当前位置:文档之家› 四翼飞行器论文

四翼飞行器论文

四翼飞行器论文
四翼飞行器论文

四旋翼无人直升机论文

摘要

四旋翼飞机由于其结构复杂、操纵性差等缺点导致其研究进展较为缓慢。近些年来,随着新型材料、微机电(MEMS)、微惯导(MIMU)技术和飞行控制理论的发展,四旋翼无人直升机获得了越来越多地关注。

四旋翼无人直升机在军事和民用领域具有广阔的应用前景,可用来环境监视、情报搜集、高层建筑实时监控、协助和救助、电影拍摄和气象调查等;它还是火星探测无人飞行器的重要的研究方向之一。

本文针对小型四旋翼无人直升机,以TMS320F28335为核心,设计了四旋翼无人直升机控制器的软硬件系统,实现了近地环境下的姿态控制。

首先,根据设计目标对控制系统总体结构、软硬件整体进行设计。按功能将控制系统划分成机体平台、控制器模块、传感器模块、电源模块、数据处理模块和通讯模块六个独立的模块。

为了克服A/D转换存在的偏差和高频噪声问题,本文设计了软件矫正算法数字低通滤波器,减少了A/D偏差,降低了高频噪声。

姿态控制是飞行控制的核心问题,四旋翼无人直升机的结构特殊性决定了其控制器设计的特殊性:四旋翼无人直升机通过四个螺旋桨实现对六个被控量的控制,是一个欠驱动系统。本文建立了四旋翼无人机的非线性动力学模型,设计了PID控制器进行姿态控制。仿真和实际系统控制结果表明,该PID控制器可以得到较好的姿态控制效果,验证了控制系统设计的有效性。

关键词:四旋翼无人直升机,控制器,捷联惯导,DSP

一、绪论

1.1 引言

与固定翼飞机相比,旋翼机具有垂直起降的能力。四旋翼直升机是一种外形独特的旋翼机,国外对四旋翼飞机有多种叫法,如four-rotor、Quardrotor、X4-Flyer、4 rotors helicopter等等。

由于结构的对称性,四旋翼直升机在操纵性和机械机构方面具有很多潜在的优势。如图1.1所示,旋翼1、3顺时针旋转,旋翼2、4逆时针旋转,旋翼的扭矩会自动平衡。而传统直升机必须加一个尾翼用来平衡旋翼扭矩,这个尾翼对向上的推力无帮助作用,浪费了能量。另外,由于四旋翼机的旋翼更小,转速更高,因而其效率更高;小旋翼也可以减少旋翼碰撞周围建筑物的概率,飞行更加安全。

图1.1 四旋翼直升机飞行原理示意图

1.2 四旋翼直升机工作原理

四旋翼直升机有4个控制输入量,分别为四个旋翼的转速;6个输出量,

分别为飞机位置量(x、y、z)和姿态角(俯仰角θ、横滚角φ、航向角ψ)。四旋翼直升机通过调节对角线上旋翼的转速来改变姿态:图1.1中,1、3旋翼的推力不同会改变四旋翼直升机的俯仰角,同时在机体X方向产生一个加速度。由于对称性,在机体Y方向也会产生相似的作用。四旋翼直升机改变对角旋翼的转速大小,同时往相反方向改变另外一对旋翼的转速的大小,两对旋翼间扭矩便不再平衡,从而航向角改变。

二、总体设计

2.1 设计目标

目前,国内外有很多四旋翼无人直升机模型的生产厂家,从购买渠道和方便维护考虑,选用的机体平台是国产的华科尔UFO4型遥控四旋翼直升机(图2.1)。直升机的主要参数见表2.1

图2.1 华科尔UFO4四旋翼无人直升机

表2.1 华科尔UFO4四旋翼无人直升机主要参数

机体参数参数大小机体参数参数大小旋翼半径198mm 遥控器WK-0701 机体长/宽470mm 陀螺仪3D

驱动系统(电

机)1225 FE 重量(含电

池)

225g

接收器4-in-1 电池11.1V-Li 本文的主要内容是设计小型四旋翼飞行器的控制系统,实现小型四旋翼无人直升机在近地环境下的姿态控制。其中,飞行高度在5米之内,四旋翼无人直升机的俯仰角和滚转角控制范围是 30度,航向角的控制范围是0到360度。

2.2 控制系统结构设计

小型四旋翼无人机控制系统包括硬件和软件两部分。控制系统主要实现的功能为:信息采集与检测、数据传输和系统控制等。

2.2.1 硬件总体设计

如图2.2所示,四旋翼无人机硬件包括以下几个部分:机体平台(包含推进组)、控制器模块、传感器模块、电源模块、数据处理模块和通讯模块。各部分主要功能介绍如下。

数据处理模块

电源

模块通讯模块

控制器传感器

模块机体平台信息

信息信息供电供电推进组

信息

供电

图2.2 四旋翼无人机硬件结构图

(1)机体平台是其他所有模块的载体。除了机架之外,还包括电机、减速齿轮和螺旋桨组成的推进组。

(2)控制器是系统的核心器件,起到协调和控制其他各模块的作用。它不断和数据处理模块交换信息:获取系统控制所需的信息,发出控制指令。

(3)传感器模块为系统提供四旋翼无人机的各种运动信息或姿态信息,是导航系统的重要组成部分。

(4)通讯模块是控制系统与其他设备通讯的途径。控制器可以通过此模块发送机体的各种状态信息,接收控制指令或者导航信息。

(5)数据处理模块处于整个系统的中心位置,在控制器干预下(或自动)完成数据的转换,信息的提取,参数的解算等功能。

(6)电源模块为以上各模块提供能量,保证硬件平台的正常工作。

2.2.2 软件总体设计

为了减少软件错误、提高可靠性,按照低耦合、高内聚的原则将软件子系统划分成如图2.3所示的六个模块。

系统初始

化模块

传感器数据采集模块

数据处理

模块

导航模块

控制模块

无线通信

模块

图2.3 四旋翼无人机软件结构图

软件系统各模块的主要功能介绍如下:

(1)系统初始化模块:包含软件系统初始化和硬件系统初始化两部分。

(2)传感器数据采集模块:主要功能是获取传感器发送的有效数据。正确设置相关外设,使系统传感器可以持续、正常的运行。

(3)数据处理模块:起到各模块的衔接作用,例如A/D采样的滤波、字符串与整形和浮点型之间的互换、数字罗盘的信息提取等等。

(4)导航模块:通过导航算法,将传感器数据转化为导航数据,为控制器提供系统控制所需的位姿信息。

(5)控制模块:控制器的软件核心,包含控制系统主要算法。

(6)无线通讯模块:负责控制系统和上位机或其他设备的通信。

2.3 控制系统功能设计

2.3.1 导航系统

姿态控制是现阶段四旋翼无人机的研究重点,也是开展进一步研究工作的前提。控制器必须能够获取足够的姿态信息,导航系统可以为控制器提供有效的位姿参考。最常用的导航方法是惯性导航,该算法所需要的信息量包括载体三个轴向的加速度和三个轴向的角速度。因此,需要相应的惯性检测单元(IMU)来测量这些信息。因为是模拟器件,所以惯性传感器的选型主要关注的指标是精度和线性度。惯性导航系统由于误差积累等原因会随着时间而发散,因此需要更精准的平台进行校正,可以选用数字罗盘定时校正惯导系统。虽然高度控制不是本文的重点,但是要想离地飞行,控制器必须有高度信息。在系统开发的初始阶段,离地高度并不大,精度在厘米级便可满足要求,可以使用超声传感器来测量直升机离地高度。2.3.2 控制算法

姿态控制是当前世界上四旋翼无人直升机的一个研究热点,各国的学者都设计了不同的控制器对四旋翼无人机的姿态进行控制。一般情况下,在设计控制器之前了解系统的模型信息或系统的主要特性,即对四旋翼无人直升机系统进行建模。建立系统模型之后,还必须知道系统模型的各个参数的大小,涉及模型的参数辨识问题。当以上工作完成之后可以搭建软件仿真平台,设计控制算法。控制算法可选用文献中使用最多的PID控制,通过设计不同的控制参数给出姿态控制效果。

2.3.3 通信系统

四旋翼无人直升机采用有线的数据通信不能满足需求,所以选用无线作为系统的通讯方式。无线通信有两个重要的指标,就是传输距离和传输速度。现阶段的设计和测试都在实验室中进行,因此传输距离并不太远,几百米之内便可满足要求。关于传输速率的选择,由于目前设计中传输内容只是简单的状态信息或者控制命令,并不涉及到视频或者音频的实时传输,所以并不需要很高的波特率就可以实现。选用UART格式的通信模块就可满足要求。如果系统需要更高的传输速率,可以使用无线局域网作为通信系统。为了方便扩展,系统设计时须留有相应的扩展接口。

2.3.4 电源系统

电池为整个系统提供能量,是系统的动力来源。锂电池因为容量大、重量轻等优点而被广泛应用。为了给系统提供足够的能量,选用华科尔四旋翼无人机模型自带的800mA/h锂电池为整个系统供电。实际系统各部分对供电的要求并不相同,因此设计相应的电压转换电路,以满足系统各部分对供电的不同需求。

2.3.5 控制器选型

随着芯片技术的发展,单片CPU的处理速度和处理能力正在逐渐增强,其中德州仪器(TI)的DSP正在越来越多地应用与各个领域。尤其是F28XXX 系列的DSP非常适合运动控制,它含有丰富的外设、几十种中断响应、脉宽输出、光电编码接口、多种通信接口等等。因此本文选用DSP作为核心

控制器。另外DSP 含有上百KB 的片上FLASH ,一般规模的控制程序都可以写进FLASH 而不需要内存扩展。为了简化系统,数据处理模块也由DSP 来承担,而不单独使用其他的芯片实现。

由以上内容可知,四旋翼无人机控制器的硬件部分包含以下器件:(1)DSP 最小系统(2) 惯性测量单元(IMU)(3)数字罗盘(4)无线通讯模块

(5)电源模块(6)执行机构(7)超声波传感器

硬件系统各部分的组成如下图所示。 DSP

TMSF28335

控制器IMU

AD 转换

超声传感器GPIO CAP1捕捉口

电机组

PWM 11V 5V

电源模块数字罗盘

SCIA 无线通信模块SCIB

JTAG 时钟、复位电路

图2.4 控制系统硬件组成

2.4 小结

本章介绍控制了系统总体设计。首先将控制系统分成软件和硬件两部分,简要介绍了各个部分的组成和功能。接下来,分别介绍了导航系统、控制算法、通信系统的设计思路和部分硬件器材的选型准则。最后给出了控制器硬件结构,为论文的以后各章内容起到指导作用。

轴飞行器毕业设计论文

毕业论文 基于单片机的四轴飞行器 夏纯 吉林建筑大学 2015年6月

毕业论文 基于单片机的四轴飞行器 学生:夏纯 指导教师:许亮 专业:电子信息工程 所在单位:电气与电子信息工程学院答辩日期: 2015 年6月

目录 摘要.......................................................... I ABSTRACT ...................................................... II 第1章绪论. (1) 论文研究背景及意义 (1) 国内外的发展情况 (2) 本文主要研究内容 (4) 第2章总体方案设计 (5) 总体设计原理 (5) 总体设计方案 (5) 系统硬件电路设计方案 (5) 各部分功能作用 (6) 系统软件设计方案 (7) 第3章系统硬件电路设计 (8) Altium Designer Summer 09简介 (8) 总体电路设计 (8) 遥控器总体电路设计 (8) 飞行器总体电路设计 (10) 各部分电路设计 (10) 电源电路设计 (10) 主控单元电路设计 (12)

无线通信模块电路设计 (13) 惯性测量单元电路设计 (16) 电机驱动电路设计 (18) 串口调试电路设计 (19) PCB设计 (21) PCB设计技巧规则 (21) PCB设计步骤 (22)

PCB外形设计 (23) 实物介绍 (25) 第4章系统软件设计 (27) Keil 简介 (27) Keil MDK概述 (27) Keil MDK功能特点 (27) 软件设计框图 (28) 软件调试仿真 (29) 飞控软件设计 (30) MPU6050数据读取 (30) 姿态计算IMU (32) PID电机控制 (32) 结论 (36) 致谢 (38) 参考文献 (39) 附录1 遥控器主程序源代码 (40) 附录2 飞行器主程序源代码 (45) 附录3 遥控器原理图 (50) 附录4 飞行器原理图 (51)

四翼飞行器设计最新版 (1)

四旋翼飞行器设计 飞行器设计小组 组员:李阳,张响,马具彪,袁学松 指导老师:李培

目录 一四旋翼飞行器的发展背景 (3) 二四旋翼飞行器结构 (4) 三工作原理 (6) 1 四旋翼飞行器工作原理概述 (6) 2四旋翼飞行器运动状态 (6) 四零件数据详情 (12) 五外观设计 (14) 六内部设计 ............................................................错误!未定义书签。七四翼飞行器组装基本步骤 . (19) 八特点及其应用 (23) 1.飞行器的功能特点 (23) 2.飞行器的运用 (23) 3.未来前景 (23) 九参考文献 (24)

一四旋翼飞行器的发展背景四旋翼飞行器属飞行器的一种,属于人工智能与自动化机器的一种。在当今社会中,因体积小,功能多,而广泛使用。但由于构造复杂不易操作等原因,四旋翼飞行器的发展一直比较缓慢。近年来,由于新型材料、飞控技术的发展,微型四旋翼飞行器的发展非常迅速。南京航空航天大学研究出飞行器理论和数学建模,模糊控制等技术,促进了我国飞行器的发展。北京航空航天大学自主掌握共轴双翼机的自主控制与研发工作。浙江大学,清华大学研究出,机载GPS和数学建模机器人视觉。在国家的指导与鼓励下,很多所高校,积极响应,促进了我国四旋翼飞行器的发展。 国外已经对四旋翼飞行器做了大量研究,起步比国内早很多。在导航,自主飞行技术等方面领先国内。国外已经把飞行器广泛运用在军事勘察,工业监测,农业预防等多方面。

二四旋翼飞行器结构 四旋翼飞行器共有四个翼,均匀分布在前后左右,且四旋翼均在同平面内,左右上下完全对称。每个旋翼下都附有一个发动机,以提供动力。在飞行器的中心是一个飞行控制器,来控制飞行器的速度和方向。结构形式以及三视图如图1.1、图1.2所示。 图1.1四旋翼飞行器结构图

航空航天飞行器设计

武汉大学《航空航天技术概论》作业2 题目:新型神飞器的设计制做 学院:物理科学与技术学院 专业:物理学 姓名:胡万景 学号:2012335550114 2013年7月30日

本人在现代的航天器基础上利用最新的科研探索方向,从神飞器的名字、要完成的使命、如何设计、功能设计和设计控制、应用前景及任务等几个方面来构想一架现实为未来相结合的神飞器。 神飞器名字:永不落雪域神飞器 要完成的使命:探测宇宙星系、发展现代科学技术、解释科学谜团、携带人们实现太空之旅、军情探窥、为人类探测地球之外的能源 如何设计:“永不落雪域神飞器”将采用非传统的设计,从空气动力学角度来说,可以将它描述为一种升力体结构,在神器身后部设计自动化控制面版,包括全动式水平尾翼和双垂直尾翼与方向舵,这种飞翼可以自动收缩,而且为扁平的。该设计将成为未来全球最大超速巡航的神飞航天一体器,既可以用于航天事业又可以用于作战神器。由于高速巡航的需要和航天的探索,为了减小阻力而将前缘设计得很尖而且扁平,同时控制面也相应很薄很轻巧。神飞器前身下部的外形设计为超冲压核动力发动机进气道,提供外部压缩斜面,同时后身下部的外形设计为单膨胀喷管面。机体上表面采用无缓和的曲率,机身前装备大块的扁压舱,要使飞行器的重心足够靠前,提供近似中心的纵向和横向的稳定性。飞行器的机身桁梁和隔板由钢、钛、铝等纳米材料制成,其上覆盖有钢、铝陶瓷纳米盖。这些材料是由神飞器的硬度、随时可变形需求确定的,而尾舱选用镍钛合金,这是为了热防护的需要。出于飞行器平衡的需要,前舱采用了钨化纳米材料制实心块。机体的热防护采用碳耐高温陶瓷。前缘、上、下表面覆盖强化氧化铝纳米防热瓷瓦。钢铝纳米陶瓷金属盖设计为多个相对简单、低成本的刻面形状,这样会使得外型设计线加工到热防护系统防热陶瓷中,而于防热陶瓷的设计为外表面的机是在陶瓷安装到机身上。为此,表面涂纳米量子隐身漆,从而避免了被其他探测系统发现、热烘烤、抗干扰、防辐射、防腐蚀等性质极强的结构。对于低飞行器来说,水平表面只采用碳纳米材料防热;而对于高速神行器来说,水平和垂直表面都采用碳纳米材料防护。发动机着采用散热性好的珀合金材料,其整流罩和侧壁采用了主动式液氮冷却系统。从整体上说,这个神飞器是一个超级扁的飞行一体机,可以收缩变幻,可以变形。 功能设计和设计控制: 1.。神飞器的发动机:我们不使用传统的固态、液态、或者混合态发动机作为动力来提高效果,而现行的发动机有些国家利用太阳帆,利用太阳的能量,可是太阳能转化速度比较慢,所以传统的化学能和太阳能飞行器不适合进行长时间的飞行。为了我们的飞行器成为世界永不落神飞器,我们将在这个飞行器上装载核聚变动力器,让它成为核动力火箭。这将提供更快的速度和强大的能量源来源,而且消耗不尽,所以我们的神飞器会永远挂在空中而不降落,这也可以解决登陆其他行星时所遇到的各种能源来源问题。核聚变神飞器将大大缩短深空飞行的时间,可以为我们人类充分探索和利用太阳系资源开辟道路,这样的话我们能在一个月之内前往其他星系,那将是多么美妙的情景,也可以减少宇航员暴露在宇宙射线下的风险,人类如果需要进入深空,并有效的配合减速发动机的减速,就可以减少人们在空间飞行中受到的辐射,为人类缩短较短的太空旅程减少节省食物和水,这样我们的太空之旅每个人都可以实现。 宇宙飞船推进技术,我们只有在科幻小说中才听说过的“曲速推进”发动机,物质和反物质动力系统等,而现在我们这款神飞器完全可以实现。除了核动力发动机外,可控核聚变反应堆,使用核裂变技术的发动力系统是我们这个飞行器成为永不落飞行器唯一途径,我们在飞行器上安装四台核动力涡轮发动机,这些核

基于WIFI的智能多功能微型四旋翼飞行器设计

基于WIFI的智能多功能微型四旋翼飞行器设计 摘要:本文基于WIFI无线传输技术,通过建立四旋翼飞行器的空气动力数学模型,结合实际需求分析,通过单片机总控,各功能模块有机整合,优化软硬件设计,完成最终制作调试,实现飞行器的自由巡航、悬停、降落和视频探测等功能,达到了预期设计目标。 关键词:WIFI;四旋翼;飞行器 1.引言 四旋翼飞行器是一种可以实现垂直起降的旋翼式无人飞行器,具有操控简单,体积小,机动性强,启动快,方便拍摄等优点,能及时地将诸如地震、矿难等特殊现场第一手资料传送回控制中心,帮助我们了解现场状况并作出正确判断[1]。 国外对旋翼式飞行器的研究较多且较深入,我国在该领域的研究起步较晚,成果相对较弱,并且侧重点有所不同,有的侧重数学建模,有的侧重自动控制与研发等等[2]。 本文于是针对自然灾害等特殊现场设计了一种基于WIFI的智能多功能四旋翼飞行器,采用独立控制的四旋翼,升力更大,同时可狭小空间内起降,还具有机械结构简单、机动灵活、操控性高及成本低等优势。 2.建立动力学模型 2.1 坐标变换 四旋翼飞行器的四个旋翼都高速旋转,其所受的空气动力比较复杂,要建立非常准确的空气动力学模型比较困难,为了简化四旋翼飞行器的数学模型,可忽略其弹性形变[3]。为了相对准确的描述飞行器运动状态,建立三维数学坐标系,也叫机体坐标系。OX轴指向地平面方向,由右手定则确定OY轴和OZ轴的方向。用原点O表示飞行器的重心,则OX轴指向飞行器的前方,OY轴指向飞行器的右方,OZ轴指向飞行器的上方。地面三维坐标系与机体坐标系之间存在三个欧拉角:偏航角ψ(沿Z轴方向)、滚动角φ(沿X轴方向)和俯仰角q(沿Y轴方向)。两个坐标系之间的关系如下: ,,(1) 可进一步的转换矩阵得: (2) 经计算可得如下坐标转换公式:

四旋翼飞行器论文(原理图 程序)..

四旋翼自主飞行器(B题) 摘要 系统以R5F100LE作为四旋翼自主飞行器控制的核心,由电源模块、电机调速控制模块、传感器检测模块、飞行器控制模块等构成。飞行控制模块包括角度传感器、陀螺仪,传感器检测模块包括红外障碍传感器、超声波测距模块、TLS1401-LF模块,瑞萨MCU综合飞行器模块和传感器检测模块的信息,通过控制4个直流无刷电机转速来实现飞行器的欠驱动系统飞行。在动力学模型的基础上,将小型四旋翼飞行器实时控制算法分为两个PID控制回路,即位置控制回路和姿态控制回路。测试结果表明系统可通过各个模块的配合实现对电机的精确控制,具有平均速度快、定位误差小、运行较为稳定等特点。

目录 1 系统方案论证与控制方案的选择............................................................................................. - 2 - 1.1 地面黑线检测传感器............................................................................................................. - 2 - 1.2 电机的选择与论证................................................................................................................. - 2 - 1.3 电机驱动方案的选择与论证................................................................................................. - 3 - 2 四旋翼自主飞行器控制算法设计............................................................................................. - 3 - 2.1 四旋翼飞行器动力学模型..................................................................................................... - 3 - 2.2 PID控制算法结构分析.......................................................................................................... - 3 - 3 硬件电路设计与实现................................................................................................................. - 5 - 3.1飞行控制电路设计.................................................................................................................. - 5 - 3.2 电源模块................................................................................................................................. - 6 - 3.3 电机驱动模块......................................................................................................................... - 6 - 3.4 传感器检测模块..................................................................................................................... - 7 - 4 系统的程序设计......................................................................................................................... - 8 - 5 测试与结果分析......................................................................................................................... - 9 - 5.1 测试设备................................................................................................................................. - 9 - 5.2 测试结果................................................................................................................................. - 9 - 6 总结........................................................................................................................................... - 10 - 附录A 部分程序清单.................................................................................................................. - 11 -

未来飞行器设计要点

目录一.世界经济的发展等因素,城市的特点 二.代步工具的发展历程,以及其类型和特点 三.代步工具历史产品介绍 四.设计灵感与产品设计 五.产品设计 六.细节演示 七.未来代步工具的材料及其工业设计 八.展板

人们随着时代的发展,使出行代步工具发展的很快。要想从一个城市,快速到达另一个城市,人们又想方设法的使“出行代步工具”得到了进一步的发展。不外乎至使地上跑的,水中游的,天上飞的代步工具,发展的尽乎完美的快捷和舒适。 本次设计基于世界城市发展的背景之下,通过分析和研究城市化进程、城市居民出行方式以及代步工具的发展历程,结合人性化设计、人机工程学和设计心理学等工业设计相关理论来深入分析城市居民代步工具设计中使用者的生理和心理需求,探讨其更符合城市居民人性化设计需求的可行性方案。 一.世界经济的发展等因素,城市的特点 我国现代城市交通的发展具有两大特征: 城市交通与城市对外交通的联系加强了,综合交通和综合交通规划的概念更为清晰。 随着城市交通机动化程度的明显提高,城市交通的机动化已经成为现代城市交通发展的必然趋势。 1.发展规律 现代城市交通重要表象是“机动化”,其实质是对“快速”和“高效率”的追求。 城市交通拥挤一定程度上是城市经济繁荣和人民生活水平提高的表现。随着城市交通机动化的迅速发展,城市机动交通比例不断提高,机动交通与非机动交通、行人步行交通的矛盾不断激化,机动交通与守法意识薄弱的矛盾日渐明显。

交通需求越来越大,而城市交通设施的建设就数量而言,永远赶不上城市交通的发展,这是客观的必然。 现代城市交通机动化的迅速发展也势必对人的行为规律和城市形态产生巨大影响,城市交通机动化的发展也会成为城市社会经济和城市发展的制约因素。现代城市交通的复杂性要求我们对城市交通要进行综合性的战略研究和综合性的规划,城市规划要为城市和城市交通的现代化发展做好准备。 2. 城市综合交通规划的内容 城市人群出行方式的发展,历史与现状,以及促使居民出行方式发生变化的关键因素。 刚建国时期——交通不便大城市电车、汽车比较多见,黄包车,自行车是比较普遍的代步工具。在一般的中小城市,有少量的自行车和人力车。农村,北方有马车、人力板车,南方有航船、牛车,步行是最普遍的出行方式 改革开放前——有所改善,以自行车为主“一五”计划期间兴建宝成铁路、鹰厦铁路;新藏、青藏、川藏公路修到“世界屋脊”,密切了祖国内地同边疆的联系,也便利了经济文化的交流;1957年,武汉长江大桥建成,连接了长江南北的交通。 国家整体交通水平有所提高.改革开放前,城市的交通资源极为有限,人们出行除了用双脚行走之外,可以代步的交通工具也就是公交车和自行车了。但是公交线路少,车厢经常拥挤不堪。相比之下,最方便的交通工具当然是自行车,中国曾被称作“自行车王国”,可

电子设计大赛国赛_四旋翼自主飞行器A题

2013年全国大学生电子设计竞赛课题:四旋翼自主飞行器(B 题) 【本科组】 2013年9月7日

摘要 为了满足四旋翼飞行器的设计要求,设计了以微控制器为核心的控制系统和算法。首先进行了各单元电路方案的比较论证,确定了硬件设计方案。四旋翼飞行器采用了固连在刚性十字架交叉结构上的4个电机驱动的一种飞行器,以78K0R CPU內核为基础,围绕新的RL78 CPU內核演化而来的RL78/G13作为控制核心,工作频率高达32MHz,工作电压1.6V-5.5V,适合各种类型的消费类电子和工业应用, 满足8/16位微控制器的需求,有助于降低系统功耗,削减总系统的构建成本。采用9926B MOS管芯片的驱动直流电机,该驱动芯片具有内阻小、负载电流大、且控制简单的特性。通过采用MPU-6050整合的3轴陀螺仪、3轴加速器,并含可藉由第二个I2C端口连接其他厂牌之加速器、磁力传感器、或其他传感器的数位运动处理(DMP: Digital Motion Processor)硬件加速引擎,由主要I2C端口以单一数据流的形式,向应用端输出完整的9轴融合演算技术InvenSense的运动处理资料库,可处理运动感测的复杂数据,降低了运动处理运算对操作系统的负荷,实现了四旋翼飞行器运动速度和转向的精准控制。通过HC-SR04超声波测距模块实现了对四旋翼飞行器飞行高度的准确控制。通过激光传感器,实现了四旋翼飞行器沿黑线前进,在规定区域起降,投放铁片等功能,所采用的设计方案先进有效,完全达到了设计要求。 关键词:四旋翼自主飞行器,E18-D50NK光电传感器,寻线,超声波,单片机。

四旋翼自主飞行器(B 题) 【本科组】 1系统方案 本系统主要由电源模块、电机驱动模块、光电循迹模块模块、超声波测高模块、姿态传感器模块组成,下面分别论证这几个模块的选择。 1.1 电源模块的论证与选择 方案一:采用线性元器件LM7805三端稳压器构成稳压电路,为单片机等其他模块供电,输出纹波小,效率低,容易发热。 方案二:采用元器件2596为开关稳压芯片,效率高,输出的纹波大,不容易发热。 方案三:采用线性元器件2940构成稳压电路,为单片机等其他模块供电,输出纹波小,效率高,不容易发热,综合性能高。 综合以上三种方案,选择方案三。 1.2 电机驱动模块的论证与选择 方案一:采用三极管驱动,由于输出电流很大,容易发热, 方案二:采用L298N电机驱动模块,通过电流大,容易发热,使得电机转速变慢,载重量变小。 方案三:采用场效应管9926B芯片组成的电机驱动模块,驱动能力好。能承受的最大电流为7.5A,符合要求。 综合以上三种方案,选择方案三。 1.3 光电循迹模块的论证与选择 方案一:采用CCD摄像头采集图片经过算法处理循迹,前瞻性比较好、循迹效果好,但是处理程序复杂、成本高。 方案二:采用红外对管,有效距离太短,不能满足实际循迹要求。 方案三:采用E18-D50NK光电传感器,这是一种集发射与接收于一体的光电传感器, 检测距离可以根据要求进行调节。探测距离远、受可见光干扰小、前瞻性较好、抗干扰性较好。

2015年全国大学生电子设计大赛四旋翼飞行器论文

2015年全国大学生电子设计竞赛多旋翼自主飞行器(C题) 2015年8月15日

摘要 本文对四旋翼碟形飞行器进行了初步的研究和设计。首先,对飞行器各旋翼的电机选择做了论证,分析了实际升力效率与PWM的关系并选择了此样机的最优工作频率,并重点对飞行器进行了硬件和软件的设计。 本飞行器采用瑞萨R5F100LEA单片机为主控制器,通过四元数算法处理传感器MPU6000采集机身平衡信息并进行闭环的PID控制来保持机身的平衡。整个控制系统包括电源模块、传感器检测模块、电机调速模块、飞行控制模块及微处理器模块等。角度传感器和角速率传感模块为整个系统提供飞行器当前姿态和角速率信号,构成飞行器的增稳系统。本系统经过飞行测试,可以达到设计要求。关键字:R5F100LEA单片机、传感器、PWM、PID控制。

目录 1系统方案 (1) 1.1电机的论证与选择 (1) 1.2红外对管检测传感器的论证与选择 (1) 1.3电机驱动方案的论证与选择 (2) 2系统控制理论分析 (2) 2.1控制方式 (2) 2.2 PID模糊控制算法 (2) 3控制系统硬件与软件设计 (4) 3.1系统硬件电路设计 (4) 3.1.1系统总体框图 (4) 3.1.2 飞行控制电路原理图 (4) 3.1.3电机驱动模块子系统 (5) 3.1.4电源 (5) 3.1.5简易电子示高模块电路原理图 (6) 3.2系统软件设计 (6) 3.2.1程序功能描述与设计思路 (6) 3.2.2程序流程图 (6) 4测试条件与测试结果 (7) 4.1 测试条件与仪器 (7) 4.2 测试结果及分析 (7) 4.2.1测试结果(数据) (7) 4.2.2测试分析与结论 (8) 附录1:电路图原理 (9) 附录2:源程序 (10)

轴飞行器作品说明书

四轴飞行器 作品说明书 摘要 四轴飞行器在各个领域应用广泛。相比其他类型的飞行器,四轴飞行器硬件结构简单紧凑,而软件复杂。本文介绍四轴飞行器的一个实现方案,软件算法,包括加速度计校正、姿态计算和姿态控制三部分。校正加速度计采用最小二乘法。计算姿态采用姿态插值法、需要对比这三种方法然后选出一种来应用。控制姿态采用欧拉角控制或四元数控制。 关键词:四轴飞行器;姿态;控制

目录 1.引言 (1) 2.飞行器的构成? (1) .硬件构成..............................................1? 机械构成 (1) 电气构成 (3) .软件构成 (3) 上位机 (3) 下位机........... . (4) 3.飞行原理........... ................................ (4) . 坐标系统 (4) .姿态的表示 (5) .动力学原理 (5) 4.姿态测量........... ................................ (6) .传感器校正 (6) 加速度计和电子罗盘 (6) 5.姿态控制 (6) .欧拉角控制 (6) .四元数控制 (7) 6.姿态计算 (7) 7.总结 (8) 参考文献 (9)

四轴飞行器最开始是由军方研发的一种新式飞行器。随着MEMS?传感器、单片机、电机和电池技术的发展和普及,四轴飞行器成为航模界的新锐力量。到今天,四轴飞行器已经应用到各个领域,如军事打击、公安追捕、灾害搜救、农林业调查、输电线巡查、广告宣传航拍、航模玩具等。 目前应用广泛的飞行器有:固定翼飞行器和单轴的直升机。与固定翼飞行器相比,四轴飞行器机动性好,动作灵活,可以垂直起飞降落和悬停,缺点是续航时间短得多、飞行速度不快;而与单轴直升机比,四轴飞行器的机械简单,无需尾桨抵消反力矩,成本低?。 本文就小型电动四轴飞行器,介绍四轴飞行器的一种实现方案,讲解四轴飞行器的原理和用到的算法,并对几种姿态算法进行比较。 2.飞行器的构成 四轴飞行器的实现可以分为硬件和软件两部分。比起其他类型的飞行器,四轴飞行器的硬件比较简单,而把系统的复杂性转移到软件上,所以本文的主要内容是软件的实现。? .硬件构成? 飞行器由机架、电机、螺旋桨和控制电路构成。 机械构成? 机架呈十字状,是固定其他部件的平台,本项目采用的是碳纤维材料的机架。电机采用无刷直流电机,固定在机架的四个端点上,而螺旋桨固定在电机转子上,迎风面垂直向下。螺旋桨按旋转方向分正桨和反桨,从迎风面看逆时针转的为正桨,四个桨的中心连成的正方形,正桨反桨交错安装。 CA D设计机架如图: 整体如图2-1: 电气构成 电气部分包括:控制电路板、电子调速器、电池,和一些外接的通讯、传感器模块。控制电路板是电气部分的核心,上面包含MCU、陀螺仪、加速度计、电子罗盘、气压计等芯片,负责计算姿态、处理通信命令和输出控制信号到电子调速器。电子调速器简称电调,用于控制无刷直流电机。 电气连接如图2-2所示。 .软件构成

四旋翼飞行器设计资料

四旋翼飞行器的设计 四旋翼微型飞行器是一种以4个电机作为动力装置.通过调节电机转 速来控制飞行的欠驱动系统;为了实现四旋翼微型飞行器的自主飞行 控制,对飞行控制系统进行了初步设计,并且以C8051F020单片机为计算控制单元,给出了飞行控制系统的硬件设计,研究了设计中的关键技术;由于采用贴片封装和低功耗的元器件,使飞行器具有重量轻、体积小、功耗低的优点;经过多次室内试验,该硬件设计性能可靠,能满足飞行器起飞、悬停、降落等飞行模态的控制要求. 一.微小型四旋翼飞行器的发展前景 根据微小型四旋翼飞行器发展现状和相关高新技术发展趋势, 预计它将有以下发展前景。 1 )随着相关研究进一步深入,预计在不久的将来小型四旋翼飞行 器技术会逐步走向成熟与实用。任务规划、飞行控制、无 G P S 导航、视觉和通信等子系统将进一步健全和完善,使其具有自主起降和全天候抗干扰稳定飞行能力。它未来的主要技术指标:任务半径 5 k m,飞行高度 1 0 0 m,续航时间 1 h ,有效载荷约 5 0 0 g ,完全能够填补目前国际上在该范围内侦察手段的空白。 2 )未来的微型四旋翼飞行器将完全能够达到美国国防预研局对 M A V基本技术指标的要求。随着低雷诺数空气动力学研究的深入,以及纳米和 M E MS 技术的发展,四旋翼 M A V必然取得理论和工程上的突破。它将是一种有 4个旋翼的可飞行传感器芯片,是一

任务与通信等子与能源、动力导航与控制、 ( 个集成多个子系统系统) 的高度复杂ME M S系统;不但能够在空中悬停和向任意方向机动飞行,还 能飞临、绕过甚至是穿过目标物体。此外,它还将拥有良好的隐身功能和信息传输能力。 3 )微小型四旋翼飞行器的编队飞行与作战应 在未来的战争中,微小型四旋翼飞行器的任务之一将是对敌方进行电子干扰并攻击其核心目标。单个微小型飞行器的有效载荷量毕竟有限,难以有效地完成任务,而编队飞行与作战不仅可以极大地提高有效载荷量,还能够增强其突防能力。 二.四旋翼飞行器的国内外研究现状 目前世界上存在的四旋翼飞行器基本上都属于微小型无人飞行器,一般可分为3类:遥控航模四旋翼飞行器、小型四旋翼飞行器以及微型四旋翼飞行器。 (1)遥控航模四旋翼飞行器 遥控航模四旋翼飞行器的典型代表是美国Dfaganflyer公司研制的Dragan.flyer III和香港银辉(silverlit)玩具制品有限公司研制的X.UFO。Draganflyer III是一款世界著名的遥控航模四旋翼飞行器,主要用于航拍。机体最大长度(翼尖到翼尖)76.2cm,高18cm,重481.19:旋翼直径28cm,重69;有效载荷113.29;可持续飞行16--20min。Draganflyer III采用了碳纤维和高性能塑料作为机体材料,其机载电子设备可以控1书1]4个电机的转速。另外,还使用

四旋翼飞行器飞行控制系统设计开题报告

四旋翼飞行器飞行控制系统设计开题报告

集美大学信息工程学院 毕业设计(论文)开题报告 设计题目:四旋翼飞行器飞行控制系统设计 专业通信工程班级通信1012 姓名 xxx 学号xxx

设计方案如下: 1、利用atmega 2560单片机开发飞行控制系统,采集传感器数据,计算飞机姿态, 通过PWM控制电调实现飞行控制。 2、Atmega 2560 单片机将实时传感器的数据通过串口输出给s5pv210(Cortex-A8) 嵌入式系统,在通过无线网卡发送给地面站。 3、S5pv210采集摄像头数据,H.264编码完通过RTSP协议传给地面站。 补充对系统框图的说明。。。。。。 计划进度安排ATmega2 560 加速度计、陀螺 I2 电调无刷电 S5PV210 嵌入式 串 无线 摄 PW 云台 PW V4

(1)2014年2月17日起至2014年2月28日: 查阅本学科最新发展动态和最新研究论文;根据任务书撰写开题报告,完成5000字的英译汉; (2)2014年3月1日起至2014年3月20日: 学习Linux操作系统驱动编程,编写Linux系统应用; (3)2014年3月21日起至2012年4月10日: 完成对互补滤波器算法研究,用互补滤波器对陀螺仪测量误差进行矫正,并学习互补滤波器融合系数的确定方法; 学习基于欧拉角反馈的PID 控制器进行姿态控制算法; (4)2014年4月11日起至2014年5月15日: 设计四旋翼飞行器飞行控制系统的软硬件实现,完成调试、测试、优化结果; (5)2014年5月15日起至2014年6月10日: 完成毕业设计论文;准备相应的电子文档,完成毕业答辩。 指导教师意见 该同学对毕业设计的任务明确,提出的设计方案和技术路线可行,计划进度安排合理,同意开题。 指导教师签名: 20年月日

固定翼设计涉及的几个方面技术

1、微型无人机平台 (1)设计要求 基于小型无人机的摄影测量遥感平台还处于起步阶段,还没有一套完整的作业规范。现行的航测规范主要是参照大多数测绘单位现有的技术条件和仪器设备制定的, 而小型无人机作为一种新型的低空对地观测平台,主要在1000m以下的高度进行航拍,且其采用的是高分辨率的数码相机作为成像设备,与传统的航空摄影测量有较大的不同。因此,已有的摄影测量规范在这种新型摄影平台上并不一定能适用。按照传统的 航测作业准则,有以下几点参考指标: 1)飞行速度宜在5O~100km/h之内; 2) 发动机宜在飞机前进方向的后部(以避免湍流的影响); 3) 在发动机出故障时,飞机应可以安全滑翔降落; 4) 相对地面的飞行高度的变化应小于5%; 5) 相邻摄站飞行高度的变化应小于5%; 6) 航摄平台在作业时其水平误差不得大于3。; 7) 测量飞行速度的误差不大于5%; 8) 偏离航线的绝对误差不得大于相片旁向覆盖域的5%; (2)微型无人机遥感设备集成与接口 微型无人机平台可采用的候选遥感设备包括4种高空间分辨率(<1 m×1 m)轻型(<6O kg)机载合成孔径雷达(SAR)和两种轻型光学成像设备。选择适合于具体应用和无人机特点的遥感设备,建立标准设备接口,缩短安装调试周期是集成应用型无人机航 空遥感系统的关键。具体内容包括: 1)针对不同应用要求,通过性能价格比较,选择遥感设备; 2)完成遥感数据获取设备与无人机平台之间的统一接口设计,以便实现不同型号SAR、红外摄像仪和可见光CCD等设备的快速更换; 3) 无人机遥感设备的安装调试。 2、微型无人机飞行控制系统

NCG-1型无人机飞控系统是我公司技术人员自主研发的一套微型无人机控制系统。该系统包含:机载飞控、地面站、通讯设备。可以控制各种布局的无人驾驶飞机,使 用简单方便,控制精度高,GPS导航自动飞行功能强,并且有各种任务接口,方便用 户使用各种任务设备。起飞后即可立即关闭遥控器进入自动导航方式,在地面站上可 以随意设置飞行路线和航点,支持飞行中实时修改飞行航点和更改飞行目标点。单一 地面站控制多架飞机的能力和自动起降的功能也正在开发中。 作为无人机的飞行控制核心设备,系统的主要任务是利用GPS等导航定位信号, 并采集加速度计、陀螺等飞行器平台的动态信息,通过INS/GPS组合导航算法解算无 人机在飞行中的俯仰、横滚、偏航、位置、速度、高度、空速等信息,以及接收处理 地面发射的测控信息,用体积小巧的嵌入式中央处理器形成以机载控制计算机为核心 的电子导航设备,对无人机进行数字化控制,根据所选轨道来设计舵面偏转规律,控 制无人机按照预定的航迹飞行,使其具有自主智能超视距飞行的能力。 (1)自稳能力: 在各种气象条件及外界不可预测影响下,智能测算无人机的各项指标参数,自动 控制无人机的飞行姿态的稳定,确保无人机正常飞行; (2)自航能力: 在保持无人机飞行稳定的前提下,采用各种导航手段,控制无人机按照预先设定 的航迹飞行,执行相应航线任务; (3)状态监控与测控接口: 作为整个无人机系统的控制核心,飞行控制计算机系统实时监控无人机各模块状态,并通过高速接口与地面站实时进行指令和数据的交换。 NCG-1型无人机飞控系统采用了最先进的FutabaPCM1024系列遥控,操作比一般的无人机控制系统更加灵活灵活,飞行姿态控制更加方便。控制系统的舵机是我公司 自主研发的,达到了50Hz更新率,13 位舵机分辨率,使我们的微型无人机能够获取 更高精度的数据。主要特性如下: 集成4Hz更新率GPS,可扩展北斗、GLONASS组合导航; 集成数字式空速、气压传感器,0.1mba高精度,高度测量可扩展无线电高度计; 集成低成本低重量IMU,通过带GPS修正的Kalman滤波计算最贴近真实情况的 飞机姿态,动态精度±2o,消除瞬时加速度、陀螺漂移对姿态计算的影响;

四轴飞行器毕业设计论文

四轴飞行器毕业设计论文 This model paper was revised by the Standardization Office on December 10, 2020

毕业论文 基于单片机的四轴飞行器 夏纯 吉林建筑大学 2015年6月

毕业论文 基于单片机的四轴飞行器 学生:夏纯 指导教师:许亮 专业:电子信息工程 所在单位:电气与电子信息工程学院答辩日期: 2015 年6月

目录 摘要.......................................................... I ABSTRACT ...................................................... II 第1章绪论. (1) 论文研究背景及意义 (1) 国内外的发展情况 (2) 本文主要研究内容 (4) 第2章总体方案设计 (5) 总体设计原理 (5) 总体设计方案 (5) 系统硬件电路设计方案 (5) 各部分功能作用 (6) 系统软件设计方案 (7) 第3章系统硬件电路设计 (8) Altium Designer Summer 09简介 (8) 总体电路设计 (8) 遥控器总体电路设计 (8) 飞行器总体电路设计 (10) 各部分电路设计 (10) 电源电路设计 (10) 主控单元电路设计 (12)

无线通信模块电路设计 (13) 惯性测量单元电路设计 (16) 电机驱动电路设计 (18) 串口调试电路设计 (19) PCB设计 (21) PCB设计技巧规则 (21) PCB设计步骤 (22)

四轴飞行器论文

2014-2015年大学生创业新基金项目结题论文 作品名称:用于作物生长监测的飞行机器人 学院:工学院 指导老师:孙磊 申报者姓名(团队名称):李家强、梁闪闪、谈姚勇 二〇一五年五月

目录 摘要 (3) 关键词 (3) 引言 (3) 多旋翼农用无人机的发展简史 (4) 作品设计方案 1.1 飞行器的结构框架和工作原理 (5) 1.2 硬件选择 (6) 1.3硬件电路设计 1.3.1:主控模块 (7) 1.3.2:姿态传感器模块 (8) 1.3.3:电源模块 (9) 1.4 软件系统设计 1.4.1:总体设计 (9) 1.4.2:姿态解算实现 (10) 参考文献 (11) 附件1:作品实物图 (12) 附件2:原件清单 (13) 附件3 电路原理图 (14) 附件4 部分程序(遥控器) (15)

关于作物成产检测的飞行机器人的研究报告 作者:李家强、梁闪闪、谈姚勇指导老师:孙磊 (安徽农业大学工学院合肥市长江西路130号 230036) 摘要:四旋翼飞行器通过排布在十字形支架四个顶端的旋翼,产生气动力,控制飞行器的升降、倾斜、旋转等。本文主要讨论四旋翼飞行器所选用的单片机类型,以及选用此款单片机的原因。通过PWM技术来调节飞行器的飞行状态,以MPU-6050为惯性测量器件。所形成的飞行控制系统使得飞行器能达到较平稳的飞行姿态。整体采用无线遥控控 制,无线频波为2.51GHZ。 关键词:四旋翼飞行器、作物检测、飞行时间、飞行距离 Abstract:through four rotor aircraft configuration at the top of the cross-shaped bracket four rotor, aerodynamic force, control aircraft movements, tilt, rotation, etc. This article focuses on four rotor aircraft chooses the types of single chip microcomputer and choose this single chip microcomputer. Through the PWM technology to adjust the aircraft's flight status, inertial measurement device for MPU - 6050. Formed by makes the aircraft flight control system can achieve a smooth flight. Overall the wireless remote control, wireless 2.51 GHZ frequency wave. Keywords: four rotor aircraft, crop detection, time of flight, flight distance 引言:随着我国的经济迅速发展,农业种植的规模化、机械化、信息化。但是现阶段的农业生产中存在着一些很棘手的问题。例如农作物的病虫害的实时监控这个问题以及作物生长情况采样分析等。而飞行机器人可以利用自身携带的航拍工具在操作人员制定的地块进行拍摄,通过无线接收装置可以在操控室的接收显示屏播放航拍发送回来的图片和视频。此作品飞行距离可达到2000米,留空时间可达30分钟。故而此作品完全可以实时监测农作物的病虫害的发展以及采取大量有效的作物生长数据。

四旋翼飞行器 设计报告

大学生电子设计竞赛 设计报告 摘要:本设计实现基于STM32开发板的十字形四旋翼飞行器,四旋翼由主控制板、陀螺仪、电机模块、超声波测距、电源和投弹打靶模块等六部分组成。其中,控制核心STM32负责飞行器姿态数据接收和飞行姿态控制;陀螺仪采用MPU6050模块,该模块经过卡尔曼滤波处理采集的数据,输出数据,用PID控制算法对数据进行处理,同时,解算出相应电机需要的的PWM增减量,及时调整电机转速,调整飞行姿态,使飞行器的飞行的更加稳定。电机模块通过电调控制无刷直流电机,超声波传感器进行测距,起飞后悬停在一定高度,打靶后降落。 关键词:四旋翼;PID控制;陀螺仪,姿态角,电机控制

2

目录 1系统方案 (1) 1.1控制系统选择方案 (1) 1.2飞行姿态控制方案论证 (1) 1.3角度测量模块的方案论证 (2) 1.4高度测量模块方案论证.............................................. 错误!未定义书签。2理论分析与计算 (2) 2.1控制模块 .................................................................... 错误!未定义书签。 2.2机翼电机 .................................................................... 错误!未定义书签。 2.3飞行姿态控制单元 (3) 3电路与程序设计 (4) 3.1系统总体设计思路 (4) 3.2主要元器件清单......................................................... 错误!未定义书签。 3.3系统框图 .................................................................... 错误!未定义书签。 3.3.1系统硬件框图 ..................................................... 错误!未定义书签。 3.3.2系统软件框图 ..................................................... 错误!未定义书签。4测试方案与测试结果.. (5) 5结论 (6) 3

相关主题
文本预览
相关文档 最新文档