当前位置:文档之家› 偏振光的研究

偏振光的研究

偏振光的研究
偏振光的研究

偏振光的研究

2006.1.10

中国科学技术大学国家级精品课程大学物理实验讲座前言

干涉和衍射—光的波动性

偏振—光是横波

光的偏振现象

偏振元件应用 S E H =?

光的矢量性—光是横波

K为波面的法线方向,S为光波的能量传播方向。

在各向同性的介质中S与K同向。在各向异性的介质中S与K不同向。

自然光线偏振光

部分偏振光 圆偏振光 椭圆偏振光

部分偏振度

定义: min

max min

max I I I I P +-=

椭圆偏振光的形成(两个互相垂直的振动的合成)

)

cos()cos(2010αωαω+=+=t E E t E E y y x x

椭圆方程式:

002121221002

022

022

/)

(sin )cos(2

E E E E E E E E E E E y x y

x y x y

y

x

x

====--=--+

正椭圆

πδαααααα

改变光的偏振态的方法 1、利用偏振片 2、利用反射现象 3、利用双折射晶体 光的散射

利用偏振片产生偏振光

马吕斯定律(1809年)和消光现象

菲涅耳公式

(只写出反射时的公式)

)

sin()sin()tan()

tan(r φθφθφθφθ+--==

+-=

=

S S S P P P A R r A R

注:R ,A 为振幅

布鲁斯特角:12tan n n

利用布儒斯特角产生偏振光

全反射时光的偏振态的改变 反射波的振幅比可以改写为:

θ

θθθθ

θθ

θ2

222222

222sin cos sin cos sin cos sin cos -+-+-=-+--=n n n n r n n r P S 1)(sin sin sin 12<=≥=n n n n n

全反射θφθ

当入射角大于或等于临界角sin-1(n)时

P

S

i i P i i S e e i B i B n i i n n

i n r e e i A i A n i n i r δβδαββθθθααθθθθ==-=

-+-+-=

==-=

-+--=--22

2122

2

2

22

222)

exp()

exp(sin cos sin cos )

exp()

exp(sin cos sin cos

P S δδ?-=

全反射时的相位改变

菲涅耳棱体

晶体光学

晶体光学元件

1、偏振器件:

尼科耳棱镜

格兰棱镜

2 波晶片

构造:单轴晶体使其光轴与表面平行

入射光 1/4波片

厚度

)

/(4

)

12(2

)

12()(2e o e o oe n n m d m d n n -+±=+±=-=

λ

π

λ

π

δ

检验偏振光的光路

偏振光的检验

借助检偏器和1/4波晶片检验光的5种偏振态 1.只用检偏器(转动):

对于线偏光可以出现极大和消光现象。

对于椭圆偏光和部分偏光可以出现极大和极小现象。 对于圆偏光和非偏光各方向光强不变。 2.用1/4波晶片和检偏器(转动) :

对于非偏光(自然光)各方向光强不变。 对于圆偏光出现消光现象(原因)。 对于部分偏光仍出现极大和极小现象。

对于椭圆偏光,当把1/4波晶片的快慢轴放在光强极大位置时出现消光

现象(原因)。

平行偏光干涉的装置

(干涉的三条件:频率、振动方向、初位相—相同)

装置:自然光+起偏器P1+波晶片+检偏器P2

偏振光的干涉的结果

现象

单色光照明厚度变化的波晶片P1 ⊥ P2,P1 II P2,亮暗纹互补

白光照明厚度变化的波晶片P1 ⊥P2,P1 II P2,彩色互补(如红色与青色,绿色和紫色,黄色和蓝色等)显色偏振

其他产生双折射的机理和应用

光测弹性(由于材料的内、外应力造成双折射现象)

检查玻璃、塑料等的内应力

桥梁、矿井、水坝和机械工件等的应力分布的监测和模拟。

地震预报。

克尔效应和普克尔效应(由于电场造成双折射现象)—高速光开关。 旋光现象的观察和测量 1811年由阿喇果和毕奥发现 石英、松节油、糖溶液中有旋光现象

左旋和右旋—与旋光物质的结构有关(1822年赫谢尔发现) 旋光计—测量糖溶液的浓度 L αρ??=

会聚偏光的干涉

椭圆偏振光法测定介质薄膜的厚度和折射率

在现代科学技术中,薄膜有着广泛的应用。因此测量薄膜的技术也有了很大的发展,椭偏法就是70年代以来随着电子计算机的广泛应用而发展起来的目前已有的测量薄膜的最精确的方法之一。椭偏法测量具有如下特点:

能测量很薄的膜(1nm),且精度很高,比干涉法高1-2个数量级。

是一种无损测量,不必特别制备样品,也不损坏样品,比其它精密方法:如称重法、定量化学分析法简便。

可同时测量膜的厚度、折射率以及吸收系数。因此可以作为分析工具使用。

对一些表面结构、表面过程和表面反应相当敏感。是研究表面物理的一种方法

椭偏仪的光路图

椭偏仪的基本原理

入射光的P 分量

)]45(exp[2

2

)(θ+=

i E E i P 入射光的S 分量

)]513(exp[2

2

)(θ+=

i E E i P 反射光的P 分量和 S 分量的比值—椭圆参量 ρ=RP/Rs=tan ψexp(i ?)=f(n1, n2, n3,φ1,d ,λ)

9020

Pr )()Pr ((Pr )()()()()()(tan S -=-=??

?=-=---===

=

=

θβββπ

βββββββββββ?ψSi Pi Sr Si Pi Sr i e

Si i e Sr i e Pi

i e

i e i e A A A A A A R R i r r S r

P i S r S i P r P P

总结

光是横波具有五种偏振态

光与物质相互作用时会发生偏振态的改变 偏振元件:偏振片、偏振棱镜、波片

应用:光测弹性、旋光计、椭偏仪、电光调制

偏振光的观测与研究~~实验报告

偏振光的观测与研究 光的干涉与衍射实验证明了光的波动性质。本实验将进一步说明光就是横波而不就是纵波,即其E与H的振动方向就是垂直于光的传播方向的。光的偏振性证明了光就是横波,人们通过对光的偏振性质的研究,更深刻地认识了光的传播规律与光与物质的相互作用规律。目前偏振光的应用已遍及于工农业、医学、国防等部门。利用偏振光装置的各种精密仪器,已为科研、工程设计、生产技术的检验等,提供了极有价值的方法。 【实验目的】 1.观察光的偏振现象,加深偏振的基本概念。 2.了解偏振光的产生与检验方法。 3.观测布儒斯特角及测定玻璃折射率。 4.观测椭圆偏振光与圆偏振光。 【实验仪器】 光具座、激光器、偏振片、1/4波片、1/2波片、光电转换装置、光点检流计、观测布儒斯特角装置 图1 实验仪器实物图 【实验原理】 1.偏振光的基本概念 按照光的电磁理论,光波就就是电磁波,它的电矢量E与磁矢量H相互垂直。两者均垂直于光的传播方向。从视觉与感光材料的特性上瞧,引起视觉与化学反应的就是光的电矢量,通常用电矢量E代表光的振动方向,并将电矢量E与光的传播方向所构成的平面称为光振动面。 在传播过程中,光的振动方向始终在某一确定方位的光称为平面偏振光或线偏振光,如图2(a)。光源发射的光就是由大量原子或分子辐射构成的。由于热运动与辐射的随机性,大量原子或分子发射的光的振动面出现在各个方向的几率就是相同的。一般说,在10-6s内各个方向电矢量的时间平均值相等,故出现如图2(b)所示的所谓自然光。有些光的振动面在某个特定方向出现的几率大于其她方向,即在较长时间内电矢量在某一方向较强,这就就是如图2(c)所示的所谓部分偏振光。还有一些光,其振动面的取向与电矢量的大小随时间作有规则的变化,其电矢量末端在垂直于传播方向的平面上的移动轨迹呈椭圆(或圆形),这样的光称为椭圆偏振光(或圆偏振光),如图2(c)所示。 图2 光波按偏振的分类 2.获得偏振光的常用方法 (1)非金属镜面的反射。 通常自然光在两种媒质的界面上反射与折射时,反射光与折射光都将成为部分偏振光。并且当入射角增大到某一特定值时,镜面反射光成为完全偏振光,其振动面垂直于入射面,如图3所示,这时入射角称为布儒斯特角,也称为起偏角。

偏振光的研究-

预习(15)实验操作(45)实验报告(40)总分(100) 14393588 实验报告 学生姓名:曾哲学生学号:PB07203201 实验时间:2008-9-26 (说明:预习报告及原始数据已和其他同学的手写版实验报告一起上交) 实验题目: 偏振光的研究 实验步骤: 1.调节仪器至待测状态。 打开光电探测器。调节分光计,使分光计的平行光管光轴和望远镜光轴重合,使激光通过平行光管和望远镜中央。 2.验证马吕斯定律 1)将起偏器和检偏器安装于分光计。 2)调节起偏器使其示数为0°,调节检偏器使其示数为90°。调节检偏器,使其完全消光,此时光 电探测器示数为0,起偏器与检偏器透光方向垂直,θ=90°。 3)调节检偏器,使θ=80°、70°、60°、……、-90°,记录各情况下光电探测器示数I。 cos 关系曲线 4)作I~θ及I~2 3.根据布儒斯特定律测定介质的折射率 1)将待测玻璃放于载物台,调节载物台使待测玻璃反射激光使其沿原方向返回,记录此时分光计示 数。 2)调节载物台使其激光的入射角为57°左右,调节起偏器使其反射的激光最暗,再调节载物台使 其反射的激光最暗,如此反复调节,直至反射激光消失。记录此时分光计示数。如此重复测量3 次。 3)通过布儒斯特定律计算待测玻璃的折射率。 4.设计性实验---在光路中插入λ/4波片做产生和检验圆偏振光和椭圆偏振光的实验(选做) 1)固定起偏器不变调节检偏器至完全消光,此时光电探测器示数为0,起偏器与检偏器透光方向垂 直,θ=90°。 2)在检偏器上安装λ/4波片,调节λ/4波片方向,使其再次完全消光,此时λ/4波片方向和起偏 器透光方向垂直或平行。 3)调节起偏器,使其旋转45°,此时λ/4波片方向与起偏器透光方向夹角为45°。 4)调节检偏器方向,使其透光方向分别与λ/4波片方向夹角为θ=0°、10°、20°、……、180°, 记录各情况下光电探测器示数I。 5)作I~θ关系曲线 实验报告成绩:+34′+1′(补充实验加分)=+35′ 数据处理: 1.验证马吕斯定律

光的偏振现象的研究

图2 二向色性起偏 图1 平面偏振光、自然光和部分偏振光 实验名称 光的偏振现象的研究 姓 名 学 号 班 级 桌 号 教 室 基础教学楼1406 实验日期 20 年 月 日 时段 指导教师 一. 实验目的 1. 观察光的偏振现象,加深对光偏振基本规律的认识。 2. 了解产生和检验偏振光的基本方法。 3. 验证马吕斯定律。 4.1/4波片,1/2波片的研究; 5.利用旋光现象测定蔗糖溶液浓度 二. 实验仪器 导轨和机座, 氦氖激光器(功率约5mW ), 激光器架, 偏振片波片架, 滑动座(5个), 光传感器(光电探头),光功率测试仪,偏振片(两个),1/4波片(波长632.8nm ),1/2波片(波长632.8nm ),透明蔗糖溶液,螺丝刀 三. 实验原理(请携带并参阅大学物理课本) 1. 偏振光的基本概念 光波是一种电磁波,它的电矢量 和磁矢量 相互垂直,并垂直于光的传播方向C 。通常人们用电矢量 代表光的振动方向,并将电矢量和光的传播方向C 所构成的平面称为光的振动面。在传播过程中,电矢量的振动方向始终在某一确定方向的光称为平面偏振光或线偏振光,如图1(a)所示。振动面的取向和光波电矢 量的大小随时间作有规律的变化,光波电矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆时,称为椭圆偏振光或圆偏振光,人眼逆光来看,若电矢量末端按照顺时针方向旋转,则称 评 分 教师签字

图3 双折射起偏原理图 为右旋椭圆或右旋圆偏振光,反之为左旋。通常光源发出的光波有与光波传播方向相垂直的一切可能的振动方向,没有一个方向的振动比其它方向更占优势。这种光源发射的光对外不显现偏振的性质,称为自然光,如图1(b)所示;如果光波电矢量的振动在传播过程中只是在某一确定方向上占优势,则此偏振光称为部分偏振光,如图1(c)所示。将自然光变成偏振光的器件称为起偏器,用来检验偏振光的器件称为检偏器。实际上,起偏器和检偏器是互为通用的。下面介绍几种常用的起偏和检偏方法。 2. 二向色性起偏、马呂斯定律、双折射起偏及波片 物质对不同方向的光振动具有选择吸收的性质,称为二向色性。当自然光射到偏振片上时,振动方向与透振方向垂直的光被吸收,振动方向与透振方向平行的光透过偏振片,从而获得偏振光。自然光透过偏振片后,只剩下沿透光方向的光振动,透射光成为平面偏振光(见图2所示)。 若在偏振片P 1后面再放一偏振片P 2,P 2就可以用作检验经P 1后的光是否为偏振光,即P 2 起了检偏器的作用。当起偏器P 1和检偏器P 2的偏振化方向间有一夹角,则通过检偏器P 2的偏振光强度满足马呂斯定律: (1) 当θ= 时,I=I 0, 光强最大;当θ= 时,I =0,出现消光现象;当θ为其它值时,透射光强介于0~I 0之间。 (1)双折射起偏 某些单轴晶体(如方解石和石英等)具有双折射现象。当一束自然光射到这些晶体上时,在界面射入晶体内部的折射光常为传播方向不同的两束折射光线,这两束折射光是光矢量振动方向不同的线偏振光。其中一束折射光 ,称为寻常光(或O 光);另一束折射光 ,其振动在 内,称为非常光(或e 光),如图3所示。 研究发现,这类晶体存在这样一个方向,沿该方向传播的光 ,该方向称为光轴。 主平面: 主截面: (2)反射和折射时光的偏振 自然光在两种透明媒质的界面上反射和折射时,反射光和折射光就能成为部分偏振光或平面偏振光,而且反射光中垂直入射面的振动较强,折射光中平行入射面的振动较强。实验发现,当改变入射角i 时,反射光的偏振程度也随之改变,当i 等于特定角0i 时,反射光只有垂直于入

光的偏振特性研究

实验7 光的偏振特性研究 光的干涉衍射现象揭示了光的波动性,但是还不能说明光波是纵波还是横波。而光的偏振现象清楚地显示其振动方向与传播方向垂直,说明光是横波。1808年法国物理学家马吕斯(Malus,1775—1812)研究双折射时发现折射的两束光在两个互相垂直的平面上偏振。此后又有布儒斯特(Brewster,1781—1868)定律和色偏振等一些新发现。 光的偏振有别于光的其它性质,人的感觉器官不能感觉偏振的存在。光的偏振使人们对光的传播规律(反射、折射、吸收和散射)有了新的认识。本实验通过对偏振光的观察、分析和测量,加深对光的偏振基本规律的认识和理解。 偏振光的应用很广泛,从立体电影、晶体性质研究到光学计量、光弹、薄膜、光通信、实验应力分析等技术领域都有巧妙的应用。 一、实验目的 1. 观察光的偏振现象,了解偏振光的产生方法和检验方法。 2. 了解波片的作用和用1/4波片产生椭圆和圆偏振光及其检验方法。 3. 通过布儒斯特角的测定,测得玻璃的折射率。 4. 验证马吕斯定律。 二、实验原理 1. 自然光和偏振光 光是一种电磁波,电磁波中的电矢量E就是光波的振动矢量,称作光矢量。通常,光源发出的光波,其电矢量的振动在垂直于光的传播方向上作无规则的取向。在与传播方向垂直的平面内,光矢量可能有各种各样的振动状态,被称为光的偏振态。光的振动方向和传播方向所组成的平面称为振动面。按照光矢量振动的不同状态,通常把光波分为自然光、部分偏振光、线偏振光(平面偏振光)、圆偏振光和椭圆偏振光五种形式。 如果光矢量的方向是任意的,且在各方向上光矢量大小的时间平均值是相等的,这种光称为自然光。自然光通过介质的反射、折射、吸收和散射后,光波的电矢量的振动在某个方向具有相对优势,而使其分布对传播方向不再对称。具有这种取向特征的光,统称为偏振光。 偏振光可分为部分偏振光、线偏振光(平面偏振光)、圆偏振光和椭圆偏振光。如果光矢量可以采取任何方向,但不同方向的振幅不同,某一方向振动的振幅最强,而与该方向垂直的方向振动最弱,这种光为部分偏振光。如果光矢量的振动限于某一固定方向,则这种光称为线偏振光或平面偏振光。如果光矢量的大小和方向随时间作有规律的变化,且光矢量的末端在垂直于传播方向的平面内的轨迹是椭圆,则称为椭圆偏振光;如果是圆则称为圆偏振光。 将自然光变成偏振光的过程称为起偏,用于起偏的装置称为起偏器;鉴别光的偏振状态的过程称为检偏,它所使用的装置称为检偏器。实际上,起偏器和检偏器是可以通用的。本实验所用的起偏器和检偏器均为分子型薄膜偏振片。

偏振光的观察与研究

实验报告 PB09214023葛志浩 PB09214047卢焘 2011-11-22 得分: 实验题目:偏振光的观察与研究 实验目的:1.观察光的偏振现象,加深偏振的基本概念。 2.了解偏振光的分类以及产生和检验方法,掌握马吕斯定律。 3.观测布儒斯特角及测定玻璃折射率。 4.观测椭圆偏振光和圆偏振光。 实验仪器:激光器,起偏器,检偏器,硅光电池,1/4波片,光电流放大器,分束板。 实验原理: 一,偏振光的基本概念和分类 光的偏振是指光的振动方向不变,或光矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆的现象。光有五种偏振态:自然光(非偏振光),线偏振光,部分偏振光,圆偏振光,椭圆偏振光 二,产生偏振光的方法: 1,利用光在界面反射和透射时光的偏振现象。 反射光中的垂直于入射面的光振动(称s 分量)多于平行于入射面的光振动(称p 分量);而透射光则正好相反。在改变入射角的时候,出现了一个特殊的现象,即入射角为一特定值(称为布雷斯特角)时,反射光成为完全线偏振光(s 分量)。折射光为部分偏振光,而且此时的反射光线和折射光线垂直,这种现象称之为布儒斯特定律。该方法是可以获得线偏振光的方法之一。通过测量介质的布雷斯特角可以得到介质的折射率。 1 2 n n tg = α )1( 2,利用光学棱镜,如尼科尔棱镜,格兰棱镜等。 3,利用偏振片。 三,改变光的偏振态的元件——波晶片。

平面偏振光垂直入射晶片,如果光轴平行于晶片表面,会产生比较特殊的双折射现象,这时非常光e 和寻常光o 的传播方向是一致的,但速度不同,因而从晶片出射时会产生相位差。 线偏振光垂直入射1/4波片,其振动方向与波片光轴成角θ,则出射光的偏振态与θ的关系如下: 1,2 0π θ或=时,出射光为线偏振光; 2,4 π θ= 时,出射光为圆偏振光; 3,θ为其它值时,出射光为椭圆偏振光。 利用偏振片可以由自然光得到线偏振光,利用1/4波片可以由线偏振光得到圆偏振光和椭圆偏振光。 四,马吕斯定律:θ20cos I I = (2) 实验内容及步骤: 一,调节仪器和观察消光现象。 如图(一)所示放置好实验仪器,旋转P2,观察出射光强的变化。 二,验证马吕斯定律。 如图(二)所示放置好实验仪器,将P1度盘读数调为0,旋转P2,记录P2度盘读数θ和D1,D2光电流读数21I I ,。

大学物理实验《偏振光的观测与研究》

实验3.8 偏振光的观测与研究 偏振光的理论意义和价值是,证明了光是横波。同时,偏振光在很多技术领域得到了广泛的应用。如偏振现象应用在摄影技术中可大大减小反射光的影响,利用电光效应制作电光开关等。 【实验目的】 1.通过观察光的偏振现象,加深对光波传播规律的认识。 2.掌握偏振光的产生和检验方法。 3.观察布儒斯特角及测定玻璃折射率。 4.观测圆偏振光和椭圆偏振光。 【实验仪器】 光具座、激光器、光点检流计、起偏器、检偏器、1/4波片、1/2波片、光电转换装置、观测布儒斯特角装置、带小孔光屏、钠光灯。 【实验原理】 按照光的电磁理论,光波就是电磁波,电磁波是横波,所以光波也是横波。在大多数情况下,电磁辐射同物质相互作用时,起主要作用的是电场,因此常以电矢量作为光波的振动矢量。其振动方向相对于传播方向的一种空间取向称为偏振,光的这种偏

振现象是横波的特征。 根据偏振的概念,如果电矢量的振动只限于某 一确定方向的光,称为平面偏振光,亦称线偏振光; 如果电矢量随时间作有规律的变化,其末端在垂直于传播方向的平面上的轨迹呈椭圆(或圆),这样的光称为椭圆偏 振光(或圆偏振光);若电矢量的取向与大小都随时间作无规则变 化,各方向的取向率相同,称为自然光,如图3-26所示;若电矢 量在某一确定的方向上最强,且各向的电振动无固定相位关系, 则称为偏振光。 1.获得偏振光的方法 (1)非金属镜面的反射,当自然光从空气照射在折射率为n 的非金属镜面(如玻璃、水等)上,反射光与折射光都将成为部 分偏振光。当入射角增大到某一特定值φ0时,镜面反射光成为完 全偏振光,其振动面垂直于射面,这时入射角φ称为布儒斯特角, 也称起偏振角,由布儒斯特定律得: 0tan n φ= (3-51) 其中,n 为折射率。 (2)多层玻璃片的折射,当自然光以布儒斯特角入射到叠在 一起的多层平行玻璃片上时,经过多次反射后透过的光就近似于 线偏振光,其振动在入射面。 图3-26 自然光

偏振光现象的研究

课题偏振光现象的研究 1.观察光的偏振现象,掌握产生与检验偏振光的条件和方法;教学目的 2.测量布儒斯特角; 3.验证马吕斯定律。 重难点 1.激光器与光具组的共轴调节; 2.布儒斯特角的测定。 教学方法讲授、讨论、实验演示相结合。 学时 3个学时 一、前言 光的偏振是指光的振动方向与光的传播方向的不对称性.偏振现象是证明光为横波的最有力的证据,在科学上具有极其重要的意义。它不但丰富了光的波动说的内容,而且具有重要的应用价值。 自然光是各方向的振幅相同的光,对自然光而言,它的振动方向在垂直于光的传播方向的平面内可取所有可能的方向,没有一个方向占有优势.若把所有方向的光振动都分解到相互垂直的两个方向上,则在这两个方向上的振动能量和振幅都相等.线偏振光是在垂直于传播方向的平面内,光矢量只沿一个固定方向振动.起偏器是将非偏振光变成线偏振光的器件;检偏器是用于鉴别光的偏振状态的器件。 二、实验仪器 He-Ne激光器,光具座,光靶,光学测角台,偏振片,黑玻璃镜,1/2波片,1/4波片,白屏,光功率计等 三、实验原理 1.光的偏振性 光波是波长较短的电磁波,电磁波是横波,光波中的电矢量与波的传播方向垂直。光的偏振观象清楚地显示了光的横波性。光大体上有五种偏振态,即线偏振光、圆偏振光、椭圆偏振光、自然光和部分偏振光。而线偏振光和圆偏振光又可看作椭圆偏振光的特例。

(1)自然光 光是由光源中大量原子或分子发出的。普通光源中各个原子发出的光的波列不仅初相彼此不相关,而且光振动方向也是彼此不相关的,呈随机分布。在垂直于光传播方向的平面内,沿各个方向振动的光矢量都有。平均说来,光矢量具有轴对称而且均匀的分布,各方向光振动的振幅相同,各个振动之间没有固定的相联系,这种光称为自然光或非偏振光(见下图)。 我们设想把每个波列的光矢量都沿任意取定的x轴和y轴分解,由于各波列的光矢量的相和振动方向都是无规则分布的,将所有波列光矢量的x分量和y分量分别 叠加起来,得到的总光矢量的分量E x 和E y 之间没有固定的相关系,因而它们之间是不 相干的。同时E x 和E y 的振幅是相等的,即A x =A y 。这样,我们可以把自然光分解为两 束等幅的、振动方向互相垂直的、不相干的线偏振光。这就是自然光的线偏振表示, 如下图(a)所示。分解的两束线偏振光具有相等的强度I x =I y ,又因自然光强度 I=I x +I y 所以每束线偏振光的强度是自然光强度的1/2,即 通常用图(b)的图示法表示自然光。图中用短线和点分别表示在纸面内和垂直于纸面的光振动,点和短线交替均匀画出,表示光矢量对称而均匀的分布。 (2)线偏振光

9偏振光的观察与研究11

实验( 9 )偏振光的观察与研究 班级18020S01 学号1802004137 姓名沈豹组别 日期2020-6-5 指导教师 一.实验目的 1.了解光的五种偏振状态。 2.了解偏振光元件和偏振光的检验。 3.掌握马吕斯定律。 二.实验仪器 偏振光观察与研究的实验装置包括以下几个部分:光源(可发出多种类型激光)偏振片、波晶片(λ/2和λ/4波长)、光屏。 三.实验原理 为了研究光的偏振态和利用光的偏振特性进行各种分析和测量工作,需要各种偏振元件:产生偏振光的元件、改变光的偏振态的元件等,下面分类介绍。 1.产生偏振光的元件 在激光器发明之前,一般的自然光源产生的光都是非偏振光,因此要产生偏振光都要使用产生偏振光的元件。根据这些元件在实验中的作用,分为起偏器和检偏器。起偏器是将自然光变成线偏振光的元件,检偏器是用于鉴别光的偏振态的元件。在激光器谐振腔中可以利用布儒斯特角使输出的激光束是线偏振光。 将自然光变成偏振光的方法有很多,一个方法是利用光在界面反射和透射时光的偏振现象。我们的先人在很早就已经对水平面的反射光有所研究,但定量的研究最早在1815年由布儒斯特完成。反射光中的垂直于入射面的光振动(称s分量)多于平行于入射面的光振动(称p 分量);而透射光则正好相反。在改变入射角的时候,出现了一个特殊的现象,即入射角为一特定值时,反射光成为完全线偏振光(s分量)。折射光为部分偏振光,而且此时的反射光线和折射光线垂直,这种现象称之为布儒斯特定律。该方法是获得线 偏振光的方法之一。如图1所示。因为此时, , ,若=1(为空气的折射率),则 图1 布儒斯特定律原理图 叫做布儒斯特角,所以通过测量布儒斯特角的大小可以测量介质的折射率。 由以上介绍可以知道利用反射可以产生偏振光,同样利用透射(多次透射)也可以 产生偏振光(玻璃堆)。 图2 格兰棱镜起偏、检偏原理 第二种是光学棱镜,如尼科耳棱镜、格兰棱镜等,它是利用晶体的双折射的原理制 成的。在晶体中存在一个特殊的方向(光轴方向),当光束沿着这个方向传播时,光束不 分裂,光束偏离这个方向传播时,光束将分裂为两束,其中一束光遵守折射定律叫做寻 常光(o光),另一束光一般不遵守折射定律叫做非寻常光(e光)。o光和e光都是线偏振 光(也叫完全偏振光),两者的光矢量的振动方向(在一般使用状态下)互相垂直。改变 射向晶体的入射光线的方向可以找到光轴方向,沿着这个方向,o光和e光的传播速度相等,折射率相同。晶体可以有一个光轴,叫做单轴晶体,如方解石、石英,也可以有两 个光轴,叫双轴晶体,如云母、硫磺等。包含光轴和任一光线的平面叫对应于该光线的 总成绩: 预习操作处理

偏振光现象的观察和分析

偏振光现象的观察和分析 引言: 光的偏振现象有法国工程师马吕斯首先发现。对光偏振现象的研究清楚地显示了光的横波性,加深了人们对光传播规律的认识。近年来光的偏振特性在光调制器、光开关、光学计量、应力分析、光信息处理、光通信、激光、光电子器件中都有广泛应用。 本实验利用偏振片和1/4波片观察光的偏振现象,并分析和研究各种偏振光。从而了解1/4波片和1/2波片的作用及应用,加深对光偏振性质的认识。 实验原理 1、 偏振光的种类。 光可按光适量的不同振动状态分为五类: (1)线偏振光 (2)自然光 (3)部分偏振光 (4)园偏振光 (5)椭圆偏振光 使自然光变成偏振光的装置称为起偏器,用来检验偏振光的装置称为检偏器。 2、 线偏振光的产生。 (1)反射和折射产生偏振 自然光以 i B =arc tan n 的入射角从空气入射至折射率为n 的介质表面上时,反射光 为线偏振光。以 i B 入射到一叠平行玻璃堆上的自然光,透射出来后也为线偏振光。 (2)偏振片。 利用某些晶体的二向色性可使通过他的自然光变成线偏振光。 (3)双折射产生偏振。 自然光入射到双折射晶体后,出射的o 光和e 光都为线偏振光。 3、 波晶片 4、 线偏振光通过各种波片后偏振态的改变。 在光波的波面中取一直角坐标系,将电矢量E 分解为两个分量E X 和E y ,他们频率相同都为ω,设E y 相对E X 的相位差为?φ,即有 E X =A x cos ωt (2) E y =A y cos(ωt +?φ) (3) 由(2)、(3)两式得,对于一般情况,两垂直振动的合成为: e 轴 O 轴 θ 光 轴 图 1

光的偏振特性研究

光的偏振特性研究 光是一种电磁波。干涉和衍射现象揭示了光的波动性,而光的偏振现象证实了光的横波性。本实验主要研究光的一些基本的偏振特性,深入学习光的偏振理论。 一、实验目的 (1)观察光的偏振现象,加深对偏振光的基本概念的理解。 (2)了解偏振光的产生和检验方法。 (3)观测布儒斯特角及测定玻璃折射率。 (4)观测椭圆偏振光和圆偏振光。 二、实验仪器 光具座,激光器,偏振片,1/4波片,光屏,光电转换装置,观测布儒斯特角装置。 三、实验原理 光波的振动方向与光波的传播方向垂直。自然光的振动在垂直于其传播方向的平面内,取所有可能的方向,某一方向振动占优势的光叫部分偏振光,只在某一个固定方向振动的光线叫线偏振光或平面偏振光。将非偏振光(如自然光)变成线偏振光的方法称为起偏,用以起偏的装置或元件叫起偏器。 1.偏振光的产生 偏振光的产生有以下几种方式: (1)由非金属镜面的反射。当自然光由空气照射在非金属镜面上时,反射光和透射光都将成为部分偏振光,当入射角增大到某一特定值是,反射光成为完全偏振光,只剩下垂直于入射面分量,此时的入射角φ称布儒斯特角,介质的折射率n=tan φ。 (2)由玻璃堆折射。当自然光以布鲁斯特角入射到迭在一起的多层玻璃上时,经过多次反射后,透射的光就近似为线偏振光; (3)用偏振片可得到一定程度的线偏振光; (4)利用双折射晶体产生的寻常光和非常光,均为线偏振光。 2.偏振片 偏振片一般用具有网状分子结构的高分子化合物—聚乙烯醇薄膜作为片基,将这种薄膜浸染具有强烈二向色性的碘,经过硼酸水溶液的还原稳定后,再将其单向拉伸4~5倍以上而制成。偏振片既可以用来使自然光变为平面偏振光——起偏,也可以用来鉴别线偏振光、自然光和部分偏振光——检偏。用作起偏的偏振片叫做起偏器,用作检偏的偏振器件叫做检偏器。实际上,起偏器和检偏器是通用的。 3.马吕斯定律 设两偏振片透射方向夹角为θ,自然光通过起偏器后变成光强为I 0的线偏振光,再经过检偏器后,透射光的强度变为 θ20cos I I = (1) 上式即为马吕斯定律。显然,以光线传播方向为轴,转动检偏器时,透射光强度I 将发生周期变化。若入射光是部分偏振光或椭圆偏振光,则极小值不为0。若光强完全不变化,则入射光是自然光或圆偏振光。这样,根据透射光强度变化的情况,可将线偏振光和自然光和部分偏振光区别开来。 nemo xatu 2011.11.21

偏振光的研究

偏振光的研究 2006.1.10 中国科学技术大学国家级精品课程大学物理实验讲座前言 干涉和衍射—光的波动性 偏振—光是横波 光的偏振现象 偏振元件应用 S E H =? 光的矢量性—光是横波 K为波面的法线方向,S为光波的能量传播方向。 在各向同性的介质中S与K同向。在各向异性的介质中S与K不同向。 自然光线偏振光

部分偏振光 圆偏振光 椭圆偏振光 部分偏振度 定义: min max min max I I I I P +-= 椭圆偏振光的形成(两个互相垂直的振动的合成) ) cos()cos(2010αωαω+=+=t E E t E E y y x x 椭圆方程式: 002121221002 022 022 /) (sin )cos(2 E E E E E E E E E E E y x y x y x y y x x ====--=--+ 正椭圆 πδαααααα 改变光的偏振态的方法 1、利用偏振片 2、利用反射现象 3、利用双折射晶体 光的散射 利用偏振片产生偏振光 马吕斯定律(1809年)和消光现象

菲涅耳公式 (只写出反射时的公式) ) sin()sin()tan() tan(r φθφθφθφθ+--== +-= = S S S P P P A R r A R 注:R ,A 为振幅 布鲁斯特角:12tan n n =θ 利用布儒斯特角产生偏振光

全反射时光的偏振态的改变 反射波的振幅比可以改写为: θ θθθθ θθ θ2 222222 222sin cos sin cos sin cos sin cos -+-+-=-+--=n n n n r n n r P S 1)(sin sin sin 12<=≥=n n n n n 全反射θφθ 当入射角大于或等于临界角sin-1(n)时 P S i i P i i S e e i B i B n i i n n i n r e e i A i A n i n i r δβδαββθθθααθθθθ==-= -+-+-= ==-= -+--=--22 2122 2 2 22 222) exp() exp(sin cos sin cos ) exp() exp(sin cos sin cos P S δδ?-= 全反射时的相位改变 菲涅耳棱体

偏振光特性的研究

光学设计性实验论文

偏振光特性的研究 摘要: 实验目的: (一)学习用光电转换的方法测定相对光强, 验证马吕斯定律。 (二)研究1/4波片的光学特性 (三)研究半导体激光器的偏振特性(测出其偏振度) (四)研究物质的旋光特性 (五)观察石英晶体的旋光特性和测量旋光度 (六)观察旋光色散,并解释现象 实验要求: (一)掌握各种偏振光的特性。 (二)学会辨别各种偏振光。 (三)了解偏振光干涉和双折射现象 关键词: 偏振、马吕斯定律、1/4波片、偏振特性、偏振度、旋光特性、旋光色散。 引言: 光的干涉和衍射现象揭示了光的波动性质,而光的偏振现象进一步验证了光波是横波。我们研究偏振现象不仅可以认识光的电磁波性质,而且可以对光的传播规律有许多新的认识。 实验原理: 1.偏振光的种类 光是电磁波,它的电矢量E和磁矢量H相互垂直,且又垂直于光的传播方向.通常用电矢量代表光矢量,并将光矢量和光的传播方向所构成的平面称为光的振动面.按光矢量的不同振动状态,可以把光分为五种偏振态:如光矢量沿着一个固定方向振动,称为线偏振光或平面偏振光;如在垂直于传播方向的平面内,光矢量的方向是任意的,且各个方向的振幅相等,则称为自然光;如果有的方向光矢量的振幅较大,有的方向振幅较小,则称为部分偏振光;如果光

矢量的大小和方向随时间作周期性的变化,且光矢量的末端在垂直于光传播方向的平面内的轨迹是圆或椭圆,则分别称为圆偏振光或椭圆偏振光. 能使自然光变成偏振光的装置或器件,称为起偏器;用来检验偏振光的装置或器件,称为检偏器. 2.线偏振光的产生 (1)反射和折射产生偏振 根据布儒斯特定律,当自然光以 n i b arctan =的入射角从空气或真空入射至折射率为n 的介质 表面上时,其反射光为完全的线偏振光,振动面垂直于入射面,而透射光为部分偏振光,b i 称 为布儒斯特角. 如果自然光以b i 入射到一叠平行玻璃片堆上,则经过多次反射和折射最后从玻璃片堆透射 出来的光也接近于线偏振光.玻璃片的数目越多,透射光的偏振度越高. (2)偏振片 它是利用某些有机化合物晶体的“二向色性”制成的.当自然光通过这种偏振片后,光矢量垂直于偏振片透振方向的分量几乎完全被吸收,光矢量平行于透振方向的分量几乎完全通过,因此透射光基本上为线偏振光. (3)双折射产生偏振 当自然光入射到某些双折射晶体(如方解石、石英等)时,经晶体的双折射所产生的寻常光(o 光)和非常光(e 光)都是线偏振光. 3.波晶片 波晶片简称波片,它通常是一块光轴平行于表面的单轴晶片,一束平面偏振光垂直入射到波晶片后,便分解为振动方向与光轴方向平行的e 光和与光轴方向垂直的o 光两部分(如图1所示).这两种光在晶体内的传播方向虽然一致,但它们在晶体内传播的速度却不相同(为么?).于 是,e 光和o 光通过波晶片后就产生固定的相位差δ, 即 l n n o e )(2-= λ π δ

偏振光的研究实验报告doc

偏振光的研究实验报告 篇一:偏振光的观测与研究~~实验报告 偏振光的观测与研究 光的干涉和衍射实验证明了光的波动性质。本实验将进一步说明光是横波而不是纵波,即其E和H 的振动方向是垂直于光的传播方向的。光的偏振性证明了光是横波,人们通过对光的偏振性质的研究,更深刻地认识了光的传播规律和光与物质的相互作用规律。目前偏振光的应用已遍及于工农业、医学、国防等部门。利用偏振光装置的各种精密仪器,已为科研、工程设计、生产技术的检验等,提供了极有价值的方法。 【实验目的】 1.观察光的偏振现象,加深偏振的基本概念。 2.了解偏振光的产生和检验方法。 3.观测布儒斯特角及测定玻璃折射率。 4.观测椭圆偏振光和圆偏振光。 【实验仪器】 光具座、激光器、偏振片、1/4波片、1/2波片、光电转换装置、光点检流计、观测布儒斯特角装置 图1 实验仪器实物图 【实验原理】 1.偏振光的基本概念 按照光的电磁理论,光波就是电磁波,它的电矢量E和

磁矢量H相互垂直。两者均垂直于光的传播方向。从视觉和感光材料的特性上看,引起视觉和化学反应的是光的电矢量,通常用电矢量E代表光的振动方向,并将电矢量E和光的传播方向所构成的平面称为光振动面。在传播过程中,光的振动方向始终在某一确定方位的光称为平面偏振光或线偏振光,如图2(a)。光源发射的光是由大量原子或分子辐射构成的。由于热运动和辐射的随机性,大量原 - 子或分子发射的光的振动面出现在各个方向的几率是相同的。一般说,在106s内各个方向电矢量的时间平均值相等,故出现如图2(b)所示的所谓自然光。有些光的振动面在某个特定方向出现的几率大于其他方向,即在较长时间内电矢量在某一方向较强,这就是如图2(c)所示的所谓部分偏振光。还有一些光,其振动面的取向和电矢量的大小随时间作有规则的变化,其电矢量末端在垂直于传播方向的平面上的移动轨迹呈椭圆(或圆形),这样的光称为椭圆偏振光(或圆偏振光),如图2(c)所示。 图2 光波按偏振的分类 2.获得偏振光的常用方法 (1)非金属镜面的反射。 通常自然光在两种媒质的界面上反射和折射时,反射光和折射光都将成为部分偏振光。并且当入射角增大到某一特定值时,镜面反射光成为完全偏振光,其振动面垂直于入

偏振光实验报告

实验题目:偏振光的研究 实验者:PB08210426 李亚韬 实验目的:掌握分光计的工作原理,熟悉偏振光的原理和性质。验证马吕斯定律,并根据 布儒斯特定律测定介质的折射率。 实验原理: 为了研究光的偏振态和利用光的偏振特性进行各种分析和测量工作,需要各种偏振元件:产生偏振光的元件、改变光的偏振态的元件等,下面分类介绍。 1 产生偏振光的元件 在激光器发明之前,一般的自然光源产生的光都是非偏振光,因此要产生偏振光都要使用产生偏振光的元件。根据这些元件在实验中的作用,分为起偏器和检偏器。起偏器是将自然光变成线偏振光的元件,检偏器是用于鉴别光的偏振态的元件。在激光器谐振腔中可以利用布儒斯特角使输出的激光束是线偏振光。 将自然光变成偏振光的方法有很多,一个方法是利用光在界面反射和透射时光的偏振现象。我们的先人在很早就已经对水平面的反射光有所研究,但定量的研究最早在1815年由布儒斯特完成。反射光中的垂直于入射面的光振动(称s 分量)多于平行于入射面的光振动(称p 分量);而透射光则正好相反。在改变入射角的时候,出现了一个特殊的现象,即入射角为一特定值时,反射光成为完全线偏振光(s 分量)。折射光为部分偏振光,而且此时的反射光线和折射光线垂直,这种现象称之为布儒斯特定律。该方法是可以获得线偏振光的方法 之一。如图1所示。因为此时 20π γ= +i ,γsin sin 201n i n =, 12 0000sin cos sin n n sin i i i tgi === γ,若n 1=1(为空气的折射率),则 2tgi n = (1) 0i 叫做布儒斯特角,所以通过测量布儒斯特角的大小可以测量介质的折射率。 由以上介绍可以知道利用反射可以产生偏振光,同样利用透射(多次透射)也可以产 生偏振光(玻璃堆)。第二种是光学棱镜,如尼科耳棱镜、格兰棱镜等,它是利用晶体的双折射的原理制成的。在晶体中存在一个特殊的方向(光轴方向),当光束沿着这个方向传播时,光束不分裂,光束偏离这个方向传播时,光束将分裂为两束,其中一束光遵守折射定律叫做寻常光(o 光),另一束光一般不遵守折射定律叫做非寻常光(e 光)。o 光和e 光都是线偏振光(也叫完全偏振光),两者的光矢量的振动方向(在一般使用状态下)互相垂直。改变射向晶体的入射光线的方向可以找到光轴方向,沿着这个方向,o 光和e 光的传播速度相等,折射率相同。晶体可以有一个光轴,叫做单轴晶体,如方解石、石英,也可以有两个光轴,叫双轴晶体,如云母、硫磺等。包含光轴和任一光线的平面叫对应于该光线的主平面,o 光电矢量的振动方向垂直于o 光主平面,e 光电矢量的振动方向平行于e 光主平面。 格兰棱镜由两块方解石直角棱镜构成,两棱镜间有空气间隙,方解石的光轴平行于棱镜的棱。自然光垂直于界面射入棱镜后分为o 光和e 光,o 光在空气隙上全反射,只有e 光透过棱镜射出。

偏振光的研究实验报告

偏振 光的 研究 班级:物理实验班21 学号:2120909006 姓名:黄忠政 光的偏振现象是波动光学的一种重要现象,它的发现证实了光是横波,即光的振动垂直于它的传播方向。光的偏振性质在光学计量、光弹技术、薄膜技术等领域有着重要的应用。 一.实验目的: 1.了解产生和检验偏振光的原理和方法; 2.了解各种偏振片和波片的作用。 二.实验装置; 计算机,格兰陵镜,1/2、1/4波片,调节支架,光电接 系统,激光器。 三.实验原理: 1.偏振光的概念和基本规律

(1)偏振光的种类 光波是一种电磁波,根据电磁学理论,光波的矢量E、磁矢量H 和光的传播方向三者相互垂直,所以光是横波。通常人们用电矢量E 代表光的振动方向,而电矢量E和光的传播方向所构成的平面称为光波的振动面。 普通光源发出的光是由大量原子或分子的自发辐射所产生的,它们所发射的光的电矢量在各个方向振动的几率相同,称为自然光。电矢量的振动方向始终沿某一确定方向的光,称为线偏振光或平面偏振光。若电矢量在各个方向都振动,但在某个固定方向占绝对优势,这种光称为部分偏振光,电矢量的末端在垂直于光传播方向的任一平面内做椭圆(或圆)运动的光,称为椭圆(或圆)偏振光。各种偏振光的电矢量E如图1所示,注意光的传播方向垂直于纸面。 (2)偏振光、波片和偏振光的产生

通常的光源都是自然光,研究光的偏振性质,必须采用一些物理方法将自然光变成偏振光,这一转变过程称为起偏,获得线偏振光的器件称为起偏器。线偏振光可用人造偏振片获得,如:某些有机化合物晶体具有二向色性,用这些材料制成的偏振片,能吸收某一方向振动的光,与此方向垂直振动的光则能通过,从而产生线偏振光;还可以利用光的反射和折射起偏的平行玻璃片堆;利用晶体的双折射特性起偏的尼科尔棱镜等。 椭圆偏振光、圆偏振光可用波片来产生,将双折射晶体割成光轴与表面平行的晶片,就制成波片了。当波长为λ线偏振光垂直入射到厚度为d波片时,线偏振光在此波片中分成o光和e光, 二者的电矢量E分别垂直于和平行于光轴,它们的传播方向相同,但在波片中的传播速度v0、v e却不同。如图2所示。因此折射率n0=c/v0、n e=c/v e是不同的,于是,通过波片后,o光和e光的相位差ΔΦ和光程差δ分别为Δφ=2Π(n0-n e)/λ,δ=(n0-n e)d能产生光程差为λ

偏振光的研究实验报告

偏振光的研究实验报告

偏 振 光 的 研 究 班级:物理实验班21 学号:2120909006 姓名:黄忠政

光的偏振现象是波动光学的一种重要现象,它的发现证实了光是横波,即光的振动垂直于它的传播方向。光的偏振性质在光学计量、光弹技术、薄膜技术等领域有着重要的应用。 一.实验目的: 1.了解产生和检验偏振光的原理和方法; 2.了解各种偏振片和波片的作用。 二.实验装置; 计算机,格兰陵镜,1/2、1/4波片,调节支架,光电接系统,激光器。 三.实验原理: 1.偏振光的概念和基本规律 (1)偏振光的种类 光波是一种电磁波,根据电磁学理论,光波的矢量E、磁矢量H和光的传播方向三者相互垂直,所以光是横波。通常人们用

电矢量E代表光的振动方向,而电矢量E和光的传播方向所构成的平面称为光波的振动面。 普通光源发出的光是由大量原子或分子的自发辐射所产生的,它们所发射的光的电矢量在各个方向振动的几率相同,称为自然光。电矢量的振动方向始终沿某一确定方向的光,称为线偏振光或平面偏振光。若电矢量在各个方向都振动,但在某个固定方向占绝对优势,这种光称为部分偏振光,电矢量的末端在垂直于光传播方向的任一平面内做椭圆(或圆)运动的光,称为椭圆(或圆)偏振光。各种偏振光的电矢量E如图1所示,注意光的传播方向垂直于纸面。 (2)偏振光、波片和偏振光的产生 通常的光源都是自然光,研究光的偏振性质,必须采用一些物理方法将自然光变成偏振光,这一转变过程称为起偏,获得线

偏振光的器件称为起偏器。线偏振光可用人造偏振片获得,如:某些有机化合物晶体具有二向色性,用这些材料制成的偏振片,能吸收某一方向振动的光,与此方向垂直振动的光则能通过,从而产生线偏振光;还可以利用光的反射和折射起偏的平行玻璃片堆;利用晶体的双折射特性起偏的尼科尔棱镜等。 椭圆偏振光、圆偏振光可用波片来产生,将双折射晶体割成光轴与表面平行的晶片,就制成波片了。当波长为λ线偏振光垂直入射到厚度为d波片时,线偏振光在此波片中分成o光和e 光, 二者的电矢量E分别垂直于和平行于光轴,它们的传播方向相同,但在波片中的传播速度v0、v e却不同。如图2所示。因此折射率n0=c/v0、n e=c/v e是不同的,于是,通过波片后,o光和e 光的相位差ΔΦ和光程差δ分别为Δφ=2Π(n0-n e)/λ,δ=(n0-n e)d能产生光程差为λ/2的波片称为λ/2波片(或半波

偏振光的观测与研究教案与讲稿

大学物理实验课程教案

光的干涉和衍射实验证明了光的波动性质.本实验将进一步说明光是横波而不是纵波,即其E和H的振动方向是垂直于光的传播方向的.光的偏振性证明了光是横波,人们通过对光的偏振性质的研究,更深刻地认识了光的传播规律和光与物质的相互作用规律.目前偏振光的应用已遍及工农业、医学、国防等部门.利用偏振光的各种精密仪器,已为科研、工程设计、生产技术的检验等提供了极有价值的方法. 【实验原理】 1.偏振光的基本概念 按照光的电磁理论,光波就是电磁波,它的电矢量E和磁矢量H相互垂直.两者均垂直于光的传播方向.从视觉和感光材料的特性上看,引起视觉和化学反应的是光的电矢量,通常用电矢量E代表光的振动方向,并将电矢量E和光的传播方向所构成的平面称为光振动面. 在传播过程中,光的振动方向始终在某一确定方位的光称为平面偏振光或线偏振光,如图1(a).光源发射的光是由大量原子或分子辐射构成的.由于热运动和辐射的随机性,大量原子或分子发射的光的振动面出现在各个方向的几率是相同的.一般来说,在10-6s内各个方向电矢量的时间平均值相等,故出现如图1(b)所示的所谓自然光.有些光的振动面在某个特定方向出现的几率大于其他方向,即在较长时间内电矢量在某一方向较强,这就是如图1(c)所示的部分偏振光.还有一些光,其振动面的取向和电矢量的大小随时间作有规则的变化,其电矢量末端在垂直于传播方向的平面上的移动轨迹呈椭圆(或圆形),这样的光称为椭圆偏振光(或圆偏振光),如图1(d)所示. 图1 光波按偏振的分类 2.获得偏振光的常用方法 (1)非金属镜面的反射

通常自然光在两种媒质的界面上反射和折射时,反射光和折射光都将成为部分偏振光.但当入射角增大到某一特定值0?时,镜面反射光成为完全偏振光,其振动面垂直于入射面,如图16-4-2所示,这时入射角0?称为布儒斯特角,也称为起偏角. 图中“?”、“-”均表示电矢量,反射光是振动面与入射面垂直的完全偏振光,折射光是部分偏振光.由布儒斯特定律得: 1 0tan n n = ? 其中n 、1n 分别为两种介质的折射率. 如果自然光从空气入射到玻璃表面而反射时,对于各种不同材料的玻璃,已知其折射率n 的变化范围在1.50到1.77之间,则可得布儒斯特角0?约在560—600之间.此方法可用来测定物质的折射率. (2)多层玻璃片的折射 当自然光以布儒斯特角0?入射到由多层平行玻璃片重叠在一起构成的玻璃片堆上时,由于在各个界面上的反射光都是振动面垂直入射面的线偏振光,故经过多次反射后,透出来的透射光也就接近于振动方向平行于入射面的线偏振光. (3)利用偏振片的二向色性起偏 将非偏振光变成偏振光的过程称为起偏.某些有机化合物晶体(如硫酸碘奎宁或硫酸奎宁碱)具有二向色性,它往往吸收某一振动方向的入射光,而与此方向垂直振动的光则能透过,从而可获得线偏振光.利用这类材料制成的偏振片可获得较大截面积的偏振光束,但由于吸收不完全,所得的偏振光只能达到一定的偏振度. (4)利用晶体的双折射起偏 自然光通过各向异性的晶体时将发生双折射现象,双折射产生的寻常光(o 光)和非寻常光(e 光)均为线偏振光.o 光光矢量的振动方向垂直于自己的主截面;e 光光矢量的振动方向在自己的主截面内.方解石是典型的天然双折射晶体,常用它制成特殊的棱镜以产生线偏振光.利用方解石制成的沃拉斯顿棱镜能产生振动面互相垂直的两束线偏振光;用方解石胶合成的尼科耳棱镜能给出一个有固定振动面的线偏振光. 3.偏振片、波片及其作用 (1)偏振片 偏振片是利用某些有机化合物晶体的二向色性,将其渗入透明塑料薄膜中,经定向拉制而成.它能吸收某一方向振动的光,而透过与此垂直方向振动的光,由于在应用时起的作用不同,用来产生偏振光的偏振片叫做起偏器;用来检验偏振光的偏振片,叫做检偏器. 按照马吕斯定律,强度为I 0的线偏振光通过检偏器后,透射光的强度为: 图2 布儒斯特定律示意图

相关主题
文本预览
相关文档 最新文档