当前位置:文档之家› 椭圆偏振光分析法测定单轴晶体的折射率

椭圆偏振光分析法测定单轴晶体的折射率

椭圆偏振光分析法测定单轴晶体的折射率
椭圆偏振光分析法测定单轴晶体的折射率

常熟理工学院学报(自然科学)Journal of Changshu Institute Technology (Natural Sciences )第26卷第8Vol.26No.82012年8月Aug.,2012

收稿日期:2012-07-19

作者简介:邢进华(1958—),男,江苏常熟人,教授,研究方向:光学材料的物理性质.椭圆偏振光分析法测定单轴晶体的折射率

邢进华a,b ,石芳b

(常熟理工学院a.江苏省新型功能材料重点实验室;b.物理与电子工程学院,江苏常熟215500)

摘要:根据菲涅耳公式和光在晶体中的传播特性,分析了入射或反射椭圆偏振光长、短轴分

量与s 、p 分量的关系以及晶体中的折射率与光轴方向的关系.在此基础上得到了测定单轴晶体折

射率的一种行之有效的简单方法.通过测量椭圆偏振光的长、短轴分量并利用布儒斯特角的特点,就能完全确定单轴晶体的两个主折射率和光轴方向.实验证明这种方法是可行的,且测量精度比

较高.

关键词:单轴晶体;椭圆偏振光;折射率;光轴

中图分类号:O436.1文献标识码:A 文章编号:1008-2794(2012)08-0032-03

单轴晶体广泛应用于光电工程中,在设计和制作光学元件和光电器件时,必须确定晶体的重要参数——折射率.目前,关于测量晶体折射率的方法可以分成透射型和反射型两类.透射型有最小偏向角法[1]、V 型棱镜法[2]、激光干涉法[3-4];反射型主要有布儒斯特角法[5-6],但这些方法对样品和光轴都有一定的要求.最小偏向角法虽然测量精度高,但需将样品加工成三棱镜,顶角的塔差要足够小;V 型棱镜法所需样品较大,而且所用测量棱镜的折射率必须大于待测样品的折射率;激光干涉法要求样品为较厚的平行平板,这种方法的测量精度与样品厚度有关,样品越厚,精度越高.布儒斯特角法虽然简单,但捕捉的是一个布儒斯特角,其测量精度不高.采用上述方法的前提是需要预先知道晶体的光轴,其测量精度与加工样品密切相关,这对某些材料来说代价昂贵;其次,测量方法、仪器比较复杂.

本文根据菲涅耳公式和光在晶体中的传播规律,在椭圆偏振光入射或反射情况下,建立了单轴晶体两个主折射率、光轴与椭圆偏振光的长短轴分量的联系.这样,通过测定椭圆偏振光的长短轴及利用布儒斯特角的特点,就能获得晶体的两个主折射率,并同时确定晶体的光轴.

避免了测量s 分量、p 分量时出现的较

大误差,也无需采用较为复杂的斯托克斯偏振态测量法.1原理

当一束光从于空气中入射到单轴晶体的表面,并使光轴平行于入射面.这样s 分量的折射光为o 光,p 分量的折射光为e 光.根据菲涅耳公式,将反射系数表示为测试样品的折射率和入射角的函数

r s =

(1)

实验八 利用快速傅里叶变换(FFT)实现快速卷积(精选、)

实验八 利用FFT 实现快速卷积 一、 实验目的 (1) 通过这一实验,加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。 (2) 进一步掌握循环卷积和线性卷积两者之间的关系。 二、 实验原理与方法 数字滤波器根据系统的单位脉冲响应h(n)是有限长还是无限长可分为有限长单位脉冲响应(Finite Impulse Response )系统(简记为FIR 系统)和无限长单位脉冲响应(Infinite Impulse Response )系统(简记为IIR 系统)。 对于FIR 滤波器来说,除了可以通过数字网络来实现外,也可以通过FFT 的变换来实现。 一个信号序列x(n)通过FIR 滤波器时,其输出应该是x(n)与h(n)的卷积: ∑+∞ -∞ =-= =m m n h m x n h n x n y )()()(*)()( 或 ∑+∞ -∞ =-= =m m n x m h n x n h n y ) ()()(*)()( 当h(n)是一个有限长序列,即h(n)是FIR 滤波器,且10-≤≤N n 时 ∑-=-=1 0) ()()(N m m n x m h n y 在数字网络(见图6.1)类的FIR 滤波器中,普遍使用的横截型结构(见下图6.2 图6.1 滤波器的数字网络实现方法 图6.2 FIR 滤波器横截型结构 y(n) y(n) -1-1-1-1

应用FFT 实现数字滤波器实际上就是用FFT 来快速计算有限长度列间的线性卷积。 粗略地说,这种方法就是先将输入信号x(n)通过FFT 变换为它的频谱采样 值X(k),然后再和FIR 滤波器的频响采样值H(k)相乘,H(k)可事先存放在存储器中,最后再将乘积H(k)X(k)通过快速傅里叶变换(简称IFFT )还原为时域序列,即得到输出y(n)如图6.3所示。 图6.3 数字滤波器的快速傅里叶变换实现方法 现以FFT 求有限长序列间的卷积及求有限长度列与较长序列间的卷积为例来讨论FFT 的快速卷积方法。 (1) 序列)(n x 和)(n h 的列长差不多。设)(n x 的列长为1N ,)(n h 的列长为2N ,要求 )()(n x n y =N ∑-=-==1 ) ()()(*)()(N r r n h r x n h n x n h 用FFT 完成这一卷积的具体步骤如下: i. 为使两有限长序列的线性卷积可用其循环卷积代替而不发生混叠,必须选择循环卷积长度121-+≥N N N ,若采用基2-FFT 完成卷积运 算,要求m N 2=(m 为整数)。 ii. 用补零方法使)(n x ,)(n h 变成列长为N 的序列。 ?? ?-≤≤-≤≤=10 10)()(11N n N N n n x n x ?? ?-≤≤-≤≤=10 1 0)()(22N n N N n n h n h iii. 用FFT 计算)(),(n h n x 的N 点离散傅里叶变换 )()(k X n x FFT ??→? )()(k H n h FFT ??→? iv. 做)(k X 和)(k H 乘积,)()()(k H k X k Y ?= v. 用FFT 计算)(k Y 的离散傅里叶反变换得 y(n)

C语言实现FFT(快速傅里叶变换)

C语言实现FFT(快速傅里叶变换) 函数原型:空快速傅立叶变换(Struct Compx *xin,Intn) 函数函数:对输入复数组执行快速傅立叶变换(FFT)输入参数:*xin复结构组的第一个地址指针。结构输出参数:no * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *结构compx u,w,t。 nv2 =快速傅立叶变换_ N/2;nm1 =快速傅立叶变换_ N-1;(I = 0;i

傅里叶分析报告教程(完整版)

傅里叶分析之掐死教程(完整版)更新于2014.06.06 Heinrich · 6 个月前 作者:韩昊知乎:Heinrich 微博:@花生油工人知乎专栏:与时间无关的故事 谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。 转载的同学请保留上面这句话,谢谢。如果还能保留文章来源就更感激不尽了。 我保证这篇文章和你以前看过的所有文章都不同,这是12年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者…… 这篇文章的核心思想就是: 要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生

上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。 ——————————————以上是定场诗—————————————— 下面进入正题: 抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。这样的例子太多了,也许几年后你都没有再打开这个页面。无论如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多…… p.s.本文无论是cos还是sin,都统一用“正弦波”(Sine Wave)一词来代表简谐波。 一、什么是频域 从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。 先举一个公式上并非很恰当,但意义上再贴切不过的例子: 在你的理解中,一段音乐是什么呢?

快速傅里叶变换FFT的FPGA设计与实现--电科1704 郭衡

快速傅里叶变换FFT的FPGA设计与实现 学生姓名郭衡 班级电科1704 学号17419002064 指导教师谭会生 成绩 2020年5 月20 日

快速傅里叶变换FFT 的设计与实现 一、研究项目概述 非周期性连续时间信号x(t)的傅里叶变换可以表示为:= )(?X dt t j e t x ? ∞ ∞ --1 )(?,式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够算信号x(t)的频谱。 有限长离散信号x(n),n=0,1,…,N-1的DFT 定义为: ∑-=-=-==1 02,1.....10)()(N n N j N kn N e W N k W n x K X π、、。 可以看出,DFT 需要计算大约N2次乘法和N2次加法。当N 较大时,这个计算量是很大的。利用WN 的对称性和周期性,将N 点DFT 分解为两个N /2点的DFT ,这样两个N /2点DFT 总的计算量只是原来的一半,即(N /2)2+(N /2)2=N2/2,这样可以继续分解下去,将N /2再分解为N /4点DFT 等。对于N=2m 点的DFT 都可以分解为2点的DFT ,这样其计算量可以减少为(N /2)log2N 次乘法和Nlog2N 次加法。图1为FFT 与DFT-所需运算量与计算点数的关系曲线。由图可以明显看出FFT 算法的优越性。 图1 FFT 与DFT 所需乘法次数比 较

X[1] 将x(n)分解为偶数与奇数的两个序列之和,即x(n)=x1(n)+x2(n)。 x1(n)和x2(n)的长度都是N /2,x1(n)是偶数序列,x2(n)是奇数序列,则 ∑∑=--=-=+2 )12(120 2)1.....,0()(2)(1)(N n k n N N n km N N k W n x W n x K X 所以)1...,0()(2)(1)(12 22120 -=+=∑∑-=-=N k W n x W W n x K X N n km N k N km N N n 由于km N N j km N j km N W e e W 2/2 /2222===--ππ ,则 )1.....,0)((2)(1)(2)(1)(12 2/120 2/-=+=+=∑∑-=-=N k k X W k X W n x W W n x K X k N N n km N k N N n kn N 其中X1(k)和X2(k)分别为x1(n)和x2(n)的N /2点DFT 。由于X1(k)和X2(k)均以N /2为周期,且WNk+N/2=-WNk ,所以X(k)又可表示为: )12/....,1,0)((2)(1)(-=+=N k k X W k X K X k N )12/....,1,0)((2)(1)2/(-=-=+N k k X W k X N K X k N

椭圆偏振侧厚仪实验原理

实验原理 使一束自然光经起偏器变成线偏振光。再经1/4波片,使它变成 椭圆偏振光入射在待测的膜面上。反射时,光的偏振状态将发生变化。 通过检测这种变化,便可以推算出待测膜面的某些光学参数。 1、椭偏方程与薄膜折射率和厚度的测量 如右图所示为一光学均匀和Array各向同性的单层介质膜。它有两 个平行的界面。通常,上部是折 射率为n1的空气(或真空)。中间 是一层厚度为 d折射率为n2的介 质薄膜,均匀地附在折射率为n3 的衬底上。当一束光射到膜面上时,在界面1和界面2上形成多次反 射和折射,并且各反射光和折射光分别产生多光束干涉。其干涉结果 反映了膜的光学特性。 设φ1表示光的入射角,φ2和φ3分别为在界面1和2上的折射角。 根据折射定律有 n1sinφ1= n2sinφ2= n3sinφ 3 (1 ) 光波的电矢量可以分解成在入射面内振动的p分量和垂直于入射 面振动的s分量。若用Eip和Eis分别代表入射光的p和s分量,用 Erp及Ers分别代表各束反射光K0, K1,K2,…中电矢量的p分量之和及

s分量之和,则膜对两个分量的总反射系数Rp 和Rs定义为 Rp=Erp/Eip 和Rs=Ers/Eis (2) 经计算可得 Erp=(r1p+r2p e-i2δ) (1+ r1p r2p e-i2δ)Eip和 Ers=(r1s+r2s e-i2δ)/(1+ r1s r2s e-i2δ)Eis (3) 式中r1p或r1s和r2p或r2s分别为p或s分量在界面1和界面2上一 次反射的反射系数。2δ为任意相邻两束反射光之间的位相差。 根据电磁场的麦克斯韦方程和边界条件可以证明 r1p=tan(φ1-φ2)/ tan(φ1+φ2), r1s= -sin(φ1-φ2)/sin(φ1+ φ2) r2p=tan(φ2-φ3)/ tan(φ2+φ3) ,r2s= -sin(φ2-φ3)/sin(φ2+ φ3)(4) 式(4)即有名的菲涅尔反射系数公式。由相邻两反射光束间的程 差,不难算出 2δ=4πd/λn2cosφ2=4πd/λ(n22-n12sin2φ1)1/2 (5) 式中λ为真空中的波长,d和n2为介质膜的厚度和折射率,各φ 角的意义同前。 在椭圆偏振法测量中,为了简便,通常引入另外两个物理量ψ和 Δ来描述反射光偏振态的变化。它们与总反射系数的关系定义如下:

第六章 晶体光学器件

第6章晶体光学器件 双折射晶体在光无源器件中有着广泛的应用,可以制成光隔离器、光环行器、偏振光合束器和光学梳状滤波器等多种光器件。光学梳状滤波器同时隶属波分复用器件的范畴,将在第七章介绍。本章重点介绍基于双折射晶体的光隔离器、光环行器和偏振光合束器。 6.1 晶体光学基础 光无源器件中常用的双折射晶体一般是单轴的,此处从应用的角度,先对单轴晶体的光学特性作一些简单的介绍。 6.1.1 单轴晶体中的双折射现象 在各向同性介质中,光能量的传播方向(即光线方向S)与光波的传播方向(即波法线方向K)总是保持一致的。而在各向异性的双折射晶体中,存在两种光波:一种是寻常光(o光),其光线方向与波法线方向保持一致;另一种是非寻常光(e光),其光线方向偏离波法线方向。一般情况下,o光与e光在双折射晶体中的折射率不一样,因此传播速度也不相同。 在双折射晶体中,存在一些特殊的方向,沿此方向传输的光波,o光与e光的光线完全重合,并且传播速度也完全相同,或者说只有o光而没有e光,这些特殊方向称为晶体的光轴。 单轴晶体只存在一个光轴,其折射率椭球如图6.1所示,o光折射率小于e光折射率的晶体称为正单轴晶体,其折射率椭球为橄榄状的长椭球形;o光折射率大于e光折

射率的晶体称为负单轴晶体,其折射率椭球为飞碟状的扁椭球形。 图6.1 单轴晶体的折射率椭球 折射率椭球的物理意义可由图6.2解释,图中所示为正单轴晶体,o光和e光的波法线分别为K o和K e,过原点并垂直波法线作折射率椭球之截面,对o光和e光各得到一个椭圆形截面,每个椭圆均有长轴和短轴两条轴线,对o光取位于水平面内的轴线长度n o为其折射率,对e光则取非位于水平面内的轴线长度n2为其折射率。

C语言实现FFT(快速傅里叶变换)

#include #include /********************************************************************* 快速福利叶变换C函数 函数简介:此函数是通用的快速傅里叶变换C语言函数,移植性强,以下部分不依赖硬件。此函数采用联合体的形式表示一个复数,输入为自然顺序的复 数(输入实数是可令复数虚部为0),输出为经过FFT变换的自然顺序的 复数 使用说明:使用此函数只需更改宏定义FFT_N的值即可实现点数的改变,FFT_N的应该为2的N次方,不满足此条件时应在后面补0 函数调用:FFT(s); 时间:2010-2-20 版本:Ver1.0 参考文献: **********************************************************************/ #include #define PI 3.1415926535897932384626433832795028841971 //定义圆周率值#define FFT_N 128 //定义福利叶变换的点数 struct compx {float real,imag;}; //定义一个复数结构struct compx s[FFT_N]; //FFT输入和输出:从S[1]开始存放,根据大小自己定义 /******************************************************************* 函数原型:struct compx EE(struct compx b1,struct compx b2) 函数功能:对两个复数进行乘法运算 输入参数:两个以联合体定义的复数a,b 输出参数:a和b的乘积,以联合体的形式输出 *******************************************************************/ struct compx EE(struct compx a,struct compx b) { struct compx c; c.real=a.real*b.real-a.imag*b.imag; c.imag=a.real*b.imag+a.imag*b.real; return(c); } /***************************************************************** 函数原型:void FFT(struct compx *xin,int N)

fft快速傅里叶变换 c语言实现

#include #include #include #define N 1000 /*定义复数类型*/ typedef struct{ double real; double img; }complex; complex x[N], *W; /*输入序列,变换核*/ int size_x=0; /*输入序列的大小,在本程序中仅限2的次幂*/ double PI; /*圆周率*/ void fft(); /*快速傅里叶变换*/ void initW(); /*初始化变换核*/ void change(); /*变址*/ void add(complex ,complex ,complex *); /*复数加法*/ void mul(complex ,complex ,complex *); /*复数乘法*/ void sub(complex ,complex ,complex *); /*复数减法*/ void output(); int main(){ int i; /*输出结果*/ system("cls"); PI=atan(1)*4; printf("Please input the size of x:\n"); scanf("%d",&size_x); printf("Please input the data in x[N]:\n"); for(i=0;i

最小偏向角法测量单轴晶体的主折射率

最小偏向角法测量单轴晶体的主折射率 一、实验目的: l、观察晶体的自然双折射现象,巩固和掌握光在单轴晶体中的传播特点; 2、掌握用最小偏向角法测单轴晶体主折射率的方法; 3、学会自准直分光计的调整和使用。 二、实验器材: 分光计一台,汞灯、钠灯各一具,LiNbo2棱镜一个。 三、测量原理: 将待则晶体(本实验用LiNbo2)加工成一个 光学棱镜,使两通光面均与光轴平行。如图(1)所 示,一束由汞灯发射的自然光经准直后,垂直光轴 入射于棱镜会产生双折射现象,o光和e光以不同 的偏向角从棱镜另侧射出,通过望远镜观察到两 组光谱,对应每一个入射波长有两条谱线,又由于光在晶体内是垂直于光轴传播,所以e光的折射率 黄 绿 蓝 黄 绿 蓝A

恰为主折射n e ,当各条谱线处于对应的最小 偏向角δmin 时,用下式便可算出各入射波长相应 图(1) 的折射率n e 和n o (式中A 为棱镜顶角) 三、分光计的结构简介 请参看?大学物理?。 四、实验步骤: l 、分光计的调整,测棱镜顶角: (1) 熟悉分光计的结构后,将棱镜置于载物台上,并使棱镜的三个面与载物台的三个调平螺钉(a ,b ,c)的相对位置如图(2)所示,且调节螺钉使载物台大致水平。 (2) 准直望远镜:目的是将望远镜中的十字分划线调整到目镜和物 图(2) 镜的焦平面上,也就是望远镜对无穷远调焦。其方法是:先将望远镜轴线 大致调水平。调好视度,使自目镜中清晰看到十字分划线。开亮照明灯泡。 转动载物台使棱镜的一个光学面对准望远镜的管口,从望远镜中观察,并 c b a 、b a A

慢慢转动载物台使该光学面反射的光线进入望远镜,此时视场中出现一亮斑,前后调节高斯目镜,使得到最清晰的亮十字像为止。 (3)调节望远镜的轴线与载物台的中心轴垂直:调节载物台的调平螺钉(即调棱镜光学面的倾斜),使由棱镜光学面反射回来的十字像与十字分划线的垂直距离减小一半,另一半由调节望远镜的俯仰螺钉,使十字像与十字分划线完全重合。再转动分光计游标盘(载物台与之联动),使棱镜的另一通光面对准望远镜作同样调节。如此反复耐心地调整,直至两通光面的反射像都与十字分划完全重合为止,这时望远镜的轴线便和载物台中心轴垂直,以后不再作任何调动。 (4)测量棱镜顶角,由图(3)知,∠A=1800-α,测α的方法是:锁紧游标盘,转动望远镜,先后对准棱镜的两个通光面进行微调,使反射的亮十字像与望远镜中的十字分划线完全重合,先后记下刻度盘上的读数T1和T2,则α=|T1-T2|。测量三次,取平均值。 [注一]:α是小于1800的角度,但由于转向关系,可能读数大于1800,这时。便取读数与3600之差的绝对值. [注二]:为了减少由仪器偏心引起的误差,测量角度时,取该度盘上对径方向上的两读数,分别箅出角度后取平均。以下读数操作均一样。 (5)调节平行光管:调节的内容是水平、准直、狭缝的垂直度和宽度。其方法是,断开望远镜照明电流,取下载物台上的棱镜,开启汞灯并照明平行光管狭缝。将巳调好的自准直望远镜对准平行光管,从目镜中看到狭缝的像,调节狭缝的前后位置和宽度,达到成细而亮的清晰的竖直像,再调节平行光管俯仰螺钉,使狭缝像被望远镜的十字分划线水平线基本平分。 图(3) 2、测量最小偏向角

快速傅里叶变换 (FFT) 实现

§2.4 快速傅里叶变换 (FFT) 实现 一、实验目的 1. 掌握FFT 算法的基本原理; 2. 掌握用C 语言编写DSP 程序的方法。 二、实验设备 1. 一台装有CCS3.3软件的计算机; 2. DSP 实验箱的TMS320F2812主控板; 3. DSP 硬件仿真器。 三、实验原理 傅里叶变换是一种将信号从时域变换到频域的变换形式,是信号处理的重要分析工具。离散傅里叶变换(DFT )是傅里叶变换在离散系统中的表示形式。但是DFT 的计算量非常大, FFT 就是DFT 的一种快速算法, FFT 将DFT 的N 2 步运算减少至 ( N/2 )log 2N 步。 离散信号x(n)的傅里叶变换可以表示为 ∑=-=1 0][)(N N nk N W n x k X , N j N e W /2π-= 式中的W N 称为蝶形因子,利用它的对称性和周期性可以减少运算量。一般而言,FFT 算法分为时间抽取(DIT )和频率抽取(DIF )两大类。两者的区别是蝶形因子出现的位置不同,前者中蝶形因子出现在输入端,后者中出现在输出端。本实验以时间抽取方法为例。 时间抽取FFT 是将N 点输入序列x(n) 按照偶数项和奇数项分解为偶序列和奇序列。偶序列为:x(0), x(2), x(4),…, x(N-2);奇序列为:x(1), x(3), x(5),…, x(N-1)。这样x(n) 的N 点DFT 可写成: ()()∑++∑=-=+-=1 2/0 )12(1 2/0 2122)(N n k n N N n nk N W n x W n x k X 考虑到W N 的性质,即 2/)2//(22/)2(2][N N j N j N W e e W ===--ππ 因此有: ()()∑++∑=-=-=1 2/0 2/1 2/0 2 /122)(N n nk N k N N n nk N W n x W W n x k X 或者写成: ()()k Z W k Y k X k N +=)( 由于Y(k) 与Z(k) 的周期为N/2,并且利用W N 的对称性和周期性,即: k N N k N W W -=+2/

快速傅里叶变换

第四章快速傅里叶变换 有限长序列可以通过离散傅里叶变换(DFT)将其频域也离散化成有限长序列.但其计算量太大,很难实时地处理问题,因此引出了快速傅里叶变换(FFT). 1965年,Cooley和Tukey提出了计算离散傅里叶变换(DFT)的快速算法,将DFT的运算量减少了几个数量级。从此,对快速傅里叶变换(FFT)算法的研究便不断深入,数字信号处理这门新兴学科也随FFT的出现和发展而迅速发展。根据对序列分解与选取方法的不同而产生了FFT的多种算法,基本算法是基2DIT和基2DIF。FFT在离散傅里叶反变换、线性卷积和线性相关等方面也有重要应用。 快速傅里叶变换(FFT)是计算离散傅里叶变换(DFT)的快速算法。 DFT的定义式为

)(k X =)()(1 k R W n x N N n kn N ∑-= 在所有复指数值kn N W 的值全部已算好的情况 下,要计算一个)(k X 需要N 次复数乘法和N -1次复数加法。算出全部N 点)(k X 共需2 N 次 复数乘法和)1(-N N 次复数加法。即计算量是与2 N 成正比的。 FFT 的基本思想:将大点数的DFT 分解为若干个小点数DFT 的组合,从而减少运算量。 N W 因子具有以下两个特性,可使 DFT 运算 量尽量分解为小点数的DFT 运算: (1) 周期性:k N n N kn N n N k N W W W )()(++== (2) 对称性:k N N k N W W -=+)2/( 利用这两个性质,可以使DFT 运算中有些项合并,以减少乘法次数。例子:求当N =4时,X(2)的值 通过合并,使乘法次数由4次减少到1次,运算量减少。 FFT 的算法形式有很多种,但基本上可以

对傅里叶分析的新颖理解

这篇文章的核心思想就是:要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。 一、嘛叫频域 关键词:从侧面看 从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。 先举一个公式上并非很恰当,但意义上再贴切不过的例子:在你的理解中,一段音乐是什么呢? 这是我们对音乐最普遍的理解,一个随着时间变化的震动。但我相信对于乐器小能手们来说,音乐更直观的理解是这样的: 上图是音乐在时域的样子,而下图则是音乐在频域的样子。所以频域这一概念对大家都从不陌生,只是从来没意识到而已。 现在我们可以回过头来重新看看一开始那句痴人说梦般的话:世界是永恒的。 将以上两图简化: 时域: 频域: 在时域,我们观察到钢琴的琴弦一会上一会下的摆动,就如同一支股票的走势;而在频域,只有那一个永恒的音符。 你眼中看似落叶纷飞变化无常的世界,实际只是躺在上帝怀中一份早已谱好的乐章。

傅里叶同学告诉我们,任何周期函数,都可以看作是不同振幅,不同相位正/余弦波的叠加。在第一个例子里我们可以理解为,利用对不同琴键不同力度,不同时间点的敲击,可以组合出任何一首乐曲。 而贯穿时域与频域的方法之一,就是传中说的傅里叶分析。傅里叶分析可分为傅里叶级数(Fourier Serie)和傅里叶变换(Fourier Transformation),我们从简单的开始谈起。 二、傅里叶级数(Fourier Series) 如果说能用余弦曲线波叠加出一个带90度角的矩形波来,你会相信吗?但是看看下图: 第一幅图是一个郁闷的余弦波cos(x) 第二幅图是2个卖萌的余弦波的叠加cos(x)+a cos(3x) 第三幅图是4个发春的余弦波的叠加 第四幅图是10个便秘的余弦波的叠加 随着余弦波数量逐渐的增长,他们最终会叠加成一个标准的矩形,大家从中体会到了什么道理? 随着叠加的递增,所有余弦波中上升的部分逐渐让原本缓慢增加的曲线不断变陡,而所有正弦波中下降的部分又抵消了上升到最高处时继续上升的部分使其变为水平线。一个矩形就这么叠加而成了。但是要多少个余弦波叠加起来才能形成一个标准90度角的矩形波呢?不幸的告诉大家,答案是无穷多个。 不仅仅是矩形,你能想到的任何波形都是可以如此方法用正/余弦波叠加起来的。 这是没有接触过傅里叶分析的人在直觉上的第一个难点,但是一旦接受了这样的设定,游戏就开始有意思起来了。 还是上图的余弦波累加成矩形波,我们换一个角度来看看:

快速傅里叶变换(FFT)的计算机实现信号与系统课程设计Word

华中科技大学 信号与系统课程设论文 快速傅里叶变换(FFT)的计算机实现 学院: 班级: 学号: 姓名: 指导老师: 二〇一三年八月

摘要 用C语言编程完成对输入波形的时域采样的FFT变换以及频域分析,同时用DFT 变换来验证FFT变换结果的正确性。时域信号的输入有两种方式:一种是依次输入时域信号(仅支持多个正弦及余弦信号之和的形式)各谐波分量的幅值和角频率值,另一种是直接输入时域信号的采样值。然后进行DFT变换和FFT变换,两者结果应该是一样的。DFT变换的实现直接脱胎于定义,FFT变换采用的是基2时间抽取算法,用倒位序算法和蝶形算法实现。 关键词:傅里叶变换;DFT; FFT;倒位序

1背景知识 1.1 为什么要进行傅里叶变换 在进行科学研究的过程中,很重要的一点就是为一个系列的问题找到一个通法,从而为实际的应用打下基础。 在信号分析这个方向,如果直接对时域信号进行分析,那么我们将发现,很难找到一种固定的方法来进行分析,这是因为信号对时间t的函数形式存在无数种,我们是无法将这些函数以及这些函数的各种形式的组合都统一起来进行研究的。而进行傅里叶变换之后,我们就能很好达到这个目的——用一种方法来研究所有的信号(这些信号也需要满足一定的条件,但范围是非常广的)。 那么为什么傅里叶变换可以达到这样的目的呢?对于一个时域信号,我们习惯从时间的角度进行理解,也就是以时间为自变量,以信号值为因变量,一个信号是该信号在所有的时间点的值的叠加,每个信号分量在时间域上只占据了一个点,要想得到这个信号的所有信息,我们需要知道这个信号在时间轴上每一点的值,缺一不可。傅里叶变换之后,依然是一个叠加的问题,只不过由时间角度的叠加变成了频率角度的叠加,这时每一个信号分量都覆盖了一个时间域上的整个区间,并且每一个信号分量都是周期性的(三角函数的周期性),这样,只需要知道每个信号分量的幅值、频率、相位就能在时间轴上得到它的所有信息,而所有信号分量的叠加就得到了原来的信号。并且我们并非需要将所有信号分量都叠加起来,这是因为傅里叶变换之后,随着信号分量频率值的上升,信号分量幅值呈一个较快的下降趋势,在精度允许的范围内,我们并不需要去考虑频率值超出某个范围的那部分信号分量,我们所考虑的那个频率区间的信号分量的叠加已经能够很好的还原出原信号,而这个频率区间只占据了频率轴很少的部分,从而简化了后面的分析过程。同时,若原信号是周期性的,那该信号在频率轴上将只占据有限个点,分析难度更是大大减小。 1.2傅里叶级数 1.2.1频率分量与频率成分 对于时域信号来说,频率含量就是信号被分成的正弦波簇所确定的所有频率分量。例如,有 (1-1) 式中,N rad/s 正弦波的相位。 根据式(1-1)其 1-1)定义的信号完全由 频率,振幅和相信的相位所确定。 由式(1-1)定义的信号特征,可以通过对组成该信号的正弦频率,振幅,相位来研究。 1.2.2周期信号的三角傅里叶级数 式:

椭圆偏振光法测定介质薄膜的厚度和折射率 (2)

椭圆偏振光法测定介质薄膜的厚度和折射率 5- 姓名:陈正 学号:PB05210465 系别:6系 实验目的: 本实验的目的有以下两个: 1.了解椭偏仪测量薄膜参数的原理. 2.初步掌握反射型椭偏仪的使用方法. 实验原理: 椭圆偏振光经薄膜系统反射后,偏振状态的变化量与薄膜的厚度和折射率有 关,因此只要测量出偏振状态的变化量,就能利用计算机程序多次逼近定出膜厚 和折射率。参数?描述椭圆偏振光的P 波和S 波间的相位差经薄膜系统关系后发 生的变化,ψ描述椭圆偏振光相对振幅的衰减。有超越方程: tan pr pi sr si E E E E ψ????= ? ????? ()()pr sr pi si ββββ?=--- 为简化方程,将线偏光通过方位角±45?的14 波片后,就以等幅椭圆偏振光出射,pi si E E =;改变起偏器方位角?就能使反射光以线偏振光出射, ()0pr sr ββπ??=-=或,公式化简为: tan pr sr E E ψ= ()pi si ββ?=-- 实验仪器:

分光计、He-Ne 激光器及电源 、起偏器 、检偏器 、14 波片,待测样品、黑 色反光镜、放大镜等; 实验内容: 1. 按调分光计的方法调整好主机. 2. 水平度盘的调整. 3. 光路调整. 4. 检偏器读数头位置的调整和固定. 5. 起偏器读数头位置的调整与固定. 6. 4/1波片零位的调整. 7. 将样品放在载物台中央,旋转载物台使达到预定的入射角70゜即望远镜转过 40゜,并使反射光在白屏上形成一亮点. 8. 为了尽量减小系统误差,采用四点测量. 9. 将相关数据输入“椭偏仪数据处理程序”,经过范围确定后,可以利用逐次逼 近法,求出与之对应的d 和n ;由于仪器本身的精度的限制,可将d 的误差 控制在1埃左右,n 的误差控制在0.01左右. 数据处理: 原始数据列表: 由分析知A,P 应满足以下条件: ???????==?=+?=+423 14321180180A A A A A A A A ????????=+?=+?=-?=-270270909042 314321P P P P P P P P 所以测量数据基本满足以上的条件。 将表格中数据输入“椭偏仪数据处理程序”,利用逐次逼近法,

快速傅里叶变换(FFT)的DSP实现

目录 一、前言 二、设计题目 三、设计要求 3.1 设计目的 3.2 设计要求 四、设计内容 五、设计原理 5.2 离散傅里叶变换DFT 5.3 快速傅里叶变换FFT 六、总体方案设计 6.1 设计有关程序流程图 6.2 在CCS环境下加载、调试源程序 七、主要参数 八、实验结果分析 九、设计总结

一、前言 随着数字电子技术的发展,数字信号处理的理论和技术广泛的应用于通讯、语音处理、计算机和多媒体等领域。快速傅里叶变换(FFT)使离散傅里叶变换的时间缩短了几个数量级。在数字信号处理领域被广泛的应用。FFT已经成为现代化信号处理的重要手段之一。 本次课程设计主要运用CCS这一工具。CCS(Code Composer Studio)是一种针对TM320系列DSP的集成开发环境,在Windows操作系统下,采用图形接口界面,提供环境配置、源文件编辑、程序调试、跟踪和分析等工具,可以帮助用户在一个软件环境下完成编辑、编译、链接、调试和数据分析等工作。 CCS有两种工作模式,即软件仿真器和硬件在线编程。软件仿真器工作模式可以脱离DSP芯片,在PC上模拟DSP的指令集和工作机制,主要用于前期算法实现和调试。硬件在线编程可以实时运行在DSP芯片上,与硬件开发板相结合进行在线编程和调试应用程序。二、设计题目 快速傅里叶变换(FFT)的DSP实现 三、设计要求 3.1设计目的 ⑴加深对DFT算法原理和基本性质的理解; ⑵熟悉FFT的算法原理和FFT子程序的算法流程和应用; ⑶学习用FFT对连续信号和时域信号进行频谱分析的方法; ⑷学习DSP中FFT的设计和编程思想;

⑸学习使用CCS 的波形观察器观察波形和频谱情况; 3.2 基本要求 ⑴研究FFT 原理以及利用DSP 实现的方法; ⑵编写FFT 程序; ⑶调试程序,观察结果。 四、 设计内容 ⑴用DSP 汇编语言及C 语言进行编程; ⑵实现FFT 运算、对输入信号进行频谱分析。 五、 设计原理 快速傅里叶变换FFT 快速傅里叶变换(FFT )是一种高效实现离散傅里叶变换(DFT )的快速算法,是数字信号处理中最为重要的工具之一,它在声学,语音,电信和信号处理等领域有着广泛的应用。 5.1. 离散傅里叶变换DFT 对于长度为N 的有限长序列x(n),它的离散傅里叶变换(DFT )为 (1) 式中, ,称为旋转因子或蝶形因子。 从DFT 的定义可以看出,在x(n)为复数序列的情况下,对某个k 值,直接按(1)式计算X(k) 只需要N 次复数乘法和(N-1)次复数加法。因此,对所有N 个k 值,共需要N2次复数乘法和N(N-1)次复数加法。对于一些相当大有N 值(如1024点)来说,直接计算它的DFT 所需要的计算量是很大的,因此DFT 运算的应用受到了很大 1 ,1,0,)()(1 -== ∑-=N k W n x k X n n nk N N j N e W /2π-=

傅里叶分析应用于热传导问题

傅里叶分析应用于热传导问题 (物理系郭素梅指导教师陆立柱) 〔摘要〕傅里叶分析是一种重要的数学工具,本文综述了用傅里叶分析解决细杆的热传导问题,并进行了讨论。傅里叶分析包括傅里叶级数和傅里叶积分,用傅里叶级数法解决有界细杆的热传导问题,用含参数的傅里叶变换法解决无界细杆的热传导问题,比其它方法更系统,体现出一种数学与物理对应的美感。 〔关键词〕傅里叶级数傅里叶积分傅里叶变换细杆的热传导问题 引言 1822年,傅里叶在研究热传导问题时,创造了傅里叶分析,随着时代的进步,这一数学工具被广泛地应用于信号分析、匹配滤波、图象处理等方面,掌握这种具有广泛用途和发展前景的工具是十分必要的.热传导是历来研究的热点,尤其是随着计算机电子设备的高集成化发展,机器内发热部件和集成电路元件的发热量随之增加,传统的强制冷方式已不能达到理想效果,因此,热传导设计成了重要问题。万变不离其宗,为了更好地掌握傅里叶分析,为了更好地掌握热传导问题,本文就一维热传导问题对傅里叶分析作了全面详尽的论述。 1.傅里叶分析 1.1 傅里叶级数 傅里叶级数在应用上有以下优点[1]:能表示不连续的函数、周期函数,能对任意函数作调 和分析。 若函数() f x以2l为周期,即 +=[2] (2)() f x l f x (1.1.1)

则可取三角函数族 1, cos x l π,cos 2x l π, … cos n x l π ,… sin x l π,sin 2x l π, (i) n x l π , … (1.1.2) 作为基本函数族,将()f x 展开为级数[3] ()f x =0 a +1 (n n a ∞ =∑cos n x l π+ n b cos n x l π) (1.1.3) 可以证明,函数族(1.1.2)是正交完备的[4]。根据三角函数族的正交性,可求得(1.1.3)中的展 开系数为 1()cos 1()sin l n l n l n l n a f d l l n b f d l l πξξξδπξξξ--?=??? ?=?? ?? (1.1.4) 其中 2(0)1 (0) n n n δ?=?=? ≠?? (1.1.3)称为周期函数()f x 的傅里叶级数展开式,其中的展开系数 (1.1.4)称为傅里叶系数。关于傅里叶级数的收敛性问题[2],有Dirichlet 定理[4]。 若周期函数是奇函数,则由傅里叶系数计算公式(1.1.4)可见,0a 及诸k a 均等于零,展开式(1.1.3)为 () f x = 1 sin n n n x b l π∞ =∑,

椭圆偏振法

得分教师签 批改日期 名 深 圳 大 学 实 验 报 告 课程名称:近代物理实验 实验名称:椭圆偏振法测量薄膜厚 度及折射率 学院:物理科学与技术学院 组号指导教师: 报告人:学号:

实验地点实验时间: 实验报告提交时间: 1、 实验目的 1、利用椭偏仪测量硅衬底薄膜的折射率和厚度;提高物理推理与判别处理能力。 2、用自动椭偏仪再测量,进行比对;分析不同实验仪器两种方式的测量。提高误差分析与分配能力。 二、实验原理 椭偏法测量的基本思路是,起偏器产生的线偏振光经取向一定的1/4波片后成为特殊的椭圆偏振光,把它投射到待测样品表面时,只要起偏器取适当的透光方向,被待测样品表面反射出来的将是线偏振光。根据偏振光在反射前后的偏 振状态变化(包括振幅和相位的变化),便可以确定样品表面的许多光

学特性。 设待测样品是均匀涂镀在衬底上的透明同性膜层。如图3.5.1所示, n1,n2和n3分别为环境介质、薄膜和衬底的折射率,d是薄膜的厚度,入射光束在膜层上的入射角为φ1,在薄膜及衬底中的折射角分别为φ2和φ3。按照折射定律有 (3.5.1) 光的电矢量分解为两个分量,即在入射面内的P分量及垂直于入射面的S 分量。根据折射定律及菲涅尔反射公式,可求得P分量和S分量在第一界面上的复振幅反射率分别为 而在第二个界面处则有 从图3.5.1可以看出,入射光在两个界面上会有很多次的反射和折射,总反射光束将是许多反射光束干涉的结果,利用多光束干涉的理论,得p分量和s分量的总反射系数 其中 是相邻反射光束之间的相位差,而λ为光在真空中的波长。 光束在反射前后的偏振状态的变化可以用总反射系数比(Rp/Rs)来表征。在椭偏法中,用椭偏参量ψ和Δ来描述反射系数比,其定义为 分析上述格式可知,在 λ,φ1,n1,n3确定的条件下,ψ和Δ只是薄膜厚度d和折射率n2的函数,只要测量出ψ和Δ,原则上应能解出d和n2。然而,从上述格式却无法解析出d=(ψ,Δ)和n2=(ψ,Δ)的具体形式。因此,只能先按以上各式用电子计算机算出在λ,φ1,n1

相关主题
文本预览
相关文档 最新文档