当前位置:文档之家› 溶胶的制备、纯化及稳定性研究

溶胶的制备、纯化及稳定性研究

溶胶的制备、纯化及稳定性研究
溶胶的制备、纯化及稳定性研究

斜坡的影响因素

影响斜坡稳定的主要因素 影响斜坡稳定性的因素非常复杂,其中最主要是时斜坡岩土体类型及性质、地质构造、地形地貌等,除此之外还有岩石的风化、地表水及大气水的作用、地震和人类的工程活动等,这些因素综合起来可分为内在因素和外在因素两大部分,内在因素包括斜坡岩土体类型及性质、地质构造、地形地貌,外在因素包括地下水和地表水、地震和人类活动。 1、内在因素 (1)岩土类型及性质影响 组成斜坡的岩土体的性质是决定斜坡抗滑力的根本因素。不同的岩层组成的斜坡其稳定性各有差异,表1所示为不同性质的岩质对斜坡稳定性的影响。 表1 不同岩性对斜坡稳定性的影响 斜坡岩性主要工程地质特征影响斜坡稳定 的主要因素 主要变形破坏形 式 侵入岩类如花岗岩、闪长岩。岩性均一, 强度较高,一般呈块状结构, 常形成陡坡 节理裂隙切割 特征 崩塌、松弛张裂, 沿软弱结构面滑 动 喷出岩类如玄武岩强度差别较大,裂隙 发育。有时具层状孔隙性大, 斜坡形态受产状控制 岩层产状、节 理、软弱夹层 性质 崩塌、沿软弱夹 层、节理滑动 碎屑沉积岩如砂岩、砾岩页岩。强度差别 较大,具层状结构斜坡受岩层 产状控制 岩层产状和岩 体结构特征 沿层面滑动,崩 塌,松动。倾倒或 挠曲 碳酸盐岩类如石灰岩、白云岩等,强度一 般较高,具层状结构斜坡形态 受岩层产状和节理裂隙发育 控制 岩层产状及岩 溶发育状况 崩塌,松弛张裂, 顺层滑动 夹层沉积岩如夹有泥化夹层的砂岩、页岩 等。具有层状结构 软弱夹层产状 及性质 沿软弱夹层的蠕 动,各类蠕动变形

变质岩类如板岩、千枚岩、片岩等强度 差别较大,多呈片状或层状, 岩体完整性差 岩性及岩层产 状 滑坡或蠕动变形 (2)地质构造影响 斜坡中的各种结构面对斜坡稳定性有着重要影响(特别是软弱结构面与斜坡临空面的关系对斜坡稳定起很大作用),由于这种关系多种多样因此稳定性也各不相同,可大致分为5种情况 1)平叠坡:主要软弱结构面是水平的。这种斜坡一般比较稳定。 2)顺向坡:主要是指软弱结构面的走向与坡面走向平行或接近平行,且倾向一致的斜坡。当结构面倾角小于坡角时,斜坡稳定性最差,极易发生顺层滑坡,当结构面倾角大于坡角时,斜坡稳定性较好。 3)逆向坡:主要软弱面的倾向于坡面倾向相反,及岩层面倾向坡内,这种斜坡一般是稳定的,有时有崩塌现象,而滑动的可能性较小。 4)斜交坡:主要软弱结构面坡面走向成斜交关系。其交角越小,稳定性就越差。 5)横交坡:主要软弱结构面的走向与坡面走向近于垂直。这类斜坡稳定性较好,很少发生大规模的滑坡。 (3)地形地貌的影响 地形地貌对斜坡的影响主要取决于地形高低起伏的变化,对于山地、高原斜坡的稳定性受坡度大小的影响,坡度越大斜坡越不稳定,反之相对稳定,且破坏类型以崩塌破坏为主;而对于起伏不大的平原、丘陵和盆地其斜坡的稳定性受多种因素的影响如降水、地震等 2、外在因素 (1)地表水与地下水影响 地表水和地下水是影响斜坡稳定性的重要因素。不少滑坡的典型实例都与水的作用有关或者水是滑坡的触发因素,水的作用主要表现为对岩土的软化作用、泥化作用、冲刷作用、静水压力作用、动水压力作用等。处于水下的透水边坡将承受水的浮托作用,而不透水的边坡,坡面将承受静水压力;充水的张开裂隙将承受裂隙水的静水压力作用;地下水的渗流,将对边坡体产生动水压力。水对边

氢氧化铁胶体制备及电泳

.. Fe(OH)3胶体的制备和电泳 韩丰 郭麟 刘天乙 (大连大学 环境与化学工程学院 化学111,辽宁大连 116622) 指导老师:李艳华 贾颖萍 [摘 要] 文章主要探究氢氧化铁的制备、纯化温度及时间对胶体的影响,并测定的胶体性质,最终确定利用化学法制备,纯化温度介于60℃到70℃,时间控制在2周左右,辅助液选用KCl 溶液并且电导率与胶体相同,电泳电压为60V ,得到Fe(OH)3胶体的ζ 电位为;并且研究了相同阳离子不同价态阴离子的盐对于胶体聚沉的影响,并得到价态越高,聚沉能力越强。 [关 键 词] Fe(OH)3胶体;电泳;ζ 电位;实验;聚沉值 作为物理化学实验中经典实验[1,2] ---胶体的制备及采用电泳方法测定溶胶的电动电势ζ,我们很有必要去认识和学习。但由于溶胶的电泳受诸多因素如:溶胶中胶粒形状、表面电荷数量、辅助液中电解质的种类、温度和所加电压等。根据实验内容主要利用水解Fe(OH)3溶液制备的氢氧化铁胶体,并且通过渗析纯化后使用。另外,根据教材的实验步骤进行电泳实验,经常遇到溶胶与辅助液间有一界模糊和两极间界面移动距离相差较大等问题。为了使这些问题能够得以很好的解决,我们主要是氢氧化铁胶体的制备、Fe(OH)3胶体的纯化时渗析温度及时间的控制、辅助液的选择与其电导率控制、胶体溶液和导电液的正确加入以及适度的电泳电压等方面对这一实验进行了改进研究来探究Fe(OH)3胶体的ζ 电位,通过与理论值相比较,做出合理的误差分析,以此来对胶体电泳最佳实验条件得以确定,以这一实验改进的条件探讨及结果。 1、实验部分 1.1 实验原理 1.1.1 胶体简介 溶胶是一个多相系统;是热力学不稳定系统(要依靠稳定剂使其形成离子或分子吸附层,才能得到暂时的稳定),胶粒(分散相)大小在1~100nm 之间[3] ; 1.1.2制备胶体的原理: 凝胶作用:由于溶剂的作用,使沉淀重新溶解成胶体溶液。 化学凝聚法:通过化学反应使生成物呈过饱和状态,然后粒子再胶合成胶粒。 1.1.3 氢氧化铁溶胶ζ电势的测定计算 实验主要是通过测定一定外加电场强度下胶粒的电泳速度的方法计算胶粒的ζ 电位。采用界面移动法测胶粒的电泳速率。 在电泳仪的两段极施加电位差E 后,在时间t 内,如溶胶界面移动的距离为d ,则胶粒的电泳速率: t d v

胶体制备和电泳

胶体制备和电泳 一、实验目的 1、采用水解凝聚法制备Fe(OH)3溶胶; 2、用电泳法测定Fe(OH)3溶胶带电性质及其电动电位。 二、实验原理 胶体制备常用分散法和凝聚法。本实验是用水解凝聚法制备Fe(OH)3溶胶。刚制成的溶胶常含有其它杂质,必须纯化。本实验采用半透膜渗析法,利用胶体与其它物质的分散程度的差异而分离。为了加快渗析速度,可用热渗析和电渗析方法。 由于胶粒表面电离或吸附离子而带电荷,在胶粒周围形成带等量异电荷的溶剂化层。溶剂化层界面与介质内部形成的电位差称电动电势或ζ电势。它是胶粒特征的重要物理量,其数值与胶体性质,介质及溶胶浓度有关。 胶体的ζ电势表达式为: DE u πηζ4= 式中:ζ——介质粘度(泊); u ——相对移动速度(厘米/秒); D ——介质常数; E ——电位梯度(绝对静电单位/厘米)。 由测定界面移动的电泳法: () vtD sl πηζ43002 = 式中:s ——时间t 内胶体和辅助液界面移动距离(厘米); l ——两电极间距离(厘米); v ——电极间电位差(伏特); 300——将伏特换算成绝对静电单位的比例系数。 本实验的测定条件是溶胶与辅助液的电导率必须相等。

三、仪器与药品 电泳仪 1套 稳压电源 1套 停表 1个 铂电极 1根 10%FeCl 3溶液 火棉胶 稀盐酸 烧杯等。 四、实验步骤 1、3)(OH Fe 溶胶的制备:在250 ml 烧杯中,盛蒸馏水100 ml ,加热至沸,在搅拌条件下滴加10%3FeCl 10 ml ,再煮沸 2 min ,即得3)(OH Fe 棕色溶胶。 2、胶体溶液的纯化: 半透膜的制备:在100 ml 干燥的短颈锥形瓶中,倒入几 ml 火棉胶,小心转动,形成均匀的薄膜,倒置流尽火棉胶,并让溶剂挥发至不粘手,然后在瓶口剥开一部分膜,从膜壁注入水,使膜与壁分离,取出成型的膜袋。 溶胶的渗析:将制得的3)(OH Fe 溶胶倒入半透膜中,用线栓住袋口,放入60~70℃的水中渗析,常换水,直至水中不能检出-Cl 或+3Fe 。 3、3)(OH Fe 溶胶的ζ电位测定:洗净电泳管,用滴管注入净化后的3)(OH Fe 溶胶,关闭活塞,用蒸馏水和辅助液依次洗净电泳管上部三次,然后装入辅助液(电导率与溶胶相等的HCl )至支管口。两边插入电极并安装好仪器。调节工作电压为120V ~150V 。打开活塞开始计时,准确记录界面移动0.5cm ,1cm ,1.5cm ,2cm 所需的时间。测定完毕关闭电源,用线测量两电极间的距离l ,计算ζ电势。 五、数据记录与处理 1、由胶体在电泳时的移动方向,确定胶粒所带电荷。 2、由在时间t 内界面移动的距离s 值,求出s/t ,并取平均值(或作s ~t 图,求出斜率)计算ζ电势。 3、求ζ时,η和D 值均用水的相应值代替。水的介电常数D =80—0.4(T —293),T —实验绝对温度。

斜坡稳定性及其评价方法

工程地质学 读书报告 题目:斜坡稳定性及其评价方法学号:20111002833 班级:01211 姓名:李海亮 指导老师:熊承仁

斜坡稳定性及其评价方法 斜坡是地壳表面所有拥有侧向临空的地质体。在各种内外营力的作用下,其坡角坡高不断变化,从而坡体中的作用位置也随之改变,若形成坡体的岩土体不适应这种应力分布时,就造成了坡体的变形破坏。斜坡稳定性与人类生产生活及生命财产息息相关,因此,对斜坡稳定性的研究及评价有利于预防地质灾害的发生,及避免生命财产的损失。 一斜坡稳定性及其影响因素 影响斜坡稳定性的因素复杂多样,有自然的和人为的,其中主要是斜坡岩土类型和性质﹑岩体结构和地质构造﹑风化﹑水的作用﹑地震和人类工程活动等。 各种因素主要从三方面影响着斜坡的稳定。第一方面影响斜坡岩土体的强度,如岩性﹑岩体结构﹑风化和水对岩土的软化作用等。第二方面影响着斜坡的形状,如河流冲刷﹑地形和人工开挖斜坡﹑填土等。第三方面影响着斜坡的内应力状态,如地震﹑地下水压力﹑堆载和人工爆破等。他们的负影响表现在增大下滑力而降低抗滑力,促使斜坡向不稳定方向转化。 上述诸因素中,岩土的类型性质﹑岩土体结构是最主要的因素,其他因素通过它才能起作用。根据各因素对斜坡稳定性的影响程度,可将它分为两大类:一类为内部因素,是长期起作用的因素,有岩土的类型和性质﹑地质构造和岩体结构﹑风化作用﹑地下水活动等;另一类为外部因素,是临时起作用的因素,有地震﹑洪水﹑暴雨﹑堆载﹑人工爆破等。下面分述各主要因素。 1﹑岩土类型和性质 岩土类型和性质是影响斜坡稳定性的根本因素。在坡高和坡角相同时,显然岩土体越坚硬,抗变形能力越强,则斜坡的稳定性越好,反之稳定性越差。同时,岩体的节理﹑断层及软弱夹层的存在会减弱其稳定性。 2﹑岩体结构面的性质 岩质斜坡的变形破坏多数是受岩体中结构面的控制。所以结构面的成因、性质、岩性特征、密度以及不同方向结构面的组合关系等是非常重要的。按结构面的产状与临空面的关系,可分为: (1) 平迭坡:主要软弱结构面是水平的。这种斜坡一般比较稳定,但厚层软弱相间的岩层会形成崩塌破坏,厚层软弱岩会发生滑坡。 (2) 逆向坡:主要软弱结构面的倾向与坡面的倾向相反。这种斜坡是最稳定的,有时有崩塌发生,而滑坡的可能性很小。 (3) 顺向坡:主要软弱结构面的倾向与坡面的倾向一致。其稳定性与倾角和坡角的相对大小有关。 当坡角β〉弱面倾角α时,斜坡稳定性最差,极易发生顺层滑坡。 当α<β时,稳定性较好,但还有其他结构面的存在,特别是向坡外缓倾的结构面组合,还可能发生滑坡。 (4) 斜交坡:主要软弱结构面与坡面成斜交关系。其交角越小,稳定性就越差。 (5) 横交坡:主要软弱结构面的走向与坡面走向近于垂直,稳定性较好,很少发生大规模的滑坡。

胶体的稳定性和聚沉作用

8.4 胶体的稳定性和聚沉作用 8.4.1 溶胶的稳定 根据胶体的各种性质。溶胶稳定的原因可归纳为: (1) 溶胶的动力稳定性 胶粒因颗粒很小,布朗运动较强,能克服重力影响不下沉而保持均匀分散。这种性质称为溶胶的动力稳定性。影响溶胶动力稳定性的主要因素是分散度。分散度越大,颗粒越小,布朗运动越剧烈,扩散能力越强,动力稳定性就越大,胶粒越不溶易下沉。此外分散介质的粘度越大,胶粒与分散介质的密度差越小,溶胶的动力稳定性也越大,胶粒也越不溶易下沉。 (2) 胶粒带电的稳定作用 下图表示的是一个个胶团。蓝色虚线圆是扩散层的边界,虚线圆以外没有净电荷, 呈电中性。因此,当两个胶团不重迭时,如左图,它们之间没有静电作用力,只有胶粒间的引力,这种引力与它们之间距离的三次方成反比,这和分子之间的作用力(分子之间的作用力与分子之间距离的六次方成反比)相比,是一种远程力,这种远程力驱使胶 团互相靠近。当两个胶团重迭时,如右图,它们之间就产生静电排斥力。重叠越多,静电排斥力越大。如果静电排斥力大于胶粒之间的吸引力,两胶粒相撞后又分开,保持了溶胶的稳定。胶粒必须带有一定的电荷才具有足够的静电排斥力,而胶粒的带电量与ζ电势的绝对值成正比。因此,胶粒具有一定的ζ电势是胶粒稳定的主要原因。 (3) 溶剂化的稳定作用 物质和溶剂之间所起的化合作用称为溶剂化,溶剂若为水,则称水化。憎液溶胶的胶核是憎水的,但它吸附的离子都是水化的,因此增加了胶粒的稳定性。由于紧密层和分散 层中的离子都是水化的,这样在胶粒周围形成了水化层。实验证明,水化层具有定向排列 + + + + + + + + - - - - - - - - 胶核 + + + + + + + + - - - - - - - - 胶核

实验 溶胶的制备及其稳定性

实验溶胶的制备及其稳定性 一、实验目的 1.了解溶胶的制备方法 2.了解影响溶胶聚沉的因素 3.了解大分子物质对溶胶的保护作用 二、实验原理 胶体是指一种或几种物质以一定的分散程度(粒子直径在1~100nm)分散在另一种物质中所形成的体系。其中以固体分散在水中的溶胶最为重要。以下讨论的都是指这种水溶胶。 溶胶的基本特征为: ◆它是多相体系,相界面很大; ◆胶粒大小在1~100nm; 它是热力学不稳定体系(要依靠稳定剂使其形成离子或分子吸附层,才能得到暂时的稳定)。要制备出比较稳定的溶胶必须满足两个条件: (1)固体分散相粒子大小必须在胶体分散度的范围内。 (2)胶粒在液体介质中要保持分散,不聚结(一般需加稳定剂)。 溶胶的制备方法通常可分为两类: a.分散法:即把较大的物质颗粒变为胶体大小的质点。常用的分散法有: (1)机械作用法,如用胶体磨或其它研磨方法把物质分散; (2)电弧法,以金属为电极通电产生电弧,金属受高热变成蒸气,并在液体中凝聚成胶体质点; (3)超声波法,利用超声波场的空化作用,将物质撕碎成细小的质点,它适用于分散硬度低的物质或制备乳状液; (4)胶溶作用,由于溶剂的作用,使沉淀重新“溶解”成胶体溶液。 b.凝聚法:即把物质的分子或离子聚会成胶体大小的质点。常用的凝聚法有: (1)凝结物质蒸气; (2)变换分散介质或改变实验条件(如降低温度)使原来溶解的物质变成不溶; (3)在溶液中进行化学反应,生成一不溶解的物质。 溶胶的性质与其结构有关。本实验用AgNO3和过量的KI所制备的AgI 溶胶(A)的胶团结构表示式如下:

[(AgI)m ·n I -·)(x n -K + ]-x ·x K + 此溶胶由m 个AgI 组成胶核。由于KI 过量,溶液中还剩有K +、NO 3-、I -等离子。因 为胶核可有选择地吸附与其组成相类似离子的倾向,所以I - 在胶核表面优先吸附,使胶核 带上了负电荷。溶液中与其电性相反的K +(反离子)也部分被吸附在胶核表面形成吸附层,胶核和吸附层构成胶粒,剩下的其余反离子松散的分布在胶粒外面,形成扩散层。扩散层和胶粒合称为胶团。在溶胶中胶粒是独立运动单位。因此AgI 溶胶(A )的胶粒是带负电的。 本实验用过量的AgNO 3和少量的KI 制成的AgI 溶胶(B )的胶团结构简图如下: [(AgI)m ·n Ag +·)(x n -NO 3- ]+x ·x NO 3- 同理可推断出AgI 溶胶(B )的胶粒是带正电的。 由于胶粒带电是导致其具有稳定性的原因之一。因此,电解质的加入或带相反电荷溶胶的混合,都将破坏胶团的双电层结构,使溶胶发生聚沉。电解质能使溶胶聚沉,其起主要作用的是与胶粒带相反电荷的离子,这种离子价态越高,聚沉溶胶的能力越强。一般说来,反号离子的聚沉能力是: 三价 > 二价 > 一价 但不成简单的比例。此外,电解质在溶胶中的浓度越大,必越有利于溶胶的聚沉。 通常把能使溶胶聚沉所需的电解质的最低浓度称为聚沉值(m mol ? L -1 )。 聚沉值=10001??V V M 式中:M 为外加电解质溶液浓度(mol ?L -1),V1为发生聚沉时所加电解质溶液的最小体积(mL ),为发生聚沉时溶胶的总体积(mL )。正常电解质的聚沉值与胶粒电荷相反离子价数的6次方成反比。 亲液胶体(如动物胶、蛋白质等)的稳定性主要决定于胶粒表面的溶剂化层,因此加入少量盐类不会引起明显的沉淀。但若加入酒精等能与溶剂紧密结合的物质,则能使亲液胶体聚沉。亲液溶胶的聚沉常常是可逆的,即加入过多的酒精等物质时,聚沉的亲液溶胶又能自动地转变为胶体溶液。当在憎液溶胶里加入适量的大分子物质溶液,可提高憎液溶胶对电解质的稳定性,这种作用叫大分子对溶胶的保护作用。 三、仪器与试剂 烧杯(200mL 、100mL ),玻璃漏斗,试管,滤纸,酒精灯。 酸碱:HCl (0.1 mol ·L -1),NH 3·H 2O (2 mol ·L - 1)。 盐类:FeCl 3 (5%),KI (0.1mol ·L -1、0.01mol ·L -1),KCl (2.5mol ·L - 1), AgNO 3(0.1mol ·L -1、0.01mol ·L -1),AlCl 3(1%), K 2CrO 4(0.1mol ·L - 1), K 3[Fe(CN)6](0.01mol ·L -1),HCl (0.000043 mol dm -?),其它:明胶(0.5%)。

氢氧化铁胶体电动电位的测定(电泳法)

氢氧化铁胶体电动电位的测定 一、目的要求 1、掌握电泳法测定Fe(OH)3溶胶电动电势的原理和方法。 2、通过实验观察并熟悉胶体的电泳现象。 二、实验原理 在胶体溶液中,分散在介质中的微粒由于自身的电离或表面吸附其他粒子而形成带一定电荷的胶粒,同时在胶粒附近的介质中必然分布有与胶粒表面电性相反而电荷数量相同的反离子,形成一个扩散双电层。 在外电场作用下,荷点的胶粒携带起周围一定厚度的吸附层向带相反电荷的电极运动,在荷电胶粒吸附层的外界面与介质之间相对运动的边界处相对于均匀介质内部产生一电势,为ζ电势。 它随吸附层内离子浓度,电荷性质的变化而变化。它与胶体的稳定性有关,ζ绝对值越大,表明胶粒电荷越多,胶粒间斥力越大,胶体越稳定。 本实验用界面移动法测该胶体的电势。在胶体管中,以KCl为介质,用Fe(OH)3溶胶通电后移动,借助测高仪测量胶粒运动的距离,用秒表记录时间,可算出运动速度。 当带电胶粒在外电场作用下迁移时,胶粒电荷为q,两极间的的电位梯度为E,则胶粒受到静电力为f1=Eq 胶粒在介质中受到的阻力为f2=Kπηru 若胶粒运动速率u恒定,则f1=f2 qE=Kπηru (1) 根据静电学原理ζ=q/εr (2) 将(2)代入(1)得u=ζεE/Kπη (3)

利 用界面移动法测量时,测出时间t 时胶体运动的距离S ,两铂极间的电位差Φ和电极间的距离L ,则有 E=Φ/L , u=s/t (4) 代入(3)得 S=(ζΦε/4πηL)·t 作S —t 图,由斜率和已知得ε和η,可求ζ电势。 电泳公式可表示为: 上式中η为分散介质的粘度,ε为介电常数,25℃时,η=0.000894Pa ·S ,ε=78.36,U 为加于电泳测定管两端的电压(V ),l 是两极间的距离(cm ),u 是电泳速度(cm ·s -1)。 三、仪器与试剂 Fe(OH)3胶体,KCl 辅助溶液, 电泳管,直尺,电泳仪 四、实验步骤 1.洗净电泳管,然后在电泳管中加入50ml 的Fe(OH)3胶体溶液,用滴管将KCl 辅助溶液延电泳管壁缓慢加入,以保持胶体与辅助液分层明显,(注意电泳管两边必须加入等量的辅助液)。 2.辅助液加至高出胶体10厘米时即可,此时插入两个铂电极,将电泳管比活塞 辅助液 Fe(OH)3胶体 铂片电极 图2.14.1 电泳仪

边坡稳定性影响因素

边坡稳定性影响因素 边坡稳定性影响因素: (1)坡底中结构面对边坡稳定性的影响.破底的稳定性直接影响整个山体的稳定性 (2)外力对边坡的影响。例如:爆破,地震,水压力等自然和认为因素,而导致边坡破坏。 (3)边坡外形对边坡稳定性的影响。比如,河流、水库及湖海的冲涮和淘涮,使得岸坡外形发生变化,从而使这些边坡发生破坏,这主要由于侵蚀切露坡体底部的软弱结构面使坡体处于临空状态,或是侵蚀切露坡体下伏到软弱层,从而引起坡体失去平衡,最后导致破坏。(4)岩体力学性质恶化对边坡稳定性的影响。比如风化作用对边坡稳定性的影响,这主要是由于风化作用使坡体强度减小,坡体稳定性降低,加剧斜坡的变形与破坏,而且风化越深,斜坡稳定性越差,稳定坡角就越小。 边坡稳定性相关延伸: 边坡稳定性控制技巧 边坡防护设计的主要原则 1、安全第一.质量保证 边坡的防护直接影响到交通的安全,目前,我国的防护工作主要是由边坡起防护作用,对自然灾害和人为因素造成的塌方、陷落等起到很好的防护作用,对交通设施的安全顺畅运行,对车辆行使的安全,起

着巨大的作用。因此,在设计边坡时,首先要考虑的是边坡的质量问题,要在保证边坡防护设施自身的质量过硬的情况下,考虑防护设施起到的安全作用,要以防护坡的安全系数为设计的首要考虑因素。要从设计上保证边坡防护设施的防护质量,以安全作为防护的第一要素,确保边坡的防护能在实际中起到防护的作用。为安全使用、交通的顺畅起到应有的作用。 2、考虑地理环境,因地制宜 随着我国交通设施的进一步完善,穿越范围越来越广,所处的地形地貌多种多样,各有特点,各不相似。因此,就给边坡防护的设置带来了许多复杂的问题,在不同的地方因为地质情况的差异、气候情况的不同、环境的差别等,公路边坡的建设情况也不一样。一般边坡崩塌所遇到的问题可以归为3类,即落石型、滑坡型、流动型,而这3种坍塌形式是由于不同的地质地理环境造成的。比如落石型一般是发生在较陡的岩石边坡,因为在一定的条件下岩石边坡的岩层会产生裂缝、渗水,经过长时间的风化和外力作用,裂缝会逐渐扩大,在雨水侵蚀下,裂缝中充满水,产生侧向静水压力作用,造成崩坍。在设计时,就必须注意对岩石裂缝产生进行控制,采取积极的防水措施。所以因为所面临的防护问题不一致,因此在设计边坡的防护设施时,必须因地制宜,在充分了解工程所在地区的地理和环境及气候等具体的情况下,对所面临的各种潜在隐患进行预测,进而根据防护的需要,设计出与该地区相匹配的防护手段。绝对不能教科书式的照搬照抄,就把

氢氧化铁胶体制备及电泳

设计性实验 Fe(OH)3胶体的制备和电泳 韩丰 郭麟 刘天乙 (大连大学 环境与化学工程学院 化学111,辽宁大连 116622) 指导老师:李艳华 贾颖萍 [摘 要] 文章主要探究氢氧化铁的制备、纯化温度及时间对胶体的影响,并测定的胶体性质,最终确定利用化学法制备,纯化温度介于60℃到70℃,时间控制在2周左右,辅助液选用KCl 溶液并且电导率与胶体相同,电泳电压为60V ,得到Fe(OH)3胶体的ζ 电位为;并且研究了相同阳离子不同价态阴离子的盐对于胶体聚沉的影响,并得到价态越高,聚沉能力越强。 [关 键 词] Fe(OH)3胶体;电泳;ζ 电位;实验;聚沉值 作为物理化学实验中经典实验 [1,2] ---胶体的制备及采用电泳方法测定溶胶的电动电势 ζ,我们很有必要去认识和学习。但由于溶胶的电泳受诸多因素如:溶胶中胶粒形状、表面电荷数量、辅助液中电解质的种类、温度和所加电压等。根据实验内容主要利用水解Fe(OH)3溶液制备的氢氧化铁胶体,并且通过渗析纯化后使用。另外,根据教材的实验步骤进行电泳实验,经常遇到溶胶与辅助液间有一界模糊和两极间界面移动距离相差较大等问题。为了使这些问题能够得以很好的解决,我们主要是氢氧化铁胶体的制备、Fe(OH)3胶体的纯化时渗析温度及时间的控制、辅助液的选择与其电导率控制、胶体溶液和导电液的正确加入以及适度的电泳电压等方面对这一实验进行了改进研究来探究Fe(OH)3胶体的ζ 电位,通过与理论值相比较,做出合理的误差分析,以此来对胶体电泳最佳实验条件得以确定,以这一实验改进的条件探讨及结果。 1、实验部分 1.1 实验原理 1.1.1 胶体简介 溶胶是一个多相系统;是热力学不稳定系统(要依靠稳定剂使其形成离子或分子吸附层,才能得到暂时的稳定),胶粒(分散相)大小在1~100nm 之间[3] ; 1.1.2制备胶体的原理: 凝胶作用:由于溶剂的作用,使沉淀重新溶解成胶体溶液。 化学凝聚法:通过化学反应使生成物呈过饱和状态,然后粒子再胶合成胶粒。 1.1.3 氢氧化铁溶胶ζ电势的测定计算 实验主要是通过测定一定外加电场强度下胶粒的电泳速度的方法计算胶粒的ζ 电位。采用界面移动法测胶粒的电泳速率。 在电泳仪的两段极施加电位差E 后,在时间t 内,如溶胶界面移动的距离为d ,则胶粒的电泳速率: t d v

公路路基边坡稳定性影响因素及控制

摘要:路基边坡的主要内容就是路基横断面的设计,它包括边坡形状设计和坡度的确定,坡度是保证路基稳定性的必要因素。在整个设计过程中,影响路基边坡稳定性的因素有很多,路基边坡的稳定性是很重要的,稳定性若是不好,会使交通事故发生率提高。因此,保证公路路基稳定性是非常重要的。 关键词:路基边坡、稳定性、影响因素、治理方法 我国土地上,山区占很大比例,随着经济的发展,我们有时需要在山区修建公路,在山区修建公路,经常会遇到大量的斜坡,因此,要解决的一个问题就是保证斜坡的稳定性。另一方面,边坡不稳的问题日渐突出,每年都会因为边坡不稳的问题,给公路运输造成很大影响,同时也增加了交通事故的发生,使人民的生命财产安全受到很大破坏,因此,保证公路路基边坡的稳定性是必要的。 一、路基边坡稳定性的分析方法 影响路基边坡稳定性的因素有很多,了解这个因素,我们就应该要知道边坡稳定性的分析方法,常用的方法有自然历史分析法、工程类比法。 自然历史分析法,是根据边坡发育中各种破坏现象与周围的地质环境,以及发育中的规律进行分析,这种方法是对边坡的总状况、区域性和趋势做出评价,主要是对天然斜坡稳定性的分析。[1] 工程类比法是对已经有的自然边坡和人工边坡的稳定性状况进行分析,运用有关设计的经验进行设计分析。这种方法比较常见,也经常被采用。 二、路基边坡稳定性的影响因素 影响边坡稳定性的因素分为两种,有自然因素也有人为因素。自然因素包括地形因素、地质因素、环境因素、水文条件。人为因素包括山坡地的不当开发、大量的挖填方、边坡的防护不当以及坡脚的不当开发,另外还有边坡材料的性质也会影响边坡的稳定性。 1、自然因素 地形因素中包括坡高、坡宽、坡向以及坡度,其中坡度对边坡的影响最直接,一般坡度越大,稳定性越低,坡度越大,植物越不容易生长,也因此土壤就越松,越容易失去平衡,这种土壤很容易被侵蚀。 地质因素包括材料因素和构造因素,地质材料主要表现为岩石和土壤。边坡自上而下的地质构造为黄土状粉性土、黄灰色砂质泥岩夹砂层、褐灰色泥岩、灰黄、黄褐色砂质泥岩、薄层砂岩、泥质胶结[2]。从这个构造中,我们可以知道,这些地质材料的稳定性都不高,容易发生崩塌,它们的力学强度不高,而且抗风化能力较弱。有时岩体中会存在断层等不连续的结构面,这也容易提高边坡的不稳定性。地质构造的方向性、分布密度、大小以及性质的不同,都会影响到边坡的稳定性。路基通常分粘土路基和粉土路基,这两种路基的稳定性不一样,通过下表来表示。 表1 粉土和粘土的压实度对比[3] 环境因素包括降雨、风化、地震等。降雨是使边坡遭到破坏的主要因素,雨水容易使土壤软化,会降低强度,增加地表孔隙,使边坡的稳定性降低。对边坡稳定性影响最大的是暴雨。严重时会造成崩塌。风化是个缓慢的过程,在地表没有植被的情况下,地表的侵蚀会严重一点,这也告诉我们要保护地表植被。地震对边坡的稳定性破坏是较大的,甚至会破坏地质构造,进而影响稳定性。 水文条件主要是地下水对地质的影响,主要是水压会作用于垂直裂缝,产生水平推力,使岩坡推向下方,浮力作用也会使稳定性降低,降低摩擦力,使岩质、土质变坏,进而降低稳定性。我们可以通过下表来表现这种摩擦力。 2、人为因素

氢氧化铁胶体电泳

氢氧化铁胶体电泳 (二)实验目的 (1)电泳法测定ξ电势原理与技术; (2)观察胶体的电泳现象,确定胶粒电性; (3)掌握界面移动法的电泳的ξ的电势; (三)实验原理 在外电场作用下.胶体粒子(带固定层)向一圾移动,扩散层中的反离子向另一极移动,这种现象称为电泳。显然,胶粒移动的速度与固定层和介质问的电位差有关。通常把固定层与介质间的电位差称为电动电势(ζ)。由实验直接测出胶体的电泳速度,根据亥姆霍兹方程计算出胶体的电动电势(ζ)。在一般憎液溶胶中,电位数值愈小,则其稳定性众差。当ζ电位等于零时,溶胶的聚集稳定性最差,此时可观察到聚沉的现象。因此,无论制备胶体或破坏胶体,都需要了解所研究胶体的ζ电位。 (四)仪器药品 1.仪器(见实验内容) 2.药品 三氯化铁(20%)硝酸银(0.01mol.dm-3) 火棉胶(质量分数为6%) 硫氰酸钾(0.01mol.dm-3)硝酸钾(1mol.dm-3) 蒸馏水 (五)预习提问

1.什么是ζ电势?对胶体的稳定性有何影响? 2.什么是电泳? 3.在整个实验操作中,应该注意那些问题? 4.要准确测定胶体的电泳速度必须注意那些问题? (六)实验结果要求 宏观法测定Fe(OH)3溶胶的电泳电势(ζ) 1.结果要求:ζ=44+5mV 2.文献值:ζ=44mV (七)影响实验结果的一些因数 (八)实验内容中思考题回答 1.Fe(OH)3胶粒带什么电荷? 答:Fe(OH)3胶粒带正电荷。 2.电泳速度快慢与哪些因素有关? 答:在外电场作用下,胶体粒子在分散介质中定向移动的现象称为电泳。胶体粒子的电泳速度与粒子所带的电量及外加电势梯度成正比,而与介质的粘度及粒子的大小成反比。实验还证明,若溶胶中加入电解质.则对电泳会有显著的影响。随着外加电解质的增加,电泳速度常会降低以至的成零.胶体的电泳速度还与溶剂中电解质的种类、离子强度以及PH值、温度和所加的电压有关.对于两性电解质,如蛋白质,在其等电点处,在外加电扬中位于不移动,不发生电泳现象,而在等电点前后粒子向相反的方向移动。 3.实验中所用的辅助液电导率为什么要与溶胶电导率相等?

斜坡稳定性影响因素

斜坡稳定性影响因素分析 斜坡的稳定性受多种因素的影响,主要可分为内在因素和外部因素。内在因素包括:地形地貌、岩土体类型和性质、地质构造等。外部因素包括水、地震、人类活动等。内在因素对边坡的稳定性起控制作用,外部因素起诱发破坏作用。 1.地形地貌 从区域地形地貌条件看,斜坡变形破坏主要集中发育于山地环境中,尤其在河谷强烈切割的峡谷地带。我国由于挽近地质时期大洋板块和大陆板块相互作用的制约,西部挤压隆起,东部拉张陷落,形成了西高东低的台阶状地形,可明显地划分出三个台阶。处于两个台阶转折地带的边缘山地,山谷狭窄、高耸陡峻,地面高差悬殊。因此斜坡变形破坏现象十分发育。 2..岩土体类型和性质 岩土类型和性质是影响斜坡稳定性的根本因素。在坡形(坡高和坡角)相同的情况下,显然岩土体愈坚硬,抗变形能力愈强,则斜坡的稳定条件愈好;反之则斜坡稳定条件愈差。所以,坚硬完整的岩石(如花岗岩、石英砂岩、灰岩等)能形成稳定的高陡斜坡,而软弱岩石和土体则只能维持低缓的斜坡、一般来说,岩石中含泥质成分愈高,抵抗斜坡变形破坏的能力则愈低此外,岩性还制约斜坡变形破坏的型式。一般来说,软弱地层常发生滑坡,而坚硬岩类形成高陡的斜坡,受结构面控制其主要破坏型式是崩塌。顺坡向高陡斜坡上的薄板状岩石,则往往出现弯折倾斜以至发展成为滑坡。黄土因垂直节理发育,故常有崩塌发生。 3.地质构造 地质构造因素,包括区域构造点、边坡地段的这周形态、岩层产状、断层和节理裂隙发育特征以及区域新构造运动特点等。它对边坡稳定,特别是岩质边坡稳定的影响是十分明显的。在区域构造比较复杂的、褶皱比较强烈,新构造运动比较活跃的地区,边坡的稳定性较差,例如我国西南部横断山脉地区、金沙江地区的深切峡谷,边坡的崩塌、滑动、流动及其发育,常出现超大型滑坡及滑坡群。其次,边坡地段的岩层褶皱形态和岩层产状,则直接控制边坡变形破坏的形式和

氢氧化铁溶胶电泳实验再探索

氢氧化铁溶胶电泳实验再探索 施巧芳张景辉花蓓 (扬州大学化学化工学院江苏扬州225002) 摘要主要报道溶胶纯化程度及辅助液电导率对溶胶ζ-电势的影响。实验结果表明以氯化钾水溶液为辅助液,胶体渗析至电导率小于200μ/(Ω?cm)时,可获得较好的测量结果。 关键词电导率ζ-电势 电泳方法测定氢氧化铁溶胶的ζ-电势是大多数高校化 学专业开设的基础物化实验之一。现行实验教材中有多种 制备Fe(OH) 胶体的方法,常见的制备方法有水解法[1~3]和 3 胶体的渗析程度也不同,有的教材[3] 胶溶法[2];对Fe(OH) 3 介绍电导率(0.8×104μ/(Ω?cm)即可,有的教材[2]要求溶 胶的电导率为10-5μ/(Ω?cm)左右,有的甚至不渗析[5];所 用电泳仪也各有不同,目前常用的有U型管电泳仪、三管电 泳仪[3](加液较困难)及拉比诺维奇-付其曼U型电泳 仪[1,2];所用辅助液主要有盐酸稀溶液[3]和用氯化钾稀溶 液[1,2]。由于ζ-电势受较多因素的影响,致使学生实验测 得的ζ-电势不尽相同,与文献[4]报道的理论值往往相差很 大。为了进一步了解ζ-电势与溶胶的关系,本文主要讨论 胶体溶液电导率和辅助液电导率对ζ-电势的影响。 1辅助溶液的电导率对氢氧化铁溶胶!-电势的 影响 按文献[1]方法制备氢氧化铁溶胶,然后进行渗析,取渗 析不同时间的胶体,即纯化程度不同,测定其电导率。辅助 液用盐酸和蒸馏水配制,其电导率与胶体相同,用拉比诺维 奇-付其曼U型电泳仪进行实验,U型管的内径为18mm, 以消除管径对ζ-电势的影响[6],测得溶胶电导率对ζ-电 势的关系如图1中曲线2。由图1可见,随着溶胶电导率的 增大,胶体的ζ-电势逐渐减小。电导率越大,ζ-电势越小 是由纯化程度不同引起的。当溶胶中有大量的电解质时,电 解质中与扩散层反离子电荷符号相同的那些离子将把反离 子压入(排斥)到吸附层,从而减小了胶粒的带电量,使ζ- 电势降低[4]。实验发现电导率越大,在指定槽电压下,流过 胶体的起始电流也越大,这符合部分欧姆定律(例如,溶胶的 电导率为3940μ/(Ω?cm),工作电压为150V时,其起始电 流为10mA左右,随着时间的延长电流逐渐下降,这是由于 部分离子在电极上析出,引起导电离子的数目下降造成的。 溶胶移动3cm后电流降至5.9mA)。随着电导率的降低, 电流越来越小,当电导率小于200μ/(Ω?cm)时,起始电流 已小于0.5mA,且随着时间的延长,电流基本保持不变。辅 助液的电导率越大,pH越小,通过测定辅助液的电导率与 pH的关系,见图1中曲线1。当电导率小于100μ/(Ω? cm)时,pH在4左右,,这时胶体的ζ-电势有明显增大,主 要原因是氢离子是氢氧化铁溶胶的定电势离子[7],pH的变 化,改变了定电势离子的浓度,从而使氢氧化铁溶胶的ζ-电 势发生显著变化。因此在选择胶体的时候,我们认为选用渗 析过的胶体较好。

胶体溶液的稳定性

胶体溶液的稳定性 胶体分散系统的稳定性主要取决于水化作用与胶粒的电荷二因素,现将亲水胶和疏水胶的稳定性分别讨论如下: (a)亲水胶体的稳定性 主要靠其强的溶剂化作用与胶粒的水化层。由于胶粒周围的水化层阻碍了粒子的相互聚结,水化层越厚,稳定性越大。因此,凡能破坏胶粒水化层的因素,均能引起亲水胶体的不稳定。如在亲水胶体中添加少量电解质时,不会因相反电荷的离子作用而引起凝结。一旦水化层被除去,形成了疏水胶粒后,则很容易发生凝结面析出沉淀。例如阿拉伯胶、琼脂等胶液中添加乙醇脱水后,胶粒失去水化层,遇阳离子即发生凝结。同样,若在亲水胶体中加入大量电解质,由于电解质离子本身具强烈的水化性质,加入后,脱掉了胶粒的水化层,也必引起凝结与沉淀。此作用称为盐析。 在亲水胶体中加入大量乙醇、丙酮、糖浆等脱水剂,亦可使溶剂化了的胶粒水化层破坏,脱水而析出。或者虽未析出,但对电解质的敏感性增加而更易盐析。亲水胶体若久经光、热、空气等影响而发生化学变化,其变化产物又具有较小的溶解度时,也会出现凝结现象。如在胶体溶液中加入不相混合的液体后通电,或猛烈振摇,或煮沸、冰冻时,均能产生部分或全部胶粒的凝结。紫外线与X射线亦能使胶液对电解质敏感。 (b))疏水胶体的稳定性 由于其胶粒不能水化而主要靠粒子表面带相同电荷,互相排斥才免于凝结而得稳定。但疏水胶粒只有在构成吸附层的吸附离子和部分异性离子存在时才能带电而具一定程度稳定性。若将疏液胶体(一般指溶胶)中少量电解质用透析法除去,胶粒失去电荷,胶体就产生凝结而沉淀。因此,胶体中必须有少量电解质的存在作稳定剂,其正负电荷组成胶粒的双电层结构,使疏水胶粒带一定量电荷而达到一定程度的稳定作用。电解质的加入量必须适当,若加入过多,随着外加离子浓度的增加,可将原来分布在扩散层中的异性离子挤到吸附层中,使其离予吸附层较远的扩散层中异性离子向吸附层靠近,使扩散层逐渐变薄,降低了起稳定作用的电位。当电位降至临界值下,胶粒发生凝结。可见溶胶对电解质是敏感的。

斜坡稳定性影响因素、

斜坡稳定性的影响因素 斜坡的稳定性受多种因素的影响,主要可分为内在因素和外部因素。内在因素包括:地形地貌、岩土体类型和性质、地质构造等。外部因素包括水、地震、人类活动等。内因是最根本的因素,决定着斜坡变形破坏的形式和规模,对斜坡稳定性起控制作用;外因是变化的条件,是通过内因而起作用,促使斜坡变形破坏的发生和发展,外因常常成为斜坡变形破坏的触发因素。 1、地形地貌 地貌条件决定了边坡的形态,对边坡稳定性有直接的影响。例如:对于均质斜坡,其坡度越陡,坡高越大则稳定性越差。对边坡的临空条件来讲,工程地质条件相类似的情况下,凹形坡较凸形坡稳定。从区域地形地貌条件看,斜坡变形破坏主要集中发育于山地环境中,尤其在河谷强烈切割的峡谷地带。我国由于挽近地质时期大洋板块和大陆板块相互作用的制约,西部挤压隆起,东部拉张陷落,形成了西高东低的台阶状地形,可明显地划分出三个台阶。处于两个台阶转折地带的边缘山地,山谷狭窄、高耸陡峻,地面高差悬殊。因此斜坡变形破坏现象十分发育。 2、岩土体类型和性质 斜坡岩土体的类型与性质是影响斜坡稳定性的根本因素。包括岩土体的成因类型、组成矿岩土体的矿物成分、岩土体的结构和强度。在坡形(坡高和坡角)相同的情况下,显然岩土体愈坚硬,抗变形能力愈强,则斜坡的稳定条件愈好;反之则斜坡稳定条件愈差。所以,坚硬完整的岩石(如花岗岩、石英砂岩、灰岩等)能形成稳定的高陡斜坡,而软弱岩石和土体则只能维持低缓的斜坡。 由岩浆岩组成的斜坡较好,但原生节理发育也常发生崩塌,特别在风化强度强烈地区,由于风化营力的作用,使风化带内的岩石强度降低,常导致斜坡崩塌。 沉积岩组成的斜坡由于具有层理结构,而层理面常常控制斜坡的稳定性。沉积岩层常夹有软弱夹层,如厚层灰岩中夹泥灰岩,砂岩中夹泥岩等,这些软弱面常易构成滑动面。 变质岩组成的斜坡,尤其深变质岩,如片麻岩、石英岩等其性质与岩浆岩相

氢氧化铁胶体电动电位的测定(电泳法) 实验报告

深圳大学实验报告 课程名称:物理化学实验 实验项目名称:氢氧化铁胶体电动电位的测定(电泳法) 学院:化学与化工学院 专业:食品科学与工程 指导教师:龚晓钟 报告人: 学号:班级: 同组人: 实验时间:2011-4-27 实验报告提交时间:2011-5-18 教务处制

氢氧化铁胶体电动电位的测定(电泳法) 一、目的要求 (1)掌握电泳法测定Fe(OH) 3 溶胶电动电势的原理和方法。 (2)通过实验观察并熟悉胶体的电泳现象。 二、基本原理 在胶体溶液中,分散在介质中的微粒由于自身的电离或表面吸附其他粒子而 形成带一定电荷的胶粒,同时在胶粒附近的介质中必然分布有与胶粒表面电性相反而电荷数量相同的反离子,形成一个扩散双电层。 在外电场作用下,荷点的胶粒携带起周围一定厚度的吸附层向带相反电荷的电极运动,在荷电胶粒吸附层的外界面与介质之间相对运动的边界处相对于均匀介质内部产生一电势,为ζ电势。 它随吸附层内离子浓度,电荷性质的变化而变化。它与胶体的稳定性有关,ζ绝对值越大,表明胶粒电荷越多,胶粒间斥力越大,胶体越稳定。 本实验用界面移动法测该胶体的电势。在胶体管中,以KCl为介质,用 Fe(OH) 3 溶胶通电后移动,借助测高仪测量胶粒运动的距离,用秒表记录时间,可算出运动速度。 当带电胶粒在外电场作用下迁移时,胶粒电荷为q,两极间的的电位梯度为 E,则胶粒受到静电力为 f 1 =Eq 胶粒在介质中受到的阻力为 f 2 =Kπηru 若胶粒运动速率u恒定,则 f 1=f 2 qE=Kπηru (1) 根据静电学原理ζ=q/εr (2) 将(2)代入(1)得 u=ζεE/Kπη (3) 利用界面移动法测量时,测出时间t 时胶体运动的距离S,两铂极间的电位差Φ和电极间的距离L,则有

何谓胶体稳定性

1. 何谓胶体稳定性?试用胶粒间相互作用势能曲线说明胶体稳定性的原因。 2. 混凝过程中,压缩双电层何吸附-电中和作用有何区别?简要叙述硫酸铝混凝作用机理及其与水的pH值的关系。 3. 高分子混凝剂投量过多时,为什么混凝效果反而不好? 4.为什么有时需要将PAM在碱化条件下水解成HPAM?PAM水解度是何涵义?一般要求水解度为多少? 5.混凝控制指标有哪几种?为什么要重视混凝控制指标的研究?你认为合理的 控制指标应如何确定? 6.混合和絮凝反应同样都是解决搅拌问题,它们对搅拌有何不同?为什么? 7.根据反应器原理,什么形式的絮凝池效果较好?折板絮凝池混凝效果为什么优于隔板絮凝池? 8.采用机械絮凝池时,为什么要采用3~4档搅拌机且各档之间需用隔墙分开? 9.试述给水混凝与生活污水及工业废水混凝各自的特点。 10.某粗制硫酸铝含Al2O315%、不溶解杂质30%,问:(1)商品里面Al2(SO4)3和溶解杂质各占的百分数;(2)如果水中加1克这种商品,计算在水中产生的 Al(OH)3、不溶解杂质和溶解的杂质分别重多少? 11.For a flow of 13500 m3/d containing 55mg/L of suspended solids, ferric sulfate is used as a coagulant at a dose of 50mg/L (a) Assuming that there is little alkalinity in the water, what is the daily lime dose? (b) If the sedimentation basin removes 90% of the solids entering it, what is the daily solids production from the sedimentation basin? 12.隔板絮凝池设计流量75000m3/d。絮凝池有效容积为1100m3。絮凝池总水头损失为0.26m。求絮凝池总的平均速度梯度G值和T G值各为多少?(水厂自用水量按5%计) 13.某机械絮凝池分成3格。每格有效尺寸为2.6m(宽)?2.6m(长)?4.2m(深)。每格设一台垂直轴桨板搅拌器,构造按图15-21,设计各部分尺寸为:r2=1050mm;桨板长1400mm,宽120mm;r0=525mm。叶轮中心点旋转线速度为:第一格v1=0.5m/s 第二格v2=0.32m/s 第三格v3=0.2m/s 求:3台搅拌器所需搅拌功率及相应的平均速度梯度G值(水温按20℃计算)14. 当硫酸铝投加量为20毫克/升(商品重),消毒加氯量为5毫克/升,水厂产水量为10000米3/日,一级和二级泵房总提升高度为60米,试计算每日所耗药费和电费,又每千吨水的药费和电费为多少?(每吨硫酸铝和液氯分别按350

相关主题
文本预览
相关文档 最新文档