当前位置:文档之家› 基于蚁群算法优化自抗扰控制器的机器人控制

基于蚁群算法优化自抗扰控制器的机器人控制

基于蚁群算法优化自抗扰控制器的机器人控制
基于蚁群算法优化自抗扰控制器的机器人控制

工业机器人技术及应用(教案)-工业机器人机械结构和运动控制.doc

第二章工业机器人的机械结构和运动控制 章节目录 2.1 工业机器人的系统组成 2.1.1 操作机 2.1.2 控制器 2.1.3 示教器 2.2 工业机器人的技术指标 学习目标导入案例课堂认知扩展与提高本章小结思考练习 2.3 工业机器人的运动控制 2.3.1 机器人运动学问题 2.3.2 机器人的点位运动… 2.3.3 机器人的位置控制 课前回顾 何为工业机器人? 工业机器人具有几个显著特点,分别是什么? 工业机器人的常见分类有哪些,简述其行业应用。 学习目标 认知目标 *熟悉工业机器人的常见技术指标 *掌握工业机器人的机构组成及各部分的功能 *了解工业机器人的运动控制 能力目标 *能够正确识别工业机器人的基本组成 *能够正确判别工业机器人的点位运动和连续路径运动 导入案例 国产机器人竞争力缺失关键技术是瓶颈 众所周知,中国机器人产业由于先天因素,在单体与核心零部件仍然落后于日、美、韩等发达国家。虽然中国机器人产业经过30 年的发展,形成了较为完善的产业基础,但与发达国家相比,仍存在较大差距,产业基础依然薄弱,关键零部件严重依赖进口。整个机器人产业链主要分为上游核心零部件(主要是机器人三大核心零部件——伺服电机、减速器和控制系统,相当于机器人的“大脑”)、中游机器人本体(机器人的“身体”)和下游系统集成商(国内95% 的企业都集中在这个环节上)三个层面。 课堂认知 2.1 工业机器人的系统组成 第一代工业机器人主要由以下几部分组成:操作机、控制器和示教器。对于第二代及第三代工业机器人还包括感知系统和分析决策系统,它们分别由传感器及软件实现。

工业机器人系统组成 2.1.1 操作机 操作机(或称机器人本体)是工业机器人的机械主体,是用来完成各种作业的执行机构。它主要由机械臂、驱动装置、传动单元及内部传感器等部分组成。 关节型机器人操作机基本构造 机器人操作机最后一个轴的机械接口通常为一连接法兰,可接装不同的机械操作装置,如夹紧爪、吸盘、焊枪等。

自抗扰算法介绍报告

自抗扰算法(ADRC )介绍报告 自抗扰控制器自PID 控制器演变过来,采取了PID 误差反馈控制的核心理念。传统PID 控制直接引取输出于参考输入做差作为控制信号,导致出现响应快速性与超调性的矛盾出现。自抗扰控制器主要由三部分组成:跟踪微分器(tracking differentiator),扩展状态观测器 (extended state observer) 和非线性状态误差反馈控制律(nonlinear state error feedback law)。跟踪微分器的作用是安排过渡过程,给出合理的控制信号,解决了响应速度与超调性之间的矛盾。扩展状态观测器用来解决模型未知部分和外部未知扰动综合对控制对象的影响。虽然叫做扩展状态观测器,但与普通的状态观测器不同。扩展状态观测器设计了一个扩展的状态量来跟踪模型未知部分和外部未知扰动的影响。然后给出控制量补偿这些扰动。将控制对象变为普通的积分串联型控制对象。设计扩展状态观测器的目的就是观测扩展出来的状态变量,用来估计未知扰动和控制对象未建模部分,实现动态系统的反馈线性化,将控制对象变为积分串联型。非线性误差反馈控制律给出被控对象的控制策略。系统结构框图如图1 图1 过程和扩张状态观测器方程: 1y x =22302220(1)()*(()*(,,)*())z k z k h z k fal b u k βεαδ+=+-+1120111(1)()*(()*(,,))z k z k h z k fal βεαδ+=+-12212;()();()(,,,)x x x a t u t a t f x x t ω==+= 330312(1)**(,,) z k z h fal βεαδ+=-

新adrc自抗扰控制技术

3.3自抗扰控制技术的MATLAB仿真 自抗扰控制技术是由韩京清教授根据多年实际控制工程经验提出的新的控制理论。在传统的工业和其他控制领域,PID一直占据主导地位。目前,PID 在航空航天、运动控制及其他过程控制领域,仍然占据90%以上的份额。但是,PID自身还是存在缺陷,而韩京清教授正是出于对P1D控制算法的充分认知,尤其是对其缺陷的清晰分析,提出了自抗扰控制技术。 3.3.1自抗扰控制技术概述 自抗扰控制技术的提出是根据对PID控制技术的充分认知,扬其优点,抑其缺点而提出的。传统PID控制技术应用领域很广泛,其控制结构如图3-9所示。 图3-9 传统PID结构 其中, ? + + ? =e k e k d e k u t 2 1 ) (τ τ。众所周知,PID控制原理是基于误差来生成 消除误差控制策略:用误差的过去、现在和变化趋势的加权和消除误差。其优点有:靠控制目标与实际行为之间的误差来确定消除此误差的控制策略,而不是靠被控对象的“输入一输出”关系,即不靠被控对象的“输入-输出”模型来决定控制策略,简单易行,只要选择PID增益使闭环稳定,就能使对象达到静态指标。当然PID控制仍有缺点,其缺点如下 1、采用PID校正系统闭环动态品质对PID增益的交化太敏感,当被控对象处于变化的环 境中时,根据环境的变化经常需要变动PID的增益。 2、“基于误差反馈消除误差”是PID控制技术的精髓,但实际情况中直接取目标与实际 行为之间的误差常常会使初始控制力太大而使系统行为出现超调,而这正是导致使用PID控制技术的闭环系统产生“快速性”和“超调”不可调和矛盾的主要原因。3、PID是用误差的比例、积分、微分的加权和形式来形成反馈控制量的,然而在很多场 合下,由于没有合适的微分器,通常采用PI控制规律,限制了PID的控制能力。 4、PID是用误差的过去、现在和将来的适当组合来产生程制量的。经典PID一般采用线 性取和方法,但是实际系统多为非线性系统,所以非线性拉制器更适合实际情况。5、PID中的误差积分反馈对抑制常值扰动确实有效,但在无扰动作用时,误差积分反馈

基于自抗扰控制(ADRC)的无刷直流电机控制与仿真

一、研究意义 1.研究意义 由于无刷直流电机在四旋翼飞行器控制中的关键作用以及在生产实践中日益广泛的应用,设计快速且平稳的控制系统成为首要任务。目前, 基于现代控制理论的高性能异步电机调速方法主要是依靠精确的数学模型加上传统的P ID控制。PID控制实际应用效果较好,但又无法避免对负载变化的适应能力差、抗干扰能力弱和受系统参数变化影响等弱点,而且交流调速系统具有非线性、强耦合、多变量及纯滞后等特性, 很难用精确的数学模型描述, 这就使得基于精确数学模型的传统控制方法面临严重的挑战。另外, 经典P ID控制需要根据运行工况的不同而调节控制器参数, 无刷直流电机又具有数学模型复杂,非线性等特点,这给现场调试增加了难度。 2.国内外研究状况及发展 (1)无刷直流电机基本控制方法 无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。无刷电机是指无电刷和换向器(或集电环)的电机,又称无换向器电机。 直流无刷电动机的电机本身是机电能量转换部分,无刷电机的转子上装有永磁体,定子上是电枢,与有刷电机正好是相反的。它除了电机电枢、永磁励磁两部分外,还带有传感器。电机本身是直流无刷电机的核心,它不仅关系到性能指标、噪声振动、可靠性和使用寿命等,还涉及制造费用及产品成本。由于采用永磁磁场,使直流无刷电机摆脱一般直流电机的传统设计和结构,满足各种应用市场的要求,并向着省铜节材、制造简便的方向发展。 直流无刷驱动器包括电源部及控制部,电源部提供三相电源给电机,控制部则依需求转换输入电源频率。 电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器(converter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率晶体管(V1~V6)分为上臂(V1、V3、V5)/下臂(V2、V4、V6)连接电机作为控制流经电机线圈的开关。控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。直流无刷电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),做为速度之闭回路控制,同时也做为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。电机驱动电路如图?所示。 图1 无刷直流电机的控制电路

自抗扰控制技术简介

自抗扰控制技术简介 1.自抗扰控制技术概述 1.1 什么是自抗扰控制技术 自抗扰控制器(Auto/Active Disturbances Rejection Controler,ADRC)技术,是发扬PID控制技术的精髓并吸取现代控制理论的成就,运用计算机仿真实验结果的归纳和总结和综合中探索而来的,是不依赖被控对象精确模型的、能够替代PID控制技术的、新型实用数字控制技术。 1.2 自抗扰控制技术的提出者——韩京清 韩京清,朝鲜族, 1937生,系统与控制专家,中国科学院数学与系统科学研究院系统科学研究所研究员、博士生导师,长期从事控制理论与应用研究工作,是我国控制理论和应用早期开拓者之一。 韩京清先生于1998年正式提出自抗扰控制这一思想。在这个思想提出之后,国内外许多研究者都围绕着“自抗扰控制”展开实际工程应用的研究。同时,自抗扰控制的理论分析的研究也在不断的深入。 1.3 自抗扰控制技术的特点和优点 (1)自抗扰控制器采用“观测+补偿”的方法来处理控制系统中的非线性与不确定性,同时配合非线性的反馈方式,提高控制器的动态性能。 (2)自抗扰控制器算法简单、易于实现、精度高、速度快、抗扰能力强。 (3)统一处理确定系统和不确定系统的控制问题;扰动抑制不需外扰模型或者外扰是否观测;控制算法不需辨识控制对象;统一处理非线性和线性系统;可以进行时滞系统控制;解耦控制只要考虑静态耦合,不用考虑动态耦合等。 2.自抗扰控制技术提出的背景

2.1 现代控制理论的缺点和改进 现代控制理论以状态变量描述为基础,以状态反馈实现极点配置来改善全局动态特性的问题。因而,此种控制的主要手段是状态反馈。“这种全局控制方法需要知道关于开环动态特性的先验知识和状态变量的信息,这在许多工程实际中是很不现实的,因为工程实际提供不了有关开环动态特性的多少先念知识,因此这种全局控制方法是很难在实际中得到应用。”这就是现代控制理论的缺点,这也限制了这种控制方法在工程实际中的应用。 事实上,要实现控制目的,不一定要知道系统的开环动态特性。实现控制的主要目的是施加控制力,使目标值与输出值之间的误差衰减下去,因而只需要知道开环动态特性的具体表现量。这就是将状态反馈的理念转换为误差反馈的理念。图(1)、图(2)是这两种控制方式的框图。 图(1)基于状态反馈的全局控制方法 图(2)基于误差反馈的“过程的控制” 2.2 PID控制的优缺点 PID控制的主要优点是:“不用被控对象的精确模型,只用控制目标与对象实际行为的误差来产生消除此误差的控制策略的过程控制思想,是PID留给人类的宝贵思想遗产,是PID控制技术的精髓。”也正是因为这个原因,PID控制才能在控制工程实践中得到广泛有效的应用。

工业机器人的实时轨迹插补算法(精)

工业机器人的实时轨迹插补算法 李天友 ,孟正大 ,陈勍奇 (东南大学自动化学院,江苏南京 210096) 摘要:提出了一种实现工业机器人实时轨迹插补的规划算法。该算法既能满足时间上的实时性,又能够在完成机器人当前轨迹插补的同时,实现在线调整插补参数,改变机器人当前插补方程,从而改变机器人运动轨迹与状态。而对于不同插补类型,只要找准对应线长的表示,不需要对算法本身进行修改,就可以完成相应的轨迹插补。本算法应用于“昆山一号”焊接机器人中,表明其满足焊接实时性和可调速性要求。 关键词:工业机器人;实时插补;算法;轨迹规划 示教再现方式下的轨迹插补算法是工业机器人的一个传统课题[1],技术和方法比较成熟有效。文献[2-4]分别解决了直线、圆弧、样条曲线等单一类型的轨迹插补,文献[5,6]讨论了复杂曲线在编程时用分段直线或圆弧进行拟合插补的方法,文献[7]研究了关节空间和笛卡儿空间的通用插补算法,把插补段分为加速段、匀速段、减速段进行插补, 但算法复杂,运算量大,且不能进行实时控制。此外,时间上满足实时性的轨迹插补方法也得到了研究[3,4]。但是既满足实时性要求又能够进行平滑调速并且能够同时完成关节空间和笛卡儿空间各种类型插补的通用轨迹插补算法却比较少见。 本文介绍工业机器人的实时轨迹插补算法。它是为满足“昆山一号”焊接机器人的实时性而设计的,实时性包含两层涵义,一是满足时间上的实时性,即在一个采样周期内能够完成一次轨迹插补,多数算法能够满足这层要求;而实时性第二层涵义是系统能够在完成机器人当前轨迹插补的同时,实现在线调整插补参数,改变机器人当前插补方程,从而改变机器人运动轨迹与状态,本文的算法很好地完成了这层实时性的要求。并且这种算法能够完成PTP (点到点)、多点关节空间、直线、圆弧、样条曲线、FlyBy [8,9]等多种类型的轨迹插补。

自抗扰控制简介

目录 目录 目录 (1) 1 绪论 (1) 2 问题描述 (1) 3 发展现状 (2) 3.1 非线性跟踪微分器 (2) 3.2 扩张状态观测器 (3) 3.3 自抗扰控制律 (4) 3.4 参数整定问题 (4) 4 未来展望 (15分) (4) 5 结论 (5) 参考文献 (6)

1 绪论 自抗扰控制是韩京清先生以对控制理论的反思为开端提出的以反馈系统的标准型(积分器串联型)为基础,以工程控制的鲁棒性为目标的控制技术[1-5]。其思想是以工业界占主导地位的PID控制为出发点,在改进非线性PID的基础上提出自抗扰的概念,算法简单,在未知强非线性和不确定强扰动的作用下仍能够保持控制精度。在国内,自抗扰控制技术在四旋翼无人机控制[6]、航天器姿态控制[7]、精密车床中快速刀具的伺服控制[8]、电机的励磁控制[9]等方面均有应用案例。在国外,自抗扰控制于2009年通过了运动控制的工业评估[10];2013年,德州仪器开始在全球发布以自抗扰为技术核心的运动控制芯片[11]。可见,自抗扰控制技术具备巨大的潜力与工程应用前景。 2 问题描述 1989年,韩京清先生提出了对控制领域的疑问——模型论还是控制论。模型论“靠系统的数学模型去找控制率”,后者依靠的是系统的“某些响应特征或过程的某些实时信息”。 而“通过误差来消除误差”正是简单的线性PID所蕴含的朴素思想,也是PID能够在工业界获得广泛应用的原因。而以现代控制理论为代表的控制理论虽然在数学上严密可证,然而在实际应用中却较少,因为实际的控制对象总是不可避免地存在未知与不确定性。因此,反思控制理论数学化带来的理论与工业实践的脱节,探索新的控制技术与理论是有必要的。而自抗扰控制技术就是基于以上的问题,以PID为出发点,探索控制技术与理论的新方向。

自抗扰控制技术在微机电换能器中的应用

第30卷第12期2013年12月 控制理论与应用 Control Theory&Applications V ol.30No.12 Dec.2013自抗扰控制技术在微机电换能器中的应用 DOI:10.7641/CTA.2013.31016 董莉莉? (克里夫兰州立大学,俄亥俄州克里夫兰市44115,美国) 摘要:自抗扰技术,作为一门新兴的鲁棒控制技术,能够成功补偿微机电制造上的缺陷以及周围环境的扰动,从而提高微机电传感器和执行器的性能,增加它们的测量及移动精度.本文介绍了自抗扰技术在微机电陀螺仪和静电执行器两大微机电换能器上的应用.通过使用此项控制技术,微机电陀螺仪可精确测量并输出匀速及时变角速度.此外,一种模型辅助自抗扰控制器被首次应用到微执行器上.此模型辅助自抗扰控制器建立在部分模型已知的基础上.它能够在外干扰存在的情况下,把静电执行器的位移范围提高到电容间距的99%.模型辅助自抗扰控制器的抗噪声能力也优于传统的自抗扰控制器.作者用仿真和实验结果向读者展示了自抗扰技术在微机电领域的鲁棒性,有效性和实用性. 关键词:微机电系统;微机电陀螺仪;静电执行器;自抗扰控制;鲁棒性 中图分类号:TP202+.1文献标识码: Application of active disturbance rejection control to micro-electro-mechanism system transducers DONG Li-li? (Cleveland State University,Cleveland,OH44115,USA) Abstract:Active disturbance rejection control(ADRC)is an emerging robust control technology.It improves the performance of micro-electro-mechanism system(MEMS)sensors and actuators and increases their measurement and displacement accuracies through effectively compensating the imperfections in micro-fabrications and environmental vari-ations.The applications of an ADRC to MEMS gyroscopes and electrostatic actuators are introduced in this paper.The ADRC facilitates accurate sensing of both constant and time-varying rotation rates for MEMS gyroscopes.In addition, an alternative ADRC is initially applied to an electro-static actuator.The alternative ADRC is constructed based on par-tially known model information.It drives and stabilizes the displacement output of an electrostatic actuator to99%of full capacitor gap despite of the presence of disturbance.The alternative ADRC also has better noise rejection capability than traditional ADRC.Simulation and experimental results demonstrate the robustness,effectiveness and feasibility of the ADRC in MEMS area. Key words:micro-electro-mechanism system(MEMS);MEMS gyroscope;electro-static actuator;active disturbance rejection control;robustness 1引言(Introduction) 微机电陀螺仪和静电执行器同属于微机电(micro-electro-mechanical system,MEMS)换能器.微机电陀螺仪是角速度和角位移传感器.静电执行器负责将静电信号转换成机械移动.随着微机电制造技术的日新月异,MEMS换能器在近20年来得到了飞速的发展.它们体积小(只有微米或者毫米量级)、重量轻、成本低、耗能少、便于携带,已经被广泛应用到航天系统、军事制导、家用电器和汽车工业中[1]. 微机电陀螺仪的测量精度主要取决于硅片的机械振动.然而微机电制造技术的缺陷会造成微陀螺仪内部驱动机构的错位,驱动和感应部位的非对称,以及质量与中心轴的偏离[2].这些机械系统的缺陷将引起微陀螺系统参数的不确定性,再加上周围环境变化所带来的外扰动,最终会导致测量误差的产生.传统的机械补偿能够减少一部分由于制造缺陷所带来的误差.然而机械补偿不但耗时、成本高,而且很难在一个小如硬币的微陀螺仪上实行.因此,需要一个能够成功消除(或大大减少)机械误差,提高微陀螺测量精度和稳定性的鲁棒控制器进行电补偿. 一个自由度的平板静电执行器(又称作微执行器)由固定和移动电板组成.两个平行电板在电场中充电后会形成电容.当改变电容器的控制电压时,移动电板可离开原始位置,上下移动.然而由于系统本 收稿日期:2013?09?26;收修改稿日期:2013?12?07.?通信作者.E-mail:L.Dong34@https://www.doczj.com/doc/c15195806.html,.

基于自抗扰控制器的永磁同步电机矢量控制仿真

基于自抗扰控制技术的永磁同步电机矢量 控制仿真 摘要:文章针对经典的PID控制器应用于永磁同步电机矢量控制的缺点。依据永磁同步在两相同步旋转坐标系下的数学模型,设计了转速控制环的ADRC控制器,结合按转子磁场定向的矢量控制在simulink 中建立了永磁同步电机调速系统仿真模型,对一台隐极式永磁同步电机进行仿真。仿真发现,发现ADRC 作为速度环的控制器能够避免使用PI控制器时出现超调的问题,而且在转矩突变干扰下转速能迅速回到原稳定平衡点。仿真说明使用ADRC控制器代替PI控制器控制永磁同步电机使得系统具有更好的抵抗负载转矩扰动的能力。 关键词:矢量控制;ADRC;抵抗转矩扰动 0引言 交流永磁伺服电机驱动控制策略研究现状电机控制技术是高性能交流永磁伺服电机驱动器的核心,PMSM作为一个典型的非线性复杂控制对象,具有多变量、强耦合、非线性、变参数等特性,在目前来看,常规的电机调速控制方法主要有矢量控制和直接转矩控制策略。矢量控制(Vector Control,VC)也称为磁场定向控制(Held Oriented Control,FOC),其基本思路是:通过坐标变换实现模拟直流电机的控制方法来对永磁同步电机进行控制,实现了电机定子电流转矩分量与励磁分量的解耦。VC的目的是为了改善转矩控制性能,从而使驱动系统具有转矩平滑、调速围宽等特点,是高性能交流伺服驱动系统的主要控制方式。 和VC不同,直接转矩控(Direct Torque Control,DTC)制摒弃了解耦的思想,取消了旋转坐标变换,简单的通过电机定子电压和电流,借助瞬时空间矢量理论计算电机的磁链和转矩,并根据与给定值比较所得差值,实现磁链和转矩的直接控制。直接转矩控制可以获得比VC更快的动态响应,在对于动态响应要求高的场合具有独特的优势。但DTC要保证实际力矩与给定一致就需根据误差选择驱动器件的开关状态,同时保证电机磁链能够按预定轨迹运行,在转矩和磁链的滞环比较器进行控制时会产生转矩脉动,这样将大大的影响电机的低速性能和系统的稳定性,使得电机的宽调速围受到严重影响,同时导致位置控制精度降低。 相比之下,VC的电流环能够保证力矩电流迅速跟随实际给定,保证了实际电机力矩需求,同时使得电机的电磁力矩稳定,实际的调速围更宽,甚至能超低速运行;同时电机所有的电磁转矩都由电枢电流产生,通过对位置环的实时控制,可最终使得电机电流构造的电枢

工业机器人竞赛复习题(理论考试)

工业机器人竞赛(理论)复习题 一、判断题 1.机械手亦可称之为机器人。(Y) 2.完成某一特定作业时具有多余自由度的机器人称为冗余自由度机器人。(Y) 3.关节空间是由全部关节参数构成的。(Y) 4.任何复杂的运动都可以分解为由多个平移和绕轴转动的简单运动的合成。(Y) 5.关节i的坐标系放在i-1关节的末端。(N) 6.手臂解有解的必要条件是串联关节链中的自由度数等于或小于6。(N) 7.对于具有外力作用的非保守机械系统,其拉格朗日动力函数L可定义为系统总动能与系统总势能之和。(N) 8.由电阻应变片组成电桥可以构成测量重量的传感器。(Y) 9.激光测距仪可以进行散装物料重量的检测。(Y) 10.运动控制的电子齿轮模式是一种主动轴与从动轴保持一种灵活传动比的随动系统。(Y) 11.工业机器人工作站是由一台或两台机器人所构成的生产体系。(N)

12.示教编程用于示教-再现型机器人中。(Y) 13.机器人轨迹指工业机器人在运动过程中的运动轨迹,即运动点的位移、速度和加速度。(Y) 14.关节型机器人主要由立柱、前臂和后臂组成。(N) 15.到目前为止,机器人已发展到第四代。(N) 16.磁力吸盘能够吸住所有金属材料制成的工件。(N) 17.谐波减速机的名称来源是因为刚轮齿圈上任一点的径向位移呈近似于余弦波形的变化。(N) 18.由电阻应变片组成电桥可以构成测量重量的传感器。(Y) 19.激光测距仪可以进行散装物料重量的检测。(Y) 20.机械手亦可称之为机器人。(Y) 21.谐波减速机的名称来源是因为刚轮齿圈上任一点的径向位移呈近似于余弦波形的变化。(N) 22.轨迹插补运算是伴随着轨迹控制过程一步步完成的,而不是在得到示教点之后,一次完成,再提交给再现过程的。(Y) 23.格林(格雷)码被大量用在相对光轴编码器中。(N) 24.图像二值化处理便是将图像中感兴趣的部分置1,背景部分置2。(N) 25.图像增强是调整图像的色度、亮度、饱和度、对比度和分辨率,使得图像效果清晰和颜色分明。(Y)

基于自抗扰控制(ADRC)的无刷直流电机控制与仿真

研究意义 1?研究意义 由于无刷直流电机在四旋翼飞行器控制中的关键作用以及在生产实践中日益广泛的应用,设计快速且平稳的控制系统成为首要任务。目前,基于现代控制理论的高性能异步电机调速方法主要是依靠精确的数学模型加上传统的 P ID控制。PID控制实际应用效果较好,但又无法避免对负载变化的适应能力差、抗干扰能力弱和受系统参数变化影响等弱点,而且交流调速系统具有非线性、强耦合、多变量及纯滞后 等特性,很难用精确的数学模型描述,这就使得基于精确数学模型的传统控制方法面临严重的挑战。另 外,经典P ID控制需要根据运行工况的不同而调节控制器参数,无刷直流电机又具有数学模型复杂,非 线性等特点,这给现场调试增加了难度。 2?国内外研究状况及发展 (1)无刷直流电机基本控制方法 无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。无刷电机是指无电刷 和换向器(或集电环)的电机,又称无换向器电机。 直流无刷电动机的电机本身是机电能量转换部分,无刷电机的转子上装有永磁体,定子上是电枢,与有刷电机正好是相反的。它除了电机电枢、永磁励磁两部分外,还带有传感器。电机本身是直流无刷电机的核心,它不仅关系到性能指标、噪声振动、可靠性和使用寿命等,还涉及制造费用及产品成本。由于采用永磁磁场,使直流无刷电机摆脱一般直流电机的传统设计和结构,满足各种应用市场的要求,并向着省铜节材、制造简便的方向发展。 直流无刷驱动器包括电源部及控制部,电源部提供三相电源给电机,控制部则依需求转换输入电源频率。 电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流 电就得先经转换器(con verter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须 先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率 晶体管(V1?V6)分为上臂(V1、V3、V5)/下臂(V2、V4、V6)连接电机作为控制流经电机线圈的开关。控制部则提供PWM脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。直流无刷电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-se nsor),做为速度之闭回路控制,同时也做 为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。电机驱动电路如图?所示。 图1无刷直流电机的控制电路

自抗扰控制器设计原理

自抗扰控制器设计原理 1非线性跟踪微分器 跟踪微分器(tacking-differentiator, TD)是这样的一个非线性动态环节:对于输入信号v(t),它将在平均收敛和弱收敛意义下,输出信号v(t)及其高阶导数(或广义导数)的光滑逼近。本文采用二阶TD的离散算法,即 其中,h为步长;h 为滤波因子;r为速度因子。 本文设计的气压伺服自抗扰控制器中,TD主要有两个作用:一是在伺服定位控制中利用TD控制过渡过程,降低系统起始误差。根据定位信号和系统所能承受的“能力”,利用TD控制一个合适的过渡过程,使系统的输出跟踪这个控制的过渡过程,就可实现快速而又无超调地跟踪阶跃信号的目的,并且使控制器的鲁棒性和适应性得到较大改善。二是提取输入信号的微分(速度)。作为前馈参与控制,减小控制系统响应的相位滞后。 2 扩张状态观测器 扩张状态观测器是自抗扰控制器的核心,其作用是利用系统输出,估计受未知外扰作用的非线性不确定对象的扩张状态,以实现反馈控制及扰动补偿。 针对式(4),设系统变量:x 1=x,x 2 =x,x 3 =x;系统输出y=x 1 。则系 统状态方程可写为

定义系统总扰动为扩张状态: x 4 =a(t)=f(x,x,x,w(t)) (3) 系统的扩张状态方程为 根据式(4),设计四阶扩张状态观测器,其离散算法如下: 合理配置式(5)参数,使其稳定,则Z 21、Z 22 和Z 23 分别实时跟踪系统 的状态x 1,x 2 和x 3 ,而Z 24 实时跟踪系统的总扰动即扩张状态a(t)。 3 气压伺服系统自抗扰控制器 自抗扰控制器是基于跟踪微分器安排过渡过程,利用扩张状态观测器估计系统状态、模型和外扰,并采用非线性状态误差反馈控制规律的一种非线性控制器,在线性系统理论中,状态反馈控制采用的是系统状

工业机器人控制系统的基本原理

工业机器人控制系统的 基本原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

工业机器人控制系统 20世纪80年代以后,由于微型计算机的发展,特别是电力半导体器件的出现,使整个机器人的控制系统发生了很大的变化,使机器人控制器日趋完善。具有非常好的人机界面,有功能完善的编程语言和系统保护,状态监控及诊断功能。同时机器人的操作更加简单,但是控制精度及作业能力却有很大的提高。目前机器人已具有很强的通信能力,因此能连接到各种网络(CAN—BUS、PROFIBUS或ETHERNET)。形成了机器人的生产线。特别是汽车的焊接生产线、油漆生产线、装配生产线很多都是靠机器人工作的。特别是控制系统已从模拟式的控制进入了全数字式的控制。 90年代以后,计算机的性能进一步提高,集成电路(IC)的集成度进一步的提高,使机器人的控制系统的价格逐渐降低,而运算的能力却大大提高,这样,过去许多用硬件才能实现的功能也逐渐地使用软件来完成。而且机器人控制系统的可靠性也由最早几百小时提高到现在的6万小时,几乎不需要维护。 一、控制系统基本原理及分类 工业机器人的控制器在要求完成特定作业时,需要做下述几件事: 示教:通过计算机来接受机器人将要去完成什么作业。也就是给机器人的作业命令,这个命令实质上是人发出的。 计算:这一部分实际上就是机器人控制系统中的计算机来完成的,它通过获得的示教信息要形成一个控制策略,然后再根据这个

策略(也称之为作业轨迹的规划)细化成各轴的伺服运动的控制的策略。同时计算机还要担负起对整个机器人系统的管理,采集并处理各种信息。因此,这一部分是非常重要的核心部分。 伺服驱动:就是通过机器人控制器的不同的控制算法将机器人控制策略转化为驱动信号,驱动伺服电动机,实现机器人的高 速、高精度运动,去完成指定的作业。 反馈:机器人控制中的传感器对机器人完成作业过程中的运动状态、位置、姿态进行实时地反馈,把这些信息反馈给控制计算机,使控制计算机实时监控整个系统的运行情况,及时做出各种决策。 图1 机器人控制基本原理图 控制系统可以有四种不同分类方法:控制运动方式、控制系统信号类型、控制机器人的数目以及人机的相互关系等分类。 (1)、按控制运动方式进行分类可分为程序控制系统、自适应控制系统和组合控制系统。 A、程序控制系统:绝大多数商品机器人是属于这种控制系统,主 要用于搬运、装配、点焊等点位控制,以及弧焊、喷涂机器人的轮廓控制。

工业机器人控制系统的基本原理

工业机器人控制系统 20世纪80年代以后,由于微型计算机的发展,特别是电力半导体器件的出现,使整个机器人的控制系统发生了很大的变化,使机器人控制器日趋完善。具有非常好的人机界面,有功能完善的编程语言和系统保护,状态监控及诊断功能。同时机器人的操作更加简单,但是控制精度及作业能力却有很大的提高。目前机器人已具有很强的通信能力,因此能连接到各种网络(CAN—BUS、PROFIBUS或ETHERNET)。形成了机器人的生产线。特别是汽车的焊接生产线、油漆生产线、装配生产线很多都是靠机器人工作的。特别是控制系统已从模拟式的控制进入了全数字式的控制。 90年代以后,计算机的性能进一步提高,集成电路(IC)的集成度进一步的提高,使机器人的控制系统的价格逐渐降低,而运算的能力却大大提高,这样,过去许多用硬件才能实现的功能也逐渐地使用软件来完成。而且机器人控制系统的可靠性也由最早几百小时提高到现在的6万小时,几乎不需要维护。 一、控制系统基本原理及分类 工业机器人的控制器在要求完成特定作业时,需要做下述几件事:示教:通过计算机来接受机器人将要去完成什么作业。也就是给机器人的作业命令,这个命令实质上是人发出的。 计算:这一部分实际上就是机器人控制系统中的计算机来完成的,它通过获得的示教信息要形成一个控制策略,然后再根据这个策

略(也称之为作业轨迹的规划)细化成各轴的伺服运动的控制 的策略。同时计算机还要担负起对整个机器人系统的管理,采 集并处理各种信息。因此,这一部分是非常重要的核心部分。伺服驱动:就是通过机器人控制器的不同的控制算法将机器人控制策略转化为驱动信号,驱动伺服电动机,实现机器人的高速、 高精度运动,去完成指定的作业。 反馈:机器人控制中的传感器对机器人完成作业过程中的运动状态、位置、姿态进行实时地反馈,把这些信息反馈给控制计算机, 使控制计算机实时监控整个系统的运行情况,及时做出各种决 策。 图1 机器人控制基本原理图 控制系统可以有四种不同分类方法:控制运动方式、控制系统信号类型、控制机器人的数目以及人机的相互关系等分类。 (1)、按控制运动方式进行分类可分为程序控制系统、自适应控制系统和组合控制系统。 A、程序控制系统:绝大多数商品机器人是属于这种控制系统,主 要用于搬运、装配、点焊等点位控制,以及弧焊、喷涂机器人的轮廓控制。

一种新型控制方法——自抗扰控制技术及其工程应用综述

DOI : 10.11992/tis.201711029网络出版地址: https://www.doczj.com/doc/c15195806.html,/kcms/detail/23.1538.TP.20180413.0941.002.html 一种新型控制方法—自抗扰控制技术及其 工程应用综述 陈增强1,2,刘俊杰1,2,孙明玮1 (1. 南开大学 计算机与控制工程学院,天津 300350; 2. 天津市智能机器人重点实验室,天津 300350) 摘 要:自抗扰控制(active disturbance rejection control ,ADRC)是韩京清研究员于1998年正式提出的一种不依赖被控对象模型的新型实用技术,具有很好的工程应用前景。为了便于理论分析与工程实际应用的推广实现,高志强教授在ADRC 的基础上提出易于参数整定的线性自抗扰控制(LADRC),极大地推动了自抗扰控制理论发展与实际应用。本文简要介绍了自抗扰控制的基本思想及线性自抗扰控制的基本原理,较为系统地阐述了自抗扰控制理论的研究进展,就自抗扰控制在实际工程领域中的应用进行了分类总结,最后给出需要进一步深入研究的方向。 关键词:自抗扰控制;线性自抗扰控制;扩张状态观测器;稳定性分析;工程控制应用 中图分类号:TP273 文献标志码:A 文章编号:1673?4785(2018)06?0865?13 中文引用格式:陈增强, 刘俊杰, 孙明玮. 一种新型控制方法—自抗扰控制技术及其工程应用综述[J]. 智能系统学报, 2018,13(6): 865–877. 英文引用格式:CHEN Zengqiang, LIU Junjie, SUN Mingwei. Overview of a novel control method: active disturbance rejection con-trol technology and its practical applications[J]. CAAI transactions on intelligent systems, 2018, 13(6): 865–877. Overview of a novel control method: active disturbance rejection control technology and its practical applications CHEN Zengqiang 1,2,LIU Junjie 1,2,SUN Mingwei 1 (1. College of Computer and Control Engineering, Nankai University, Tianjin 300350, China; 2. Key Lab of Intelligent Robotics of Tianjin, Tianjin 300350, China) Abstract : The active disturbance rejection control (ADRC) technology, which was proposed by Han Jingqing in 1998,is a novel practical technology independent of the controlled object model, and it has a good application prospect. To fa-cilitate theoretical analysis and practical engineering applications, Professor Gao Zhiqiang proposed a linear active dis-turbance rejection control (LARDC), which is based on the ADRC and greatly improves the development and applica-tion of the ADRC. This paper presents the basic idea of the ADRC and the fundamental principle of the LADRC. Re-search progress on the theoretical analysis for ADRC is systematically described, and practical engineering applications based on ADRC are summarized, and finally, further potential research directions are presented. Keywords : ADRC; linear active disturbance rejection control (LADRC); extended state observer (ESO); stability ana-lysis; engineering control application PID 控制是一种基于误差的反馈控制,其不 依赖被控过程的模型,结构简单且鲁棒性强,至 今仍在工程上占据着主要地位。而针对PID 控制难以处理的复杂控制对象,现代控制理论产生并涌现了如最优控制、鲁棒控制、自适应控制等理论成果,大多数的现代控制理论方法均依赖于系统的数学模型,难以在实际应用中推广。1989年,收稿日期:2017?11?27. 网络出版日期:2018?04?13. 基金项目:国家自然科学基金项目(61573199, 61573197);天津 市自然科学基金项目(14JCYBJC18700). 通信作者:陈增强. E-mail :chenzq@https://www.doczj.com/doc/c15195806.html,.第 13 卷第 6 期 智 能 系 统 学 报Vol.13 No.62018 年 12 月 CAAI Transactions on Intelligent Systems Dec. 2018

工业机器人的控制及其发展

工业机器人的控制及其发展 摘要:随着机器人技术的飞速发展和信息时代的到来,机器人所涵盖的内容越来越丰富。工业机器人是面向工业领域的多关节机械手或多自由度的机器人。工业机器人是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的一种机器,很大程度上对一个国家的发展有很大的帮助。本文从工业机器人的控制方面来阐述工业机器人。 一提到工业机器人,给人既兴奋又会有一种神秘的感觉。但是,在这种兴奋和神秘背后是无数的科学工作者对工业机器人的辛苦研究,特别是在工业技术人的控制方面,本人主要解决的问题主要有两个:第一,机器人如何运动才能实现给定的运动轨迹;第二,使用某种控制方法,产生空置量给驱动器,使每个关节按照预期的方式运动。另外本人对工业机器人的发展做出了比较详细的分析。下面我们就围绕这些问题进行讨论。 关键词:机器人,机器人控制,PID,自动控制 研究机器人控制技术首先我们必须要了解其所具有的特点: 1.机器人的控制与机构运动学及动力学密切相关。 2.机器人至少有3-5个自由度,甚至有二十几个自由度,每个自由度一般都包含一个私服系统,他们必须协调起来组成一个多变量控制系统。 3.描述机器人状态和运动的数学模型是一个非线性模型,随着状态的不同及外力的变化其参数也在变化,各变量之间还存在耦合。因此,仅仅利用位置闭环是不够的,还要利用速度甚至加速度闭环。 4.机器人的动作往往可以通过不同的方式和路径来完成,因此存在一个最优的问题。通过对机器人控制系统特点的分析,可以把到目前为止的机器人控制进行如下分类: 1.位置控制 2.力(力矩)控制 3.智能控制 这其中位置控制和力控制又是目前工业机器人中最普遍和最基本的控制。而这两个控制对机器人可以进行位置、速度、加速度及力的控制。这其中又包含了开环控制、PID反馈控制、分解运动控制、最优控制、柔顺控制、变结构控制、

工业机器人控制概述

工业机器人控制概述 摘要:本概述简单介绍了工业机器人的定义及发展,介绍了有关工业机器人控制的特点、功能、控制方式及控制系统的组成。对比说明目前应用于工业机器人的驱动器特点,包括电驱动器、液压驱动器,并针对在工业机器人中应用最为广泛的电动执行器,分析工业机器人对于电动驱动器的具体应用要求。列举了几种在工业机器人技术中常用的控制策略, 如变结构控制、自适应控制、鲁棒控制和智能控制等。最后通过分析全球控制器专利的分布,对目前机器人控制的各国发展的说明,探讨了工业机器人控制技术的发展趋势。 关键字:工业机器人、控制、控制策略; 发展趋势 0.前言 随着生产和科技的进步,人们需要用及其代替人完成一些人类无法完成或不能高质量完成的任务。另外由于市场经济的发展,对增加商品种类、提高质量、降低成本提出了越来越高的要求,产品生产也从单一品种、大批量生产向多品种、小批量过渡。机器人正是为使用生产自动化及市场应变性地更高要求而出现的。 国际机器人联合会(International Federation of Robotics,IFR)将机器人定义如下:机器人是一种半自主或全自主工作的机器,它能完成有益于人类的工作,应用于生产过程称为工业机器人,应用于特殊环境称为专用机器人(特种机器人),应用于家庭或直接服务人称为(家政)服务机器人。这种内涵广义的理解是机器人自动化机器,而不应该理解为如翻译的像人一样机器。 国际标准化组织(International Organization for Standardization,ISO)对机器人的定义为“机器人是一种自动的、位置可控的、具有编程能力的多功能机械手,这种机械手具有几个轴,能够借助于可编程序操作处理各种材料、零件、工具和专用装置,以执行种种任务”。按照ISO定义,工业机器人是面向工业领域的多关节机械手或多自由度的机器人,是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的一种机器;它接受人类的指令后,将按照设定的程序执行运动路径和作业。 可以按照许多标准将机器人分类。按照发展程度将机器人分为三代:第一代机器人是以“示教-再现”方式工作的机器人,这种机器人目前已在生产中得到广泛应用;第二代机器人是具有一定传感装置,能利用所获取的环境与操作对象的简单信息进行反馈控制的机器人,这种机器人目前已有少量应用;第三代机器人是具有多种感知功能,可进行推理判断,能再未知工作环境中独立工作的机器人。 机器人也常按照功能,分为工业机器人、遥控机器人和智能机器人。工业机器人(Industrial Robot),它是应用于工业自动化领域的机器人,越大多数按照“示教-再现”方式进行重复作业。遥控机器人

相关主题
文本预览
相关文档 最新文档