差和系统误差都是无穷多次测量情况下的理想概念。 五.对测量结果修正的区别: “不确定度”一词本身隐含为一种可估计的值,它不是指具体的、确切的误差值,虽可估计,但却不能用以修正量值,只可在已修正测量结果的不确定度中考虑修正不完善而引入的不确定度; 而系统误差的估计值如果已知则可以对测量结果进行修正,得到已修正的测量结果。 一个量值经修正后,可能会更靠近真值,但其不确定度不但不减小,有时反而会更大。这主要还是因为我们不能确切的知道真值为多少,仅能对测量结果靠近或离开真值的程度进行估计而已。 虽然测量不确定度与误差有着以上种种不同,但它们仍存在着密切的联系。不确定度的概念是误差理论的

误差和不确定度的区分

误差和不确定度区分 一.区分误差和不确定度 误差定义为被测量的单个结果和真值之差,所以,误差是一个单个数值。原则上已知误差的数值可以用来修正结果。 误差是一个理想的概念,不可能被确切地知道。 不确定度是以一个区间的形式表示,如果是为一个分析过程和所规定样品类型做评估时,可适用于其所描述的所有测量值,一般不能用不确定度数值来修正测量结果。二.误差和不确定度的差别还表现在 修正后的分析结果可能非常接近于被测量的数值,因此误差可以忽略。但是,不确定度可能还是很大,因为分析人员对于测量结果的接近程度没有把握。 测量结果的不确定度并不可以解释为代表了误差本身或经修正后的残余误差。通常认为误差含有两个分量,分别称为随机分量和系统分量;随机误差通常产生于影响量的不可预测的变化。这些随机效应使得被测量的重复观察的结果产生变化。分析结果的随机误差不可消除,但是通常可以通过增加观察的次数加以减少。 实际上算术平均值或一系列观察值的平均值的实验标准差不是平均值的随机误差。它是由一些随机效应产生的平均值不确定度的度量。由这些随机效应产生的平均值的随机

误差的准确值是不可知的。 系统误差定义为在对于同一被测量的大量分析过程中保持不变或以可以预测的方式变化的误差分量。它是独立于测量次数的,因此不能在相同的测量条件下通过增加分析次数的办法使之减小。恒定的系统误差,例如定量分析中没有考虑到试剂空白,或多点设备校准中的不准确性,在给定的测量值水平上是恒定的,但是也可能随着不同测量值的水平而发生变化。 在一系列分析中,影响因素在量上发生了系统的变化,例如由于试验条件控制得不充分所引起的,会产生不恒定的系统误差。 例1、在进行化学分析时,一组样品的温度在逐渐升高,可能会导致结果的渐变。 例2:在整个试验的过程中,传感器和探针可能存在老化影响,也可能引入不恒定的系统误差。 测量结果的所有已识别的显著的系统影响都应修正。注意测量仪器和系统通常需要使用测量标准或标准物质来调节或校准,以修正系统影响。与这些测量标准或标准物质有关的不确定度及修正过程中存在的不确定度必须加以考虑。 误差的另一个形式是假误差或过错误差。这种类型的误差使测量无效,它通常由人为失误或仪器失效产生。记录数据时数字进位、光谱仪流通池中存在的气泡、或试样之间偶

不确定度与误差

误差与不确定度在定义上的区别: 误差定义是测量值与真值之差,是一个确定值,但真值是一个理想的概念,真值的传统定义为:当某量能被完善地确定并能而且已经排除了所有测量上的期限时,通过测量所得到的量值。真值虽然客观存在,但通过测量却得不出,(因为测量过程中总会有不完善之处,因此一般情况下不能计算误差,只有少数情况下,可以用准确度足够高的实际值来作为量的约定真值,即对明确的量赋予的值,有时叫最佳估计值、约定值或参考值,这时才能计算误差。)误差也就无法知道。而误差加前缀的名词如标准误差,极限误差等其值是可以估算的,但它们表示的是测量结果的不确定性,与误差定义并不一致。测量不确定度是测量结果带有的一个参数,用以表征合理赋予被测量值的分散性,它是被测量真值在某一个量值范围内的一个评定。显然,不确定度表述的是可观测量——测量结果及其变化,而误差表述的是不可知量——真值与误差,所以,从定义上看不确定度比误差科学合理。 误差理论与不确定度原理在分类上的区别 以往计算误差时,首先要分清该项误差属于随机误差还是系统误差。随机误差是在同一量的多次测量中以不可预知的方式变化测量误差分量。电表轴承的摩擦力变动、螺旋测微计测力在一定范围内随机变化、操作读数时在一定范围内变动的视差影响、数字仪表末位取整数时的随机舍入过程等,都会产生一定的随机误差分量。VIM93中随机误差的定义为:测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差。(重复性条件包括:相同的测量程序;相同的观测者;在相同的条件下使用相同的测量仪器;相同地点;在短时间内重复测量)。随机误差分量是测量误差的一部分,其大小和符号虽然不知道,但在同一量的多次测量中,它们的分布常常满足一定的统计规律。系统误差:在同一被测量的多次测量过程中,保持恒定或以可预知方式变化的测量误差分量称为系统误差,简称系差。系统误差包括已定系统误差和未定系统误差。已定系统误差是指符号和绝对值已经确定的误差分量。测量中应尽量消除已定系统误差,或对测量结果进行修正,得到已修正结果。修正公式为:已修正测量结果=测得值(或其平均值)—已定系统误差。未定系统误差是指符号或绝对值未经确定的系统分量。通过方案选择、参数设计、计量器具校准、环境条件控制、计算方法改进等环节来减小未定系差的限值。因此随机误差是符合概率分布的,而系统误差经过校正后,其剩余的系统误差按原误差理论一般认为不具有概率分布。因此,实验教材在数据处理时只能将随机误差和系统误差分开计算。但在实际测量时,有相当多的情形很难区分误差的性质是“随机”的还是“系统”的,而且有的误差还具有“随机”和“系统”两重性。例如用千分尺测量钢丝直径,测的是不同位置的直径,测量误差应属系统误差,但多次测量数据又具有统计性质,说明测量又有随机误差。又如磁电式电表,其准确度等级误差是系统误差和随机误差的综合,一般无法将它们分开计算。而不确定度取消了“随机”和“系统”的分类方法,它把不确定度评定分为由观测列的统计分析评定的不确定度(A类不确定度)和由非统计分析评定的不确定度(B类不确定度)。这样的分类方法可使初、中级实验人员在处理实验数据时免除由于难以分清误差的“随机”和“系统”性而带来的困惑,使实验结果的不确定度易学可行。

不确定度与允许误差关系

不确定度与允许误差关系 在物理学和工程学等领域中,我们经常需要测量各种物理量,如长度、时间、质量等。然而,由于各种测量方法和仪器的限制,我们无法完全精确地确定一个物理量的真实值。因此,我们引入了不确定度这个概念,用来描述测量结果的可信度和精度。 不确定度是一个量化的指标,表示测量结果与真实值之间的差异。它可以通过重复测量来估计,或者通过仪器的规格和精度来计算。不确定度通常用标准差或者置信区间来表示,例如,长度测量的不确定度可以表示为±0.1毫米。 允许误差是指在实际应用中可以接受的测量误差范围。它是根据具体的应用需求和要求来确定的,通常以一定的置信水平来界定。例如,在制造业中,产品尺寸的允许误差可以确定为±0.5毫米,表示只要测量结果在这个范围内,就可以认为产品合格。 不确定度与允许误差之间存在一定的关系。一般来说,允许误差应该比不确定度大,以确保测量结果在允许误差范围内。如果允许误差小于不确定度,就意味着测量结果可能超出了允许范围,从而影响到产品的质量和可靠性。 然而,并不是所有情况下都要求允许误差大于不确定度。在某些高精度测量中,为了确保测量结果的准确性,允许误差可能会设定得

比不确定度更小。这意味着,只有在不确定度非常小的情况下,才能获得合格的测量结果。 不确定度与允许误差还与测量方法和仪器的性能有关。如果使用的测量方法和仪器精度高,不确定度就会相对较小,从而可以设定更小的允许误差。相反,如果测量方法和仪器精度较低,不确定度就会相对较大,此时需要设定较大的允许误差。 不确定度与允许误差是测量过程中两个重要的概念。它们互相关联,但又有一定的差异。不确定度描述了测量结果的可信度和精度,允许误差则确定了测量结果的接受范围。在实际应用中,我们需要合理地确定允许误差,以保证产品的质量和可靠性。同时,通过提高测量方法和仪器的精度,可以减小不确定度,从而实现更精确的测量结果。

测量误差和测量不确定度的重要区别!

测量误差和测量不确定度的重要区 别! (1)测量误差和测量不确定度两者最根本的区别在于定义上的差别。 误差表示测量结果对真值的偏离量,因此它是一个确定的差值,在数轴上表示为一个点。 而测量不确定度表示被测量之值的分散性,它以分布区间的半宽度表示,因此在数轴上它表示一个区间。 (2)按出现于测量结果中的规律,误差通常分为随机误差和系统误差两类。 随机误差表示测量结果与无限多次测量结果的平均值(也称为总体均值)之差,而系统误差则是无限多次测量结果的平均值与真值之差,因此它们都是对应于无限多次测量的理想概念。 由于实际上只能进行有限次测量,因此只能用有限次测量的平均值,即样本均值作为无限多次测量结果平均值的估计值。 也就是说,在实际工作中我们只能得到随机误差和系统误差的估计值。 而不确定度是根据对标准不确定度的评定方法不同而分成A类评定和B类评定两类,它们与“随机误差”和“系统误差”的分类之间不存在简单的对应关系。“随机”和“系统”表示两种不同的性质,而“A类”和“B类”表示两种不同的评定方法。 目前,国际上一致认为,为避免误解和混淆,不再使用“随机不确定度”和“系统不确定度”这两个术语(这两个术语在采用不确定度概念的初期,曾被许多人经常使用,并且至今还有不少人在不正确地使用)。 在进行测量不确定度评定时,一般不必区分各不确定度分量的性质。若必须要区分时,也应表示为“由随机效应引入的不确定度分量”或“由系统效应引入的不确定度分量”。

(3)误差的概念与真值相联系,而系统误差和随机误差又与无限多次测量的平均值有关,因此它们都是理想化的概念。实际上只能得到它们的估计值,因而误差的可操作性较差。而不确定度则可以根据实验、资料、经验等信息进行评定,从而是可以定量操作的。 (4)根据误差的定义,误差表示两个量的差值。 当测量结果大于真值时误差为正值,当测量结果小于真值时误差为负值。因此误差既不应当也不可能以“±”号的形式出现。而根据规定,不确定度以分散性区间的半宽度表示,且恒为正值,故在不确定度之前也不能冠以“±”号。即使不确定度是由方差经开方后得到,也仅取其正值。 (5)误差和不确定度的合成方法不同。 误差是一个确定的值,因此对各误差 分量进行合成时,采用代数相加的方法。而不确定度表示一个区间,因此当对应于各不确定度分量的输入量彼此不相关时,用方和根法进行合成(也称为几何相加),否则应考虑加入相关项。 (6)已知系统误差的估计值时,可以对测量结果进行修正,达到已修正的测量结果。修正值即为系统误差的反号。但不能用不确定度对测量结果进行修正。 对已修正测量结果进行不确定度评定时,应考虑修正不完善引入的不确定度分量,即应考虑修正值的不确定度。 (7)测量结果的不确定度表示在重复性或复现性条件下被测量之值的分散性,因此测量不确定度仅与测量方法有关、而与具体测得的数值大小无关。此处所述的测量方法应包括测量原理、测量仪器、测量环境条件、测量程序、测量人员、以及数据处理方法等。而根据定义,测量结果的误差仅与测量结果以及真值有关,而与测量方法无关。 例如,用钢板尺测量某一物体的长度,得到测量结果为14.5mm。如果为测量得更为准确而改用卡尺进行测量,并假设得到的测量结果仍为14.5mm。不少人可能会认为由于卡尺的测量准确度较高,而测量误差更小一些。

误差与不确定度的区别和联系

误差与不确定度的区别和联系 导读:误差与不确定度是计量学中两个相互关联又相互区别的概念。提出这两个概念的目的都是为了寻求如何以实验和测量所得结果来更恰当、更准确地体现被测量的真实情况。 误差与不确定度是计量学中两个相互关联又相互区别的概念。 提出这两个概念的目的都是为了寻求如何以实验和测量所得结果来更恰当、更准确地体现被测量的真实情况。 误差为测得值与被测量真值之差。即误差=测得值-真值。 不确定度是被测量值可能出现的范围。 二者联系: 误差与不确定度都是由相同因素造成的:随机效应和系统效应。 随机效应是由于未预料到的变化或影响量的随时间和空间变化所致。它引起了被测量重复观测值的变化。这种效应的影响不能借助修正进行补偿,但可通过增加观测次数而减小,其期望值为零。 系统效应是由固定不变的或按确定规律变化的因素造成的。但由于人类认识的不足,也不能确切知道其数值,因此也无法完全清除,但通常可以减小。系统效应产生的影响有些是可以识别的,有些是未知的,如果已知影响能定量给出,而且其大小对测量所要求的准确度而言有意义的话,则可采用估计的修正值或修正因子对结果加以修正。

由于随机效应和系统效应的存在,使得被测量的真值无法确知,每个测量结果也都具有一定的不可靠性,导致误差和不确定度的产生。 二者区别: a. 误差是相对被测量真值而言的,它是测量结果与真值之差,由于真值的不可知性,实际上误差也只能是个理想概念,不可能得到它的准确值。 不确定度以测量结果本身为研究对象,其含义不是“与真值之差”或“误差限”、“极限误差”,而是表示由于随机影响和系统影响的存在而对测量结果不能肯定的程度,表征被测量值可能出现的范围。它是以测量结果为中心,以标准差或其倍数,或某置信区间半宽度确定的被测量的取值范围。确保真值以一定概率落于其中。因而,它是测量结果的一个量化属性。 b. 误差和不确定度的分类方法截然不同。 误差根据其性质可分为两类:随机误差和系统误差。 随机误差:测量结果与重复性条件下对同一量进行无限多次测量所得结果的平均值之差。随机误差大抵是由于随机影响造成的。注意,观察列的平均值的实验标准差并不是平均值的随机误差,而恰恰是随机影响引起的平均值的不确定度,这些效应产生的平均值的随机误差不可能准确知道。 系统误差:在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量真值之差。系统误差是由已知系统影响和未知系统影响产生的,通过对已知系统

不确定度与误差

误差与不确定度在定义上的区别:误差定义是测量值与真值之差,是一个确定值,但真值是一个理想的概念,真值的传统定义为:当某量能被完善地确定并能而且已经排除了所有测量上的期限时,通过测量所得到的量值。真值虽然客观存在,但通过测量却得不出,(因为测量过程中总会有不完善之处,因此一般情况下不能计算误差,只有少数情况下,可以用准确度足够高的实际值来作为量的约定真值,即对明确的量赋予的值,有时叫最佳估计值、约定值或参考值,这时才能计算误差。)误差也就无法知道。而误差加前缀的名词如标准误差,极限误差等其值是可以估算的,但它们表示的是测量结果的不确定性,与误差定义并不一致。测量不确定度是测量结果带有的一个参数,用以表征合理赋予被测量值的分散性,它是被测量真值在某一个量值范围内的一个评定。显然,不确定度表述的是可观测量——测量结果及其变化,而误差表述的是不可知量——真值与误差,所以,从定义上看不确定度比误差科学合理。 误差理论与不确定度原理在分类上的区别 以往计算误差时,首先要分清该项误差属于随机误差还是系统误差。随机误差是在同一量的多次测量中以不可预知的方式变化测量误差分量。电表轴承的摩擦力变动、螺旋测微计测力在一定范围内随机变化、操作读数时在一定范围内变动的视差影响、数字仪表末位取整数时的随机舍入过程等,都会产生一定的随机误差分量。VIM93 中随机误差的定义为:测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差。(重复性条件包括:相同的测量程序;相同的观测者;在相同的条件下使用相同的测量仪器;相同地点;在短时间内重复测量)。随机误差分量是测量误差的一部分,其大小和符号虽然不知 道,但在同一量的多次测量中,它们的分布常常满足一定的统计规律。系统误差:在同一被测量的多次测量过程中,保持恒定或以可预知方式变化的测量误差分量称为系统误差,简称系差。系统误差包括已定系统误差和未定系统误差。已定系统误差是指符号和绝对值已经确定的误差分量。测量中应尽量消除已定系统误差,或对测量结果进行修正,得到已修正结果。修正公式为:已修正测量结果=测得 值(或其平均值)—已定系统误差。未定系统误差是指符号或绝对值未经确定的系统分量。通过方案选择、参数设计、计量器具校准、环境条件控制、计算方法改进等环节来减

相关主题
文本预览
相关文档 最新文档