当前位置:文档之家› 硅溶胶稳定性问题

硅溶胶稳定性问题

硅溶胶稳定性问题
硅溶胶稳定性问题

高纯硅溶胶成分标准物质稳定性研究

(2009-12-07 14:13:10)

注:本文原发表于《功能材料》2005年9月,如需PDF原文,请留下邮箱,注明所需文章即可。

王少明,赵华,王爱萍,荀其宁,云俊鲜

摘要:考察了高纯硅溶胶成分标准物质研制过程中影响稳定性的因素。根据高纯硅溶胶的物理化学性质,研究了影响高纯硅溶胶稳定的pH值、粒度分布、电解质等主要因素。提出了保持高纯硅溶胶稳定的措施,解决了高纯硅溶胶成分标准物质的稳定性问题,使标准物质稳定保存1年以上。

关键词:高纯硅溶胶;标准物质;稳定性;粒度分布;电解质

硅溶胶也称胶体二氧化硅,是无定性二氧化硅胶体粒子在水溶液中的稳定分散系,其分子式可表示为:m SiO2 ·H2O,它是由硅酸分子聚合成的带电荷分子团簇,单体之间通过扩散快速聚合成交联的SiO2颗粒结构。在单体浓度很高时,聚合速度很快并形成SiO2凝胶;当单体浓度较低时,可形成SiO2颗粒的悬浮体系即胶体。高纯硅溶胶可用于复合材料的填充、增密,大大地提高材料的耐高温性,并具有透波性好、抗激光辐射等特点。主要用于电子制造业、国防科技工业等行业。国外在航天飞行器和中远程导弹导引头的三向石英天线窗中已有应用。由于自身特性的原因,高纯硅溶胶稳定周期一般比较短,要将其作为标准物质使用,必须解决稳定性的问题。

要保证高纯硅溶胶成分标准物质的稳定性,首先要解决高纯硅溶胶物料的稳定性。笔者采用工业水玻璃(硅酸钠)为原料制备高纯硅溶胶,通过添加中性盐制备高纯硅溶胶成分标准物质。在此基础上,研究了影响高纯硅溶胶稳定性的pH 值、粒度分布、电解质、温度、SiO2浓度等主要因素。提出了保持高纯硅溶胶稳定性的措施,使高纯硅溶胶能稳定地保存1 a以上,满足了标准物质使用、储存、运输的技术要求。在16个月内对标准物质特性成分量进行了考察,考察结果表明满足标准物质稳定性的要求。

1 高纯硅溶胶成分标准物质的制备

选用适当粘度和浓度的硅酸钠溶液,将其稀释过滤后的清液依次顺流通过再生、淋洗合格的阳离子树脂床和阴离子树脂床,依次除去硅酸钠溶液中的金属离子和酸根离子,形成硅酸溶液。由于硅酸溶液不稳定,应立即加入稳定剂使其在较长时间内保持分子团簇状态。在反应釜中调节并保持pH值基本恒定的情况下边加热边加入硅酸溶液,使二氧化硅粒子长大,制得氨型前置硅溶胶。将制备的氨型前置硅溶胶,再经强酸性阳离子树脂交换床进行提纯。控制钠、钾、钙、镁元素的含量在10 μg/g以下,收集二氧化硅含量在21% ~25%范围内的高纯硅溶胶。

准确称取一定量的高纯硅溶胶,按照设计量分别加入钠、钾、钙、镁中性盐的低浓度溶液,充分混匀制得高纯硅溶胶成分标准物质。

2 高纯硅溶胶稳定性影响因素

影响胶体稳定的主要因素有pH值、粒度分布、电解质等,另外电荷分布、SiO2浓度也是影响胶体稳定的一个重要因素。目前大多选择合适的酸或碱以及有机化合物作为稳定剂,但是用碱稳定的碱性硅溶胶动力粘度值变化较大,往往出现“过滤”现象,虽然成分没有发生变化,但影响复合材料的性能,一般不被采用。用酸稳定的酸性硅溶胶动力粘度值变化较小,不会出现“过滤”现象,也比较稳定。目前使用的高纯硅溶胶大多采用酸作为稳定剂。为了使标准物质基体与材料基体保持一致,笔者采用酸性稳定剂制成酸性高纯硅溶胶,然后调节至合适的pH值范围,保存在合适的温度范围内,进行稳定性考察。

2. 1 pH值

pH值与高纯硅溶胶的稳定性有直接关系。经测定高纯硅溶胶pH值在2~10之间时,粒子的ξ电位为负值;pH值在2以下时,粒子的ξ电位为正值;pH值等于2时为“0”电位。pH值在8. 5~10范围内,为稳定区;pH值大于10时,硅溶胶粒子溶解为硅酸盐;pH值4以下为介稳区;pH值为2时,为最高介稳态。根据制备的高纯硅溶胶的特点,调节硅溶胶的pH值在2. 5左右,可以保持溶胶处于高介稳态,在室温下可存放2 a而不凝胶。

2. 2 粒径

粒径是影响硅溶胶稳定的另一重要因素。胶粒直径的大小和粒度分布是硅溶胶质量高低的重要指标。硅溶胶粒子直径在一定范围内,粒径越均匀、分布范围越窄,稳定性越好,但是硅溶胶粒子越均匀,工艺就越复杂、越难以控制。硅溶胶含量越小越稳定,但SiO2含量小于23%就不能满足特殊使用要求。粒径越小也越稳定,但粒径太小不适合于实际应用。笔者分别对5 ~10 nm、10 ~15 nm、15 ~25nm、25~35 nm、35 nm以上5个不同粒径硅溶胶进行稳定性研究发现,粒径5~25 nm硅溶胶在12个月的贮存期内是稳定的,粒径大于25 nm稳定性达不到12个月。为了保持硅溶胶粒径的大小与粒子生长周期的合理性,采取控制硅溶胶粒径在10~15nm范围内,既可简化工艺过程,又可保持高纯硅溶胶的稳定。

2. 3 电解质

电解质对硅溶胶的稳定性也有一定的影响,且与pH值有密切关系。因为盐类放出离子,与硅溶胶的表面电荷结合,进入紧密层的反离子增加,使分散层变薄;当电解质浓度增加到一定程度时,分散层厚度为零,引起粒子的集合而凝胶化。凝胶化的程度与使用的电解质种类、浓度、温度等因素有关。在硅溶胶中加入一价离子的盐,凝胶化反应缓慢;加入高价离子的盐,反应迅速。经过大量实验研究发现,在pH 3. 5以下时,电解质对硅溶胶的稳定性影响相对较小。加入钠、钾、钙、镁中性盐的总量在500mg/kg以下时,稳定周期可达16个月以上;加入上述中性盐的总量在1 000 mg/kg以下时,稳定周期可达12个月以上;加入中

性盐总量在2 000 mg/kg以下时,稳定周期可达3个月。在pH 3. 5以上时,随着电解质加入量的增大,溶胶加速凝胶,稳定性较差,加入钠、钾、钙、镁中性盐的总量在500 mg/kg以下时,稳定周期不到12个月。

2. 4 电荷分布

硅溶胶的稳定性还取决于胶粒的电荷性,它是胶粒间的吸引位能和胶粒间的排斥位能综合效应的结果。SiO2粒子可以从周围水溶液中有选择性地吸附某种离子,而反离子则一部分密聚在吸附层内,另一部分以扩散层形式分布在水中。吸附层内的反离子由于受到胶核的静电吸引,当胶核运动时,这些反离子连同吸附层内的水分子将一起移动。胶核和吸附层所构成的粒子称为胶粒,即当粒子间距离较大,其双电层未重叠时,粒子间的吸引力是远程作用的范德华引力;当粒子靠近到一定距离以致双电层重叠时,则排斥力将起主要作用;如果双电层的电荷足够多,则排斥力始终会起主要作用,阻止胶粒的聚结。显然,胶粒要互相聚结在一起,必须克服一定的“势垒”,这个势垒就是吸引位能和排斥位能的总效应。改变溶胶的pH值或增加电解质等,使得静电斥力位能减小,排斥势垒下降或消失,胶粒动能冲破势垒屏障,胶粒就会因碰撞而聚结。

2. 5 温度

温度也是重要的影响因素,经过实验发现,储存温度在15~30℃时,温度对硅溶胶稳定性的影响不明显。储存温度升高,凝胶速度加快,并且凝胶速度基本上与温度升高的幅度成正比关系;当温度低于0℃时,硅溶胶也很快失去稳定性,这可能是温度较低时硅溶胶胶粒的布朗运动减弱,胶粒上的电荷分布受到破坏所造成的。

3 保持高纯硅溶胶稳定性的措施

通过对硅溶胶稳定性影响因素的研究,掌握了高纯硅溶胶成分标准物质制备的技术关键,在制备过程中采取了以下措施。

3. 1 控制硅溶胶的粒径

硅溶胶粒径的控制是在制备过程中实现的。在这一过程中主要影响因素有“胶种”的预制和反应温度。在“胶种”的基础上粒子生长形成硅溶胶是一个非常关键和难以控制的反应过程,必须仔细控制。首先,由粒径0. 5 nm 以下的稀硅溶胶,通过“胶种”预制,形成粒径2~3 nm的胶核。在搪瓷反应器中,通过控制反应温度、搅拌速度控制粒子生长;通过控制pH值,保持pH值基本不变;通过控制稀溶胶的加入速度,保持反应液面基本平衡。采取这些措施后,可以让胶粒在最佳条件下实现粒径的增长,“胶种”就会象滚雪球一样不断长大,最终控制硅溶胶粒径在10~15 nm,制得粒径均匀的硅溶胶。

3. 2 控制pH值

在硅溶胶胶粒长成后,再将氨型硅溶胶经过强酸性阳离子交换树脂柱进行纯化,除去游离的金属离子和部分氨,使氨型硅溶胶转化为酸性硅溶胶,此时硅溶胶的pH值为3~4,处于介稳区。可以加入浓度较小的稀盐酸,调节硅溶胶的pH值。边滴加边搅拌,避免电荷局部突然增加,造成凝胶。调节pH值在2~2. 5范围内,使硅溶胶接近于高介稳区,可有效控制硅溶胶的稳定。

3. 3 后处理

为了使酸性硅溶胶更加稳定,对硅溶胶进行了热老化处理。将硅溶胶在搪瓷锅中于90℃加热1h,使胶粒表面双电层的电荷进行重新分布,使双电层更加致密。让电荷的引力与布朗运动的动力基本保持平衡,可增加高纯硅溶胶的稳定性。

3. 4 贮存条件

制备好的硅溶胶,用干净的聚乙烯塑料瓶封装,存放于阴凉干燥处,控制贮存温度在15~35℃。

采取这些措施后硅溶胶的稳定性问题得以解决,制备的硅溶胶成分标准物质在16个月内无一凝胶。

4 稳定性考察结果

对于高纯硅溶胶成分标准物质,不但要保持硅溶胶的状态不发生凝胶,最根本的是保持各成分的稳定。为了评价高纯硅溶胶成分的稳定性,在贮存期间定期对物料进行抽样测定。每一次抽样测量过程中,尽可能控制各种条件,使其趋于一致,尽量使测量结果之间的差异能反映出物质变化所引起的那一部分误差。

选择原子吸收法和离子色谱法对钠、钾、钙、镁进行测定,选择称量法对二氧化硅含量进行测定。根据“一级标准物质技术规范”的要求,对研制的高纯硅溶胶成分标准物质进行了16个月的稳定性检验,对测定数据进行统计检验,检验结果列于表1(由于数据量太多,在此仅选取部分元素的测定数据)。由表1稳定性统计结果可知,各成分量是稳定的。

5 结论

(1)通过高纯硅溶胶成分标准物质的制备,研究了影响其稳定性的因素,采取了相应的措施,解决了高纯硅溶胶稳定性较差的难题。

(2)通过控制高纯硅溶胶的pH值、粒度分布、电解质浓度、贮存温度、SiO2浓度等主要影响因素,完全可以制备出满足技术要求的高纯硅溶胶成分标准物质。

转载自大连斯诺化学

环氧树脂增韧改性新技术

Vol 134No 18 ?14?化工新型材料 N EW CH EMICAL MA TERIAL S 第34卷第8期2006年8月 作者简介:宣兆龙,男,博士,从事兵器防护材料与技术的教学与科研工作,已发表论文40余篇。 环氧树脂增韧改性新技术 宣兆龙 易建政 (军械工程学院三系,石家庄050003) 摘 要 综述了环氧树脂的增韧改性研究,着重讨论了热塑性树脂、热致液晶聚合物和互穿网络结构等环氧树脂增韧改性新技术。 关键词 环氧树脂,增韧,改性 N e w technology of modif ication toughening epoxy resin Xuan Zhaolong Yi Jianzheng (Depart ment 3of Ordnance Engineering College ,Shijiazhuang 050003) Abstract Study of modification methods and mechanism for epoxy toughened is reviewed with 46references. More effective technologies ,such as toughening modification with thermoplastics ,thermotropic liquid crystalline poly 2mer (TL CP )and interpenetrating polymer network (IPN )are also discussed in briefly. K ey w ords epoxy resin ,toughening ,modification 环氧树脂(EP )具有高强度和优良的粘接性能。但因其固化物质脆,易产生裂纹等缺陷,在材料的耐 疲劳性能和抗横向开裂性能方面难以满足工程技术的要求,使其应用受到了一定的限制。为此国内外学者对EP 进行了大量的改性研究工作,以改善其韧性。 目前EP 的增韧途径主要有3种:①在环氧基体中加入橡胶弹性体、热塑性树脂或液晶聚合物等分散相来增韧。②用热固性树脂连续贯穿于EP 网络中形成互穿、半互穿网络结构来增韧。③用含有“柔性链段”的固化剂固化环氧,在交联网络中引入柔性链段,提高网链分子的柔顺性,达到增韧的目的。本文主要综述了热塑性树脂、液晶聚合物、互穿聚合物网络改性EP 的研究进展。 1 热塑性树脂增韧EP 在EP 基体中加入一定量的高性能热塑性树脂,不仅能改进EP 的韧性,而且不降低其刚度和耐热性。热塑性树脂增韧EP 一般采用剪切屈服理论或颗粒撕裂吸收能量及分散相颗粒引发裂纹钉铆机 理来解释[1,2]。用于增韧EP 的热塑性树脂主要有聚酰亚胺(PI )、聚醚酰亚胺(PEI )、聚醚砜(PES )、聚砜(PSF )等。 1.1 聚酰亚胺(PI)增韧EP EP 与PI 共混是通过PI 与环氧预聚体混合然 后反应而得到的。这类树脂最初制备时是均相的,在一定转化率时树脂发生液2液相分离,从而在最终固化的材料内部产生一系列形态结构,这些主要依赖于热塑性塑料的原始质量和临界组成的对比关系[3,4]。 Biolley 等[5]用具有相当高T g 的二苯酮四酸二 酐(B TDA )和4,4’2(9氢292亚芴基)二苯胺(FBPA )合成的可溶性PI 改性四缩水甘油基二苯甲烷2二氨基二苯砜EP 体系(T GDDM /DDS/PEI )。固化后的树脂用扫描电镜观察没有发现相分离,并且动态力学分析表明共混组分间能完全相容。Li 等[6]通过用4种不同的二氢化物和2种不同二元胺[1,32二(32氨基苯氧基)苯,即A PB ;2,2’2(42(42氨基苯氧基)苯基)丙烷,即BA PP ]合成一系列有机溶性的芳香族聚亚胺酯来增韧EP (Epon828),DSC 发现

原料指标

第一节苯 一、苯技术指标GB3405—89 注:(1)将试样注入100mL玻璃量筒中,在20±3℃下观察,应是透明,无不溶水及机械杂质。 第二节甲苯 一甲苯技术指标

第三节工业硫酸和发烟硫酸一、工业硫酸应符合表1的规定 第四节稀硝酸 一.稀硝酸技术指标W508 第八节磷酸

注:磷酸含量内控制指标为≥84%,二氧化硅≤10 mg/kg。 第五节浓硝酸 第六节液碱 一、液酸技术指标 分析项目单位控制指标 氢氧化钠含量% 测定值 碳酸钠含量mg/kg ≤6000 氯化钠含量mg/kg ≤840铁(以Fe2O3计)mg/kg ≤150 钙+镁mg/kg ≤25硫酸盐(以SO4计)mg/kg ≤700 二氧化硅mg/kg ≤100-200 重金属总量(以Pb计)mg/kg ≤30 氯化钠mg/kg ≤100 第七节液氨 二、检验方法

第九节工业叔丁醇 一、工业叔丁醇技术指标 第十节硅溶胶溶液 第十一节2一乙基蒽醌 一、技术要求 2一乙基蒽醌主要技术规格应符合表1要求: 表1 要求 第十二节磷酸三辛酯 一、技术要求 1、外观:清澈透明油状液体,无可见悬浮物和机械杂质。

2 、酸三辛酯的主要技术规格应符合表1要求: 第十三节工业碳酸钾 本标准采用GB/T 1587-2000 一、技术指标 1、外观:本品为白色粉状或颗粒状。 2、工业碳酸钾应符合表1要求: 表1 要求 第十四节工业用甲醇 一、技术指标 1、工业用甲醇无异臭味、无色透明液体,无可见杂质。 2、工业用醇应符合表1所示的技术要求。(CB 338-2004 )

第一节工业用环己烷 本标准采用SH/T 1673-1999《工业用环己烷》 1 范围 本标准规定了工业用环己烷的要求。试验方法。检验规则、标志、包装。运输、贮存和安全要求. 本标准适用于由苯经催化加氢制得的工业用环己烷 分干式:C6H12 结构式: 相对分子式质量:84.16(按1997年国际相对原子质量) 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB190-90 危险货物包装标志 GB/T1250-89 极限数值的表示方法和判定方法 GB/T3143-82(90)液体化学产品颜色测定法(Hazen单位—铂-钴色号) GB/T4472-84 化工产品密度、相对密度测定通则 GB/T4756-1998 石油、液体、手工取样法 GB/T6324.2-86 挥发性有机液体水浴上蒸发后干残渣测定的通用方法 GB/T7534-87 工业用挥发性有机液体沸程的测定 GB/T12688.6-90 工业用苯己烯中微量硫的测定氧化微库仑法 GB/T17039-1997 利用试验资料确定产品质量与规格相符性的实用方法 SH0164-92 石油产品包装、贮运及交货、验收规则 SH/T1674-1999 工业用环己烷纯度及烃类杂质的测定气相色谱法 3 要求 工业用环己烷应符合表1要求。

硅溶胶制备与应用

硅溶胶制备与应用 材料学院化工一班李彦辉20090583 内容摘要: 硅溶胶是高分子二氧化硅微粒分散于水中或有机溶剂中的胶体溶液,广泛应用于陶瓷、纺织、造纸、涂料、水处理、半导体等行业。介绍了硅溶胶的各种制备方法及几种特殊用途的硅溶胶的制备。阐述了影响硅溶胶稳定性的因素及其性能测试方法。 关键词:无机化学硅溶胶制备硅溶胶应用高分子 正文:硅溶胶是高分子二氧化硅微粒分散于水中或有机溶剂中的胶体溶液。1915年美国人首先用电渗析法制备出SiO2质量分数为2.4%的硅溶胶,硅溶胶得以大规模生产和应用,是在年美国人发明利用离子交换法生产硅溶胶以后。目前硅溶胶已被广泛应用于纤维、织物、纸张、橡胶、涂料、油漆、陶瓷、耐火涂料、地板蜡等行业中。另外其在半导体硅晶片的抛光、水处理、矿物浮选和啤酒、葡萄酒酿造等工艺中也有应用。 自1996年以来,随着电子工业迅速发展,作为硅晶片抛光液的原料———硅溶胶的产量快速增加。瑞士公司在2001年第1季度将它位于Martin的硅溶胶厂的生产能力提高了1倍,达到1.4万t/a。同期,日本Fuso Chemial公司也将它位于东京的硅溶胶厂的生产能力由原来的0.7万t/a提高到2.5万t/a. 从20世纪90年代开始,有机硅溶胶的研究和应用也得到较大发展。有机硅溶胶可应用于非水性体系,如用于制造磁性胶体和记录介质,高技术陶瓷化合物和催化剂载体需要有机硅溶胶特殊用途的改性产品研制也得到快速发展,如日本日产化学工业株式会社提出的用于墨水容纳层和喷墨记录介质的念珠状硅溶胶的制备方法。另外该公司申请的中国专利提供了一种含细长形非晶体胶体SiO2粒子的稳定硅溶胶的制备方法。铝改性硅溶胶的研究也取得了进展,这种硅溶胶的最大特点是体系呈中性时很稳定,而采用碱金属氢氧化物作稳定剂的硅溶胶,在体系呈中性时很快就凝胶 我国硅溶胶的研制和生产始于20世纪50年代,南京大学配位化学研究所、天津化工研究院、兰州化学工业公司化工研究院、青岛海洋化工厂、大连油漆厂、广州人民化工厂等都从事硅溶胶产品的研制和生产,但品种和产量与国外都有很大差距。 2002年11月4~8日,全国无机硅化合物技术与市场信息交流大会在广西桂林市召开,大会认为硅溶胶、层硅、聚硅、气相法白炭黑等将是行业发展的新热点。 【一】硅溶胶制备方法 1.1渗析法 渗析法是用酸中和硅酸钠水溶液,经陈化后,再通过半透膜渗析钠离子。该法缺点是渗析所需时间太长,不适于工业化生产。 1.2硅溶解法 采用无机或有机碱作催化剂,以单质硅与纯水反应来制备硅溶胶的方法称硅溶解法。Joseph等在1950年申请的专利中,利用可溶性有机碱作催化剂,使水和硅粉反应来制备 硅溶胶。其中的有机碱ph值(20~25摄氏度时)为6~12,含1~8个碳原子的脂肪胺或脂环胺,硅粉粒径为80~320目。硅粉在使用前应预活化,除去硅粉表面形成的惰性膜。活化时先用质量分数为48%的氢氟酸洗涤,然后依次用纯水、醇、醚冲洗,最后在氮气保护下干燥。活化后的硅粉与水在胺催化作用下,于20~100温度下反应,可制备粒径8~15mm的硅

硅溶胶的制备方法简述

硅溶胶的制备方法简述 目前,硅溶胶的制备主要有两种方法,即凝聚法和分散法。利用在溶液中的化学反应首先生成SiO2超微粒子,然后通过成核、生长,制得SiO2溶胶的方法为凝聚法;利用机械分散将SiO2微粒在一定条件下分散于水中制得SiO2溶胶的方法,即分散法。根据使用原料及工艺的不同,上述两种方法可细分成下面多种常见的制备方法。 1.离子交换法 用离子交换法制备硅溶胶的历史较长,1941年首先由美国人Bird 发明,其后发展迅速,到目前为止该项技术被国内外大多数硅溶胶生产企业所采用。该方法通常可分为3个步骤:活性硅酸制备,胶粒增长和稀硅溶胶浓缩。 首先,将稀释后的一定浓度的水玻璃依次通过强酸型阳离子交换树脂和阴离子交换树脂,分别除去水玻璃中的钠离子及其它阳离子和阴离子杂质,制得高纯度活性硅酸溶液。此溶液在酸性条件下不稳定,可用适当的NaOH或氨水调节其PH为8.5-10.5,以提高稳定性。在此步骤中使用的离子交换树脂应尽快再生。避免残余的硅酸形成凝胶,使交换柱失效。然后,将上述硅酸溶液加入到含晶种的母液中,通过控制加入速度和反应温度,使硅溶胶胶粒增长到所需粒径即可。最后将完成结晶聚合过程的聚硅酸溶液进行加热蒸发浓缩,或超滤浓缩,以得到合适浓度的产品。如果要进一步进行纯化,可采用离心分离法除去其中杂质,制得高纯硅溶胶。 可见,此方法本身具有不可克服的缺点:一是起始原料水玻璃受离

子交换的限制其浓度不能太高,这就致使第3部中的浓缩过程较长,能耗大,不利于能源的节约;二是离子交换树脂再生时会产生大量废水,对水的浪费较大且废水处理需要一定的成本;三是该法工艺程序多,生产周期长,反应过程中影响产品性能的因素众多以至较难控制。 2.直接酸中和法 一般采用稀水玻璃作为起始原料,经过离子交换出去钠离子,然后通过制备晶核,直接酸化反应,晶粒长大等步骤可制得硅溶胶。 (1) 离子交换除去钠离子:用离子交换树脂除去原料中的钠离子,制得SiO2/Na2O重量比较大的稀溶胶,稀溶胶中钠离子含量已较低。 (2)制备晶核:将上步骤制得的稀溶胶加热并停置一段时间,在稀溶胶中逐步形成数毫微米大小的晶核,与离子交换法中的离子增长反应步骤相似。 (3)直接酸化反应:将稀水玻璃原料及酸化剂(如稀硫酸)持续加入到前述制得的含晶核的稀溶液中,加入过程应注意控制混合液中钠离子的浓度、混合液加热温度、PH值、加入时间等条件。 (4)晶粒长大:上述混合液在控制适当条件下,进行晶粒长大过程,持续长大过程之后,即可制得硅溶胶成晶。 3.电解电渗析法 这是一种电化学方法。在电解电渗析槽中加入电解质,调节电解质溶液的PH值,控制电解电渗析反应的电流密度、温度等反应条件,在制备有合适的电极(如析氢电极、氧阴极)的电解电渗析槽中反应后可制取硅溶胶成品。

硅溶胶的性质及用途

HX- HX-是胶体二氧化硅的简称,其基本成分是无定型二氧化硅,并以10~20纳米的粒径均匀地分散于水中。其外观为乳白色或青白色半透明状胶体溶液,是一种良好的无机粘结剂,具有无毒、无味、耐高温、隔热、绝缘性能好、比表面积大、吸附力强、热膨胀系数低等优点。 二、的性能 1、具有较大的吸附性:硅溶胶中无数胶团产生的无数网络结构孔隙,在一定的条件下对无机物及有机物具有一定的吸附作用。 2、具有较大的比表面积:比表面积一般为250~300平方/g。 3、具有较好的粘结性:因其胶团尺寸均匀,并在10~20nm左右,自身风干即产生一定的粘接强度,但强度较小。如将硅溶胶加入某种纤维或粒状材料中,然后干燥固化即可成坚硬的凝胶结构,会产生较大的粘接性(一般46.7Kg/cm2左右)。 4、具有良好的耐温性:一般可耐1600℃左右。 5、硅溶胶具有较好的亲水性和憎油性:可以用蒸馏水稀释至任意浓度,而且随稀释度的增加而稳定性增强。但加入有机物或多种金属离子中又可产生憎水性。 6、硅溶胶具有“高度的分散性”,“较好的耐磨性”和良好的“透光性”等。因此,可作为良好的“分散剂”,“防腐剂”,“絮凝剂”,“冷却剂”和特殊的“光学材料”等。 三、的用途 1、应用于精密铸造业:代替硅酸乙脂使用,无毒性;不仅可以降低成本,用于制作零件,尺寸精确度高,铸件光洁度好,可使壳型强度大,造型比使用水玻璃质量好;用于铸模的耐高温涂料,可以使涂层具有较好的耐热性,减少高温下熔融金属与模具的损耗,并有助于脱模。 2、应用于涂料行业,能够使涂料牢固,具有耐水、耐火、耐污、耐高温、涂膜强度大、色泽艳丽、不褪色等优点。还可以应用于耐酸、耐碱、防火涂料和远红外线辐射涂料。 3、应用于耐火材料的粘结剂:具有粘结强度高、耐高温(1500~1600℃)等优点。 4、应用于纺织业:可以用做纺织上浆助剂,减少断头率;在织物染色中使用,因具有粘结性,可以形成优良的保护液,增加染色的附着力等等。

聚氨酯改性环氧树脂胶黏剂的研究

聚氨酯改性环氧树脂胶黏剂的研究 一. 选题的目的及意义: 聚氨酯(PU)是一类常用的高分子材料,以甲苯-2,4-二异氰酸酯(TDI)和二醇类为原料合成,结构中既有柔性的C-C链和C-O-C链,又有活性的酰胺基团,与环氧树脂相容性好。改性后的环氧树脂(EP)强度和韧度都得到提高,特别适用于环氧浇注、环氧涂料等方面,具有良好的应用前景。 二. 选题的国内外研究概况和趋势(设计只介绍相应产品的用途、作品的应 用等) 胶黏剂的一类古老而又年轻的材料,早在数千年前,人类的祖先就已经开始使用胶黏剂。到上个世纪初,合成酚醛树脂的发明,开创了胶黏剂的现代发展史。胶黏剂是具有良好粘结性能的物质,特别是合成胶黏剂强度高,对材质不同的重金属与非金属之间均可实现有效粘结,并且已经在越来越多的领域代替了机械粘结,从而为各行业简化工艺、节约能源、降低成本,提高经济效益提供了有效途径。全球胶黏剂、密封剂和表面处理剂市场总规模约500亿欧元(680亿美元),其中工业胶黏剂市场占44%的份额。 上世纪90年代,我国胶黏剂进入了一个高速发展的新阶段。本世纪前8年,随着我国改革开放的不断深入,胶黏剂工业整个发展势态越来越好。据中国胶黏剂工业协会统计,2004年、2005年和2006年我国胶黏剂产量分别为22.7万吨、251.7万吨和280.2万吨,年均增长率分别外14.32%、10.44%和11.32%,2007年和2008年产量为313.5万吨和344.8万吨,产量不断增加应用领域不断扩展。去年下半年,由于遭受美国、系,西欧和世界金融危机的影响,今年一季度开始,我国合成材料工业及其胶黏剂工业也受到一定影响。据预测今年胶黏剂产量可望达到372.38万吨,增长速度比去年有所下降。 如上所述,由于受国际金融危机的影响,今年我国采取了一系列产业结构调整政策和财政支持政策,进一步扩大内需,保增长,渡难关,上水平,如果没有受到其他影响,2012年后我国又将以崭新姿态出现在世人面前,2015年,即“十二五”计划末,我国胶黏剂产量将突破600万吨大关。据不完全统计,目前我国胶黏剂和密封剂生产厂家又3500多家,但上规模企业不足100家,品种牌号约3000多个。 从应用情况看,胶合板和木工用胶量最大,约点总胶量的46.97%,建筑材料用胶黏剂占26.12%,包装及商标用胶黏剂约占12.14%,制鞋及皮革用胶黏剂占6.07%,其他胶黏剂使用量占8.7%。 随着工业的发展,胶黏剂的应用市场越来越广泛,品种也日益增多,水溶性胶黏剂主要用于建筑、包装、运输、刚性粘合、非刚性粘合、胶带等方面。其中在包装方面的应用最为广泛,同时也用于标签、书包、杯子、信封等制造。目前世界合成胶黏剂发展的趋势表现为以下三方面:第一,环保型合成胶黏剂发展迅速。随着环保法规的日益严格,各发达国家大力研制水基和热熔型等无溶剂胶黏剂。1998年发达国家的合成胶黏剂的市场上水基胶黏剂占50%,热熔胶约占20%,溶剂类胶黏剂仅占20%。未来合成胶黏剂将由低污染的水基胶和热熔胶唱“主角”,环保型合成胶黏剂将是市场的抢手货。第二,高性能胶黏剂异军突起。高性能合成胶黏剂包括环氧、有机硅、聚氨酯及新型改性丙烯酸粘合剂等。第三,施工工艺和施胶设备不断更新。

硅溶胶精密铸造的工艺

硅溶胶精密铸造的工艺 一、蜡模制作 蜡料处理工艺操作守则 蜡料处理流程: (静置桶I中)静置脱水→(除水桶中)搅拌蒸发脱水→(静置桶II中)静置去污 1 工艺参数 静置桶I 静置温度85-90℃ 静置时间6-8h 除水桶搅拌温度110-120℃搅拌时间10-12h 静置桶II 静置温度80-85℃静置时间>12h 保温箱保温温度54±2℃保温时间>24h 2 操作程序 2.1 检查设备、温控仪表是否处于正常工作状态。 2.2 将脱蜡釜回收的旧蜡液倒入过滤槽中过滤;再送到静置桶I中,在低于90℃下静置6-8h。 2.3 静置完毕把沉淀水放掉后,将蜡液倒入除水桶中。 2.4 除水桶中的蜡液,在110-120℃保温并搅拌,使残留水分蒸发,到目视蜡液表面无泡沫为止。 2.5 将除完水的蜡液,经过<60目筛网过滤再放入<90℃的静置桶II中,保温静置12h 以上。 2.6 各除水桶、静置桶应定期性的放掉其底部的残留水和脏杂物。 2.7 把静置桶II中处理好的回收蜡液送到模头压蜡机保温桶中,用于主产模头(浇道)。 2.8 根据旧腊料性能和腊料消耗情况,不定期的在静置桶II中适量加新蜡,一般在3%-5%左右。 2.9 将合格的蜡液灌入保温箱内的蜡缸中,为减少蜡缸内蜡液中的气体,先保持一段高温时期80℃/2h后降至54℃。在54±2℃下保温24h后,方可用于压制蜡模。 3 注意事项 3.1除水桶,静置桶均应及时排水、排污。

3.2经常检查各设备温控仪表的工作状况,防止失控,尤其应防止温度过高造成蜡料老化。 3.3每月检查一次蜡处理设备各导热油的液面位置,油面应距设备顶面200㎜左右,防止油溢出。并注意检查设备有无渗油现象。 3.4经常检查环境状态,避免灰尘及外来物混入蜡料中。 压制蜡模工艺操作守则 1 工艺要求 室温24±3℃ 蜡缸温度54±2℃(大件应根据工艺要求设定) 射蜡嘴温度57-64℃ 压射压力 4.2Mpa(42kgf/cm2) 保压时间5-15s 冷却水温度<10℃ 2 操作规程 2.1 检查压蜡机油压、保温温度、操作按钮等是否正常。按照技术规定调整压蜡机压射压力、射蜡嘴温度、保压时间、冷却时间等。 2.2从保温箱中取出蜡缸,装在压蜡机上,放出上部混有空气的蜡料。 2.3 将模具放在压蜡机工作台面上,调整射蜡嘴使之与模具注蜡口高度一致,检查模具所有芯子活块位置是否正确,模具开合是否顺利。 2.4打开模具,喷上微薄一层分型剂。合型,对准射蜡嘴。 2.5双手按动工作按钮,压制蜡模。 2.6抽出芯子,打开模具,小心取出蜡模。按要求放入冷却水中或放入存放盘中冷却。并检查有下列缺陷的蜡模应报废: (1)有严重气泡的蜡模;(2)棱角不清晰的蜡模; (3)变形不能修复的蜡模;(4)尺寸不符号规定的蜡模。 2.7清除模具上残留的蜡料,注意只能用压缩空气吹净模具分型面、芯子上的蜡屑、脱模剂,不准用金属刀具去铲刮型腔、抽芯。慎防损害模具型腔部位。 2.8按以上各条进行下一次压制蜡模,以后往复循环生产。 2.9及时将蜡模从冷却水中轻轻取出,用压缩空气吹净蜡屑及水珠,并进行自检,将合格蜡模正确放入存放盘中。 2.10每班下班或模具当班生产完毕后,应用软布等清理模具。如发现模具有损伤应立即报告领班,由领班处理。并清扫压蜡机、工具及现场,做到清洁、整齐。 3 注意事项 3.1压制蜡模时,首先必须进行首件检查,确认合格后,方可进行操作。压制过程中不能轻易变动压制参数。 3.2使用新的模具时,务必弄清模具组装、拆卸顺序,蜡模取出方法。 3.3蜡模存放时,应注意搁置方向,防止变形。需要时可采取卡具等措施,以避免蜡模变形。

硅溶胶的制备

硅溶胶的制备 摘要:硅溶胶是高分子二氧化硅微粒分散于水中或有机溶剂中的胶体溶液,广泛应用于陶瓷、纺织、造纸、涂料、水处理、半导体等行业。本文介绍了硅溶胶的各种制备方法及几种特殊用途的硅溶胶的制备。阐述了影响硅溶胶稳定性的因素及其性能测试方法。 关键词:无机化学;硅溶胶制备;硅溶胶应用;综述 1 技术领域 本发明一般涉及适合用于造纸的含水二氧化硅基溶胶(Silica—based sols)。更具体地,本发明涉及二氧化硅基溶胶,它们的制备方法和在造纸中的用途。 本发明提供一种用于制备具有高稳定性、高含量SiO2和提高的滤水(drainage )性能的二氧化硅基溶胶的改进方法。 2技术背景[1, 2] 在造纸领域中,含有纤维素纤维以及任选的填料和添加剂的含水悬浮液(称为纸料)被装人流浆箱,该流浆箱将纸料喷到成型网架(wire)上。水从纸料中滤出,从而在网架上形成湿纸幅,然后在造纸机的干燥段对该纸幅进行进一步的脱水和干燥。 通常将滤水和留着(retention)助剂引人到纸料中,以便促进滤水并增加颗粒在纤维素纤维上的吸附,这样它们与纤维一起被保留在网架上。 虽然高比表面积和一定的聚集或微凝胶形成的程度对性能来说是有利的,但太高的比表面积和大量的颗粒聚集或微凝胶形成会导致二氧化硅基溶胶稳定性的显著降低,因此需要使该溶胶极其稀释,以避免形成凝胶。 国际专利申请公开WO 98/56715公开了一种用于制备含水聚硅酸盐微凝胶的方法,包括混合碱金属硅酸盐水溶液与pH 为11或更小的二氧化硅基材料的水相。该聚硅酸盐微凝胶与至少一种阳离子或两性聚合物一起在纸浆和纸的生产以及水净化中

用作絮凝剂。 国际专利申请公开WO 00/66492公开了一种用于生产包含二氧化硅基颗粒的含水溶胶的方法,该方法包括:酸化含水硅酸盐溶液至pH值为1—4以形成酸溶胶;在第一碱化步骤中碱化该酸溶胶;使碱化溶胶的颗粒生长至少10分钟和/或在至少30℃的温度下热处理该碱化溶胶;在第二碱化步骤中碱化所得到的溶胶;并且任选地,用例如铝对该二氧化硅基溶胶进行改性。 美国专利US 6372806公开了一种用于制备S值为20-50的稳定胶态二氧化硅的方法,其中所述二氧化硅具有大于700 m2/g的表面积,该方法包括: (1)在反应容器中加人阳离子型离子交换树脂(其离子交换能力的至少40%为氢形式),其中所述反应容器具有用于将所述离子交换树脂与所述胶态二氧化硅分离的装置; (2)向所述反应容器中加人SiO2与碱金属氧化物的摩尔比为15:1至1:1且pH值为至10.0的含水碱金属硅酸盐; (3)搅拌所述反应容器的内容物,直到所述内容物的pH 值为8.5—11.0; (4)用额外量的所述碱金属硅酸盐调节所述反应容器的内容物的pH值至大于10.0 ;并且将所得的胶态二氧化硅与所述离子交换树脂分离,同时将所述胶态二氧化硅移出所述反应容器。 (5)美国专利US 5176891公开了一种用于生产表面积为至少约1000m2/g的水溶性聚 铝硅酸盐微凝胶的方法,该方法包含下述步骤: (a)酸化包含约0.1—6重量%SiO2的碱金属硅酸盐稀溶液至pH值为2—10.5以制备聚酸;然后在该聚硅酸胶凝之前使其与水溶性铝酸盐进行反应,从而得到氧化钥/二氧化硅摩尔比大于约1/100的产物; (b) 然后在胶凝化发生之前稀释该反应混合物至SiO2含量为约2.0%(重量)或更少,以稳定该微凝胶。因此,有利地是能够提供一种具有高稳定性和SiO2含量及改进的 滤水性能的二氧化硅基溶胶。还有利地是能够提供用于生产具有高稳定性和SiO2含 量及改进的滤水性能的二氧化硅基溶胶的改进方法。还有利地是能够提供一种改进滤水的造纸方法。

环氧树脂的增韧改性方法

环氧树脂的增韧改性方法 摘要:环氧树脂(EP)是聚合物基复合材料应用最广泛的基体树脂。EP是一种热固性树脂,具有优异的粘接性、耐磨性、力学性能、电绝缘性能、化学稳定性、耐高低温性,以及收缩率低、易加工成型、较好的应力传递和成本低廉等优点,在胶粘剂、电子仪表、轻工、建筑、机械、航天航空、涂料、粘接以及电子电气绝缘材料、先进复合材料基体等领域得到广泛应用[1-3]。因此,对EP增韧增强一直是人们改性EP的重要研究课题之一。一般的EP填充剂和增韧剂都存在增强相与树脂基体间的界面粘接性较差的问题,韧性的改善是以牺牲材料强度、模量及耐热性为代价的,使其物理、力学和热性能的提高受到限制。笔者对国内EP增韧增强改性方法的最新进展做了简单的综述。 关键词:环氧树脂增韧改性 1环氧树脂的增韧改性 1.1橡胶弹性体改性 利用橡胶弹性体增韧EP的实践始于上世纪60年代,主要通过调节两者的溶解度参数,控制胶化过程中相分离所形成的海岛结构,以分散相存在的橡胶粒子就可以起到中止裂纹、分枝裂纹、诱导剪切变形的作用,从而提高EP的韧性.用于EP增韧的橡胶和弹性体必须具备2个基本条件:首先,所用的橡胶在固化前必须能与EP相容,这就要求橡胶的相对分子质量不能太大;而EP固化时,橡胶又要能顺利地析出来,形成两相结构,因此橡胶分子中两反应点之间的相对分子质量又不能太小[4]。其次,橡胶应能与EP 发生化学反应,才可产生牢固的化学交联点。因此EP增韧用的橡胶一般都是RLP (反应性液态聚合物)型的,相对分子质量在1000~10000,且在端基或侧基上带有可与环氧基反应的官能团[5]。 近年来,随着高分子相容性理论的发展和增容技术的进步,环氧树脂与热塑性树脂的合金化增韧改性获得了长足的发展,有效地克服了橡胶弹性体改性环氧树脂体系的不足。用于环氧树脂增韧改性的热塑性树脂主要有聚砜(PSF)、聚醚砜(PES)、聚醚酮(PEK)、聚醚醚酮(PEEK)、聚醚酰亚胺(PEI)、聚苯醚(PPO)、聚碳酸酯(PC)等。这些聚合物一般是耐热性及力学性能都比较好的工程塑料,它们或者以热熔化的方式,或者以溶液的方式掺混入环氧树脂[6]。 韩静等[7]制备了以丙烯酸丁酯、丙烯酸乙酯、丙烯酸缩水甘油酯为主链的带环氧基团的液体橡胶,用来增韧EP/间苯二甲胺体系。结果表明,随着丙烯酸酯液体橡胶用量的增加,改性EP体系的弯曲强度和冲击强度呈先升高后降低趋势,并在10%和15%出现峰值,与纯EP体系相比,强度可分别提高10.5%和151.8%。 范宏等对比了就地聚合PBA2P(BA2IG)0.2~1μm的橡胶粒子分散体以及用种子乳液

硅溶胶应用.

型号: SW-30 酸性(30°) 指标名称标准检验结果 氧化钠含量Na2O% 0.06 0.045 二氧化硅含量SiO2 30-31 30.35 比重(25℃) 1.19-1.21 1.21 PH值 2.0-4.0 3.0 黏度(mpas)(25℃)≤7.0 6.0 平均粒径(nm)10-20 11.5 性状: 1. 硅溶胶具有较大的吸附性:硅溶胶中无数胶团产生的无数网络结构空隙,在一定条件下能够对无机物及有机物具有一定的吸附作用. 2. 硅溶胶具有较大的比表面积:一般为:150-300M2/g. 3. 硅溶胶具有较好的粘结性:因其胶团尺寸均匀,在10-20m/u左右,自身风干即产生一定的粘结强度,但强度较小,如果将硅溶胶加入到某种纤维或粒状材料中,然后干燥固化即可成为坚固的凝胶结构.会产生较大的粘结性。(一般为46.7kg /cm2) 4. 硅溶胶具有良好的耐温性:一般可耐1600℃左右的高温。 5.硅溶胶具有较好的亲水性和较强的憎油性:可以用蒸馏水或无离子纯水稀释至任意浓度,而且随稀释度的增加而稳定性增强;当加入到有机物或多种金属离子中,又可以产生憎油性。 6.此外,硅溶胶具有高度的分散性、较好的耐磨性和良好的透光性等,因此可以做良好的分散剂、防腐剂、絮凝剂、冷却剂等等。 [用途] 1.应用于精密铸造业:代替硅酸乙脂使用,无毒性.不仅可以降低成本,改善操作条件,尺寸精确度高,铸件光洁度好,可使壳型强度大,造型比使用水玻璃质量好.用于铸模的耐高温涂料,可以使涂层具有较好的耐热性,减少高温下熔融金属对模具的损耗,并有助于脱模. 2.应用于涂料行业:能够使涂料牢固,,具有耐水,耐火,耐污,耐高温,涂膜硬度大,色泽鲜艳,不褪色等优点.还可以应用于耐酸,耐碱,防火涂料和远红外线辐射涂料. 3.应用于耐火材料的粘结剂:具有粘结强度高,耐高温(1500-1600℃)等特点. 4.应用于纺织业:可以用做径纺上浆助剂,减少断头率.在织物染色中使用,因具有粘结性,可以形成优良的保护液,增加染色的附着力,等等. 5.应用于造纸业:作为感光纸的处理剂,玻璃纸的防粘剂;其他办公用纸经处理后,可以提高打印效果,使显色更加鲜明. 6.应用于催化剂:在催化剂的生产中,在一定的条件下,作为载体来加速催化速度,以提高生产效率. 7.石油方面的应用:在芳腈类生产中以硅胶单体为催化剂,对提高芳腈回收率开辟了一个新的途径.在石油工业中,用硅溶胶做粘结剂和催化剂. 8.蓄电池中的应用:普通铅酸蓄电池使用寿命短,若使用该产品可以配置成固体蓄电池的电解液,就大大提高了蓄电池的使用寿命;同时,普通电解液硫酸,在机动车急转弯时容易溢出,但固体蓄电池电解液的使用就很好的解决了这个问

甲基三甲氧基硅烷改性工业硅溶胶的工艺及机理上课讲义

甲基三甲氧基硅烷改性工业硅溶胶的工艺 及机理

甲基三甲氧基硅烷改性工业硅溶胶的工艺及其机理 【摘要】以有机硅氧烷和工业硅溶胶为主要原料,采用sol-gel方法获得了水性有机硅溶胶。通过硅氧烷的选择、膜层性能检测以及pH值、水浴温度、改性时间等改性工艺的研究,获得MTMS改性硅溶胶的最佳工艺:MMTMS/MSiO2为2∶1~4∶1;pH值3.5~5.5;水浴温度50~70℃;改性时间40~120min。经FTIR分析和改性机理的探讨,表明MTMS水解生成的硅醇基团与硅溶胶粒子表面的羟基发生缩聚交联,屏蔽了硅溶胶内部的Si-O-Si键,对硅溶胶粒子进行了包覆改性。 1引言 工业硅溶胶作为一种水性、无机粘结剂,广泛应用于涂料中提高膜层的理化性能。但是,由于其在成膜过程中体积收缩大、干燥快,容易造成涂膜龟裂、流平性差等缺陷[1],在涂料中的用量较少,不能够作为主要的成膜物质,使其无机粘结剂的性能优势受到限制。应用中,硅溶胶常常与有机粘结剂复合使用或经过改性处理,如与丙烯酸酯、氟树脂等乳液混合,使两者的性能相互补充,研发有机-无机复合涂料[1-2]。但是这种改性硅溶胶[3-6]中存在大量的有机组分,涂料在使用和成膜过程中存在高VOC(VolatileOrganicCompounds),不环保;而且这种涂料涂层遇火易燃,一旦发生火灾, 会释放有毒的气体和浓烟。因此,结合我国涂料工业经济(Economy)、能源(Energy)、生态(Ecology)和效率(Efficiency)的4E要求,制备水性、低VOC、无机不燃的涂料用于金属表

面的装饰和防护[7],具有较强的应用需求。有机硅氧烷兼有无机和有机两种官能团,成膜时以Si-O-Si为主链,是一种有机-无机杂化高分子材料,用于涂层材料具有耐热、耐候等优良的理化性能[8]。一些文献[9-10]采用有机硅氧烷改性硅溶胶制备薄膜涂层,而硅溶胶是由硅酸乙酯的水解缩聚制备,且在改性过程中引入过多的有机组分;直接采用有机硅氧烷对工业硅溶胶进行改性,并制备水性涂料应用于金属表面的装饰和防护,文献报道较少[11-12]。因此,本文以有机硅氧烷和工业硅溶胶为主要原料,在酸催化、水浴的条件下改性硅溶胶粒子,以获得一种水性无机涂料所需的主要成膜物质。本文着重于对硅溶胶改性工艺及改性机理的研究,而通过论文中最佳工艺制备有机硅溶胶及涂层的相关性能测试与表征参见文献[11]。 2实验 2.1试剂 甲基三甲氧基硅烷(MTMS):WMTMS>98%, 沸点:101~102℃,工业品,杭州硅宝化工有限公司;其它硅氧烷试剂也购买于该公司。LS-30低钠型硅溶胶,含30wt%SiO2,浙江宇达化工有限公司。其它试剂均为分析纯, 2.2测试 pH值测试:使用PHB便携式酸度计(杭州雷磁分析仪器厂) 。电导率测试:采用DDB-11A便携式电导率仪(上海三信仪表厂),直接将电极插入水解溶液中,读出相应电导率值。FTIR测试:将改性硅溶胶放置烘箱中,120℃4h,

环氧树脂E51改性增韧研究

龙源期刊网 https://www.doczj.com/doc/a31406185.html, 环氧树脂E51改性增韧研究 作者:袁涛 来源:《山东工业技术》2017年第05期 摘要:以双酚改性环氧树脂E51(EP),达到改性增韧的目的。进行了一系列实验,对 比了用单一环氧树脂、混合树脂与自制混合胺,在相同和不同环氧当量下所得固化物的粘结强度、韧性和硬度。实验表明,混合树脂固化产物硬度96.6HSD,拉伸强度16.053MP,断裂拉力5114.97N,变形量5.63mm,韧性增加16%。 关键词:环氧树脂;增韧;韧性;硬度;粘结强度 DOI:10.16640/https://www.doczj.com/doc/a31406185.html,ki.37-1222/t.2017.05.160 0 引言 E51型环氧树脂粘度低,环氧值高,固化效果,不足之处在于脆性大,韧性低;E20和 E12型环氧树脂粘结度高,韧性好的优点,不足之处在于硬度低。把三种环氧树脂按比例混合,新得到的混合树脂既有E51树脂活性高,固化效果好及高硬度的特点,又有E20和E12 中长分子链韧性好的优点,与自制混胺固化后,提高固化物性能,克服了使用单一环氧树脂固化后综合性能差的弊端。 1 实验部分 (1)主要试剂。环氧树脂E12、E20、E51,聚醚胺、聚醚二胺、固化剂促进剂,江苏三木化工;二甲苯,上海泰正化工有限公司;正丁醇,扬州市华香化工有限公司。 (2)主要仪器。环氧树脂高速分散机,上海机电设备有限公司;电子秤,上海信衡电子有限公司,深圳盛美仪器有限公司; UTM4000系列微机控制电子万能试验机;热重差热分析仪EXSTAR6300,精工盈司电子科技(上海)有限公司。 (3)实验测试。1)配制溶剂:在二甲苯中加入正丁醇,搅拌均匀。2)配制树脂:按比例在溶剂中加入环氧树脂E12、E20,高速搅拌二十分钟,待树脂溶解后加入环氧树脂E51,高速搅拌混合均匀,按三种环氧树脂的不同比例制作4种混合液,编号为树脂A、B、C、D。配制三种单一环氧树脂的溶液。3)样品测试:以环氧当量:胺当量=1:0.6、1:0.7、1: 0.8、1:0.9分别将树脂与固化剂混合,在室温下实干后,涂抹于马口铁片上进行弯折观察, 粘结20mm圆柱用拉力试验机进行测试,用邵氏硬度计进行硬度测量,用差热分析仪进行差热分析。 2 结果与讨论

表征材料疏水性能的指标

表征材料疏水性能的指标:接触角,滚动角(前进接触角和后退接触角之差) 决定因素:材料的表面能,材料的粗超程度。 具有低的表面能和粗超度。 疏水薄膜的化学成分主要考虑有机聚合物, 其疏水分子中除了碳以外, 含有大量低表面能的硅、氟等原子基团, 可以有效的降低材料的表面能, 从而使薄膜对水接触角增大。 氟系有机物、聚氟硅烷( FAS) 、有机硅聚合物等都具有较低的表面自由能, 也是目前研究和应用较多的疏水成膜剂 Takashi Monde 等人利用溶胶- 凝胶法制备了支链状的聚氟硅烷薄膜, 发现其具 有很好的热稳定性, 且具有低表面能的氟化物存在于薄膜的最表层。有机硅聚合物制成的薄膜具有较好的牢固度, 且不影响玻璃光学性能、无毒、无腐蚀, 也是良好的疏水物质。聚四氟乙烯( PTFE) 的特点一方面具有低表面能, 另一方面具有良好的化学稳定性, 但其缺点在于高熔融状态、高粘度和不溶性, 使得它难以制备和操作 除了本身化学组成外, 表面结构也控制着薄膜的浸润性 等人通过溶胶- 凝胶法将表无机疏水薄膜常用的制备方法有采用溶胶- 凝胶法、化学气相沉积(CVD)、等离子体增强化学气相沉积和氟硅表面活性剂原位修饰等。其中化学气相沉积法的原理是把含有构成需要元素的一种或几种化合物、单质气体供给载体, 借助气相作用, 在载体表面上进行化学反应生成要求的薄膜。其中化学气相沉积法制备薄膜产量高, 可在线生产, 能耗低, 比较适合制备金属氧化物多孔薄膜, 但反应条件苛刻, 工艺及装置复杂, 设备投资大。溶胶- 凝胶法是制备无机膜的比较成熟的方法, 一般分为胶体凝胶法和聚合凝胶法。胶体凝面粗糙度控制在20~50nm 之间, 使接触角达到165°。Hong B S 等人利用增加膜层表面粗糙度的方法提高了膜的疏水性, 但获得的透明薄膜不具备减反射性。通过相分离、刻蚀、固体表面添加有机疏水物等方法控制表面粗糙度, 不但可以得到具有预期疏水性能的表面结构, 而且可以同时满足表面的机械特性和透明度等要求。多孔的无机氧化物薄膜与玻璃、陶瓷等结合强度良好, 而且耐高温、耐腐蚀, 绝缘性好, 所以与有机疏水材料的复合将具有优异的综合性能, 在保持材料疏水性的同时对环境具有较好的适应性。比如SiO2 膜由于具有耐热性、耐候性、透明性、低折射性、低介电性等优良性能而在汽车玻璃、厨房用具、建筑玻璃、微电子集成电路等方面表现出广泛的应用前景。但是, SiO2 本身所具有的亲水性限制了其性能的发挥和实际应用。因此, 有必要对硅溶胶进行疏水改性的研究。

甲基三甲氧基硅烷改性工业硅溶胶的工艺及机理

甲基三甲氧基硅烷改性工业硅溶胶的工艺及其机理 【摘要】以有机硅氧烷和工业硅溶胶为主要原料,采用sol-gel方法获得了水性有机硅溶胶。通过硅氧烷的选择、膜层性能检测以及pH值、水浴温度、改性时间等改性工艺的研究,获得MTMS改性硅溶胶的最佳工艺:MMTMS/MSiO2为2∶1~4∶1;pH值3.5~5.5;水浴温度50~70℃;改性时间40~120min。经FTIR分析和改性机理的探讨,表明MTMS水解生成的硅醇基团与硅溶胶粒子表面的羟基发生缩聚交联,屏蔽了硅溶胶内部的Si-O-Si键,对硅溶胶粒子进行了包覆改性。 1引言 工业硅溶胶作为一种水性、无机粘结剂,广泛应用于涂料中提高膜层的理化性能。但是,由于其在成膜过程中体积收缩大、干燥快,容易造成涂膜龟裂、流平性差等缺陷[1],在涂料中的用量较少,不能够作为主要的成膜物质,使其无机粘结剂的性能优势受到限制。应用中,硅溶胶常常与有机粘结剂复合使用或经过改性处理,如与丙烯酸酯、氟树脂等乳液混合,使两者的性能相互补充,研发有机-无机复合涂料[1-2]。但是这种改性硅溶胶[3-6]中存在大量的有机组分,涂料在使用和成膜过程中存在高VOC(VolatileOrganicCompounds),不环保;而且这种涂料涂层遇火易燃,一旦发生火灾, 会释放有毒的气体和浓烟。因此,结合我国涂料工业经济(Economy)、能源(Energy)、生态(Ecology)和效率(Efficiency)的4E要求,制备水性、低VOC、无机不燃的涂料用于金属表面的装饰和防护[7],具有较强的应用需求。有机硅氧烷兼有无机和有机两种官能团,成膜时以Si-O-Si为主链,是一种有机-无机杂化高分子材料,用于涂层材料具有耐热、耐候等优良的理化性能[8]。一些文献[9-10]采用有机硅氧烷改性硅溶胶制备薄膜涂层,而硅溶胶是由硅酸乙酯的水解缩聚制备,且在改性过程中引入过多的有机组分;直接采用有机硅氧烷对工业硅溶胶进行改性,并制备水性涂料应用于金属表面的装饰和防护,文献报道较少[11-12]。因此,本文以有机硅氧烷和工业硅溶胶为主要原料,在酸催化、水浴的条件下改性硅溶胶粒子,以获得一种水性无机涂料所需的主要成膜物质。本文着重于对硅溶胶改性工艺及改性机理的研究,而通过论文中最佳工艺制备有机硅溶胶及涂层的相关性能测试与表征参见文献[11]。 2实验 2.1试剂 甲基三甲氧基硅烷(MTMS):WMTMS>98%, 沸点:101~102℃,工业品,杭州硅宝化工有限公司;其它硅氧烷试剂也购买于该公司。LS-30低钠型硅溶胶,含30wt%SiO2,浙江宇达化工有限公司。其它试剂均为分析纯, 2.2测试 pH值测试:使用PHB便携式酸度计(杭州雷磁分析仪器厂) 。电导率测试:采用DDB-11A便携式电导率仪(上海三信仪表厂),直接将电极插入水解溶液中,读出相应电导率值。FTIR测试:将改性硅溶胶放置烘箱中,120℃4h,冷却后采用KBr压片法对其进行FTIR分析(布鲁克光谱仪器有限公司TENSOR27)。 2.3改性方法 称取一定质量的硅溶胶于500ml烧杯中,用盐酸调节pH值,然后放入水浴中加热并恒力搅拌,同时按所需的比例称取有机硅氧烷,缓慢加入硅溶胶烧杯中,反应一段时间后获得有机硅溶胶。后文中将经过MTMS改性后的硅溶胶称为有机硅溶胶。

环氧树脂的增韧改性研究

环氧树脂的增韧改性研究 环氧树脂是由具有环氧基的化合物与多元羟基化合物(双酚A、多元醇、多元酸、多元胺) 进行缩聚反应而制得的产品。环氧树脂具有高强度和优良的粘接性能,可用作涂料、电绝缘材料、增强材料和胶粘剂等。但因其固化物质脆,耐开裂性能、抗冲击性能较低,而且耐热性差,使其应用受到了一定的限制。为此国内外学者对环氧树脂进行了大量的改性研究工作,以改善环氧树脂的韧性。 目前环氧树脂的增韧研究已取得了显著的成果,其增韧途径主要有三种: ①在环氧基体中加入橡胶弹性体、热塑性树脂或液晶聚合物等分散相来增韧。②用热固性树脂连续贯穿于环氧树脂网络中形成互穿、半互穿网络结构来增韧。③用含有“柔性链段”的固化剂固化环氧,在交联网络中引入柔性链段,提高网链分子的柔顺性,达到增韧的目的。 1 橡胶弹性体增韧环氧树脂 橡胶弹性体通过其活性端基(如羧基、羟基、氨基) 与环氧树脂中的活性基团(如环氧基、羟基等)反应形成嵌段;正确控制反应性橡胶在环氧树脂体系中的相分离过程是增韧成功的关键。自Mc Garry发现端羧基丁腈橡胶(CTBN) 能使环氧树脂显著提高断裂韧性后的几十年间,人们在这一领域进行了大量基聚醚、聚氨酯液体橡胶、聚的研究。据文献报道,已经研究过的或应用的对环氧树脂增韧改性的橡胶有端羧硫橡胶、含氟弹性体、氯丁橡胶、丁腈橡胶、丙烯酸丁酯橡胶等。通过调节橡胶和环氧树脂的溶解度参数,控制凝胶化过程中相分离形成的海岛结构,以分散相存在的橡胶粒子中止裂纹、分枝裂纹、诱导剪切变形,从而提高环氧树脂的断裂韧性。 目前用液体橡胶增韧环氧树脂的研究有两种趋势。一种是继续采用CTBN 增韧环氧树脂体系,重点放在增韧机理的深入探讨;另一种是采用其它的合适的液体橡胶,如硅橡胶、聚丁二烯橡胶等。D1 Verchere[1 ] 等研究端环氧基丁腈橡胶(ETBN) 对双酚A 型环氧树脂的增韧效果, 当ETBN 含量为20wt %时, 树脂的断裂韧性GIC 由01163kJ / m2 提高到01588kJ / m2 ,比增韧前提高了3倍多。韩孝族[2 ]等用端羟基丁腈橡胶(HTBN) 增韧环氧/ 六氢邻苯二甲酸酐体系, 当HTBN 含量达20phr 时,增韧树脂的冲击强度达900kJ / cm2 ,较改性前(340kJ / cm2) 提高了2 倍多。孙军[3 ]等利用高 分子设计方法及控制反应工艺,制备出具有氨基封端的硅橡胶改性体,分析其红外光谱,证实其产物具有预想结构,即改性后的硅橡胶为氨基封端。用改性硅橡胶对环氧树脂进行增韧改性,通过对增韧体的冲击强度测试结果表明,在改性硅橡胶加入量为0~15 份的范围内,增 韧体的冲击强度有了大幅度提高,加入量超过15 份以后,增韧体的冲击强度增势缓慢,实验证明改性硅橡胶对环氧树脂具有良好的增韧效果。此外,还有活性端基液体橡胶增韧环氧树脂、聚硫橡胶改性环氧树脂等方面的研究也有很大进展。如王德武[4 ]等人研制的聚硫橡胶改性环氧防水防腐防霉涂料,是由聚硫橡胶改性环氧溶液为成膜物质,加入金属氧化物填料,添加有机胺固化剂所组成的双组分涂料。该涂料对金属、非金属的附着力强(对钢铁附着力为3~4MPa ,对混凝土附着力为4~5MPa) 、涂膜坚硬、光滑、丰满,不吸附污浊和藻类,具有韧性好、高弹性、耐候、耐霉菌、耐磨、耐酸碱和耐多种溶剂等特点。 近年来,核2壳乳液胶粒增容技术的应用使橡胶弹性体改性环氧树脂又有了新进展。核壳粒子大小及其环氧树脂的界面性能可以用乳液聚合技术来设计和改变。Lin K F[5 ]等研究了以丙烯酸丁酯为核、甲基丙烯酸甲酯和缩水甘油醚基丙烯酸甲酯共聚物为壳的核壳粒子增韧双酚A 型环氧树脂体系,并探讨了增韧机理。 Ashida Tadashi[6 ]等研究了在环氧树脂中分别加入聚丙烯酸丁酯橡胶粒子和PBA/ PMMA (聚丙烯酸丁酯/ 聚甲基丙烯酸甲酯) 核壳胶粒,以双氰胺为固化剂所得固化物的结构形态和性能。结果表明,用丙烯酸橡胶粒子可提高环氧树脂的断裂韧性,但远远低于核壳粒子(PBA/ PMMA) 的增韧效果;在环氧树脂固化过程中,由于PMMA 与环氧树脂的相容性好,环氧

相关主题
文本预览
相关文档 最新文档