当前位置:文档之家› GBC紫外可见光分光光度计 中文操作说明

GBC紫外可见光分光光度计 中文操作说明

GBC紫外可见光分光光度计 中文操作说明
GBC紫外可见光分光光度计 中文操作说明

GBC

紫外/可见分光光度计Spectral 软件操作规程

一.打开仪器及计算机、显示器、打印机电源

二.进入“Spectral”软件操作系统

三.待仪器自检结束,点击OK,进入操作主页面

四.快捷测量方式

对于紫外分光光度计最常规的分析测量,即波长扫描、时间扫描及固定波长,当进行单样品测量时,本方法提供了快捷、简便的操作方法。

进入“online:GBC…”,确定操作形式“Operation Mode”

1.选择波长扫描“wavelength scan”

A狭缝宽度“slit width”:在0.1~ 2nm之间(Cintra 40);

在0.5~5.0nm之间(Cintra 20);

为1.5nm(Cintra 10e).

B 光度测定形式“photometric mode”

吸光值“Absorbance”百分比透过率“%Transmittance”

反射率“Reflectance”透过率“Transmittance”

C 波长扫描参数“Wavelength scan parameters”

扫描范围“Scan range”:输入感兴趣的波长范围

扫描速度“Scan speed”:7000~5nm/min一般选1000nm/min

数据间隔点“Date interval”:根据不同的扫描速度,数据间隔点以小为好

D在“File”中

点击“Select”选择储存结果文件的路径, 例如:C:\Program\Spectral\spdata\

Name::输入结果文件名

Text: 输入需要的注释文件

E 做基线“Baseline”: 把空白液注入两个比色皿内,并分别放入参比和样品光路,

点击“Baseline”开始进行基线扫描

F 将盛有样品的比色皿放入样品光路,点击“Scan”开始扫描

2.时间扫描“Time Scan”

A狭缝“slit width”:在0.2~ 2nm之间(Cintra 40);

在0.5~5.0nm之间(Cintra 20);

为1.5nm(Cintra 10e).

B 光度测定形式“photometric mode”

吸光值“Absorbance”百分比透过率“%Transmittance”

反射率“Reflectance”透过率“Transmittance”

C 循环时间“Cycle Time”:输入采样间隔时间。例如1秒

D 扫描持续时间“Scan duration”:输入所需全部扫描时间,例如1分钟。

E 波长“Wavelength(s)”:输入工作波长,可在一个或多个波长下进行时间扫描,如果在多个波长下进行时间扫描, 波长之间用逗号隔开。

F 积分时间“Integration Time”:在此时间常数内进行积分,求出平均值。

G在“File”中

点击“Select”选择储存结果文件的路径

Name::输入结果文件名

Text: 输入需要的注释文件

H 调零“Zero”:把空白液注入两个比色皿内,并分别放入参比和样品光路, 点击Zero 调零。

I 扫描“Scan”:将盛有样品的比色皿放入样品光路,绿灯亮时选“Scan”开始扫描

3.固定波长扫描“Fixed Wavelength(s)”

A狭缝“slit width”:在0.2~ 2nm之间(Cintra 40);

在0.5~5.0nm之间(Cintra 20);

为1.5nm(Cintra 10e).

B 光度测定形式“photometric mode”

吸光值“Absorbance”百分比透过率“%Transmittance”

反射率“Reflectance”透过率“Transmittance”

C 强度倍数“Intensity Factors”:输入1

D 波长“Wavelength(s)”输入工作波长,可在一个或多个波长下进行时间扫描, 如果在多个波长下进行时间扫描, 波长之间用逗号隔开。

E 积分时间“Integration Time”:在此时间常数内进行积分,求出平均值。

F 报告“report”

覆盖型报告“overwrite”

附加型报告“append”

简单报表“Short Table”

G在“File”中

点击“Select”选择储存结果文件的路径, 例如: C:\Program\Spectral\spdata

Name::输入结果文件名

Text: 输入需要的注释文件

H 调零“Zero…”:把空白液注入两个比色皿内,并分别放入参比和样品光路

I 读数“Read”:将盛有样品的比色皿放入样品光路,点击“read”开始读数。

五.自动测量(Automated Measurement):

对于紫外分光光度计最常规的分析测量,即波长扫描、时间扫描及固定波长,当进行批量样品测量时,本方法提供了自动操作方法。

“Application”中选择“Automated Measurement”,回车

1.描述“Description”:输入注释文件,可存储,调出及编辑密码。

2.设置“Setup”

1)方法“method”:

重复数“Number of repeats”:在使用6×1池架时,所有标准品及样品的重复测量次数。

重复数“Number of replicates”:对每个样品的重复读取次数。

2) 样品“Sample”

自动标签“A uto Label…”(用于编辑样品名称)

样品个数“Number of samples”:输入总共需要测量的样品个数,例如:10,20。

样品名称“Base sample name”:输入待测样品的名称,例如:KMNO4-。

样品开始号“First sample suffix”:样品标签从第几号开始编辑,例如:1。

3)仪器“Instrument”:输入测量波长范围等参数(参数设置方法同快捷操作方式中波长扫描之参数设置方法相同),在样品和参比光路中均放入空白溶液,按“Baseline”,进行基线扫描。然后按“OK”。

4)报告“Report”

需要报告“Enable report”

需要在线报告“Enable online results”

简略报告“Short Style”

报告内容;

包括仪器参数“Include instrument parameters”

包括方法参数“Include method parameters”

包括附件参数“Include accessory parameters”

精确度“Precision digits”:所得数据小数点后保留的位数

5)结果储存“Result storage”: 输入文件名及选择路径。

6)按“RUN”,并按仪器提示开始自动测量。

六.结果处理:

●检出峰表“peak table”:通过定义阈值及噪音值,让软件自动将扫描出的峰及谷检测

出来,并可标注在峰形图上(Store)及以报告的形式表示出来(report)。

●十字法线“cursor”:以手动的方式显示出峰形图上任一点的X、Y坐标值。

●重叠“Joinvisible”:将多个单独图形合并成一张图形。

●分开“Split”:将合并在一张图形中的多个图形分开成单个的图形。

七.定量测定(Quantify)

根据单波长或多波长的吸光值,或峰高、峰面积,对样品进行定量。此定量只能用于单一组分的样品的定量。

在“Applicalion”中进入“Quantify”

1.描述“Description”:输入注释文件,可存储,调出及编辑密码。

2.设置“Setup”

1)方法“method”:

A概况“General”:

重复数“Number of repeats”:在使用6×1池架时,所有标准品及样品的重复测量次数。

标准品重复数“Number of standard replicates”:对每个标准品的重复读取次数。

样品重复次数“Number of sample replicates”:对每个样品的重复读取次数。

浓度单位“Units”:输入所用浓度单位。

B标准品测量“Standards”

Measure:是否需要测量标准品

Recalibrate:是否需要重新校正

C校正曲线“Calibration Curve”

Ignore Square:二次曲线

Linear:线性Cube:三次曲线

D 计算方式

单波长

多波长:用W1、W2…表示波长1、波长2…, 波长之间用+, -, *, /及系数建立

起运算关系式。

通过波长扫描的方式,用峰高或峰面积计算定量的数值。

2) 样品“Sample”

description Conc Reading Factor Std

样品名称浓度读数系数标准

自动标签“A uto Label…”(用于编辑样品名称)

样品个数“Number of samples”:输入总共需要测量的样品个数,例如:10,20。

样品名称“Base sample name”:输入待测样品的名称,例如:KMNO4-。

样品开始号“First sample suffix”:样品标签从第几号开始编辑,例如:1。

在标准品的浓度栏中, 输入标准品浓度值

在Std栏中, 对标准品进行标识

3) 质量控制“Quality Control”

是否使用质量控制“Enable Qaulity Control”

选项“Check option”:

标记并继续“Flag Continue”:对有问题的测量结果,标记后继续测量。

提示后继续“Prompt and Continue”:提示后继续测量。

质量控制内容:

重复读数之间的相对标准偏差(RSD%)

允许最大浓度值

允许最少浓度值

标准曲线的线性相关系数

4) 仪器“Instrument”:输入测量波长等参数(参数设置方法同快捷操作方式中固定波长之参数设置方法相同),在样品和参比光路中均放入空白溶液,按“Zero”,进行调零。然后按“OK”。

5)报告“Report”

需要报告“Enable report”

需要在线报告“Enable Online results”

简略报告“Short Style”

报告内容;

包括仪器参数“Include instrument parameters”

包括方法参数“Include method parameters”

包括附件参数“Include accessory parameters”

精确度“Precision digits”:所得数据小数点后保留的位数

6)结果储存“Result storage”: 输入文件名及选择路径。

7)按“RUN”,开始定量测量

8)按“View”,观察标准、样品及校正曲线

八.时间研究(Time Studies):

时间研究用于测定样品在某一时间段内的吸光值随时间变化的情况。可进行单波长及多波长的光谱测量。其结果还可进行酶动力学及底物动力学分析。

“Application”中选择“Time Scan”,回车

1.描述“Description”:输入注释文件,可存储,调出及编辑密码。

2.设置“Setup”

1)方法“method”:

扫描区间“Scan duration”: 输入所要进行的时间扫描的时间,并可选择时间单位小时(h),分钟(m),秒(s)。

循环时间“Cycle time”:扫描采样时间间隔,单位:秒。

2) 样品“Sample”

自动标签“A uto Label…”(用于编辑样品名称)

样品个数“Number of samples”:输入总共需要测量的样品个数,例如:10,20。

样品名称“Base sample name”:输入待测样品的名称,例如:KMNO4-。

样品开始号“First sample suffix”:样品标签从第几号开始编辑,例如:1。

3)仪器“Instrument”:输入测量波长(如果要在多波长下运行,波长之间用“,”隔开),在样品和参比光路中均放入空白溶液,按“Zero”,进行调零。然后按“OK”。

4)报告“Report”

需要报告“Enable report”

需要在线报告“Enable Online results”

简略报告“Short Style”

报告内容;

包括仪器参数“Include instrument parameters”

包括方法参数“Include method parameters”

包括附件参数“Include accessory parameters”

精确度“Precision digits”:所得数据小数点后保留的位数

5)结果储存“Result storage”: 输入文件名及选择路径。

6)按“RUN”,开始自动测量

九. 多元素分析(Multicomponent):

根据混合样的多个吸光值或光谱,对样品进行定量。

要想进行多元素分析,要使用包含全部组分的纯品或标准混合样,通过K-矩阵法或P-矩阵法,利用多级线形相关系数,生成一套校正方法,

为了精确进行多元素分析,需要满足下列条件:

1)混合样中的所有组分,必须在仪器的波长范围内可以分辨得出来及具有吸光值。

2)混合样中的所有组分,必须遵守Beer-Lambert定律。

3)各组分之间的光谱特征,要有一定的差异,此差异越小,分析起来越困难。

4)各组分之间不能有饮相互的干扰而引其吸光值及波长的偏移。

5)各组分与溶剂之间,不得有起反应。

6)要避免同时存在有很大与很小的吸光值。

7)在分析波长范围内,不能有由于标样的不纯而产生的吸光值。

在“Applicalion”中进入“Multicomponent”

1.描述“Description”:输入注释文件,可存储,调出及编辑密码。

2.设置“Setup”

1)方法“method”:

A概况“General”:

重复数“Number of repeats”:在使用6×1池架时,所有标准品及样品的重复测量次数。

标准品重复数“Number of standard replicates”:对每个标准品的重复读取次数。

样品重复次数“Number of sample replicates”:对每个样品的重复读取次数。

浓度单位“Units”:输入所用浓度单位。

B 组分“Component”

在空白处,输入各组分的名称

按“Add”键,将输入的组分名称添加到列表中。

按“Delete”键,将列表中的组分删除。

按“Clear”键,将列表中的全部内容删除。

C 导数“Derivative”:可以选择一至四级导数。此功能只有在波长扫描时才能使用。

D 数据衰减:此功能用来减少进行内部矩阵计算时所需的内存量,特别时使用P-矩阵方法时,因其会产生大量的数据,就必须减少光谱范围或光谱分辨率。其使用方法时将第二、第四、第八、第十六或第三十二个数据点作为计算的数据点。如果不想使用此功能,将数值选为1。此功能只有在波长扫描时才能使用。

E 计算方法:选择K-矩阵或P-矩阵。

2) 样品“Sample”

description Component1 Conc Reading Factor Std

样品名称组分1 浓度读数系数标准自动标签“A uto Label…”(用于编辑样品名称)

样品个数“Number of samples”:输入总共需要测量的样品个数,例如:10,20。

样品名称“Base sample name”:输入待测样品的名称,例如:std。

样品开始号“First sample suffix”:样品标签从第几号开始编辑,例如:1。

在标准品的浓度栏中, 依据此标准品中所含单一组分的实际情况,在响应的组分下,输入标准品浓度值

在Std栏中, 对标准品进行标识

3) 质量控制“Quality Control”

是否使用质量控制“Enable Quality Control”

选项“Check option”:

标记并继续“Flag Continue”:对有问题的测量结果,标记后继续测量。

提示后继续“Prompt and Continue”:提示后继续测量。

质量控制内容:

重复读数之间的相对标准偏差(RSD%)

重复工作之间的相对标准偏差(RSD%)

各组分允许最大浓度值

各组分允许最少浓度值

4) 仪器“Instrument”:输入测量波长等参数(参数设置方法同快捷操作方式中波长扫描及固定波长之参数设置方法相同),在样品和参比光路中均放入空白溶液,按“Zero”或“Scan”,进行调零或做基线。然后按“OK”。

5)报告“Report”

需要报告“Enable report”

需要在线报告“Enable Online results”

简略报告“Short Style”

报告内容;

包括仪器参数“Include instrument parameters”

包括方法参数“Include method parameters”

包括附件参数“Include accessory parameters”

精确度“Precision digits”:所得数据小数点后保留的位数

6)结果储存“Result storage”: 输入文件名及选择路径。

7)按“RUN”,开始定量测量。

8)按“View”,观察标准、样品及校正曲线。

十.颜色分析:“Color”

用紫外分光光度计进行样品颜色的分析。

人眼所接受的颜色,是根据达到物体上的光线的波长数来判断的。如果包含了全部的颜色光谱,看到就是白色,如果没有光,看到的就是黑色。但是,精确地描述却很困难。因此,我们使用了一套标准系统来精确描写颜色。

所有颜色坐标系统的基本理论均为CIE系统(Commission Internationale d’Eclarirage, International Commission on Illumination 国际照明委员会)此系统用数学方法定义了一套三维坐标系统,即我们大家所熟知的X、Y、Z坐标值。这些值与发光体(光源)、观察角度、和照明几何学有关。

颜色的属性可以用多种颜色模式中的一种进行数学定义。最常使用的是四种颜色模式:1)HSB:彩色度,饱和度,亮度

2)RGB:红,绿,蓝

3)CMYK:靛青,洋红,黄,黑

4)CIE L*a*b*:此为最常用的一种颜色模式。L*表示亮度,a*和b*分别表示红-绿和黄-蓝,也可将a*和b*定义成色彩度和色品度。

上述四种颜色模式均属于CIE三维坐标值X、Y、Z。

“Application”中选择“Automated Measurement”,回车

1.描述“Description”:输入注释文件,可存储,调出及编辑密码。

2.设置“Setup”

1)方法“method”:

重复数“Number of repeats”:在使用6×1池架时,所有标准品及样品的重复测量次数。

重复数“Number of replicates”:对每个样品的重复读取次数。

观察角度:可选用2。或10。

法进行计算。

发光体(光源):

①D65:自然光

②A:模拟光,如灯泡

③B:直射太阳光,等

坐标图:

在下面四种方法中选定:

三色法(Tristimulus);色品法(Chromaticity);CIE L*a*b; CIE L*u*v

用户还可自己编写公式,用来计算三维坐标值。

2)样品“Sample”

自动标签“A uto Label…”(用于编辑样品名称)

样品个数“Number of samples”:输入总共需要测量的样品个数,例如:10,20。

样品名称“Base sample name”:输入待测样品的名称,例如:KMNO4-。

样品开始号“First sample suffix”:样品标签从第几号开始编辑,例如:1。

3)仪器“Instrument”:输入测量波长范围等参数(参数设置方法同快捷操作方式中波长扫描之参数设置方法相同。CIE推荐在380nm~780nm范围内测定的。),在样品和参比光路中均放入空白溶液,按“Baseline”,进行基线扫描。然后按“OK”。

4)报告“Report”

需要报告“Enable report”

需要在线报告“Enable online results”

简略报告“Short Style”

报告内容;

包括仪器参数“Include instrument parameters”

包括方法参数“Include method parameters”

包括附件参数“Include accessory parameters”

精确度“Precision digits”:所得数据小数点后保留的位数

5)结果储存“Result storage”: 输入文件名及选择路径。

6)按“RUN”,并按仪器提示开始自动测量

十一.D NA 融解分析

此应用方法是使用分光光度计的方法来检测DNA降解的过程。

当DNA溶液暴露在较强的酸碱性物质中、较热的环境下或尿素等氨基类化合物时,DNA的双链结构会慢慢地降解成毫无规则的的单链结构,即发生众所周知的DNA变性。在变性过程中,连接双链之间的功能对被破坏。

当DNA发生变性时,其若干个物理特性会发生显著的变化。例如:浮密度增加,黏度增加及在260nm处的吸光值增加。在260nm处吸光值增加的现象,即我们通常所说的增色效应,为我们使用紫外分光光度计进行DNA变性的研究提供了简便可行的方法。

研究DNA变性的最通常使用的方法是增加DNA溶液的温度,以使DNA的双链结构发生降解。带温度控制附件的紫外分光光度计,可以通过精确的控制温度的变化,及随时检测260nm处的吸光值的变化,进行DNA变性的研究。

热变性的特征是基于T m的检测。我们将T m定义为温度传输曲线的半点高。DNA的T m值取决于DNA中所含的三键功能对即G-C功能对的比例。G-C功能对的含量越高,结构越稳定,T m越高。G-C对的含量通过检测出T m值,在再用下面公式计算出来:

GC%=2.44(T m -69.3)

“Application”中选择“Automated Measurement”,回车

1.描述“Description”:输入注释文件,可存储,调出及编辑密码。

2.设置“Setup”

1)方法“method”:

重复数“Number of repeats”:在使用6×1池架时,所有标准品及样品的重复测量次数。

重复数“Number of replicates”:对每个样品的重复读取次数。

观察角度:可选用2。或10。

法进行计算。

发光体(光源):

②D65:自然光

②A:模拟光,如灯泡

③B:直射太阳光,等

坐标图:

在下面四种方法中选定:

三色法(Tristimulus);色品法(Chromaticity);CIE L*a*b; CIE L*u*v

用户还可自己编写公式,用来计算三维坐标值。

2)样品“Sample”

自动标签“A uto Label…”(用于编辑样品名称)

样品个数“Number of samples”:输入总共需要测量的样品个数,例如:10,20。

样品名称“Base sample name”:输入待测样品的名称,例如:KMNO4-。

样品开始号“First sample suffix”:样品标签从第几号开始编辑,例如:1。

3)仪器“Instrument”:输入测量波长范围等参数(参数设置方法同快捷操作方式中波长扫描之参数设置方法相同。CIE推荐在380nm~780nm范围内测定的。),在样品和参比光路中均放入空白溶液,按“Baseline”,进行基线扫描。然后按“OK”。

4)报告“Report”

需要报告“Enable report”

需要在线报告“Enable online results”

简略报告“Short Style”

报告内容;

包括仪器参数“Include instrument parameters”

包括方法参数“Include method parameters”

包括附件参数“Include accessory parameters”

精确度“Precision digits”:所得数据小数点后保留的位数

5)结果储存“Result storage”: 输入文件名及选择路径。

5)按“RUN”,并按仪器提示开始自动测量

紫外可见分光光度计常见故障的排除

紫外可见分光光度计常见故障的排除 光源部分: (1)故障:钨灯不亮; 原因:钨灯灯丝烧断(此种原因几率最高); 检查:钨灯两端有工作电压,但灯不亮;取下钨灯用万用表电阻档检测。 处置:更换新钨灯; (2)故障:钨灯不亮; 原因:没有点灯电压; 检查:保险丝被熔断; 处置:更换保险丝,(如更换后再次烧断则要检查供电电路); (3)故障:氘灯不亮; 原因:氘灯寿命到期(此种原因几率最高); 检查:灯丝电压、阳极电压均有,灯丝也可能未断(可看到灯丝发红); 处置:更换氘灯; (4)故障:氘灯不亮; 原因:氘灯起辉电路故障; 检查:氘灯在起辉的过程中,一般是灯丝先要预热数秒钟,然后灯的阳极与阴极间才可起辉放电,如果灯在起辉的开始瞬间灯内闪动一下或连续闪动,并且更换新的氘灯后依然如此,有可能是起辉电路有故障,灯电流调整用的大功率晶体管损坏的几率最大。 处置:需要专业人士修理; 二.信号部分: (1)故障:没有任何检测信号输出; 原因:没有任何光束照射到样品室内;

检查:将波长设定为530nm,狭缝尽量开到最宽档位,在黑暗的环境下用一张白纸放在样品室光窗出口处,观察白纸上有无绿光斑影像; 处置:检查光源镜是否转到位?双光束仪器的切光电机是否转动了(耳朵可以听见电机转动的声音)? (2)故障:样品室内无任何物品的情况下,全波长范围内基线噪声大; 原因:光源镜位置不正确、石英窗表面被溅射上样品; 检查:观察光源是否照射到入射狭缝的中央?石英窗上有无污染物? 处置:重新调整光源镜的位置,用乙醇清洗石英窗; (3)故障:样品室内无任何物品的情况下,仅仅是紫外区的基线噪声大; 原因:氘灯老化、光学系统的反光镜表面劣化、滤光片出现结晶物; 检查:可见区的基线较为平坦,断电后打开仪器的单色器及上盖,肉眼可以观察到光栅、反光镜表面有一层白色雾状物覆盖在上面;如果光学系统正常,最大的可能是氘灯老化,可以通过能量检查或更换新灯方法加以判断; 处置:更换氘灯、用火棉胶粘取镜面上的污物或用研磨膏研磨滤光片(注意:此种技巧需要有一定维修经验者来实施); (4)故障:样品室放入空白后做基线记忆,噪声较大,紫外区尤甚; 原因:比色皿表面或内壁被污染、使用了玻璃比色皿或空白样品对紫外光谱的吸收太强烈,使放大器超出了校正范围; 检查:将波长设定为250nm,先在不放任何物品的状态下调零,然后将空比色皿插入样品道一侧,此时吸光值应小于0.07Abs;如果大于此值,有可能是比色皿不干净或使用了玻璃比色皿;同样方法也可判断空白溶液的吸光值大小; 处置:清洗比色皿,更换空白溶液; (5)故障:吸光值结果出现负值(最常见); 原因:没做空白记忆、样品的吸光值小于空白参比液; 检查:将参比液与样品液调换位置便知; 处置:做空白记忆、调换参比液或用参比液配置样品溶液; (6)故障:样品信号重现性不良;

原子吸收分光光度计使用说明书

GGX-5型火焰原子吸收分光光度计使用说明书 1 GGX-5火焰原子吸收分光光度计的使用 1.1 仪器特点 原子吸收是指基态自由原子对光辐射能的共振吸收。通过测量自由原子对光辐射能的吸收程度而推断出样品中的某一元素的量大小,根据这一原理研制的分析测试仪器称原子吸收分光光度计。仪器主要由原子化系统、光学系统、信号检测放大输出系统及附属设备组成。下面先将仪器部分结构的性能和特点概述一下: (1) 元素灯, 光源稳定, 寿命较长,我站较常使用的铜、铅、镉、锰、铁、镍等元素灯, 使用五至六年后才更换(具体点灯时间没有统计) 。在使用期内光源是十分稳定的,当一旦出现光能量下降得利害且光源不稳时,需反接处理或更换元素灯。 (2) 原子化系统, 现在很多生产厂家采用石英玻璃喷雾器, 玻璃喷雾器具有耐腐蚀、干扰小的优点, 出厂前已将玻璃喷雾器出口的碰撞球的位置调节固定好, 无须使用者再调节球的位置。同时配有各种口径的毛细吸液管, 使用者可根据需要选择提升量大小, 以调节最灵敏、最稳定的雾化率达到理想的检测效果。(3) GGX-5型, 由于生产厂吸取了国外同行的先进电子线路和技术, 仪器的数据输出相当稳定, 工作曲线线性、数据重复性和准确性等技术指标都能达到比较理想的水平, 部分使用同型号仪器的用户亦有同感。 1.2 原子吸收分光光度计的开关机原则“先开后关, 后开先关”原则。如开机程序“电源→A 键→B 键→C 键”, 关机时必须是“C 键→B 键→A 键→电源”。气路必须先开空气压缩机, 待一定空气压力和流量后, 才能开乙炔气点火, 关机时必须关闭(切断) 乙炔气源后, 才关空气压缩机。如果开关机程序操作混乱, 极容易损伤或烧毁电气设备, 甚至发生严重安全事故。GGX-5型采用了燃气安全阀系统, 该系统只有当仪器主机电源开通后, 空气压力和流量达到一定的条件下, 燃气阀门才能撞开, 这种装备为安全使用仪器加了一道非常实用有效的防线。开关机除了要严格按程序外, 还必须严格地、准确地将各功能键调到应处的位置。要

紫外可见分光光度计的校正

实训二紫外可见分光光度计的校正 一、实训目的 1、了解紫外-可见分光光度的基本构造。 2、熟悉紫外可见分光光度计的操作技术。 3、熟悉校正波长和测量吸收值精度的原理和方法。 二、仪器与试剂 1、仪器:紫外-可见分光光度计,石英吸收池(1cm),容量瓶(1000m1),烧杯。 2、试剂:0.0600g→1000ml的K2Cr2O7的硫酸标准溶液(0.005mol/L),NaI溶液(10g/L),NaNO2溶液(50g/L)。 三、实训原理 紫外-可见分光光度计是单光束手工操作仪器,备有钨灯及氢灯两种光源,可用于可见及紫外光区。它是具有色散能力较高的单色器,狭缝可调,可得到较纯的单色光,适用于定性鉴别和定量分析。 新仪器启用前或仪器修理后或长期使用后均需对仪器的性能进行检定。仪器的性能主要是波长准确度与重现性、单色器的分辨能力、吸光度的准确性和重现性及杂散光等。 四、实训操作 1、吸收池配对性试验 每次测定前,应先用蒸馏水做吸收池配对性试验。两个吸收池透光率T相差应<0.5%。 2、波长准确性与重现性 校验波长是否准确,可用谱线校正法。在吸收池中置一白纸挡住光路,转动波长至486nm附近,遮光观察白纸上蓝色斑。轻微移动波长,至使此蓝色光斑最亮时止。根据调整的波长范围观察所得到的相应颜色,并进行对比核对,判断波长的准确性。 3、吸收度的准确性与透光率重现性 在紫外-分光光度计中用作读取透光率的电位器的精度可达到0.2%,但是,由于其他原因,例如电压变化等,实际测得的透光率误差大于0.2%。一般要求透光率的精度、稳定性和重现性不超过0.5%。透光率的准确性可用已知吸光系数的物质核对,常用的是重铬酸钾。取在120℃干燥至恒重的基准K2Cr2O7约60mg,精密称定,用H2S04溶液(0.005mol/L)溶解并稀释至1000ml,摇匀。按下表规定的吸收峰与谷波长处测定。 将测得的吸光度,计算出其吸光系数,取平均值与表中规定值核对,如相对偏差在土1%以内,则透光率准确性好。K Cr O的H S0溶液(0.005mol/L)的E cm1% 透光率重现性可结合透光率准确性实验同时进行,即在固定波长、溶液浓度以及狭

分光光度计简易操作手册

UVPROBE简易操作手册 第1章:初始画面 第2章:装置的连接 第3章:测定 第4章:光谱测定方式 4-1参数和显示的设置 4-2光谱测定 4-3数据处理功能 1.波长范围和纵轴范围的变更 2.峰谷检测 3.光谱线色彩的改变等 4.面积计算 5.数据计算 6.其他 第5章:光度分析方式 5-l参数和显示的设置 5-2定量测定 第6章:动力学方式 第1章:初始画面 启动UVPROBE以后,出现上示的对话窗口,需要输入设定的用户名和密码,然后点击确定健。 测量前注意事项 1、测量前先打开仪器,再打开计算机,测量完成后确认样品室内无样品后,关上样品室盖,先关闭计算机再关闭仪器。 2、电压不稳定一定要使用镇压器,否则将烧坏仪器保险丝。 3、样品池内溶液不要超过池容积的4/5,样品池放入样品室前外部要擦干。测量完毕后,比色皿要冲洗干净。 4、定期检查干燥剂情况,若已经变色要更换。

5、使用大样品室要把检测器切换到EXT状态,使用完后要拨到INT状态。 6、测量时,波长范围的边界要尽量避开检测器和光源更换时的波长。 第2章:装置的连接 首先从下拉式菜单的仪器项上追加需要的仪器。操作完毕如下图①所示,加装了UV-1650、UV- 2550、UV- 2450以及UV- 3150;使用时点击实际连接的仪器,例如下图的UV- 2450,然后点击上图的连接键②,这样装置与PC机连接(当然,中间的通讯电缆的连接、通讯口的指定等都是必须的,此处不再赘述)并开始下示的初始化面。 使用大样品室时,首先安装光路转换器(下图左),然后将检测器切换按钮拨到EXT档(下图右),测 量完毕后需要将检测器切换按钮又拨回到INT档上。 初始化大约需要5分钟左右,进行一系列的检查和初置,如一切顺利通过就可以开始测定。若某些项 检测失败,请检查光源是否正常发光和干燥剂是否放置正确。

721可见分光光度计使用方法

721可见分光光度计使用方法 一、开机预热 仪器在使用前应预热30分钟。 二、波长调整 转动波长旋钮,并观察波长显示窗,调整至需要的测试波长。 注意事项:转动测试波长调100%T/0A后,以稳定5分钟后进行测试为好(符合行业标准及质监局检定规程要求)。 三、设置测试模式 按动“功能键”,便可切换测试模式。相应的测试模式循环如下:*开机默认的测试方式为吸光度方式 四、结果打印(721型无此功能) 在得到测试结果后按动“打印”键便可打印结果(需外接标准串行打印机)。 五、光源切换(适用于752、754、755B型) 因为仪器在紫外区和可见区使用不同的光源,所以需要波动光源切换杆来手动的切换光源。建议的光源切换波长为340nm,即200nm-339nm适应氘灯,340nm-1000nm使用卤素灯。 注意事项:如果光源选择不正确,或光源切换杆不到位,将直接影响仪器的稳定性。特殊测试要求除外。 六、比色皿配对性 仪器所附的比色皿是经过配对测试的,未经配对处理的比色皿将影响样品的测试精度。适应比色皿一套两只,供紫外光谱区使用,置入样品架时,两只石英比色皿上标记Q或箭头方向要一致。玻璃比色皿一套四只,供可见光谱区使用。 石英比色皿和玻璃比色皿不能混用,更不能和其他不经配对的比色皿混用。用手拿比色皿应握比色皿的磨砂表面,不应该接触比色皿的头光面,即透光面上不能有手印或溶液痕迹,待测溶液中不能有气泡、悬浮物,否则也将影响样品的测试精度。比色皿在使用完毕后应立即清洗干净。 七、调T零(0%T) 1.在T模式时,将遮光体置入样品架(如图七所示),合上样品室盖,并拉动样品架拉杆使其进入光路。然后按动“调0%T”键,显示器上显示“00.0”或“-00.0”,便完成调T零,完成调T零后,取出遮光体。 注意事项:1.测试模式应在透射比(T)模式; 2.如果未置入遮光体合上样品室盖,并使其进入光路便无法完成调T零;

紫外可见分光光度计 文档

紫外可见分光光度计 一.基本简介 紫外可见分光光度计简介1852年,比尔(Beer)参考了布给尔(Bouguer)1729年和朗伯(Lambert)在1760年所发表的文章,提出了分光光度的基本定律,即液层厚度相等时,颜色的强度与呈色溶液的浓度成比例,从而奠定了分光光度法的理论基础,这就是著名的比尔朗伯定律。1854年,杜包斯克(Duboscq)和奈斯勒(Nessler)等人将此理论应用于定量分析化学领域,并且设计了第一台比色计。到1918年,美国国家标准局制成了第一台紫外可见分光光度计。此后,紫外可见分光光度计经不断改进,又出现自动记录、自动打印、数字显示、微机控制等各种类型的仪器,使光度法的灵敏度和准确度也不断提高,其应用范围也不断扩大。 [1]从仪器理论上讲,各种紫外可见分光光度计,都是根据比耳定律设计的;而比耳定律研究的是在平行光、单色光的条件下,物质对光的吸收。但是,紫外可见分光光度计的单色器不可能得到真正的单色光。并且,单色器系统不同,它产生的单色光的纯度(光谱带宽)也不同,并且光通过物质时,也不可能是真正的平行光。因此,严格地说,实际工作中,任何紫外可见分光光度计,都不可能真正满足比耳定律。所以,紫外可见分光光度计都是针对近似平行光、近似单色光的条件设计的。所以,就看谁设计、制造仪器最能满足或接近比耳定律(或产生的比耳定律的偏离最小),谁的仪器到了使用者手里,由于非平行光或非单色光产生的分析误差最小,谁的仪器就最好(当然还有杂散光、噪声、稳定性等要求)。这就是从仪器学理论,去看紫外可见分光光度计的设计、制造误差的最根本、最本质的问题;也是使用者从仪器学理论去看紫外可见分光光度计的分析误差的最根本、最本质的问题。 二.工作原理 吸收光谱 物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这就是分光光度定性和定量分析的基础。分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。

分光光度计说明

722可见分光光度计使用说明书 1.仪器的主要用途 722可见分光光度计能在近紫外、可见光谱区域对样品物质作定性和定量的的分析。仪器可广泛地应用于医药卫生、临床检验、生物化学、石油化工、环境保护、质量控制等部门,是理化实验室常用的分析仪器之一 2.仪器的工作环境 2.1仪器应安放在干燥的房间内,使用温度为5℃~35℃,相对湿度不超过85%。 2.2使用时放置在坚固平稳的工作台上,且避免强烈的震动或持续的震动。 2.3 室内照明不宜太强,且避免直射日光的照射。 2.4 电扇不宜直接向仪器吹向,以免影响仪器的正常使用。 2.5 尽量远离高强度的磁场、电场及发生高频波的电器设备。 2.6供给仪器的电源电压为AC220V±22V,频率为50Hz±1Hz,并必须装有良好的接地线。推荐使用交流稳压电源,以加强仪器的抗干扰性能。使用功率为1000W以上的电子交流稳压器或交流恒压稳压器。 2.7 避免在有硫化氢、亚硫酸氟等腐蚀气体的场所使7 避免在有硫化氢、亚硫酸氟等腐 蚀气体的场所使用。 3 仪器的主要技术指标及规格 3.1 光学系统:单束光、衍射光栅。 3.2 波长范围:330nm~800nm。 3.3 光源:钨卤素灯12V30W。 3.4 接收元件:光电池。 3.5 波长准确度:≤±2nm。

3.6 波长重复性:1nm。 3.7 光谱带宽:<6nm。 3.8 杂散光:0.7%τ(在360nm处)。 3.9 透射比测量范围:0.0%τ~100.0%τ。 3.10 吸光度测量范围:0.000A~1.999A。 3.11 浓度直读范围:0000~1999。 3.12 透射比准确度:±1.0%τ。 3.13 透射比重复性:0.5%τ。 3.14 噪声:≤0.3%τ。 3.15 稳定性:亮电流≤0.5%τ/3min, 暗电流≤0.2%τ/3min。 3.16 电源:AC220V±22V,50Hz±1Hz。 3.17 外型尺寸:570mm×400mm×260mm。 3.18 净杂散光测量范围:18 净重:22kg。 4.仪器的工作原理 分光光度计的基本原理是溶液中的物质在光的照射激发下,产生了对光的吸收效应,物 质对光的吸收是具有选择性的。各种不同的物质都具有其各自的吸收光谱,因此当某单色光通过溶液时,其能量就会被吸收而减弱,光能量减弱的程度和物质的浓度有一定的比例关系,也即符合于比色原理--比耳定律。 τ=I/I0 logI0/I=KCL A=KCL

紫外-可见光分光光度计

紫外-可见光分光光度法 一、技术原理 紫外-可见分光光度法是在190?800mn波长范围内测定物质的吸光度,用于鉴别、杂质检查和定量测定的方法。当光穿过被测物质溶液时,物质对光的吸收程度随光的波长不同而变化。因此,通过测定物质在不同波长处的吸光度,并绘制其吸光度与波长的关系图即得被测物质的吸收光谱。从吸收光谱中,可以确定最大吸收波长λmax和最小吸收波长λmix。物质的吸收光谱具有与其结构相关的特征性。因此,可以通过特定波长范围内样品的光谱与对照光谱或对照品光谱的比较,或通过确定最大吸收波长,或通过测量两个特定波长处的吸收比值而鉴别物质。用于定量时,在最大吸收波长处测量一定浓度样品溶液的吸光度,并与一定浓度的对照溶液的吸光度进行比较或采用吸收系数法求算出样品溶液的浓度。 二、浓度测定基本原理 朗伯一比尔(Lambert - Beer)定律是分光光度法的基本原理。当一束单色光通过一均匀的溶液时,一部分被吸收,一部分透过,设入射光的强度为I0,透射光强度为I,则I/I0为透光度,用T表示。 当溶液的液层厚度不变时,溶液的浓度越大,对光的吸收程度越大,则透光度越小。 即:-lgT=a1*c(式中a1为常数,c为浓度) 当溶液浓度不变时,溶液的液层厚度越大,对光的吸收程度越大,则透光度越小。

即:- lgT=a2*b(b为液层厚度) 将以上两式合并可用下式表示:lgT=a*b*c 研究表明:溶液对光的吸收程度即吸光度(A)又称消光度(E)或光密度(OD)与透光度(T)呈负对数关系,即:A=-lgT 故A=a3*b*c(a3为吸光系数)。 上式为朗伯比尔定律,其意义为:当一束单色光通过一均匀溶液时,溶液对单色光的吸收程度与溶液浓度和液层厚度的乘积成正比。 三、仪器的矫正和检定 1.波长矫正 常使用高氣酸钦溶液校正双光束仪器,以10%高氯酸溶液为溶剂,配制含氧化钬(Ho2O3 ) 4 % 的溶液,该溶液的吸收峰波长为241. 13nm,278. 10nm,287. 18nm,333. 44nm,345. 47nm,361. 31nm,416. 28nm,451. 30nm,485. 29nm,536. 64nm和640. 52nm。仪器波长的允许误差为:紫外光区±1nm,500nm附近±2nm。 2.吸光度的准确度 可用重铬酸钾的硫酸溶液检定。取在120℃干燥至恒重的基准重铬酸钾约60mg,精密称定,用0.005mol/L硫酸溶液溶解并稀释至1000mL,在规定的波长处测定并计算其吸收系数,并与规定的吸收系数比较,应符合表中的规定。

可见分光光度计使用说明

722可见分光光度计 使 用 说 明 书 上海精密科学仪器有限公司

目录 第一章设计原理与主要用途 2 第二章仪器的工作环境 2 第三章仪器的安装 3 第四章主要技术指标及规格 3 第五章仪器视图与构件名称 3 第六章仪器使用操作说明 4 第七章仪器的应用问题解决方案11 附录A 仪器验收13

第一章 设计原理与主要用途 一、原理 分光光度计的基本原理是:物质在光的照射下会产生对光吸收的效 应,而且物质对光的吸收是具有选择性的。各种不同物质都具有其 各自的吸收光谱。因此不同波长的单色光通过溶液时其光的能量就 会被不同程度的吸收,光能量被吸收的程度和物质的浓度有一定的 比例关系,即符合比耳定律。 0I I T = abc T I I A ===1lg lg 0 其中:T —透射比 A —吸光度 I 0—入射光强度 a —吸收系数 I —透射光强度 b —溶液的光程长度 c —溶液的浓度 由上式可以看出当吸收系数a 与光程长度b 不变时,吸光度与溶液 浓度成正比。本仪器正是依据这一原理而设计的。 二、用途 本仪器可供物理、化学、医学、生物学等学科进行科研或供化学工 业、食品工业、制药工业、冶金工业、临床生化、环境保护部门进 行各种物质的定性定量分析。 第二章 仪器的工作环境 一、仪器的运输和存储 本仪器在运输过程中必须防雨淋、曝晒及剧烈冲击。 本仪器存储时应包装完好的存储于有遮蔽的仓库内,周围无酸性气 体、碱及其它有害物质。仓库的环境温度在-25℃~40℃之间,相对 湿度不大于85%。 二、仪器的使用环境 避开阳光直射的场所和有较大气流流动的场所。 请不要安放在有腐蚀性气体及灰尘多的场所。 应避开有强烈振动和持续振动的场所。 应远离发出磁场、电场和高频电磁波的电气装置。 仪器应放在可载重的稳定水平台面上,仪器背部距墙壁至少15cm 以 上,以保持有效的通风散热。 避开高温高湿环境 使用温度: 室温 5℃~40℃

紫外分光光度计的使用方法

UV2600型紫外分光光度计操作规程 一、开机 1.打开仪器电源。 2.打开电脑,点击UV Analyst 进入光谱分析软件。 3.软件将自动搜索仪器端口,点击“联机”,软件与仪器联机成功。 二、选择测试模式 根据实验需求选择测试模式。仪器提供的测试模式有“波长扫描”“时间扫描”“定点测量”“定量测量”“核酸测量”和“蛋白质测量” 【波长扫描】主要用以检测样品对一定范围波长光的吸收情况,以便对样品进行定性测量。 1.点击左侧主功能栏中的“波长扫描”即可进入波长扫描界面。 2. 根据实验要求,在“设置”设定检测参数。 3. 在样品室内参比及检测光路同时放入装有空白溶液的比色皿。 4. 点击“基线测量”以扣除空白的背景吸收。 5. 将检测光路中的空白溶液换成待测样品。 6. 点击“扫描”。以完成样品波长扫描检测。 7. 点击“保存”并选择保存路径即可保存谱图。 注意:在“基线测量”中所选择的基线必须与参数设置中基线一致! 【时间扫描】是检测样品在特定波长范围内吸光度(或透过率)随时间的推移而发生变化情况。主要用以检测样品的稳定性或进行化学动力学研究。 1. 点击左侧主功能栏中的“定量测量”即可进入定量测量界面。 2. 根据实验要求,在“设置”设定检测参数。 3 在样品室内参比及检测光路同时放入装有空白溶液的比色皿。 4. 点击“基线测量”以后扣除样品空白的背景吸收。 5. 将检测光路中的空白溶液换成待测样品。 6. 点击“扫描”。以完成样品波长扫描检测。 7. 点击“保存”并选择保存路径即可保存谱图。 【定点测量】是检测样品在特定波长中的吸光度(或透过率)。 1. 点击左侧主功能栏中的“定量测量”即可进入定量测量界面。 2. 根据实验要求,在“设置”设定检测参数。 3. 在样品室内参比及检测光路同时放入装有空白溶液的比色皿。 4. 点击“自动校零”,以扣除该波长中空白溶液的背景吸收。 5. 将检测光路中的空白溶液换成待测样品。 6. 点击“测量”,以完成样品的吸光度(或透过率)的测量。 7. 点击“保存”并选择保存路径即可保存测量结果。 【定量测量】可通过检测标准样品或输入特定的系数建立标准曲线后测量样品的浓度值。

722可见光分光光度计操作规程

722可见光分光光度计操作规程 环境要求 1、仪器应安装在无震动,无强烈电磁场干扰、无强光照射的室内工作台上,避免灰尘及腐蚀性气体。 2、室内环境温度为5-35℃,相对湿度小于85%。 3、电源电压220V±22V,频率50HZ±1HZ。 操作要点: 1、插上电源,打开开关,打开试样室盖,按“A/T/C/F”键,选择“T%”状态,选择测量所需波长,预热20分钟。 2、调节波长旋钮至测定波长,并稍等几分钟。 3、开始测量前要先调节仪器的零点,方法为: 保持在“T%”状态,使光路通畅,当关上试样室盖时,屏幕应显示“100.0”,如否,按“T100%”键;打开试样室盖,屏幕应显示“000.0”,如否,按“0%”键,重复2-3次,仪器本身的零点即可调好,可以开始测量。 以标准对比法为例: 3、用空白溶液润洗一个比色皿,装样到比色皿的3/4处(必须确保光路通过空 白溶液中心),用吸水纸吸干比色皿外部所沾的液体,将比色皿的光面对准光路 放入比色皿架,用同样的方法将所测样品装到其余的比色皿中并放入比色皿架中。4、将装有待测溶液的比色皿拉入光路,关上试样室盖,按“A/T/C/F”键,调 到“Abs”,按“Abs0”键,屏幕显示“0.000”,将其余测试样品一一拉入光路,记下测量数值即可(不可用力拉动拉杆)。 5、测量完毕后,将比色皿清洗干净(最好用乙醇清洗),擦干,放回盒子,关 上开关,拔下电源,罩上仪器罩,并打扫卫生,才可离开。 6、本操作要点只针对测量吸光度而言。 注意事项: 1、仪器使用前需开机预热20分钟。 2、开关试样室盖时动作要轻缓。 3、不要在仪器上方倾倒测试样品,以免样品污染仪器表面,损坏仪器,一定 要将比色皿外部所沾样品擦干净,才能放进比色皿架进行测定。 4、每套仪器所配套的变色皿,不能与其它仪器上的比色皿单个调换。 5、如大幅度改变测试波长,在调整“0”和“100%”后稍等片刻,稳定后重新调整即可工作。 6、仪器表面宜用温水擦拭,请勿使用酒精、丙酮等溶剂清洁,不使用时请加防尘罩。比色皿每次使用后应清洗干净,并用镜头纸轻拭干净,存于比色皿盒中备用。 7、有任何疑问请报告指导老师。

紫外可见分光光度计及其应用

紫外可见分光光度计及其应用 科技论文写作期末作业 西北民族大学生命科学与工程学院 11级生物技术(1)班 符朝方 学号:P112114841 紫外可见分光光度计及其应用 李诗哲 西北民族大学生命科学与工程学院兰州 730100 摘要:紫外可见分光光度计对于分析人员来说是最有用的分析工具之一,几乎每一个分析实验室都离不开紫外可见分光光度计。下面介绍了紫外分光光度计的原理、结构及其特点,并介绍了它在生物领域的应用及其他方面的应用1引言:紫外可见分光光度计是一类很重要的分析仪器,无论在物理学、化学、生物学、医学、材料学、环境科学等科学研究领域,还是在化工、医药、环境检测、冶金等现代生产与管理行业,紫外可见分光光度计都获得了日益广泛的应用。 2原理:紫外可见分光光度法 【1】紫外可见分光光度法是根据物质分子对波长为200~760nm的电磁波的吸收特性所建立起来的一种定性、定量和结构分析方法。操作简单、准确度高、重现性好。波长长的光线能量小,波长短的光线能量大。分光光度测量是关于物质分子对不同波长和特定波长处的辐射吸收程度的测量。物质的吸收光谱本质上就是物质中的分子和原子吸收了人射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有不同的分子、原子和不同的分

子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的 某些特征波长处的吸光度的高低判别或测定该物质的含量,这是分光光度定性和定量分析的基础。分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。 【2】2.1有机化合物的紫外可见吸收光谱 有机化合物的电子跃迁 与紫外可见吸收光谱有关的电子有三种[[4],即形成单键的σ电子、形成双键的π电子以及未参与成键的n电子。 跃迁类型有:σ?σ*、n?σ*,π?π*、n?π四种。 饱合有机化合物的电子跃迁类型为σ?σ*,n?σ*跃迁,吸收峰一般出现在真空紫外区,吸收峰低于200nm,实际应用价值不大。不饱合机化合物的电子跃迁类型为n?π*,π?π*跃迁,吸收峰一般大于200nm. 2.2有机化合物的吸收带 吸收带(absorption band):在紫外光谱中,吸收峰在光谱中的波带位置。根据电子及分子轨道的种类,可将吸收带分为四种类型。 (1)R吸收带 (2)K吸收带 (3)B吸收带 (4)E吸收带 2.3无机化合物的紫外可见吸收光谱 无机化合物的UV-Vis光谱吸收光谱主要有:电荷 迁移跃迁及配位场跃迁。 (1)电荷迁移光谱

72型分光光度计工作原理

72型分光光度计工作原理 72型分光光度计是可见光分光光度计,波长范围为420nm~700nm,它由三大部分组成:磁饱和稳压器、光源、单色光器和测光机构、微电计。 72型分光光度计的基本依据是朗伯—比耳定律,它是根据相对测量原理工作的,即先选定某一溶剂作为标准溶液,设定其透光率为100%,被测试样的透光率是相对于标准溶液而言的,即让单色光分别通过被测试样和标准溶液,二者能量的比值就是在一定波长下对于被测试样的透光率。如图所示,白色光源经入射狭缝、反射镜和透光镜后,变成平行光进入棱镜,色散后的单色光经镀铝的反射镜反射后,再经过透镜并聚光于出射狭缝上,狭缝宽度为0.32nm。反射镜和棱镜组装在一可旋转的转盘上并由波长调节器的凸轮所带动,转动波长调节器便可以在出光狭缝后面选择到任一波长的单色光。单色光透过样品吸收池后由一光量调节器调节为适度的光通量,最后被光电电池吸收,转换成电流后由微电计指示,从刻度标尺上直接读出透光率的值。 分光光度计已经成为现代分子生物实验室常规仪器。常用于核酸,蛋白定量以及细菌生长浓度的定量。 分光光度计的简单原理 分光光度计采用一个可以产生多个波长的光源,通过系列分光装置,从而产生特定波长的光源,光源透过测试的样品后,部分光源被

吸收,计算样品的吸光值,从而转化成样品的浓度。样品的吸光值与样品的浓度成正比。 核酸的定量 核酸的定量是分光光度计使用频率最高的功能。可以定量溶于缓冲液的寡核苷酸,单链、双链DNA,以及RNA。核酸的最高吸收峰的吸收波长260 nm。每种核酸的分子构成不一,因此其换算系数不同。定量不同类型的核酸,事先要选择对应的系数。如:1OD的吸光值分别相当于50μg/ml的dsDNA,37μg/ml的ssDNA,40μg/ml的RNA,30μg/ml的Olig。测试后的吸光值经过上述系数的换算,从而得出相应的样品浓度。测试前,选择正确的程序,输入原液和稀释液的体积,尔后测试空白液和样品液。然而,实验并非一帆风顺。读数不稳定可能是实验者最头痛的问题。灵敏度越高的仪器,表现出的吸光值漂移越大。 事实上,分光光度计的设计原理和工作原理,允许吸光值在一定范围内变化,即仪器有一定的准确度和精确度。如EppendorfBiophotometer的准确度≤1.0%(1A)。这样多次测试的结果在均值 1.0%左右之间变动,都是正常的。另外,还需考虑核酸本身物化性质和溶解核酸的缓冲液的pH值,离子浓度等:在测试时,离子浓度太高,也会导致读数漂移,因此建议使用pH值一定、离子浓度较低的缓冲液,如TE,可大大稳定读数。样品的稀释浓度同样是不可忽视的因素:由于样品中不可避免存在一些细小的颗粒,尤其是核酸样品。这些小颗粒的存在干扰测试效果。为了最大程度减少颗

(完整版)紫外可见分光光度计--原理及使用

应用 分光光度计已经成为现代分子生物实验室常规仪器。常用于核酸、蛋白定量以及细菌生长浓度的定量。我们实验室主要是用来测物质的光度以求得物质的浓度或者酶活。 基本原理 分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。它是带状光谱,反映了分子中某些基团的信息,可以用标准光谱图再结合其它手段进行定性分析。 朗伯-比尔定律:当一束平行单色光通过含有吸光物质的稀溶液时,溶液的吸光度与吸光物质浓度、液层厚度乘积成正比,即 A= kcl 式中比例常数k与吸光物质的本性,入射光波长及温度等因素有关。c为吸光物质浓度,l为透光液层厚度。 组成 各种型号的紫外-可见分光光度计,就其基本结构来说,都是由五个基本部分组成,即光源、单色器、吸收池、检测器及信号指示系统。 1.光源 在紫外可见分光光度计中,常用的光源有两类:热辐射光源和气体放电光源。热辐射光源用于可见光区,如钨灯和卤钨灯;气体放电光源用于紫外光区,如氢灯和氘灯。 2.单色器 单色器的主要组成:入射狭缝、出射狭缝、色散元件和准直镜等部分。 单色器质量的优劣,主要决定于色散元件的质量。色散元件常用棱镜和光栅。 3.吸收池 吸收池又称比色皿或比色杯,按材料可分为玻璃吸收池和石英吸收池,前者不能用于紫外区。吸收池的种类很多,其光径可在0.1~10cm之间,其中以1cm光径吸收池最为常用。 4、检测器 检测器的作用是检测光信号,并将光信号转变为电信号。现今使用的分光光度计大多采用光电管或光电倍增管作为检测器。 5、信号显示系统 常用的信号显示装置有直读检流计,电位调节指零装置,以及自动记录和数字显示装置等。

分光光度计使用说明

722型分光光度计的使用方法 一、测量原理 分光光度法测量的理论依据是伯郎—比耳定律:当容液中的物质在光的照射和激发下,产生了对光吸收的效应。但物质对光的吸收是有选择性的,各种不同的物质都有其各自的吸收光谱。所以根据定律当一束单色光通过一定浓度范围的稀有色溶液时,溶液对光的吸收程度A 与溶液的浓度c(g/l)或液层厚度b(cm)成正比。其定律表达式A=abc (a是比例系数)。当c的单位为mol/l时,比例系数用ε表示,则A=εbc称为摩尔吸光系数。其单位为L·mol-1·cm-1它是有色物质在一定波长下的特征常数。 T(透光率)=I/I0 A(吸光度)= -lgT 或A=K·C·L(比色皿的厚度) 测定时,入射光I, 吸光系数和溶液的光径长度不变时,透过光是根据溶液的浓度而变化的,即“K”为常数。比色皿厚度一定,“L”、“I0”也一定。只要测出A即可算出“C”。 《分光光度计的表头上,一行是透光率,一行是吸光度。》 二、722型分光光度计的使用 1、将灵敏度旋钮调至“1”档(信号放大倍率最小)。 2、开启电源,指示灯亮,选择开关置于“T”,波长调至到测试用波长。仪器预热20分钟。 3、打开试样室(光门自动关闭),调节透光率零点旋钮,使数字显示

为000.0。(调节100%T旋钮),盖上试样室盖,将比色皿 架处于蒸馏水校正位置,使光电管受光,调节透光率100%旋钮使数字显示100.0。如显示不到100.0,则可适当增加微电流放大的倍数。(增加灵敏度 的档数同时应重复(3)调节仪器透光率的“0”位)但尽量使倍率置于低档使用。这样仪器会有更高的稳定性。 4、预热后,按(3)连续几次调整透光率的“0”位和“100%”的位置,待稳定后仪器可进行测定工作。 三、吸光度“A”的测量 将选择开关置于A 。调节吸光度调零旋钮,使得数字显示为零,然后将被测样品移入光路,显示值即为被测样品的吸光度值。 四、浓度c的测量 将选择开关由“A”旋至“C”将已标定浓度的样品放入光路,调节浓度旋钮,使得数字显示为标定值,将被测样品放入光路即可读出被测样品的浓度值。 注意事项: 1、测量完毕,速将暗盒盖打开,关闭电源开关,将灵敏度旋钮调至最低档,取出比色皿,将装有硅胶的干燥剂袋放入暗盒内,关上盖子,将比色皿中的溶液倒入烧杯中,用蒸馏水洗净后放回比色皿盒内。 2、每台仪器所配套的比色皿不可与其它仪器上的表面皿单个调换。

分光光度计的原理分类

分光光度计的原理分类 一.分光光度计的一般原理是什么? 分光光度计是利用分光光度法,通过测定被测物质在特定波长处或一定波长范围内光的吸收度,对该物质进行定性和定量分析。 不同种类的分光光度计的基本原理相似,都是利用一个可以产生多个波长的光源,通过系列分光装置,从而产生特定波长的光源。光源透过测试的样品后,部分光源被吸收,通过测量样品的吸光值,经过计算可以转化成样品的浓度。样品的吸光值与样品的浓度成正比。 二.分光光度计有哪些不同的类型,不同种类的应用领域有什么区别? 分光光度计有哪几种不同的分类方式: 1.分光光度计按照波长及应用领域的不同可以分为:(1)可见光分光光度计:测定波长范围为400~760 nm的可见光区;(2)紫外分光光度计:测定波长范围为200~400nm的紫外光区;(3)红外分光光度计:测定波长范围为大于760nm的红外光区;(4)荧光分光光度计:用于扫描液相荧光标记物所发出的荧光光谱;(5) 原子吸收分光光度计:光源发出被测的特征光谱辐射,被经过原子化器后的样品蒸气中的待测元素基态原子所吸收,通过测定特征辐射被吸收的大小,来求出被测元素的含量。 2.分光光度计按自动化程度分类:可分为手动、半自动、自动分光光度计。 3.分光光度计按软件可分为:带扫描、不带扫描。 三.分光光度计最常见的用途和常用波长有哪些? 1.核酸的定量 核酸的最高吸收峰的吸收波长260 nm。利用260nm的波长可以定量测量溶于缓冲液的寡核苷酸,单链、双链DNA,以及RNA的浓度。 除了核酸浓度,分光光度计同时显示几个非常重要的比值表示样品的纯度。如A260/A280的比值,用于评估样品的纯度,因为蛋白的吸收峰是280nm。纯净的样品,比值大于1.8(DNA)或者2.0(RNA)。如果比值低于1.8 或者2.0,表示存在蛋白质或者酚类物质的影响。

可见光分光光度计的操作方法

可见光分光光度计的操作方法 学时:2学时 一、实验原理 利用可见光等测定物质的吸收光谱,利用此光谱对物质进行定性定量分析和物质结构分析的方法,称为分光光度法,使用的仪器是分光光度计。分光光度计灵敏度高,测定速度快,应用范围广,是生物化学研究中必不可少的基本手段之一。 可见光光谱:光是电磁波,可用波长“λ”表示,电磁波谱是由不同性质的连续波长的光谱所组成,对于生物化学来说,最重要的波长区域是可见光和紫外光。光的波长是二个相邻的波峰之间的距离。λ=C/V 其中,λ-波长;C-光速;V-频率;单位时间要通过一个定点的波数。可见吸收光谱是由于分子中的某些基团吸收了可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。它是带状光谱,反映了分子中某些基团的信息。可以用标准光图谱再结合其它手段进行定性分析。 根据朗伯-比尔(Lambert- Beer)定律:A=εbc,(A为吸光度,ε为摩尔吸光系数,b为液池厚度,c为溶液浓度)可以对溶液进行定量分析。ε越大,吸收光的能力越强,相应的分光光度法测定的灵敏度就越高。ε值越大,说明电子跃迁的几率越大,通常ε=10~105:一般认为ε>104为强吸收;ε=103~104为较强吸收;ε<102为弱吸收,此时分光光度法不灵敏。通常使用分光光度计可检测出的最小吸收度A=0.001,所以b=1cm,ε=105时,可检测的溶液最小浓度是C=10-8mol/L。 二、分光光度计的基本参数和组成与构造 1. 722S可见光分光光度计的基本参数 波长范围:340-1000nm 波长精度:±2nm(360-600nm) 表面刻度:(T)0-100%(A)0-2 2. 组成与结构 各种型号的分光光度计不论是何种型式,基本上都是由五部分组成:(1)

Nanodrop分光光度计操作说明

Nanodrop分光光度计操作说明 1.双击电脑屏幕上的Nanodrop图标,启动软件. 2.选择所需的测量模式,屏幕上会弹出初始化仪器的提示.往仪器的加样孔中加入2微升的 蒸馏水,合上上盖使形成液柱,然后点击确定以开始初始化,可以听见电磁阀开合的声音. 3.五六秒后屏幕上的提示信息消失,表示初始化完成.用擦镜纸将蒸馏水擦干净,加入2-3微 升的Buffer,合上上盖并点击Blank. 4.Blank完成后,用擦镜纸将Buffer擦干净即可以开始上样,点击Measure开始测量. 建议: 在每次测量完毕后,用蒸馏水清洁样品平台,这样可以保证下一次测量的准确性。 每次测量的样品量建议不少于2微升 图一图二 图三图四 5. 测量完成后,点击Show Report查看结果,选择Save进行保存. 6. 保存的数据对应地保存在C:\Nanodrop Data文件夹. 注: 具体的实验方法如BCA,Bradford等以及标准曲线的建立请参阅生物学资料和说明书

名词介绍: Nuclear Acid Measurement: 核酸测量 Protein 280: 用280nm波长测量蛋白,选择适当的蛋白类型(如BSA,IgG等),软件将在测量后给出吸光度值并自动计算其浓度 MicroArray Measurement: 使用不同的荧光染料来测定核酸浓度 UV-vis Measurement: 连续波谱扫描,可用于寻找最大吸收峰 Cell Cultures: 用600nm波长测量菌密度 Protein BCA: BCA法测蛋白 Protein Bradford: Bradford法测蛋白 Protein Lowry: Lowry法测蛋白 User Preference: 用户对于软件的默认设置做一些修改 Utility & Diagnostics: 性能诊断 Sample Type: 选择样品的类型 : 使用者自己输入波长,并查看样品在此波长的OD值 Abs: 吸光度值 A260 10mm Path : 常规的分光光度计使用的比色杯宽度约为10mm,即测量光程为 10mm,与常规分光光度计不同的是,Nanodrop的测量光程是 1mm和0.2mm.但是软件会自动将所测得的吸光度值转换成 10mm光程对应的值. A260 10mm Path就是指10mm测量光 程时样品在260nm波长时的OD值 A280 10mm Path: 10mm测量光程时,样品在280nm波长时的OD值 Dye: 染料 Max Absorbance: 使用者自己输入纵轴的最大量程 Hi Abs:点击此钮用于测量高浓度样品(最高至10mm测量光程的75A ),仪器将采用0.2mm光程测量 Replicate#: 测量重复样品或重复的标准品时的计数器 Reset This Std: 清除所选标准品的所有重复样品

可见光光度计光度准确度概念

光度准确度( Photometric Accur acy ) 是一个非常重要的技术指标。任何使用者买一台紫外可见分光光度计都是为了分析工作, 进行分析工作的目的是出数据, 其基本要求是数据要准确可靠, 这在很大程度上取决于仪器的光度准确度这个最重要的技术指标及其有关指标。 一、光度准确度的表示方法 目前, 国际上对紫外可见分光光度计光度准确度的表示方法主要有两种:一种是吸光度准确度( Absorbance Accuracy ) 或吸光度误差( Absorbance Er ror ) , 用AA (或ΔA) 表示; 另一种是透射比准确度( Transmittance Accuracy) 或透射比误差, 用TA ( 或ΔT) 表示。国外的紫外可见分光光度计制造商, 绝大多数都给出吸光度准确度或吸光度误差AA ( 或ΔA) , 并都指出在什么吸光度情况下测量。如美国Varian 公司的Cary500、美国P-E 公司的Lambda9、Lambda900 等仪器, 都给出在1. 0Ab s 时, 吸光度准确度或吸光度误差AA (或ΔA) 为±0. 003Ab s。但国外有少数仪器制造商在给出吸光度准确度或吸光度误差AA ( 或ΔA) 的同时, 还给出透射比准确度或透射比误差TA(或ΔT)。如日本岛津公司的UV-260、UV-2450PC、UV-2550PC 等仪器, 都给出在吸光度为0~0. 5A 时, 吸光度准确度或吸光度误差AA ( 或ΔA) 为±0. 002A; 吸光度为0. 5 ~1. 0A 时, 吸光度准确度或吸光度误差AA ( 或ΔA) 为±0. 004A。但同时又给出透射比准确度或透射比误差TA (或ΔT) 为±0. 3% T。我国生产紫外可见分光光度计的厂商, 很多都在给出吸光度准确度或吸光度误差AA ( 或ΔA) 的同时, 也给出透射比准确度或透射比误差TA(或ΔT)。如北京普析通用公司的TU-1901、T U-1800 系列, 北京瑞利公司的UV-2100 , 上海分析仪器总厂的760MC 等紫外可见分光光度计等, 在给出吸光度为0~0. 5A 时, 吸光度准确度或吸光度误差AA (或ΔA) 为±0. 002A;吸光度为0. 5 ~1. 0A 时, 吸光度准确度或吸光度误差AA ( 或ΔA ) 为±0. 004A。但同时又给出透射比准确度或透射比误差TA (或ΔT) 为±0. 3%T。

相关主题
文本预览
相关文档 最新文档