当前位置:文档之家› 偏振光的分析

偏振光的分析

偏振光的分析
偏振光的分析

大学物理实验报告系列之偏振光的分析

大学物理实验报告【实验名称】偏振光的分析 【实验目的】 1.观察光的偏振现象,巩固理论知识,加深对光的偏振现象的认识。 2.学习直线偏振光的产生与检验方法,了解圆偏振光和正椭圆偏振光的产生和定性检验方法。 【实验仪器】 He-Ne 激光器、光具座、偏振片(两块)、632.8nm 的1/4 波片(两块)、玻璃平板及刻度盘、白屏等。 【实验原理】 1.光的偏振状态 偏振是指振动方向相对于波的传播方向的一种空间取向作用。它是横波的重要特性。光在传播过程中,若电矢量的振动只局限在某一确定平面内,这种光称为直线偏振光,又叫平面偏振光(因其电矢量的振动在同一平面内);若光波电矢量的振动随时间作有规律的改变,即电矢量的末端在垂直于光传播方向的平面上的轨迹是圆或椭圆,这样的光称为圆偏振光和椭圆偏振光;若光波电矢量的振动只在某一确定的方向上占优势,而在和它正交的方向上最弱,各方向的振动无固定的位相关系,这种光称为部分偏振光。直线偏振光垂直通过波片的偏振状态 入射线偏振光的振动方向 与波片光轴间的夹角 光 ≠ 0°,≠ 45°,≠ 90° 转过2的直线偏振光 正椭圆偏振光,长短轴之 比为tg,ctg 内切于边长比为tg的矩 形的椭圆偏振光

【实验内容】 1.测定玻璃对激光波长的折射率 2.产生并检验圆偏振光 3.产生并检验椭圆偏振光 【数据表格与数据记录】 pιl p2I i p3 =^l-^I = ∣250o-307o∣ = 57o i pi =?φ1-φ↑=∣250o - 306o∣ = 56°i p5 =^l-^I= ∣250o - 308o∣ = 58o. =?φ1~φ↑=∣250o-307o∣ = 57o ^=^l-^I = I250o-306o∣ = 56° -_ G+?…+S? _ s7o I P _ γ_ D 7 tan- n- tan57o =1.5399 现象:两次最亮,两次消光。结论:圆偏振光

偏振光的观察与分析

偏振光的观察与分析 【实验内容及数据处理要求】 1)将半导体激光器、功率计探头与激光功率计后面板上的相应插座相连。 2)在光学导轨一端分别安装半导体激光器和功率计探头,开启功率计,选择直径为6.0 mm 的圆孔作为功率计 探头的入射光阑。 3)调整激光器、功率计探头在支架上的固定高度及激光器的二维调节螺旋,使激光束同轴等高地平行射入功率计探头的Φ6.0光阑孔中。 4)验证马吕斯定律 ① 在靠近激光器的一侧加入一个偏振片并调整其高度与激光器、功率计探头同轴等高。旋转偏振片使功率计的示数为极大值(功率计应选恰当档位,如2 mW )。 ② 对功率计清零:先用白屏紧贴半导体激光器遮住激光,调节功率计的“调零”旋钮使其示数为0,然后拿走白屏。 ③ 在靠近功率计探头的一侧加入另一个偏振片(作检偏器),并调整其高度与之前安装的光学元件同轴等高,并对功率计清零。 ④ 转动检偏器直至功率计的示数恰好为零,记录下检偏器上的角度θ0和功率计示数;接着以此角度为基准,沿同一方向转动检偏器,每转15°就记录下检偏器上的角度θ和相应的功率计示数。 数据处理要求:以加入检偏器后功率计的最大示数作为I 0,先由马吕斯定律计算出各相对角度α所对应的理论功率,然后在同一坐标纸上绘出马吕斯定律的理论曲线和实测值拟合曲线,计算各α对应功率值的百分偏差,并根据结果得出是否验证的结论。 注意:相对角度α(090θθ=-?-)是因为功率计示数为0时,检偏器与起偏器的透振方向夹角为90°。实验中每加入一个光学元件,就需要对功率计进行清零,以消除由该元件折射、反射进入功率计探头的杂散光对实验结果的影响。 5)产生和鉴别(椭)圆偏振光 ① 紧接4)的第④步,转动检偏器重新使功率计示数为零(系统处于消光状态)此时检偏器的角度记为初始位置0θ。 ② 在起偏器和检偏器之间插入1/4波片,旋转1/4波片角度使功率计示数有极大值,然后调整1/4波片使与之前安装的光学元件同轴等高,并对功率计清零。 ③旋转1/4波片使系统重新进入消光状态(1/4波片的光轴与起偏器的透振方向平行或垂直),此时1/4波片的角度记为φ0。 缓慢旋转检偏器一周,记录功率计出现的4个极值及与之相应的检偏器角度θ。 ④ 以φ0为基准沿同一方向旋转1/4波片,每旋转15°,先记录检偏器在初始位置θ0时功率计的示数,然后缓慢旋转检偏器一周,记录功率计出现的4个极值及与之相应的检偏器角度θ。 数据处理:分析得出1/4波片转动0°、30°、45°、60°、90°等时出射光的偏振状态,并讨论1/4波片对线偏振入射光偏振态的影响。

偏振光的观测与研究~~实验报告

偏振光的观测与研究 光的干涉与衍射实验证明了光的波动性质。本实验将进一步说明光就是横波而不就是纵波,即其E与H的振动方向就是垂直于光的传播方向的。光的偏振性证明了光就是横波,人们通过对光的偏振性质的研究,更深刻地认识了光的传播规律与光与物质的相互作用规律。目前偏振光的应用已遍及于工农业、医学、国防等部门。利用偏振光装置的各种精密仪器,已为科研、工程设计、生产技术的检验等,提供了极有价值的方法。 【实验目的】 1.观察光的偏振现象,加深偏振的基本概念。 2.了解偏振光的产生与检验方法。 3.观测布儒斯特角及测定玻璃折射率。 4.观测椭圆偏振光与圆偏振光。 【实验仪器】 光具座、激光器、偏振片、1/4波片、1/2波片、光电转换装置、光点检流计、观测布儒斯特角装置 图1 实验仪器实物图 【实验原理】 1.偏振光的基本概念 按照光的电磁理论,光波就就是电磁波,它的电矢量E与磁矢量H相互垂直。两者均垂直于光的传播方向。从视觉与感光材料的特性上瞧,引起视觉与化学反应的就是光的电矢量,通常用电矢量E代表光的振动方向,并将电矢量E与光的传播方向所构成的平面称为光振动面。 在传播过程中,光的振动方向始终在某一确定方位的光称为平面偏振光或线偏振光,如图2(a)。光源发射的光就是由大量原子或分子辐射构成的。由于热运动与辐射的随机性,大量原子或分子发射的光的振动面出现在各个方向的几率就是相同的。一般说,在10-6s内各个方向电矢量的时间平均值相等,故出现如图2(b)所示的所谓自然光。有些光的振动面在某个特定方向出现的几率大于其她方向,即在较长时间内电矢量在某一方向较强,这就就是如图2(c)所示的所谓部分偏振光。还有一些光,其振动面的取向与电矢量的大小随时间作有规则的变化,其电矢量末端在垂直于传播方向的平面上的移动轨迹呈椭圆(或圆形),这样的光称为椭圆偏振光(或圆偏振光),如图2(c)所示。 图2 光波按偏振的分类 2.获得偏振光的常用方法 (1)非金属镜面的反射。 通常自然光在两种媒质的界面上反射与折射时,反射光与折射光都将成为部分偏振光。并且当入射角增大到某一特定值时,镜面反射光成为完全偏振光,其振动面垂直于入射面,如图3所示,这时入射角称为布儒斯特角,也称为起偏角。

偏振光实验数据处理分析

偏振光实验数据处理分析 ——关于验证马吕斯定律的数据处理方法 一、 马吕斯定律: 1.一束光强度为的线偏振光,透过检偏器以后,透射光的光强度为α20cos I I = (1) 其中是线偏振光的光振动方向与检偏器透振方向间的夹角,该式称为马吕斯定律。 2.在光路中放入偏振片 作为起偏器,获得振动方向与 透振方向一致的线偏振光,线偏 振光的强度为入射自然光强度的 。 马吕斯定律光路图 3.在光路中放入偏振片,作为检偏器,其透振方向 与的夹角为,透过的光振 幅为 αcos A A 2 20 2 = (2) 式中为透过的线偏振光的振幅。因为 ,所以,光强度为α20cos I I = 这就是马吕斯定律,马吕斯定律说明了入射到偏振片上的线偏振光,其透射光强度的变化规律。 二、 简单实验过程 以He-Ne 激光作光源,用偏振片起偏和检偏,光电池接收,用电检流计量度光强的大小。实验从两偏振片方向(或称光轴)平行或垂直开始,记录光电流。测量时每转15记录一个数据,转180,取12个位置读数。 2 P 1 P

三、 数据处理 以角度为横坐标,光电流为纵坐标画图,并与余弦函数的平方值随着角度的变化关系比较 表1 将表1中角度θ和电流i 的数据输入,并通过工作表计算出2cosθ的值。打开Origin 数据处理软件,将含有原始数据的excel 工作表在Origin 数据处理软件中打开。 当图形窗口为当前窗口时,可以采用从菜单进行电流i 和cos 2θ的直线拟合,其拟合的函数为 Y=A+BX i 采用最小二乘法估计方程参数: B X -Y A = ∑ ∑ = N i 2 i N i i i X -X Y -Y X -X B )() )(( 对马吕斯定律的验证一般采用的方法是由实验得到的角度θ和电流i 的数据,进而用作图法得出cos 2θ和I 成正比的线性关系,如果cos 2θ与电流i 的线性关系良好,则说明马吕斯定律得以验证。然而学生用作图法验证马吕斯实验时,是用目测测试点分布而画出cos 2θ和电流i 之间的直线图,目测时测试点呈直线与否的界限难以确定,手工作图过程中也必然引入误差,以至于使实验中真正导致误差较大的原因容易被掩盖。同时,这种处理方法也使实验中产生的有规律性的误差被忽略,其结果往往达不到定量验证的目的。用Origin 数据分析软件依据最小二乘法原理进行实验数据处理,可由相关系数R 定量表示测试点的线性程度,达到定量验证物理规律的目的。由回归标准差SD 可得到实验误差。

实验报告_偏振光的产生和检验 (2)

【实验题目】 偏振光的产生和检验 【实验记录与数据处理】 1.线偏振光的获得与检验 1)器件光路示意图(2分): 2)测量记录(1分) 光电流强度 光电流强度夹角光电流强度 3)贴图(3分): ~I 曲线(直角坐标)

2.椭圆偏振光的获得与检验 1)器件光路示意图(2分): ? ? ? ? ? ? 3)贴图(5分):15°和45°的θ~I 曲线图(极坐标) 光强与检偏器角度的关系(Φ=15?)

光强与检偏器角度的关系(Φ=45?) 3. 1/2波片的研究 1)器件光路示意图(2分): 3)结论(2分):θ??Φ~关系; 根据数据可得,在误差允许的范围内,△θ=2△Φ。

【结论与讨论】 实验结论: 1.在实验一中,由θ~I 曲线可得,在振动方向与透视轴夹角从0°至90°过程中,透视光强度逐渐由零增至最大值,在90°至180°逐渐减小至最小值;经过两个周期,图像大致与马吕斯定律I=I o cos θ相符合。 2.在实验二中,当入射光与玻片夹角β= 0°,透过检偏器的光强最小,可知透过1/4玻片得到的是沿玻片慢轴的线偏振光;当β=15°,旋转检偏器一周后,得到的光强呈周期性变化,且最小值与最大值差值较大,光强最大值小于实验一中线偏振光的光强,再根据θ~I 曲线图即可知透过1/4玻片得到的是椭圆偏振光;当β=45°,旋转检偏器一周后,发现得到的光强变化不大,且光强大小界于β=15°时椭圆偏振光的光强最大值和最小值之间,再根据θ~I 曲线图即可知透过1/4玻片得到的是圆偏振光。 3.在实验三中,可以得出△θ随着ΔΦ的变化呈线性关系,满足△θ=2△Φ。 实验讨论: 【课后问题】(5分) 讨论:如何利用波片与偏振光片判别圆偏振光与自然光? 答:1.已知圆偏振光经过1/4玻片后形成线偏振光,而自然光经过1/4玻片后仍为自然光,故可以用1/4玻片进行区分。 2.让光束透过1/4玻片+偏振片,旋转偏振片,透射光发生变化的为圆偏振光,透射光不发生变化的为自然光。故可用玻片+偏振片进行区分。 报告成绩(满分30分):??????????? 指导教师签名:???????????????? 日期:?????????????????

9偏振光的观察与研究11

实验( 9 )偏振光的观察与研究 班级18020S01 学号1802004137 姓名沈豹组别 日期2020-6-5 指导教师 一.实验目的 1.了解光的五种偏振状态。 2.了解偏振光元件和偏振光的检验。 3.掌握马吕斯定律。 二.实验仪器 偏振光观察与研究的实验装置包括以下几个部分:光源(可发出多种类型激光)偏振片、波晶片(λ/2和λ/4波长)、光屏。 三.实验原理 为了研究光的偏振态和利用光的偏振特性进行各种分析和测量工作,需要各种偏振元件:产生偏振光的元件、改变光的偏振态的元件等,下面分类介绍。 1.产生偏振光的元件 在激光器发明之前,一般的自然光源产生的光都是非偏振光,因此要产生偏振光都要使用产生偏振光的元件。根据这些元件在实验中的作用,分为起偏器和检偏器。起偏器是将自然光变成线偏振光的元件,检偏器是用于鉴别光的偏振态的元件。在激光器谐振腔中可以利用布儒斯特角使输出的激光束是线偏振光。 将自然光变成偏振光的方法有很多,一个方法是利用光在界面反射和透射时光的偏振现象。我们的先人在很早就已经对水平面的反射光有所研究,但定量的研究最早在1815年由布儒斯特完成。反射光中的垂直于入射面的光振动(称s分量)多于平行于入射面的光振动(称p 分量);而透射光则正好相反。在改变入射角的时候,出现了一个特殊的现象,即入射角为一特定值时,反射光成为完全线偏振光(s分量)。折射光为部分偏振光,而且此时的反射光线和折射光线垂直,这种现象称之为布儒斯特定律。该方法是获得线 偏振光的方法之一。如图1所示。因为此时, , ,若=1(为空气的折射率),则 图1 布儒斯特定律原理图 叫做布儒斯特角,所以通过测量布儒斯特角的大小可以测量介质的折射率。 由以上介绍可以知道利用反射可以产生偏振光,同样利用透射(多次透射)也可以 产生偏振光(玻璃堆)。 图2 格兰棱镜起偏、检偏原理 第二种是光学棱镜,如尼科耳棱镜、格兰棱镜等,它是利用晶体的双折射的原理制 成的。在晶体中存在一个特殊的方向(光轴方向),当光束沿着这个方向传播时,光束不 分裂,光束偏离这个方向传播时,光束将分裂为两束,其中一束光遵守折射定律叫做寻 常光(o光),另一束光一般不遵守折射定律叫做非寻常光(e光)。o光和e光都是线偏振 光(也叫完全偏振光),两者的光矢量的振动方向(在一般使用状态下)互相垂直。改变 射向晶体的入射光线的方向可以找到光轴方向,沿着这个方向,o光和e光的传播速度相等,折射率相同。晶体可以有一个光轴,叫做单轴晶体,如方解石、石英,也可以有两 个光轴,叫双轴晶体,如云母、硫磺等。包含光轴和任一光线的平面叫对应于该光线的 总成绩: 预习操作处理

偏振光实验报告

实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间: 一、实验室名称:偏振光实验室 二、实验项目名称:偏振光实验 三、实验学时: 四、实验原理: 光波的振动方向与光波的传播方向垂直。自然光的振动在垂直与其传播方向的平面内,取所有可能的方向;某一方向振动占优势的光叫部分偏振光;只在某一个固定方向振动的光线叫线偏振光或平面偏振光。将非偏振光(如自然光)变成线偏振光的方法称为起偏,用以起偏的装置或元件叫起偏器。 (一)线偏振光的产生 1.非金属表面的反射和折射 光线斜射向非金属的光滑平面(如水、木头、玻璃等)时,反射光和折射光都会产生偏振现象,偏振的程度取决于光的入射角及反射物质的性质。当入射角是某一数值而反射光为线偏振光时,该入射角叫起偏角。起偏角的数值α与反射物质的折射率n 的关系是: n =αtan (1) 称为布如斯特定律,如图1所示。根据此式,可以简单地利用玻璃起偏,也可以用于测定物质的折射率。从空气入射到介质,一般起偏角在53度到58度之间。 非金属表面发射的线偏振光的振动方向总是垂直于入射面的;透射光是部分偏振光;使用多层玻璃组合成的玻璃堆,能得到很好的透射线偏振光,振动方向平行于入射面的。 图 1 图 2 2.偏振片 分子型号的偏振片是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构的分子,这些分子平行地排列在同一方向上。这种胶膜只允许垂直于分子排列方向的光振动通过,因而产生

线偏振光,如图2所示。分子型偏振片的有效起偏范围几乎可达到180度,用它可得到较宽的偏振光束,是常用的起偏元件。 图 3 鉴别光的偏振状态叫检偏,用作检偏的仪器叫或元件叫检偏器。偏振片也可作检偏器使用。自然光、部分偏振光和线偏振光通过偏振片时,在垂直光线传播方向的平面内旋转偏振片时,可观察到不同的现象,如图3所示,图中(α)表示旋转P ,光强不变,为自然光;(b )表示旋转P ,无全暗位置,但光强变化,为部分偏振光;(c )表示旋转P ,可找到全暗位置,为线偏振光。 (二)圆偏振光和椭圆偏振光的产生 线偏振光垂直入射晶片,如果光轴平行于晶片的表面,会产生比较特殊的双折射现象。这时,非常光e 和寻常光o 的传播方向是一致的,但速度不同,因而从晶片出射时会产生相位差 d n n e )(200 -= λπ δ (2) 式中0λ表示单色光在真空中的波长,o n 和e n 分别为晶体中o 光和e 光的折射率,d 为晶片厚度。 1.如果晶片的厚度使产生的相位差1 (21)2 k δπ=+,k =0,1,2,…,这样的晶片称为1/4波片,其最小厚度为0 min 4() o e d n n λ= -。线偏振光通过1/4波片后,透射光一般是椭 圆偏振光;当α=π/4时,则为圆偏振光;当0=α或π/2时,椭圆偏振光退化为线偏振光。由此可知,1/4波片可将线偏振光变成椭圆偏振光或圆偏振光;反之,它也可将椭圆偏振光或圆偏振光变成线偏振光。 2.如果晶片的厚度使产生的相差πδ)12(+=k ,k =0,1,2,…,这样的晶片称为半波片,其最小厚度为0 min 2() o e d n n λ= -。如果入射线偏振光的振动面与半波片光轴的交角为 α,则通过半波片后的光仍为线偏振光,但其振动面相对于入射光的振动面转过α2角。 3. 如果晶片的厚度使产生的相差2k δπ=,k =1,2,3,…,这样的晶片称为全波片, 其最小厚度为0 min o e d n n λ= -。从该波片透射的光为线偏振光。

微波偏振实验报告

篇一:电磁场与微波实验六报告——偏振实验 偏振实验 1. 实验原理 平面电磁波是横波,它的电场强度矢量e和波长的传播方向垂直。如果e在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波称为线极化波,在光学中也称偏振波。电磁场沿某一方向的能量有sin2 φ的关系,这就是光学中的马吕斯定律:i=i0cos2 φ,式中i0为初始偏振光的强度,i为偏振光的强度,φ是i与i0之间的夹角。 2. 实验步骤 系统构建图 由于喇叭天线传输的是由矩形波导发出的te10波,电场的方向为与喇叭口天线相垂直的系列直线,中间最强。dh926b型微波分光仪的两喇叭天线口面互相平行,并与 地面垂直,其轴与偏振实验线在一条直线上。由于接收喇叭口天线是和一段旋转短波导 连在一起的,在旋转波导的轴承环的90度范围内,每隔5度有一刻度,所以接收喇叭天线的转角可从此处读到。 在主菜单页面点击“偏振实验”,单击“ok”进入“输入采集参数”界面。 本实验默认选取通道3作为光栅通道插座和数据采集仪的数据接口。采集点数可根据提示选取。 顺时针或逆时针(但只能沿一个方向)匀速转动微波分光仪的接收喇叭,就可以得到转角与接收指示的一组数据。 终止采集过程后,按下“计算结果”按钮,系统软件将本实验根据实际采集过程处理得到的理论和实际参数。 注意事项: ①为避免小平台的影响,最好将其取下。 ②实验用到了接收喇叭天线上的光栅通道(光传感头),应将该通道与数据采集仪通道3用电缆线连接。 ③转动接收喇叭天线时应注意不能使活动臂转动。 ④由于轴承环处的螺丝是松的,读取电压值时应注意,接收喇叭天线可能会不自觉偏离原来角度。最好每隔一定读数读取电压值时,将螺丝重新拧紧。 ⑤接收喇叭天线后的圆盘有缺口,实验过程中应注意别将该缺口转动经过光栅通道,否则在该处软件将读取不到数据。 3. 实验结果

偏振光实验报告

实验题目:偏振光的研究 实验者:PB08210426 李亚韬 实验目的:掌握分光计的工作原理,熟悉偏振光的原理和性质。验证马吕斯定律,并根据 布儒斯特定律测定介质的折射率。 实验原理: 为了研究光的偏振态和利用光的偏振特性进行各种分析和测量工作,需要各种偏振元件:产生偏振光的元件、改变光的偏振态的元件等,下面分类介绍。 1 产生偏振光的元件 在激光器发明之前,一般的自然光源产生的光都是非偏振光,因此要产生偏振光都要使用产生偏振光的元件。根据这些元件在实验中的作用,分为起偏器和检偏器。起偏器是将自然光变成线偏振光的元件,检偏器是用于鉴别光的偏振态的元件。在激光器谐振腔中可以利用布儒斯特角使输出的激光束是线偏振光。 将自然光变成偏振光的方法有很多,一个方法是利用光在界面反射和透射时光的偏振现象。我们的先人在很早就已经对水平面的反射光有所研究,但定量的研究最早在1815年由布儒斯特完成。反射光中的垂直于入射面的光振动(称s 分量)多于平行于入射面的光振动(称p 分量);而透射光则正好相反。在改变入射角的时候,出现了一个特殊的现象,即入射角为一特定值时,反射光成为完全线偏振光(s 分量)。折射光为部分偏振光,而且此时的反射光线和折射光线垂直,这种现象称之为布儒斯特定律。该方法是可以获得线偏振光的方法 之一。如图1所示。因为此时 20π γ= +i ,γsin sin 201n i n =, 12 0000sin cos sin n n sin i i i tgi === γ,若n 1=1(为空气的折射率),则 2tgi n = (1) 0i 叫做布儒斯特角,所以通过测量布儒斯特角的大小可以测量介质的折射率。 由以上介绍可以知道利用反射可以产生偏振光,同样利用透射(多次透射)也可以产 生偏振光(玻璃堆)。第二种是光学棱镜,如尼科耳棱镜、格兰棱镜等,它是利用晶体的双折射的原理制成的。在晶体中存在一个特殊的方向(光轴方向),当光束沿着这个方向传播时,光束不分裂,光束偏离这个方向传播时,光束将分裂为两束,其中一束光遵守折射定律叫做寻常光(o 光),另一束光一般不遵守折射定律叫做非寻常光(e 光)。o 光和e 光都是线偏振光(也叫完全偏振光),两者的光矢量的振动方向(在一般使用状态下)互相垂直。改变射向晶体的入射光线的方向可以找到光轴方向,沿着这个方向,o 光和e 光的传播速度相等,折射率相同。晶体可以有一个光轴,叫做单轴晶体,如方解石、石英,也可以有两个光轴,叫双轴晶体,如云母、硫磺等。包含光轴和任一光线的平面叫对应于该光线的主平面,o 光电矢量的振动方向垂直于o 光主平面,e 光电矢量的振动方向平行于e 光主平面。 格兰棱镜由两块方解石直角棱镜构成,两棱镜间有空气间隙,方解石的光轴平行于棱镜的棱。自然光垂直于界面射入棱镜后分为o 光和e 光,o 光在空气隙上全反射,只有e 光透过棱镜射出。

偏振光的观察与研究

实验报告 PB09214023葛志浩 PB09214047卢焘 2011-11-22 得分: 实验题目:偏振光的观察与研究 实验目的:1.观察光的偏振现象,加深偏振的基本概念。 2.了解偏振光的分类以及产生和检验方法,掌握马吕斯定律。 3.观测布儒斯特角及测定玻璃折射率。 4.观测椭圆偏振光和圆偏振光。 实验仪器:激光器,起偏器,检偏器,硅光电池,1/4波片,光电流放大器,分束板。 实验原理: 一,偏振光的基本概念和分类 光的偏振是指光的振动方向不变,或光矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆的现象。光有五种偏振态:自然光(非偏振光),线偏振光,部分偏振光,圆偏振光,椭圆偏振光 二,产生偏振光的方法: 1,利用光在界面反射和透射时光的偏振现象。 反射光中的垂直于入射面的光振动(称s 分量)多于平行于入射面的光振动(称p 分量);而透射光则正好相反。在改变入射角的时候,出现了一个特殊的现象,即入射角为一特定值(称为布雷斯特角)时,反射光成为完全线偏振光(s 分量)。折射光为部分偏振光,而且此时的反射光线和折射光线垂直,这种现象称之为布儒斯特定律。该方法是可以获得线偏振光的方法之一。通过测量介质的布雷斯特角可以得到介质的折射率。 1 2 n n tg = α )1( 2,利用光学棱镜,如尼科尔棱镜,格兰棱镜等。 3,利用偏振片。 三,改变光的偏振态的元件——波晶片。

平面偏振光垂直入射晶片,如果光轴平行于晶片表面,会产生比较特殊的双折射现象,这时非常光e 和寻常光o 的传播方向是一致的,但速度不同,因而从晶片出射时会产生相位差。 线偏振光垂直入射1/4波片,其振动方向与波片光轴成角θ,则出射光的偏振态与θ的关系如下: 1,2 0π θ或=时,出射光为线偏振光; 2,4 π θ= 时,出射光为圆偏振光; 3,θ为其它值时,出射光为椭圆偏振光。 利用偏振片可以由自然光得到线偏振光,利用1/4波片可以由线偏振光得到圆偏振光和椭圆偏振光。 四,马吕斯定律:θ20cos I I = (2) 实验内容及步骤: 一,调节仪器和观察消光现象。 如图(一)所示放置好实验仪器,旋转P2,观察出射光强的变化。 二,验证马吕斯定律。 如图(二)所示放置好实验仪器,将P1度盘读数调为0,旋转P2,记录P2度盘读数θ和D1,D2光电流读数21I I ,。

偏振光的应用

偏振光的应用 ————XXX 摘要: 名称与定义 横波 纵波 偏振原理 自然光 偏振光应用: 1、汽车车灯; 2、观看立体电影; 3、生物的生理机能与偏振光; 4、LCD液晶屏; 偏振光红外偏振光在医疗范围的应用: 5、红外偏振光治疗的特点: 产生 特性 定义:光波的光矢量的方向不变,只是其大小随相位变化的光。 偏振光,光学名词。光是一种电磁波,电磁波是横波。而振动方向和光波前进方向构成的平面叫做振动面,光的振动面只限于某一固定方向的,叫做平面偏振光或线偏振光。 横波 光是一种电磁波,是由与传播方向垂直的电场和磁场交替转换的振动形成的。这种振动方向与传播方向垂直的波我们称之为横波。 纵波 声波是靠空气或别的媒质前后压缩振动传播的,它的振动方向与传播相同,这类波我们称之为纵波。

偏振原理: 通常光源发出的光,它的振动面不只限于一个固定方向而是在各个方向上均匀分布的。这种光叫做自然光。光的偏振性是光的横波性的最直接,最有力的证据,光的偏振现象可以借助于实验装置进行观察,P1、P2是两块同样的偏振片。通过一片偏振片p1直接观察自然光(如灯光或阳光),透过偏振片的光虽然变成了偏振光,但由于人的眼睛没有辨别偏振光的能力,故无法察觉。如果我们把偏振片P1的方位固定,而把偏振片P2缓慢地转动,就可发现透射光的强度随着P2转动而出现周期性的变化,而且每转过90°就会重复出现发光强度从最大逐渐减弱到最暗;继续转动P2则光强又从接近于零逐渐增强到最大。由此可知,通过P1的透射光与原来的入射光性质是有所不同的,这说明经P1的透射光的振动对传播方向不具有对称性。自然光经过偏振片后,改变成为具有一定振动方向的光。这是由于偏振片中存在着某种特征性的方向,叫做偏振化方向,偏振片只允许平行于偏振化方向的振动通过,同时吸收垂直于该方向振动的光。通过偏振片的透射光,它的振动限制在某一振动方向上,我们把第一个偏振片P1叫做“起偏器”,它的作用是把自然光变成偏振光,但是人的眼睛不能辨别偏振光。必须依靠第二片偏振片P2去检 偏振光原理 查。旋转P2,当它的偏振化方向与偏振光的偏振面平行时,偏振光可顺利通过,这时在P2的后面有较亮的光。当P2的偏振方向与偏振光的偏振面垂直时,偏振光不能通过,在P2后面也变暗。第二个偏振片帮助我们辨别出偏振光,因此它也称为“检偏器”。光是一种电磁波,电磁波是横波。而振动方向和光波前进方向构成的平面叫做振动面,光的振动面只限于某一固定方向的,叫做平面偏振光或线偏振光。 自然光 光波是横波,即光波矢量的振动方向垂直于光的传播方向。通常,光源发出的光波,其光波矢量的振动在垂直于光的传播方向上作无规则取向,但统计平均来说,在空间所有可能的方向上,光波矢量的分布可看 偏振光 作是机会均等的,它们的总和与光的传播方向是对称的,即光矢量具有轴对称性、均匀分布、各方向振动的振幅相同,这种光就称为自然光。 偏振光 偏振光是指光矢量的振动方向不变,或具有某种规则地变化的光波。按照其性质,偏振

(参考资料)偏振光现象的观察与分析

偏振光现象的观察与分析 物理系,刘呈豪 一、引言 一八零九年,法国工程师马吕斯在实验中发现了光的偏振现象。对于光的偏振现象研究,使人们对光的传播的规律有了新的认识。特别是近年来利用光的偏振性所开发出来的各种偏振光元件、偏振光仪器和偏振光技术在现代科学技术中发挥了极其重要的作用,在光调制器、光开关、光学计量、应力分析、光信息处理、光通信、激光和光电子学器件等应用中,都大量使用偏振技术。 二、实验原理 1.偏振光的种类 光是电磁波,它的电矢量E和磁矢量H相互垂直,且都垂直于光的传播方向。通常用电矢量代表光矢量,并将光矢量和光的传播方向所构成的平面称为光的振动面。按光矢量的不同振动状态,可以把光分为五种偏振态: (1)自然光:在与光传播方向垂直的平面内,包含一切可能方向的横振动,即光波的电矢量在任一方向上具有相同的振幅。普通光源发光的是自然光。(2)线偏振光:在光的传播过程中,只包含一种振动,其振动方向始终保持在同一平面内,这种光称为线偏振光(或平面偏振光)。 (3)部分偏振光:光波包含一切可能方向的横振动,但不同方向上的振幅不等,在两个互相垂直的方向上振幅具有最大值和最小值,这种光称为部分偏振光。自然光和部分偏振光实际上是由许多振动方向不同的线偏振光组成。 (4)椭圆偏振光:在光的传播过程中,空间每个点的电矢量均以光线为轴作旋转运动,且电矢量端点描出一个椭圆轨迹,这种光称为椭圆偏振光。 (5)圆偏振光:旋转电矢量端点描出圆轨迹的光称圆偏振光,是椭圆偏振光的特殊情形。 能使自然光变成偏振光的装置或器件,称为起偏器;用来检验偏振光的装置或器件,称为检偏器。 2. 线偏振光的产生 (1)反射和折射产生的偏振 根据布儒斯特定律,当自然光以i b =arctan n的入射角从空气或真空入射至折射率为n的介质表面上时,其反射光为完全线偏振光,振动面垂直于入射面, 而透射光为部分偏振光,i b 称为布儒斯特角。如果自然光以i b 入射到一叠平行 玻璃片堆上,则经过多次反射和折射最后从玻璃片堆透射出来的光也接近于线偏振光。玻璃片堆的数目越多,透射光的偏振度越高。 (2)偏振片 利用某些有机化合物晶体的“二向色性”制成。当自然光通过这种偏振片后,光矢量垂直于偏振片透振方向的分量几乎完全被吸收,光矢量平行于透振方向的分量几乎完全通过,因此透射光基本上为线偏振光。 (3)双折射产生偏振 当自然光入射到某些双折射晶体(如方解石、石英等)时,经晶体的双折射所产生的寻常光(o光)和非常光(e光)都是线偏振光。 3. 波晶片

偏振光的研究

偏振光的研究 2006.1.10 中国科学技术大学国家级精品课程大学物理实验讲座前言 干涉和衍射—光的波动性 偏振—光是横波 光的偏振现象 偏振元件应用 S E H =? 光的矢量性—光是横波 K为波面的法线方向,S为光波的能量传播方向。 在各向同性的介质中S与K同向。在各向异性的介质中S与K不同向。 自然光线偏振光

部分偏振光 圆偏振光 椭圆偏振光 部分偏振度 定义: min max min max I I I I P +-= 椭圆偏振光的形成(两个互相垂直的振动的合成) ) cos()cos(2010αωαω+=+=t E E t E E y y x x 椭圆方程式: 002121221002 022 022 /) (sin )cos(2 E E E E E E E E E E E y x y x y x y y x x ====--=--+ 正椭圆 πδαααααα 改变光的偏振态的方法 1、利用偏振片 2、利用反射现象 3、利用双折射晶体 光的散射 利用偏振片产生偏振光 马吕斯定律(1809年)和消光现象

菲涅耳公式 (只写出反射时的公式) ) sin()sin()tan() tan(r φθφθφθφθ+--== +-= = S S S P P P A R r A R 注:R ,A 为振幅 布鲁斯特角:12tan n n =θ 利用布儒斯特角产生偏振光

全反射时光的偏振态的改变 反射波的振幅比可以改写为: θ θθθθ θθ θ2 222222 222sin cos sin cos sin cos sin cos -+-+-=-+--=n n n n r n n r P S 1)(sin sin sin 12<=≥=n n n n n 全反射θφθ 当入射角大于或等于临界角sin-1(n)时 P S i i P i i S e e i B i B n i i n n i n r e e i A i A n i n i r δβδαββθθθααθθθθ==-= -+-+-= ==-= -+--=--22 2122 2 2 22 222) exp() exp(sin cos sin cos ) exp() exp(sin cos sin cos P S δδ?-= 全反射时的相位改变 菲涅耳棱体

实验七 偏振光的定量研究

偏振光的定量研究 【实验目的】 (1)观察光的偏振现象,掌握光偏振的基本规律; (2)掌握椭圆偏振光的产生和检验方法; (3)学会分析实验曲线与理论曲线之间的误差来源; 【仪器用具】 光学防震平台,氦氖激光器及其电源,激光功率计,偏振片,1/4波片 【原理简介】 光的偏振现象显示了光的横波性。光波是一种电磁波,在光与物质相互作用时,主要起作用的是横向振动着的电矢量或光矢量,而振动方向对传播方向的不对称性构成光的各种偏振态。 (一)光的五种偏振态 光的偏振态通常分为自然光、部分偏振光、圆偏振光和椭圆偏振光五种。自然光和部分偏振光二者均由大量取向各异、彼此无相位关联的线偏振光组成,只不过自然光的光矢量相对于光的传播方向具有对称性,部分偏振光不具备轴对称性,而存在某一优势方向。线偏振光、椭圆偏振光和圆偏振光均可以等效为振动方向相互垂直、相互关联的两个线偏振光,这两个线偏振光具有相同的传播方向和频率,两者有确定的相位差。 cos cos x x y y E A t kz E A t kz ωωδ=?=?() ()+ (1) 当(δ= 0,π)时,上式描述的是线偏振光;当(δ= ±π/2,A x = A y )时,为圆偏振光;当(δ= ±π/2,A x ≠ A y )时,为正椭圆偏振光;当(δ≠ ±π/2,A x ≠ A y )时,为各种取向的斜椭圆偏振光; (二)通过检偏器后的透射光强 人眼仅对光的强弱变化敏感,而无法直接感知光的各种偏振态,必须借助检偏器,研究透射光强的变化来判定光的偏振态。检偏器(或起偏器)是一种只允许某一振动方向光通过的光学器件,当它用来产生线偏振光时称为起偏器,用来检验线偏振光时称为检偏器。常用的检偏器有两类:一类是利用材料对不同方向的电磁振动具有选择吸收特性的原理制成的,称为偏振片;另一类是用双折射晶体制成的特殊棱镜,如尼科尔棱镜、格兰棱镜等,这类棱镜的透光率和偏振度远高于偏振片,在检偏器上能够让电矢量充分透过的方向称为透振方向记作P,与P 正交的方向上的电矢量将被强烈吸收而无法透过,称为消光方向。 1 自然光通过检偏器 由于自然光具有轴对称性,将光强为I 0的自然光中每一个光矢量都在x、y两个方向上分

偏振光现象的观察和分析

偏振光现象的观察和分析 引言: 光的偏振现象有法国工程师马吕斯首先发现。对光偏振现象的研究清楚地显示了光的横波性,加深了人们对光传播规律的认识。近年来光的偏振特性在光调制器、光开关、光学计量、应力分析、光信息处理、光通信、激光、光电子器件中都有广泛应用。 本实验利用偏振片和1/4波片观察光的偏振现象,并分析和研究各种偏振光。从而了解1/4波片和1/2波片的作用及应用,加深对光偏振性质的认识。 实验原理 1、 偏振光的种类。 光可按光适量的不同振动状态分为五类: (1)线偏振光 (2)自然光 (3)部分偏振光 (4)园偏振光 (5)椭圆偏振光 使自然光变成偏振光的装置称为起偏器,用来检验偏振光的装置称为检偏器。 2、 线偏振光的产生。 (1)反射和折射产生偏振 自然光以 i B =arc tan n 的入射角从空气入射至折射率为n 的介质表面上时,反射光 为线偏振光。以 i B 入射到一叠平行玻璃堆上的自然光,透射出来后也为线偏振光。 (2)偏振片。 利用某些晶体的二向色性可使通过他的自然光变成线偏振光。 (3)双折射产生偏振。 自然光入射到双折射晶体后,出射的o 光和e 光都为线偏振光。 3、 波晶片 4、 线偏振光通过各种波片后偏振态的改变。 在光波的波面中取一直角坐标系,将电矢量E 分解为两个分量E X 和E y ,他们频率相同都为ω,设E y 相对E X 的相位差为?φ,即有 E X =A x cos ωt (2) E y =A y cos(ωt +?φ) (3) 由(2)、(3)两式得,对于一般情况,两垂直振动的合成为: e 轴 O 轴 θ 光 轴 图 1

偏振光的研究实验报告doc

偏振光的研究实验报告 篇一:偏振光的观测与研究~~实验报告 偏振光的观测与研究 光的干涉和衍射实验证明了光的波动性质。本实验将进一步说明光是横波而不是纵波,即其E和H 的振动方向是垂直于光的传播方向的。光的偏振性证明了光是横波,人们通过对光的偏振性质的研究,更深刻地认识了光的传播规律和光与物质的相互作用规律。目前偏振光的应用已遍及于工农业、医学、国防等部门。利用偏振光装置的各种精密仪器,已为科研、工程设计、生产技术的检验等,提供了极有价值的方法。 【实验目的】 1.观察光的偏振现象,加深偏振的基本概念。 2.了解偏振光的产生和检验方法。 3.观测布儒斯特角及测定玻璃折射率。 4.观测椭圆偏振光和圆偏振光。 【实验仪器】 光具座、激光器、偏振片、1/4波片、1/2波片、光电转换装置、光点检流计、观测布儒斯特角装置 图1 实验仪器实物图 【实验原理】 1.偏振光的基本概念 按照光的电磁理论,光波就是电磁波,它的电矢量E和

磁矢量H相互垂直。两者均垂直于光的传播方向。从视觉和感光材料的特性上看,引起视觉和化学反应的是光的电矢量,通常用电矢量E代表光的振动方向,并将电矢量E和光的传播方向所构成的平面称为光振动面。在传播过程中,光的振动方向始终在某一确定方位的光称为平面偏振光或线偏振光,如图2(a)。光源发射的光是由大量原子或分子辐射构成的。由于热运动和辐射的随机性,大量原 - 子或分子发射的光的振动面出现在各个方向的几率是相同的。一般说,在106s内各个方向电矢量的时间平均值相等,故出现如图2(b)所示的所谓自然光。有些光的振动面在某个特定方向出现的几率大于其他方向,即在较长时间内电矢量在某一方向较强,这就是如图2(c)所示的所谓部分偏振光。还有一些光,其振动面的取向和电矢量的大小随时间作有规则的变化,其电矢量末端在垂直于传播方向的平面上的移动轨迹呈椭圆(或圆形),这样的光称为椭圆偏振光(或圆偏振光),如图2(c)所示。 图2 光波按偏振的分类 2.获得偏振光的常用方法 (1)非金属镜面的反射。 通常自然光在两种媒质的界面上反射和折射时,反射光和折射光都将成为部分偏振光。并且当入射角增大到某一特定值时,镜面反射光成为完全偏振光,其振动面垂直于入

偏振光的定量分析

普通物理实验(三) 33 ■ 偏振光的定量分析 目的要求 1.了解GSZF-3型偏振光实验系统的原理和使用方法。 2.深入理解不同类型偏振光的产生条件、光强分布和检偏方法。 3.定量讨论三类偏振光的基本特性。 实验原理 1. 线偏振光的产生与鉴别 当自然光通过起偏器后,由于只有电矢量振动方向平行于透射轴的光可以通过,所以,由起偏器出射的光为线偏振光。判断其是否为线偏振光,只要让该偏振光通过一个检偏器,当转动检偏器改变其透振轴与线偏振光的振动方向之间的夹角时,出射的光强随之改变。当透振轴与线偏振光的振动方向平行时,出射的光强最大;而垂直于线偏振光的振动方向时,出射的光强为零。如果检偏器转动一周,光强交替出现两次最亮和两次消光,则可判断其为线偏振光。这些规律可用公式表述如下: θcos 0E E =22 E I =,2 200E I = θθ2cos 2 121cos 0020I I I I +== (1) 式中,θ为检偏器透振方向与线偏振光振动方向之间的夹角,E 、I 分别为出射光的振幅和光强,E 0、I 0分别为线偏振光的振幅和光强。显然出射光线光强随角度θ的变化成余弦曲线的规律变化,周期为π。 出射光满足Malus 定律 θ20cos I I =,θ20cos =I I (2) 以相对能量I /I 0为纵坐标,cos 2θ为横坐标,θ从00到900 变化时将形成一条直线,由此也可验证线偏振光。 2. 圆偏振光的产生与鉴别 产生圆偏振光的前提是先得到线偏振光,然后让线偏振光垂直入射到4λ波片,如果线偏振光的振动方向与4λ的快轴和慢轴成450角,这时透过4λ片的光是圆偏振光。 线偏振光表示为 t E E t E E y x ωαωαsin sin sin cos 00== (3) 经过4λ片快轴方向(即Y 方向)相位超前2π,所以出射光为

偏振光现象的观察和分析

偏振光现象的观察和分析 摘要 本实验用半导体激光通过偏振片来产生线偏振光,使其分别通过1/4波片和1/2波片,通过测量不同方向上检偏器透过的光的强度,判断出出射光的偏振态。并证实了线偏振光通过1/4波片可以产生线偏振光、圆偏振光、椭圆偏振光,通过1/2波片可以产生线偏正光,验证了马吕斯定律。 一、引言 振动方向对于传播方向的不对称性叫做偏振,它是横波区别于其他纵波的一个最明显的标志。只有横波才能产生偏振现象,故光的偏振是光的波动性的又一例证。在垂直于传播方向的平面内,包含一切可能方向的横振动,且平均说来任一方向上具有相同的振幅,这种横振动对称于传播方向的光称为自然光(非偏振光)。凡其振动失去这种对称性的光统称偏振光。偏振光的典型应用是偏光式3D 技术,其普遍用于商业影院和其它高端应用。 二、实验原理 1.偏振光的种类 光是一种电磁波,由于电磁波对物质的作用主要是电场,故在光学中把电场强度E 称为光矢量。在垂直于光波传播方向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为偏振态。如果光在传播过程中,若光矢量保持在固定平面上振动,这种振动状态称为平面振动态,此平面就称为振动面。 ~ 图1 电矢量垂直于纸面的偏振光 图2 电矢量平行于纸面振光【1】 光的五种偏振态:

① 线偏振光:在光的传播过程中,只包含一种振动,其振动方向始终保持 在同一平面内, ② 部分偏振光:光波包含一切可能方向的横振动,但不同方向上的振幅不 等。 ③ 自然光:光波包含一切可能方向的横振动,但不同方向上的振幅相等。 ④ 椭圆偏振光:在光的传播过程中,空间每个点的电矢量均以光线为轴作 旋转运动,若它们的频率相同并且有固定的位相差,则该点的合成振动的轨迹一般呈椭圆形。 ⑤ 圆偏振光:旋转电矢量端点描出圆轨迹的光称圆偏振光,是椭圆偏振光 的特殊情形。 2.线偏振的产生 ~ (1)偏振片 利用某些有机化合物的“二向色性”制成,当自然光透过这种偏振片后,光矢量垂直于偏振片方向的分量几乎完全被吸收,而平行方向的分量几乎完全通过,因此透射光基本上为线偏振光。偏振片可以作为起偏器,也可以作为检偏器检验偏振光的偏振方向。 (2)双折射产生偏振 自然光入射到双折射晶体时,产生的寻常光(o 光)和非寻常光(e 光)都是线偏振光。 3.波晶片 即上述能发生双折射的晶体,又称波片。当光垂直入射到波片后,产生的o 光和e 光在波片中的传播方向一致而传播速度不同,因此导致它们产生了光程差 ,当波长为λ时,产生相位差, 其中d 为波片厚度,n e 与n o 是e 光与o 光的主折射率。对于某种单色光,能产 生相位差(21)2 k π δ=+的波片为1/4波片;能产生(21)k δπ=+的波片称为1/2波 片;能产生2k δπ=的波片称为全波片。 离开波片时合成波的偏振性质,确定于相位差δ和θ。线偏振光通过1/2波

相关主题
文本预览
相关文档 最新文档