当前位置:文档之家› 四旋翼飞行器飞行控制系统设计开题报告

四旋翼飞行器飞行控制系统设计开题报告

四旋翼飞行器飞行控制系统设计开题报告
四旋翼飞行器飞行控制系统设计开题报告

四旋翼飞行器飞行控制系统设计开题报告

集美大学信息工程学院

毕业设计(论文)开题报告

设计题目:四旋翼飞行器飞行控制系统设计

专业通信工程班级通信1012 姓名 xxx 学号xxx

设计方案如下:

1、利用atmega 2560单片机开发飞行控制系统,采集传感器数据,计算飞机姿态,

通过PWM控制电调实现飞行控制。

2、Atmega 2560 单片机将实时传感器的数据通过串口输出给s5pv210(Cortex-A8)

嵌入式系统,在通过无线网卡发送给地面站。

3、S5pv210采集摄像头数据,H.264编码完通过RTSP协议传给地面站。

补充对系统框图的说明。。。。。。

计划进度安排ATmega2

560 加速度计、陀螺

I2

电调无刷电

S5PV210

嵌入式

无线

PW

云台

PW V4

(1)2014年2月17日起至2014年2月28日:

查阅本学科最新发展动态和最新研究论文;根据任务书撰写开题报告,完成5000字的英译汉;

(2)2014年3月1日起至2014年3月20日:

学习Linux操作系统驱动编程,编写Linux系统应用;

(3)2014年3月21日起至2012年4月10日:

完成对互补滤波器算法研究,用互补滤波器对陀螺仪测量误差进行矫正,并学习互补滤波器融合系数的确定方法; 学习基于欧拉角反馈的PID 控制器进行姿态控制算法;

(4)2014年4月11日起至2014年5月15日:

设计四旋翼飞行器飞行控制系统的软硬件实现,完成调试、测试、优化结果;

(5)2014年5月15日起至2014年6月10日:

完成毕业设计论文;准备相应的电子文档,完成毕业答辩。

指导教师意见

该同学对毕业设计的任务明确,提出的设计方案和技术路线可行,计划进度安排合理,同意开题。

指导教师签名:

20年月日

基于STM32的四旋翼飞行器设计

摘要 四轴飞行器是一种结构紧凑、飞行方式独特的垂直起降式飞行器,与普通飞行器相比,具有结构简单、故障率低和单位体积能够产生更大升力等优点,所以在军事和民用多个领域都有广阔的应用前景,非常适合在狭小空间内执行任务。 本设计采用stm32f103zet6作为主控芯片,3轴加速度传感器mpu6050作为惯性测量单元,通过2.4G无线模块和遥控板进行通信,最终使用PID控制算法以PWM方式控制电子调速器驱动电机实现了四轴飞行器的设计。 关键词:四轴飞行器,stm32;mpu6050,2.4G无线模块.PID.PWM

Abstract Quadrocopter has broad application prospect in the area of military and civilian because of its advantages of simple structure. Small size, low failure rate, taking off and landing ertically . etc. it is suitable for having task in narrow space. This design uses STM32f103zet6 as the master chip, and triaxial accelerometer mpu6050 inertial measurement unit, via 2.4G wireless module and remote control panel for communication. Finally using pid control algorithm with pwm drives the electronic speed controller to change moto to realize the design of quadrocopter. Key word : quadrocopter,stm32,mpu6050,2.4G wireless module ;pid; pwm

四旋翼设计报告

四旋翼自主飞行器(A题) 摘要 四旋翼飞行器是无人飞行器中一个热门的研究分支,随着惯性导航技术的发展与惯导传感器精度的提高,四旋翼飞行器在近些年得到了快速的发展。 为了满足四旋翼飞行的设计要求,系统以STM32F103VET6作为四旋翼自主飞行器控制的核心,处理器内核为ARM32位Cortex-M3 CPU,最高72MHz工作频率,工作电压3.3V-5.5V。该四旋翼由电源模块、电机电调调速控制模块、传感器检测模块、飞行器控制模块等构成。飞行姿态检测模块是通过采用MPU-6050模块,整合3轴陀螺仪、3轴加速度计,检测飞行器实时飞行姿态,实现飞行器运动速度和转向的精准控制。传感器检测模块包括红外障碍传感器、超声波测距模块,在动力学模 型的基础上,将四旋翼飞行器实时控制算法分为两个PID 控制回路,即位置控制回 路和姿态控制回路。测试结果表明系统可通过各个模块的配合实现对电机的精确控制,具有平均速度快、定位误差小、运行较为稳定等特点。 关键词:四旋翼飞行器;STM32;飞行姿态控制;串口PID

目录 1 系统方案论证与控制方案的选择...................................................................- 2 - 1.1 地面黑线检测传感器...................................................................... .............- 2 - 1.2 电机的选择与论证...................................................................... .................- 2 - 1.3 电机驱动方案的选择与论证...................................................................... .- 2 - 2 四旋翼自主飞行器控制算法设计...................................................................- 3 -

电子设计大赛四旋翼设计报告最终版

四旋翼飞行器(A 题)参赛队号:20140057号

四旋翼飞行器 设计摘要: 四旋翼作为一种具有结构特殊的旋转翼无人飞行器,与固定翼无人机相比,它具有体积小,垂直起降,具有很强的机动性,负载能力强,能快速、灵活的在各个方向进行机动,结构简单,易于控制,且能执行各种特殊、危险任务等特点。 因此在军用和民用领域具有广泛的应用前景如低空侦察、灾害现场监视与救援等。多旋翼无人机飞行原理上比较简单,但涉及的科技领域比较广,从机体的优化设计、传感器算法、软件及控制系统的设计都需要高科技的支持。 四旋翼无人机的飞行控制技术是无人机研究的重点之一。它使用直接力矩,实现六自由度(位置与姿态)控制,具有多变量、非线性、强耦合和干扰敏感的特性。此外,由于飞行过程中,微型飞行器同时受到多种物理效应的作用,还很容易受到气流等外部环境的干扰,模型准确性和传感器精度也将对控制器性能产生影响,这些都使得飞行控制系统的设计变得非常困难。 因此,研究既能精确控制飞行姿态,又具有较强抗干扰和环境自适应能力的姿态控制器是微小型四旋翼飞行器飞行控制系统研究的当务之急。

一、引言: 1.1 题目理解:四旋翼飞行器,顾名思义,其四只旋转的翅膀为飞行的动力来源。四只旋转翼是无刷电机,因此对于无刷电机的控制调速系统对飞行器的飞行性能起着决定性的作用。在本次大赛中,需要利用四旋翼飞行器平台,实现四旋翼的起飞,悬停,姿态控制,以及四旋翼和地面之间的测距等功能。 1.2 设计思路:为了满足飞行器的设计要求,要使用以微控制器为核心的控制系统,使本系统以MC9S12XS128模拟出控制信号,用STM32 MMC10接收模拟信号,然后翻译出模拟信号,利用加速度与陀螺仪传感器采集飞行器的飞行数据,加以闭环调控和精准的控制算法。进行上升、下降以及悬停等动作。 1.3 特点:本飞行器脱离遥控器控制,用微处理器实现整个飞行过程全自动控制,控制精度高。 二、方案设计: 系统主要由STM32模块,微处理器MC9S12XS128模块,电源模块,电机模块,超声波模块,加速度陀螺仪模块等构成。 系统总体框图如下图(图2.0): STM32 MMC10 四路 PWM 通道 电调 无刷电机 高度显示数码管 信号接收 MC9S12XS128 GPIO 模块 时钟 模块 超声波传 感器 电源 图2.0 其中微处理器MC9S12XS128模块的外围电路见附录一2.1 控制系统选择方案:

2015年全国大学生电子设计大赛四旋翼飞行器论文

2015年全国大学生电子设计竞赛多旋翼自主飞行器(C题) 2015年8月15日

摘要 本文对四旋翼碟形飞行器进行了初步的研究和设计。首先,对飞行器各旋翼的电机选择做了论证,分析了实际升力效率与PWM的关系并选择了此样机的最优工作频率,并重点对飞行器进行了硬件和软件的设计。 本飞行器采用瑞萨R5F100LEA单片机为主控制器,通过四元数算法处理传感器MPU6000采集机身平衡信息并进行闭环的PID控制来保持机身的平衡。整个控制系统包括电源模块、传感器检测模块、电机调速模块、飞行控制模块及微处理器模块等。角度传感器和角速率传感模块为整个系统提供飞行器当前姿态和角速率信号,构成飞行器的增稳系统。本系统经过飞行测试,可以达到设计要求。关键字:R5F100LEA单片机、传感器、PWM、PID控制。

目录 1系统方案 (1) 1.1电机的论证与选择 (1) 1.2红外对管检测传感器的论证与选择 (1) 1.3电机驱动方案的论证与选择 (2) 2系统控制理论分析 (2) 2.1控制方式 (2) 2.2 PID模糊控制算法 (2) 3控制系统硬件与软件设计 (4) 3.1系统硬件电路设计 (4) 3.1.1系统总体框图 (4) 3.1.2 飞行控制电路原理图 (4) 3.1.3电机驱动模块子系统 (5) 3.1.4电源 (5) 3.1.5简易电子示高模块电路原理图 (6) 3.2系统软件设计 (6) 3.2.1程序功能描述与设计思路 (6) 3.2.2程序流程图 (6) 4测试条件与测试结果 (7) 4.1 测试条件与仪器 (7) 4.2 测试结果及分析 (7) 4.2.1测试结果(数据) (7) 4.2.2测试分析与结论 (8) 附录1:电路图原理 (9) 附录2:源程序 (10)

四旋翼飞行器建模与仿真Matlab概要

四轴飞行器的建模与仿真 摘要 具有广泛的军事和民事应用前景。本文根据对四旋翼飞行器的机架结构和动力学特性做详尽 的分析和研究,在此基础上建立四旋翼飞行器的动力学模型。四旋翼飞行器有各种的运行状 态,比如:爬升、下降、悬停、滚转运动、俯仰运动、偏航运动等。本文采用动力学模型来描 述四旋翼飞行器的飞行姿态。在上述研究和分析的基础上 是通过对飞行器的飞行原理和各种运动状态下的受力关系以及参考牛顿 真模型,模型建立后在 Matlab/simuli nk 软件中进行仿真。 关键字:四旋翼飞行器,动力学模型,Matlab/simulink Modeling and Simulating for a quad-rotor aircraft ABSTRACT The quad-rotor is a VTOL multi-rotor aircraft. It is very fit for the kind of reconnaissanee mission and monitoring task of near-Earth, so it can be used in a wide range of military and civilia n app licati ons. In the dissertati on, the detailed an alysis and research on the rack structure and dyn amic characteristics of the laboratory four-rotor aircraft is showed in the dissertatio n. The dynamic model of the four-rotor aircraft areestablished. It also studies on the force in the four-rotor aircraft flight principles and course of the camp aig n to make the research and an alysis. The four-rotor aircraft has many op erati ng status, such as climb ing, dow ning, hoveri ng and roll ing moveme nt, p itch ing moveme nt and yaw ing moveme nt. The dyn amic model is used to describe the four-rotor aircraft in flight in the dissertati on. On the basis of the above an alysis, modeli ng of the aircraft can be made. Dyn amics modeli ng is to build models un der the principles of flight of the aircraft and a variety of state of moti on, and Newt on - Euler model with reference to the four-rotor aircraft.The n the simulatio n is done in the software of Matlab/simuli nk. Keywords: Quad-rotor ,The dynamic mode, Matlab/simulink 四旋翼飞行器是一种能够垂直起降的多旋翼飞行器 ,它非常适合近地侦察、监视的任务, ,进行飞行器的建模。动力学建模 -欧拉模型建立的仿

基于WIFI的智能多功能微型四旋翼飞行器设计

基于WIFI的智能多功能微型四旋翼飞行器设计 摘要:本文基于WIFI无线传输技术,通过建立四旋翼飞行器的空气动力数学模型,结合实际需求分析,通过单片机总控,各功能模块有机整合,优化软硬件设计,完成最终制作调试,实现飞行器的自由巡航、悬停、降落和视频探测等功能,达到了预期设计目标。 关键词:WIFI;四旋翼;飞行器 1.引言 四旋翼飞行器是一种可以实现垂直起降的旋翼式无人飞行器,具有操控简单,体积小,机动性强,启动快,方便拍摄等优点,能及时地将诸如地震、矿难等特殊现场第一手资料传送回控制中心,帮助我们了解现场状况并作出正确判断[1]。 国外对旋翼式飞行器的研究较多且较深入,我国在该领域的研究起步较晚,成果相对较弱,并且侧重点有所不同,有的侧重数学建模,有的侧重自动控制与研发等等[2]。 本文于是针对自然灾害等特殊现场设计了一种基于WIFI的智能多功能四旋翼飞行器,采用独立控制的四旋翼,升力更大,同时可狭小空间内起降,还具有机械结构简单、机动灵活、操控性高及成本低等优势。 2.建立动力学模型 2.1 坐标变换 四旋翼飞行器的四个旋翼都高速旋转,其所受的空气动力比较复杂,要建立非常准确的空气动力学模型比较困难,为了简化四旋翼飞行器的数学模型,可忽略其弹性形变[3]。为了相对准确的描述飞行器运动状态,建立三维数学坐标系,也叫机体坐标系。OX轴指向地平面方向,由右手定则确定OY轴和OZ轴的方向。用原点O表示飞行器的重心,则OX轴指向飞行器的前方,OY轴指向飞行器的右方,OZ轴指向飞行器的上方。地面三维坐标系与机体坐标系之间存在三个欧拉角:偏航角ψ(沿Z轴方向)、滚动角φ(沿X轴方向)和俯仰角q(沿Y轴方向)。两个坐标系之间的关系如下: ,,(1) 可进一步的转换矩阵得: (2) 经计算可得如下坐标转换公式:

四旋翼飞行器论文(原理图 程序)..

四旋翼自主飞行器(B题) 摘要 系统以R5F100LE作为四旋翼自主飞行器控制的核心,由电源模块、电机调速控制模块、传感器检测模块、飞行器控制模块等构成。飞行控制模块包括角度传感器、陀螺仪,传感器检测模块包括红外障碍传感器、超声波测距模块、TLS1401-LF模块,瑞萨MCU综合飞行器模块和传感器检测模块的信息,通过控制4个直流无刷电机转速来实现飞行器的欠驱动系统飞行。在动力学模型的基础上,将小型四旋翼飞行器实时控制算法分为两个PID控制回路,即位置控制回路和姿态控制回路。测试结果表明系统可通过各个模块的配合实现对电机的精确控制,具有平均速度快、定位误差小、运行较为稳定等特点。

目录 1 系统方案论证与控制方案的选择............................................................................................. - 2 - 1.1 地面黑线检测传感器............................................................................................................. - 2 - 1.2 电机的选择与论证................................................................................................................. - 2 - 1.3 电机驱动方案的选择与论证................................................................................................. - 3 - 2 四旋翼自主飞行器控制算法设计............................................................................................. - 3 - 2.1 四旋翼飞行器动力学模型..................................................................................................... - 3 - 2.2 PID控制算法结构分析.......................................................................................................... - 3 - 3 硬件电路设计与实现................................................................................................................. - 5 - 3.1飞行控制电路设计.................................................................................................................. - 5 - 3.2 电源模块................................................................................................................................. - 6 - 3.3 电机驱动模块......................................................................................................................... - 6 - 3.4 传感器检测模块..................................................................................................................... - 7 - 4 系统的程序设计......................................................................................................................... - 8 - 5 测试与结果分析......................................................................................................................... - 9 - 5.1 测试设备................................................................................................................................. - 9 - 5.2 测试结果................................................................................................................................. - 9 - 6 总结........................................................................................................................................... - 10 - 附录A 部分程序清单.................................................................................................................. - 11 -

四轴飞行器结题报告

学校名称: 队长姓名: 队员姓名: 指导教师姓名:2013年9月6日

摘要 本次比赛我们需要很好地控制飞行器,让它自主完成比赛应该完成的任务。 本文的工作主要针对微型四旋翼无人飞行器控制系统的设计与实现问题展开。首先制作微型四旋翼无人飞行器实验平台,其次设计姿态检测算法,然后建立数学模型并设计姿态控制器和位置控制器,最后通过实验对本文设计的姿态控制器进行验证。设计机型设计全部由小组成员设计并制作,部分元件从网上购得,运用RL78/G13作为主控芯片,自行设计算法对飞行器进行,升降,俯仰,横滚,偏航等姿态控制。并可以自行起飞实现无人控制的自主四轴飞行器。 关键字:四旋翼无人飞行器、姿态控制、位置控制

目录 第1章设计任务.................................................................................... 错误!未定义书签。 1.1 研究背景与目的........................................................................ 错误!未定义书签。 1.2 .................................................................................................... 错误!未定义书签。 1.3...................................................................................................... 错误!未定义书签。第2章方案论证.................................................................................... 错误!未定义书签。 2.1...................................................................................................... 错误!未定义书签。 .................................................................................................... 错误!未定义书签。 .................................................................................................... 错误!未定义书签。 2.2 ........................................................................................................... 错误!未定义书签。第3章理论分析与计算........................................................................ 错误!未定义书签。 ........................................................................................................... 错误!未定义书签。第4章测试结果与误差分析................................................................ 错误!未定义书签。 4.1...................................................................................................... 错误!未定义书签。 4.2...................................................................................................... 错误!未定义书签。 4.3...................................................................................................... 错误!未定义书签。 4.4 .................................................................................................... 错误!未定义书签。 ........................................................................................................... 错误!未定义书签。第5章结论心得体会............................................................................ 错误!未定义书签。 5.1 .................................................................................................................. 错误!未定义书签。.................................................................................................................. 错误!未定义书签。 2设计任务: 基本要求 (1)四旋翼自主飞行器(下简称飞行器摆放在图1所示的A区,一键式

四旋翼飞行器的结构形式和工作原理

四旋翼飞行器的结构形式和工作原理 1.结构形式 直升机在巧妙使用总距控制和周期变距控制之前,四旋翼结构被认为是一种最简单和最直观的稳定控制形式。但由于这种形式必须同时协调控制四个旋翼的状态参数,这对驾驶员认为操纵来说是一件非常困难的事,所以该方案始终没有真正在大型直升机设计中被采用。这里四旋翼飞行器重新考虑采用这种结构形式,主要是因为总距控制和周期变距控制虽然设计精巧,控制灵活,但其复杂的机械结构却使它无法再小型四旋翼飞行器设计中应用。另外,四旋翼飞行器的旋翼效率相对很低,从单个旋翼上增加拉力的空间是非常有限的,所以采用多旋翼结构形式无疑是一种提高四旋翼飞行器负载能力的最有效手段之一。至于四旋翼结构存在控制量较多的问题,则有望通过设计自动飞行控制系统来解决。四旋翼飞行器采用四个旋翼作为飞行的直接动力源,旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,旋翼1和旋翼3逆时针旋转,旋翼2和旋翼4顺时针旋转,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。四旋翼飞行器的结构形式如图1.1所示。

图1.1四旋翼飞行器的结构形式 2.工作原理 典型的传统直升机配备有一个主转子和一个尾桨。他们是通过控制舵机来改变螺旋桨的桨距角,从而控制直升机的姿态和位置。四旋翼飞行器与此不同,是通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。由于飞行器是通过改变旋翼转速实现升力变化,这样会导致其动力部稳定,所以需要一种能够长期保稳定的控制方法。四旋翼飞行器是一种六自由度的垂直升降机,因此非常适合静态和准静态条件下飞行。但是四旋翼飞行器只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。

电子设计大赛国赛_四旋翼自主飞行器A题

2013年全国大学生电子设计竞赛课题:四旋翼自主飞行器(B 题) 【本科组】 2013年9月7日

摘要 为了满足四旋翼飞行器的设计要求,设计了以微控制器为核心的控制系统和算法。首先进行了各单元电路方案的比较论证,确定了硬件设计方案。四旋翼飞行器采用了固连在刚性十字架交叉结构上的4个电机驱动的一种飞行器,以78K0R CPU內核为基础,围绕新的RL78 CPU內核演化而来的RL78/G13作为控制核心,工作频率高达32MHz,工作电压1.6V-5.5V,适合各种类型的消费类电子和工业应用, 满足8/16位微控制器的需求,有助于降低系统功耗,削减总系统的构建成本。采用9926B MOS管芯片的驱动直流电机,该驱动芯片具有内阻小、负载电流大、且控制简单的特性。通过采用MPU-6050整合的3轴陀螺仪、3轴加速器,并含可藉由第二个I2C端口连接其他厂牌之加速器、磁力传感器、或其他传感器的数位运动处理(DMP: Digital Motion Processor)硬件加速引擎,由主要I2C端口以单一数据流的形式,向应用端输出完整的9轴融合演算技术InvenSense的运动处理资料库,可处理运动感测的复杂数据,降低了运动处理运算对操作系统的负荷,实现了四旋翼飞行器运动速度和转向的精准控制。通过HC-SR04超声波测距模块实现了对四旋翼飞行器飞行高度的准确控制。通过激光传感器,实现了四旋翼飞行器沿黑线前进,在规定区域起降,投放铁片等功能,所采用的设计方案先进有效,完全达到了设计要求。 关键词:四旋翼自主飞行器,E18-D50NK光电传感器,寻线,超声波,单片机。

四旋翼自主飞行器(B 题) 【本科组】 1系统方案 本系统主要由电源模块、电机驱动模块、光电循迹模块模块、超声波测高模块、姿态传感器模块组成,下面分别论证这几个模块的选择。 1.1 电源模块的论证与选择 方案一:采用线性元器件LM7805三端稳压器构成稳压电路,为单片机等其他模块供电,输出纹波小,效率低,容易发热。 方案二:采用元器件2596为开关稳压芯片,效率高,输出的纹波大,不容易发热。 方案三:采用线性元器件2940构成稳压电路,为单片机等其他模块供电,输出纹波小,效率高,不容易发热,综合性能高。 综合以上三种方案,选择方案三。 1.2 电机驱动模块的论证与选择 方案一:采用三极管驱动,由于输出电流很大,容易发热, 方案二:采用L298N电机驱动模块,通过电流大,容易发热,使得电机转速变慢,载重量变小。 方案三:采用场效应管9926B芯片组成的电机驱动模块,驱动能力好。能承受的最大电流为7.5A,符合要求。 综合以上三种方案,选择方案三。 1.3 光电循迹模块的论证与选择 方案一:采用CCD摄像头采集图片经过算法处理循迹,前瞻性比较好、循迹效果好,但是处理程序复杂、成本高。 方案二:采用红外对管,有效距离太短,不能满足实际循迹要求。 方案三:采用E18-D50NK光电传感器,这是一种集发射与接收于一体的光电传感器, 检测距离可以根据要求进行调节。探测距离远、受可见光干扰小、前瞻性较好、抗干扰性较好。

四轴飞行器制作

用户名 UID Email 请登录后使用快捷导航 没有帐号?注册 窗体顶端 找回密码 密码注册 窗体底端 快捷导航 首页迟些门户开放时,指向门户首页 全部贴汇总 技术贴汇总所有技术性的帖子汇总,方便阅读 非技术汇总所有非技术性的帖子汇总,方便阅读 帮助Help 无图快速版 阿莫电子邮购本论坛由阿莫电子邮购独家赞助 窗体顶端 搜索热搜: 雕刻机阿莫淘金春风电源 窗体底端 本版 用户 amoBBS 阿莫电子论坛?论坛首页? 机械电子? 四轴飞行? 多旋翼直升机(四轴飞行器)之开源整合平台[电路模组原理... / 4 页下一页 返回列表 查看: 15733|回复: 126 多旋翼直升机(四轴飞行器)之开源整合平台[电路模组原理图] [复制链接] 电梯直达

1楼 发表于2011-1-20 12:12:02|只看该作者|倒序浏览 一、相关技术文件: 1. 程式控制基底ATmega 8 ATmega8 技术文件点击此处下载ourdev_611065Q176XE.PDF(文件大小:2.45M) (原文件名: ATmega8_cn.PDF) 2. 无线模组 CC2500 (2.4G Hz 无线IC) 技术文件点击此处下载ourdev_611064KBBYJG.pdf(文件大小:1.26M) (原文件名: cc2500_cn.pdf) RDA T212 (PA+LNA) 技术文件点击此处下载ourdev_611063XH619C.pdf(文件大小:229K) (原文件名: RDA_T212.pdf) RDA ES02 (SP2T Switch )技术文件点击此处下载ourdev_611062ACP4OA.pdf(文件大小:29K) (原文件名: RDA_ES02.pdf) 3. 无刷马达电子调速模组 FDS7764A (N-Channel) 技术文件点击此处下载ourdev_612408FW8MGC.pdf(文件大小:273K) (原文件名:FDS7764A.pdf) TPC810 (P-Channel) 技术文件点击此处下载ourdev_612409Y3Y2UA.pdf(文件大小:293K) (原文件名:TPC8103.pdf) 4. 液晶萤幕显示模组 16x02 (液晶萤幕) 技术文件点击此处下载ourdev_612410MVKKXZ.zip(文件大小:365K) (原文件名:LCD_1602.zip) 5. MAG 9 FOD 飞行姿态感测模组(3轴磁力计+3轴线性加速计+3轴陀螺仪) LSM303DLH (磁力计+线性加速计) 技术文件点击此处下载ourdev_612411H66HEH.zip(文件大小:2.02M) (原文件名:LSM303DLH.zip) IMU-3000 (陀螺仪) 技术文件点击此处下载ourdev_612412ORGL5T.zip(文件大小:1.93M) (原文件名:IMU_3000.zip) 6. GPS模组 U-BLOX NEO-5Q (GPS) 技术文件点击此处下载ourdev_612413K5MRZI.zip(文件大小:3.03M) (原文件名:NEO_5.zip) 7. 超音波测距模组 HIN-232 (RS-232 5V至10V升压IC) 技术文件点击此处下载ourdev_612414E8JL5V.pdf(文件大小:564K) (原文件名:HIN232.pdf) LM-324 (OP) 技术文件点击此处下载ourdev_612415WGYN7Y.pdf(文件大小:599K) (原文件名:LM324.pdf) 二、TWI(I2C) 通讯规划(用于各个电路模组通讯) M8 TWI(I2C) 规划(PDF档) 电路图档(Eagle档) 点击此处下载ourdev_611067JVY9ZR.zip(文

四旋翼飞行器设计资料

四旋翼飞行器的设计 四旋翼微型飞行器是一种以4个电机作为动力装置.通过调节电机转 速来控制飞行的欠驱动系统;为了实现四旋翼微型飞行器的自主飞行 控制,对飞行控制系统进行了初步设计,并且以C8051F020单片机为计算控制单元,给出了飞行控制系统的硬件设计,研究了设计中的关键技术;由于采用贴片封装和低功耗的元器件,使飞行器具有重量轻、体积小、功耗低的优点;经过多次室内试验,该硬件设计性能可靠,能满足飞行器起飞、悬停、降落等飞行模态的控制要求. 一.微小型四旋翼飞行器的发展前景 根据微小型四旋翼飞行器发展现状和相关高新技术发展趋势, 预计它将有以下发展前景。 1 )随着相关研究进一步深入,预计在不久的将来小型四旋翼飞行 器技术会逐步走向成熟与实用。任务规划、飞行控制、无 G P S 导航、视觉和通信等子系统将进一步健全和完善,使其具有自主起降和全天候抗干扰稳定飞行能力。它未来的主要技术指标:任务半径 5 k m,飞行高度 1 0 0 m,续航时间 1 h ,有效载荷约 5 0 0 g ,完全能够填补目前国际上在该范围内侦察手段的空白。 2 )未来的微型四旋翼飞行器将完全能够达到美国国防预研局对 M A V基本技术指标的要求。随着低雷诺数空气动力学研究的深入,以及纳米和 M E MS 技术的发展,四旋翼 M A V必然取得理论和工程上的突破。它将是一种有 4个旋翼的可飞行传感器芯片,是一

任务与通信等子与能源、动力导航与控制、 ( 个集成多个子系统系统) 的高度复杂ME M S系统;不但能够在空中悬停和向任意方向机动飞行,还 能飞临、绕过甚至是穿过目标物体。此外,它还将拥有良好的隐身功能和信息传输能力。 3 )微小型四旋翼飞行器的编队飞行与作战应 在未来的战争中,微小型四旋翼飞行器的任务之一将是对敌方进行电子干扰并攻击其核心目标。单个微小型飞行器的有效载荷量毕竟有限,难以有效地完成任务,而编队飞行与作战不仅可以极大地提高有效载荷量,还能够增强其突防能力。 二.四旋翼飞行器的国内外研究现状 目前世界上存在的四旋翼飞行器基本上都属于微小型无人飞行器,一般可分为3类:遥控航模四旋翼飞行器、小型四旋翼飞行器以及微型四旋翼飞行器。 (1)遥控航模四旋翼飞行器 遥控航模四旋翼飞行器的典型代表是美国Dfaganflyer公司研制的Dragan.flyer III和香港银辉(silverlit)玩具制品有限公司研制的X.UFO。Draganflyer III是一款世界著名的遥控航模四旋翼飞行器,主要用于航拍。机体最大长度(翼尖到翼尖)76.2cm,高18cm,重481.19:旋翼直径28cm,重69;有效载荷113.29;可持续飞行16--20min。Draganflyer III采用了碳纤维和高性能塑料作为机体材料,其机载电子设备可以控1书1]4个电机的转速。另外,还使用

四轴飞行器制作应用实例大全

四轴飞行器制作应用实例大全 玩四轴这个东西,不是发明创造,人家懂只是知道得比你早一点,新手们入手四轴飞行器总是抱怨苦于无人可以指导,可是莫怪我等无言呀,往往一种问题有好几种原因,有时我是这么解决就好了,到你那边就不行了,所以玩四轴还是需要有扎实的基础,下面这些四轴设计实例是玩四轴总结出来的,有些是老前辈传授的,这些都是飞行模友的智慧。玩四轴不要怕当新鸟,老鸟也是新鸟飞出来的。 1. 微型四旋翼航拍器 本四旋翼航拍器采用OV7725C彩色摄像头,飞控板主控芯片为STM32,遥控器主控芯片为STM32,本系统在正常飞行过程中,通过按下遥控器,右键即可拍下此刻的照片,并实时存储到SD卡中,四轴和遥控器均已集成锂电池智能充电功能,通过USB数据线直接插入电脑即可充电。飞行器稳定,算法成熟,适合有一定基础的人开发。 2. mini小型四轴飞行器 网络上的小型四轴飞行器的PCB板都是要打烊的,打样的价格非常昂贵,我们学生党要怎么吧这么复杂的电路自己做出来呢,本人在集成飞小飞机上进行有效的更改,自己用普通做板的方式自己做出来了亲测成功哦。 3. STM32F103T8U6 +MPU6050微型四轴飞行器开源程序和PCB图有上位机 这个微型四轴飞行器使用的是STM32F103T8U6(STM 32F103T8U6数据手册)+MPU6050(MPU6050数据手册)等,开源程序和PCB图、有上位机,分享给大家学习。附件提供了飞行器原理图和PCB、飞行源码、测试程序、上位机软件、相关芯片资料。 4. 基于WiFi通信的四旋翼无人飞行控制器 目标是使用STM32开发板并配合由Altium Designer电路板设计软件绘制的扩展板设计实现一套四旋翼无人飞行器控制器系统,同时完成一套PC端和手机端APP地面站控制软件的编写,并加入GPS进行惯性导航,使飞行器能够在地面站或遥控器的控制下完成平稳高速飞行,并能够实现空中自稳。飞行器能够按地面站规划的路径实现自主巡航,并可携带摄像设备完成空中拍摄任务。四旋翼无人飞行控制器已经经过验证,可以飞起来了,放心使用。 5. STM32 WIFI 四轴飞行器全部资料 采用WIFI技术控制飞行器,简单又方便,只要你有安卓手机就可以了,有做好的安卓AP,直接安装即可,附件有1.有原理图,pcb文件99和AD都可以打开;2.源代码,有STM32源码,有测试程序和主程序,焊接好后方便大家测试用的。采用了RT_THREAD操作系统3.芯片资料;4.wifi开发手册和使用指南;5.有安卓上位机软件,有2.3版本和4.0版本。 6. 匿名迷你四轴飞行器,飞行器里的行家 资源包含主板PCB源码,遥控器源码, CPU: STM32F103CB(STM32F103CB数据手册) 2.4G: NRF24L01(NRF24L01数据手册) 电子罗盘:HMC5883(HMC5883数据手册) 陀螺仪+加速度计:MPU-6050 (MPU-6050数据手册) 电机:7*16

无人机实训报告

关于无人机模拟操控技能实训的报告 目录 一、前言 1.实训背景与意义 (2) 2.无人机的发展现状 (2) 3、本次实训的任务安排与技术要求 (4) 二、实训的基本情况 (5) 三、实训总结 (8)

一.前言 本次实训主要是通过实体操控四旋翼无人机的不同姿态运动来提升自己对无人机的运动机制、动力原理以及飞行实操的了解。主要要求是使用提供的四旋翼无人机实现无人机在导航模式下实现原地360°旋转、矩形飞行以及固定翼的模拟航线飞行等,需要控制飞机高度方向,指导老师现场考核评分并记录好实训操控时的图像或音频,以完成实训总结报告。 1.实训背景与意义 无人机,是一种不需要有人驾驶,可以通过远程操控来实现某些特定功能的飞行器,具有可持续续航、飞行高度高、可携带外接设备等一系列优点,目前无人机在多个领域取得应用,并且经过行业的不断完善,已经形成初步的产业链。无人机以其自身的突出的优点、高性价比等巨大优势吸引人们的关注,并且在不断地研究中取得了一定的突破,从无人机整个行业的前景来看,无疑是值得肯定的,并且现有技术不断革新的情况下无人机在未来的发展将会越来越好,无人机作为现代的新星宠儿,对它的研究应用无论是对自身发展还是国家技术改革创新都具有很大作用,在无人机势如春笋的发展背景下,通过实训去了解无人机,熟练的操控无人机将对未来就业以及自身发展具有重大意义。 2.无人机的发展现状 20世纪90年代以来,随着信息化技术、轻量化/小型化任务载荷技术、卫星通信技术、复合材料结构技术、高效空气动力技术、新型能源与高效动力技术、起降技术的迅猛发展,无人机性能不断提升、功能不断扩展,各种类型和功能的无人机不断涌现,应用领域也越来越广泛。无人机按规模可分为微型无人机、小型无人机、中型无人机、大型无人机;按飞行高度可分为低空无人机、中空无人机、高空无人机、临近空间无人机;按飞行速度可分为低速无人机、高速无人机;按机动性可分为低机动无人机、高机动无人机;按能源与动力类型可分为螺旋桨式无人机、喷气式无人机、电动无人机、太阳能无人机、燃料电池无人机;按活动半径可分为近程无人机、短程无人机、中程无人机、远程无人机;按起降方式可分为滑跑起降无人机、火箭助推/伞降回收无人机、空投无人机、炮射无人机、潜射无人机等;按功能用途可分为靶标无人机、诱饵无人机、侦察无人机、炮兵校射无人机、电子对抗无人机、电子侦听无人机、心理战无人机、通信中继无人机、测绘无人机、攻击无人机、察打一体无人机、预警无人机…… 人机系统主要包括飞机机体、飞控系统、数据链系统、发射回收系统、电源系统等。飞控系统又称为飞行管理与控制系统,相当于无人机系统的“心脏”部分,对无人机的稳定性、数据传输的可靠性、精确度、实时性等都有重要影响,对其飞行性能起决定性的作用;数据链系统可以保证对遥控指令的准确传输,以及无人机接收、发送信息的实时性和可靠性,以保证信息反馈的及时有效性和顺利、准确的完成任务。发射回收系统保证无人机顺利升空以达到安全的高度和速度飞行,并在执行完任务后从天空安全回落到地面。 无人机主要分为多旋翼无人机、固定翼无人机以及组合式无人机三大类。 多旋翼无人机又有四旋翼、六旋翼、八旋翼甚至十旋翼等,最常见的是四旋翼无人机,以下是常见的多旋翼无人机。

相关主题
文本预览
相关文档 最新文档