当前位置:文档之家› 数据结构第五章图习题

数据结构第五章图习题

数据结构第五章图习题
数据结构第五章图习题

5 图

【单选题】 1. 设无向图G 中有五个顶点,各顶点的度分别为2、4、3、1、2,则G 中边数为(C )。

A、4条 B、5条 C、6条 D、无法确定

2. 含n 个顶点的无向完全图有(D )条边;含n 个顶点的有向图最多有(C )条弧;含n 个顶点的有向强连通图最多有(C )条弧;含n 个顶点的有向强连通图最少有(F)条弧;设无向图中有n 个顶点,则要接通全部顶点至少需(G )条边。

A 、n 2

B 、n(n+1)

C 、n(n-1)

D 、n(n-1)/2

E 、n+1

F 、n

G 、n-1

3. 对下图从顶点a 出发进行深度优先遍历,则(A )是可能得到的遍历序列。

A 、acfgdeb

B 、abcdefg

C 、acdgbef

D 、abefgcd

对下图从顶点a 出发进行广度优先遍历,则(D )是不可能得到的遍历序列。

A 、abcdefg

B 、acdbfge

C 、abdcegf

D 、adcbgef

4. 设图G 的邻接矩阵A=????

??????010101010,则G 中共有(C )个顶点;若G 为有向图,则G 中共有(D )条弧;若G 为无向图,则G 中共有(B )条边。

A 、1

B 、2

C 、3

D 、4

E 、5

F 、9

G 、以上答案都不对

5. 含n 个顶点的图,最少有(B )个连通分量,最多有(D )个连通分量。

A 、0

B 、1

C 、n-1

D 、n

6. 用邻接表存储图所用的空间大小(A )。

A 、与图的顶点数和边数都有关

B 、只与图的边数有关

C 、只与图的顶点数有关

D 、与边数的平方有关

7. n 个顶点的无向图的邻接表最多有(B )个表结点。

A 、n 2

B 、n(n-1)

C 、n(n+1)

D 、n(n-1)/2

8. 无向图G=(V,E),其中:V={a,b,c,d,e,f},E={(a,b),(a,e),(a,c),(b,e),(c,f),(f,d),(e,d)},对该图进行深度优先遍历,得到的顶点序列正确的是(D)。

A、a,b,e,c,d,f

B、a,c,f,e,b,d

C、a,e,b,c,f,d

D、a,e,d,f,c,b

9. 图的BFS生成树的树高比DFS生成树的树高(A)。

A、小或相等

B、小

C、大或相等

D、大

10. 下列不正确的是(C)。

(1)求从指定源点到其余各顶点的迪杰斯特拉(Dijkstra)最短路径算法中弧上权不能为负的原因是在实际应用中无意义;

(2)利用Dijkstra求每一对不同顶点之间的最短路径的算法时间是O(n3);(图用邻接矩阵表示)

(3)Floyd求每对不同顶点对的算法中允许弧上的权为负,但不能有权和为负的回路。

A、(1),(2),(3)

B、(1)

C、(1),(3)

D、(2),(3)

11. 当各边上的权值(A)时,BFS算法可用来解决单源最短路径问题。

A、均相等

B、均互不相等

C、不一定相等

12. 若一个有向图具有拓扑排序序列,那么它的邻接矩阵必定为(C)。

A、对称矩阵

B、稀疏矩阵

C、三角矩阵

D、一般矩阵

13. 在有向图G的拓扑序列中,若顶点Vi在顶点Vj之前,则下列情形不可能出现的是(D)。

A、G中有弧

B、G中有一条从Vi到Vj的路径

C、G中没有弧

D、G中有一条从Vj到Vi的路径

14. 关键路径是AOE网中(B)。

A、从始点到终点的最短路径

B、从始点到终点的最长路径

C、人始点到终点的边数最多的路径

D、从始点到终点的边数最少的路径

15. 下面关于求关键路径的说法不正确的是(C)。

A、求关键路径是以拓扑排序为基础的

B 、一个事件的最早开始时间同以该事件为尾的弧的活动最早开始时间相同

C 、一个事件的最迟开始时间为以该事件为尾的弧的活动最迟开始时间与该活动的持续时间的差

D 、关键活动一定位于关键路径上

【填空题】

1. 设无向连通图G 含n 个顶点e 条边,则G 的生成树含 个顶点 条边。

2. 连通分量是无向图的 子图,生成树是无向连通图的 子图。

3. 对稀疏图而言,在邻接矩阵和邻接表这两种存储结构中选择 更为适宜。

4. 设无向图G 含n 个顶点e 条边,则G 的邻接表表示中含 个边表结点。

5. 设有向图G 含n 个顶点e 条弧,则G 的邻接表表示中含 个边表结点。

【计算题】

1. 设无向图如下,写出对该图从顶点a 出发进行广度优先遍历可能得到的所有遍历序列。

解:abcdefg 、abdcegf 、acbdfeg 、acdbfge 、adbcgef 、adcbgfe 。

2. 设有向图如下,写出对该图从顶点a 出发进行深度优先遍历可能得到的所有遍历序列。

解:abedc 、acbed 、acdbe 。

3. 设无向网如下,(1)写出其邻接矩阵;(2)基于该邻接矩阵求深度优先生成树和广度优先生成树;(3)基于该邻接矩阵按普里姆算法求最小生成树;(4)写出其邻接表;(5)基于该邻接表按克鲁斯卡尔算法求最小生成树。 解:

(1) ????????????

??????????????∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞6456252363794567555553955434

(2)深度优先生成树:;广度优先生成树:

(3)最小生成树:;求解过程:

(4)邻接表:

(5)最小生成树:

4. 设AOV图如下,写出对该图进行拓扑排序可能得到的所有拓扑序列。

解:abcdefg、abcdfeg、abcfdeg

5. 设AOE网如下,试求关键路径。

解:关键路径1:v1→v2→v5→v7关键路径2:v1→v3→v6→v7。

6. 设有向网如下,试用迪杰斯特拉算法求从顶点A出发到其余各顶点的最短路径。解:ab:3 af:5 afe:7 abc:11 afed:14

7. 设有向网如下,试用弗洛伊德算法求图中各对顶点间的最短路径。

解:

【算法题】

下列算法题中可能用到的类如下:public class MGraph{

private Object vexs[];

private int adj[][];

private int vexnum;

private int arcnum;

public MGraph(int maxvn){

int i, j;

vexs=new Object[maxvn];

adj=new int[maxvn][maxvn];

for(i=0;i

for(j=0;j

adj[i][j]=0;

vexnum=0;

arcnum=0;

}//构造函数

}//图的邻接矩阵存储结构类

public class ALANode{

public int adj;

public ALANode next;

}//图的邻接表存储结构中的表结点类public class ALVNode{

public Object data; //顶点信息

public ALANode firstarc;

}//图的邻接表存储结构中的头结点类

public class ALGraph{

private ALVNode vexs[];

private int vexnum;

private int arcnum;

public ALGraph(int maxvn){

vexs=new ALVNode[maxvn];

vexnum=0;

arcnum=0;

}//构造函数

}//图的邻接表存储结构类

1. 在ALGraph类中添加符合如下要求的构造函数

⑴public ALGraph(Object[ ] v, ArcArray [ ] a)

其中v为顶点向量,a为弧向量,类ArcArray的定义如下:public class ArcArray{

private int index1; //弧尾顶点下标

private int index2; //弧头顶点下标

}

(2)public ALGraph(MGraph g)

2. 在ALGraph类中添加实现如下功能的方法:

(1)在无向图中插入一个顶点;

(2)在无向图中删除一个顶点;

(3)在无向图中添加一条边;

(4)在无向图中删除一条边。

(5)判定无向图中是否存在从顶点v i到顶点v j的路径(i≠j)。

(6)输出无向图中从顶点v i到顶点v j的所有简单路径。

解:

(5)

public boolean path(int i, int j){

//从顶点v i出发进行深度优先遍历,调用完成时所有与v i有路径相通的顶点都被访问到boolean visited[ ]=new boolean[vexs.length];

for(k=0;k

dfs(i, visited);

return visited[j];

}//path

void dfs(int i, boolean[ ] visited){//从顶点v i出发对图G进行深度优先遍历

visited[i]=true;

for(p=vexs[i].firstarc;p;p=p.next)

if (!visited[p.adj]) dfs(p.adj, visited);

}//dfs

3. 在MGraph类中添加符合如下要求的构造函数:

(1)public class MGraph(Object[ ] v, EdgeArray [ ] e)

其中v为顶点向量,e为边向量,类EdgeArray的定义如下:

public class EdgeArray{

public int index1; //顶点1下标

public int index2; //顶点2下标

}

(2)public MGraph(ALGraph g)

4. 在MGraph类中添加实现如下功能的方法:

(1)在有向图中插入一个顶点;

(2)在有向图中删除一个顶点;

(3)在有向图中添加一条边;

(4)在有向图中删除一条边。

(5)判定有向图中从顶点v i到顶点v j是否存在一条长为k的简单路径。

(完整版)数据结构实验报告全集

数据结构实验报告全集 实验一线性表基本操作和简单程序 1 .实验目的 (1 )掌握使用Visual C++ 6.0 上机调试程序的基本方法; (2 )掌握线性表的基本操作:初始化、插入、删除、取数据元素等运算在顺序存储结构和链表存储结构上的程序设计方法。 2 .实验要求 (1 )认真阅读和掌握和本实验相关的教材内容。 (2 )认真阅读和掌握本章相关内容的程序。 (3 )上机运行程序。 (4 )保存和打印出程序的运行结果,并结合程序进行分析。 (5 )按照你对线性表的操作需要,重新改写主程序并运行,打印出文件清单和运行结果 实验代码: 1)头文件模块 #include iostream.h>// 头文件 #include// 库头文件------ 动态分配内存空间 typedef int elemtype;// 定义数据域的类型 typedef struct linknode// 定义结点类型 { elemtype data;// 定义数据域 struct linknode *next;// 定义结点指针 }nodetype; 2)创建单链表

nodetype *create()// 建立单链表,由用户输入各结点data 域之值, // 以0 表示输入结束 { elemtype d;// 定义数据元素d nodetype *h=NULL,*s,*t;// 定义结点指针 int i=1; cout<<" 建立一个单链表"<> d; if(d==0) break;// 以0 表示输入结束 if(i==1)// 建立第一个结点 { h=(nodetype*)malloc(sizeof(nodetype));// 表示指针h h->data=d;h->next=NULL;t=h;//h 是头指针 } else// 建立其余结点 { s=(nodetype*) malloc(sizeof(nodetype)); s->data=d;s->next=NULL;t->next=s; t=s;//t 始终指向生成的单链表的最后一个节点

数据结构第五章习题课课案

1、特殊矩阵和稀疏矩阵哪一种压缩存储后会失去随机存取的功能?为什么? 答:后者在采用压缩存储后将会失去随机存储的功能。因为在这种矩阵中,非 零元素的分布是没有规律的,为了压缩存储,就将每一个非零元素的值和它所 在的行、列号作为一个结点存放在一起,这样的结点组成的线性表中叫三元组 表,它已不是简单的向量,所以无法用下标直接存取矩阵中的元素。 2、二维数组M的元素是4个字符(每个字符占一个存储单元)组成的串,行下 标i的范围从0到4,列下标j的范围从0到5,M按行存储时元素M[3][5]的 起始地址与M按列存储时元素()的起始地址相同。 A、M[2][4] B、M[3][4] C、M[3][5] D、M[4][4] 为第 3、设有一个10阶的对称矩阵A,采用压缩存储方式,以行序为主存储,a 11 的地址为()。 一元素,其存储地址为1,每个元素占一个地址空间,则a 85 A. 13 B. 33 C. 18 D. 40 4、若对n阶对称矩阵A以行序为主序方式将其下三角形的元素(包括主对角线 (i

数据结构作业系统第七章答案

7.22③试基于图的深度优先搜索策略写一算法,判别以邻接表方式存储的有向图中是否存在由顶点vi到顶点vj的路径(i≠j)。注意:算法中涉及的图的基本操作必须在此存储结构上实现。 实现下列函数: Status DfsReachable(ALGraph g, int i, int j); /* Judge if it exists a path from vertex 'i' to */ /* vertex 'j' in digraph 'g'. */ /* Array 'visited[]' has been initialed to 'false'.*/ 图的邻接表以及相关类型和辅助变量定义如下:Status visited[MAX_VERTEX_NUM]; typedef char VertexType; typedef struct ArcNode { int adjvex; struct ArcNode *nextarc; } ArcNode; typedef struct VNode { V ertexType data; ArcNode *firstarc; } VNode, AdjList[MAX_VERTEX_NUM]; typedef struct { AdjList vertices; int vexnum, arcnum; } ALGraph; Status DfsReachable(ALGraph g, int i, int j) /* Judge if it exists a path from vertex 'i' to */ /* vertex 'j' in digraph 'g'. */ /* Array 'visited[]' has been initialed to 'false'.*/ { int k; ArcNode *p; visited[i]=1; for(p=g.vertices[i].firstarc;p;p=p->nextarc) { if(p) { k=p->adjvex; if(k==j)return 1; if(visited[k]!=1)

数据结构第六章习题课

1、下图所示的4棵二叉树中,不是完全二叉树的是() 2、二叉树的前序遍历序列中,任意一个结点均处在其子女结点的前面,这种说法()。 A 、正确 B 、错误 C 、不一定 3、已知某二叉树的后序遍历序列是dabec ,中序遍历序列是debac ,它的前序遍历序列是()。 A 、acbed B 、decab C 、deabc D 、cedba 4、如果T2是由有序树T 转换而来的二叉树,那么T 中结点的后序就是T2中结点的()。 A 、前序 B 、中序 C 、后序 D 、层次序 5、深度为5的二叉树至多有()个结点。 A 、16 B 、32 C 、31 D 、10 6、在一个非空二叉树的中序遍历序列中,根结点的右边()。 A 、只有右子树上的所有结点 B 、只有右子树上的部分结点 C 、只有左子树上的部分结点 D 、只有左子树上的所有结点 7、树最适合用来表示()。 A 、有序数据元素 B 、无序数据元素 C 、元素之间具有分支层次关系的数据 D 、元素之间无联系的数据。 8、任何一棵二叉树的叶结点在先序、中序和后序遍历序列中的相对次序()。 A 、不发生改变 B 、发生改变 C 、不能确定 D 、以上都不对 9、实现任意二叉树的后序遍历的非递归算法而不使用栈结构,最佳方案是二叉树采用()存储结构。 A 、二叉链表 B 、广义表存储结构 C 、三叉链表 D 、顺序存储结构 10、对一个满二叉树,m 个树叶,n 个结点,深度为h ,则()。 A 、n=m+h B 、h+m=2n C 、m=h-1 D 、n=2h -1 11、设n ,m 为二叉树上的两个结点,在中序遍历时,n 在m 前的条件是()。 A 、n 在m 右方 B 、n 是m 祖先 C 、n 在m 左方 D 、n 是m 子孙 12.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/- , A B C D

数据结构作业电子版

1数据结构课程研究的主要内容包括()()() 2一个完整的算法应该具有_____ _____ ______ ______ ______五个特性 3数据的逻辑结构可分为_____ ______两大类 4数据的逻辑结构是指而存储结构是指 5逻辑上相邻的数据元素在物理位置上也相邻是存储结构的特点之一 6为了实现随机访问线性结构应该采用存储结构 7链式存储结构的主要特点是 8算法分析主要从和这两个方面对算法进行分析 (1)数据 (2)数据元素 (3)数据类型 (4)数据结构 (5)逻辑结构 (6)存储结构 (7)线性结构 (8)非线性结构 第二章作业 一、判断题(在你认为正确的题后的括号中打√,否则打X)。 1.线性表的逻辑顺序与存储顺序总是一致的。 2.顺序存储的线性表可以按序号随机存取。 3.顺序表的插入和删除操作不需要付出很大的时间代价,因为每次操作平均只有近一半的元素需要移动。 4.线性表中的元素可以是各种各样的,但同一线性表中的数据元素具有相同的特性,因此是属于同一数据对象。 5.在线性表的顺序存储结构中,逻辑上相邻的两个元素在物理位置上并不一定紧邻。 6.在线性表的链式存储结构中,逻辑上相邻的元素在物理位置上不一定相邻。7.线性表的链式存储结构优于顺序存储结构。 8.在线性表的顺序存储结构中,插入和删除时,移动元素的个数与该元素的位置有关。 9.线性表的链式存储结构是用一组任意的存储单元来存储线性表中数据元素的。10.在单链表中,要取得某个元素,只要知道该元素的指针即可,因此,单链表是随机存取的存储结构。 二、单项选择题。 1.线性表是( ) 。 (A) 一个有限序列,可以为空; (B) 一个有限序列,不能为空; (C) 一个无限序列,可以为空; (D) 一个无序序列,不能为空。 2.对顺序存储的线性表,设其长度为n,在任何位置上插入或删除操作都是等概率的。插入一个元素时平均要移动表中的()个元素。 (A) n/2 (B) n+1/2 (C) n -1/2 (D) n 3.线性表采用链式存储时,其地址( ) 。

数据结构图习题

第七章图:习题 习题 一、选择题 1.设完全无向图的顶点个数为n,则该图有( )条边。 A. n-l B. n(n-l)/2 C.n(n+l)/2 D. n(n-l) 2.在一个无向图中,所有顶点的度数之和等于所有边数的( )倍。 A.3 B.2 C.1 D.1/2 3.有向图的一个顶点的度为该顶点的( )。 A.入度 B. 出度 C.入度与出度之和 D.(入度+出度)/2 4.在无向图G (V,E)中,如果图中任意两个顶点vi、vj (vi、vj∈V,vi≠vj)都的,则称该图是( )。 A.强连通图 B.连通图 C.非连通图 D.非强连通图 5.若采用邻接矩阵存储具有n个顶点的一个无向图,则该邻接矩阵是一个( )。 A.上三角矩阵 B.稀疏矩阵 C.对角矩阵 D.对称矩阵 6.若采用邻接矩阵存储具有n个顶点的一个有向图,顶点vi的出度等于邻接矩阵 A.第i列元素之和 B.第i行元素之和减去第i列元素之和 C.第i行元素之和 D.第i行元素之和加上第i列元素之和 7.对于具有e条边的无向图,它的邻接表中有( )个边结点。 A.e-l B.e C.2(e-l) D. 2e 8.对于含有n个顶点和e条边的无向连通图,利用普里姆Prim算法产生最小生成时间复杂性为( ),利用克鲁斯卡尔Kruskal算法产生最小生成树(假设边已经按权的次序排序),其时间复杂性为( )。 A. O(n2) B. O(n*e) C. O(n*logn) D.O(e) 9.对于一个具有n个顶点和e条边的有向图,拓扑排序总的时间花费为O( ) A.n B.n+l C.n-l D.n+e 10.在一个带权连通图G中,权值最小的边一定包含在G的( )生成树中。 A.最小 B.任何 C.广度优先 D.深度优先 二、填空题 1.在一个具有n个顶点的无向完全图中,包含有____条边;在一个具有n个有向完全图中,包含有____条边。 2.对于无向图,顶点vi的度等于其邻接矩阵____ 的元素之和。 3.对于一个具有n个顶点和e条边的无向图,在其邻接表中,含有____个边对于一个具有n个顶点和e条边的有向图,在其邻接表中,含有_______个弧结点。 4.十字链表是有向图的另一种链式存储结构,实际上是将_______和_______结合起来的一种链表。 5.在构造最小生成树时,克鲁斯卡尔算法是一种按_______的次序选择合适的边来构造最小生成树的方法;普里姆算法是按逐个将_______的方式来构造最小生成树的另一种方法。 6.对用邻接表表示的图进行深度优先遍历时,其时间复杂度为一;对用邻接表表示的图进行广度优先遍历时,其时间复杂度为_______。 7.对于一个具有n个顶点和e条边的连通图,其生成树中的顶点数为_______ ,边数为_______。 8.在执行拓扑排序的过程中,当某个顶点的入度为零时,就将此顶点输出,同时将该顶点的所有后继顶点的入度减1。为了避免重复检测顶点的入度是否为零,需要设立一个____来存放入度为零的顶点。

数据结构 图的基本操作实现

实验五图的遍历及其应用实现 一、实验目的 1.熟悉图常用的存储结构。 2.掌握在图的邻接矩阵和邻接表两种结构上实现图的两种遍历方法实现。 3.会用图的遍历解决简单的实际问题。 二、实验内容 [题目一] :从键盘上输入图的顶点和边的信息,建立图的邻接表存储结构,然后以深度优先搜索和广度优先搜索遍历该图,并输出起对应的遍历序列. 试设计程序实现上述图的类型定义和基本操作,完成上述功能。该程序包括图类型以及每一种操作的具体的函数定义和主函数。 提示: 输入示例 上图的顶点和边的信息输入数据为: 5 7 DG A B C D E AB AE BC CD DA DB EC [题目二]:在图G中求一条从顶点 i 到顶点 s 的简单路径 [题目三]:寻求最佳旅游线路(ACM训练题) 在一个旅游交通网中,判断图中从某个城市A到B是否存在旅游费用在s1-s2元的旅游线路,为节省费用,不重游故地。若存在这样的旅游线路则并指出该旅游线路及其费用。 输入: 第一行:n //n-旅游城市个数 第2行:A B s1 s2 //s1,s2-金额数 第3行---第e+2行 ( 1≤e≤n(n-1)/2 ) 表示城市x,y之间的旅行费用,输入0 0 0 表示结束。

输出: 第一行表示 A到B的旅游线路景点序列 第二行表示沿此线路,从A到B的旅游费用 设计要求: 1、上机前,认真学习教材,熟练掌握图的构造和遍历算法,图的存储结 构也可使用邻接矩阵等其他结构. 2、上机前,认真独立地写出本次程序清单,流程图。图的构造和遍历算法 分别参阅讲义和参考教材事例 图的存储结构定义参考教材 相关函数声明: 1、/* 输入图的顶点和边的信息,建立图*/ void CreateGraph(MGraph &G) 2、/* 深度优先搜索遍历图*/ void DFSTraverse(Graph G, int v) 3、/*广度优先搜索遍历图 */ void BFSTraverse(Graph G, int v)4、 4、/* 其他相关函数 */…… 三、实验步骤 ㈠、数据结构与核心算法的设计描述 ㈡、函数调用及主函数设计 (可用函数的调用关系图说明) ㈢程序调试及运行结果分析 ㈣实验总结 四、主要算法流程图及程序清单 1、主要算法流程图: 2、程序清单 (程序过长,可附主要部分)

数据结构:图子系统

/* *题目:编写按键盘输入的数据建立图的邻接矩阵存储 * 编写图的深度优先遍历程序 * 编写图的广度优先遍历程序 * 设计一个选择式菜单形式如下: * 图子系统 * *********************************** * * 1------更新邻接矩阵* * * 2------深度优先遍历* * * 3------广度优先遍历* * * 0------ 返回* * *********************************** * 请选择菜单号(0--3): */ #include #include #define GRAPHMAX 30 #define QUEUEMAX 30 typedef struct //图的邻接表的结构体 { char value[GRAPHMAX]; //记录图中的点值 int data[GRAPHMAX][GRAPHMAX]; //记录图中的边的关系int n, e; //记录图中的点的个数及边的个数 }pGraph; typedef struct //队列结构体 { int queueData[QUEUEMAX]; int front, rear, count; //队头,队尾,数目 }grQueue; void createCraph(pGraph *G); void DFSTraverse(pGraph *G); void BFSTraverse(pGraph *G); void DFS(pGraph *G, int i); void BFS(pGraph *G, int i); void initQueue(grQueue *Q); int queueEmpty(grQueue *Q); int queueFull(grQueue *Q); int outQueue(grQueue *Q); void inQueue(grQueue *Q, int i);

《数据结构》实验报告

《数据结构》实验报告 实验序号:4 实验项目名称:栈的操作

附源程序清单: 1. #include #define MaxSize 100 using namespace std; typedef int ElemType; typedef struct { ElemType data[MaxSize]; int top; }SqStack; void InitStack(SqStack *st) //初始化栈 { st->top=-1; } int StackEmpty(SqStack *st) //判断栈为空{ return (st->top==-1); } bool Push(SqStack *st,ElemType x) //元素进栈{ if(st->top==MaxSize-1)

{ return false; } else { st->top++; //移动栈顶位置 st->data[st->top]=x; //元素进栈 } return true; } bool Pop(SqStack *st,ElemType &e) //出栈 { if(st->top==-1) { return false; } else { e=st->data[st->top]; //元素出栈 st->top--; //移动栈顶位置} return true; } //函数名:Pushs //功能:数组入栈 //参数:st栈名,a->数组名,i->数组个数 bool Pushs(SqStack *st,ElemType *a,int i) { int n=0; for(;n数组名,i->数组个数 bool Pops(SqStack *st,ElemType *a,int i) { int n=0; for(;n

数据结构课程实验报告(15)

课程实验报告课程名称:数据结构 专业班级:信安1302 学号: 姓名: 指导教师: 报告日期:2015. 5. 12 计算机科学与技术学院

目录 1 课程实验概述............ 错误!未定义书签。 2 实验一基于顺序结构的线性表实现 2.1 问题描述 ...................................................... 错误!未定义书签。 2.2 系统设计 ...................................................... 错误!未定义书签。 2.3 系统实现 ...................................................... 错误!未定义书签。 2.4 效率分析 ...................................................... 错误!未定义书签。 3 实验二基于链式结构的线性表实现 3.1 问题描述 ...................................................... 错误!未定义书签。 3.2 系统设计 ...................................................... 错误!未定义书签。 3.3 系统实现 ...................................................... 错误!未定义书签。 3.4 效率分析 ...................................................... 错误!未定义书签。 4 实验三基于二叉链表的二叉树实现 4.1 问题描述 ...................................................... 错误!未定义书签。 4.2 系统设计 ...................................................... 错误!未定义书签。 4.3 系统实现 ...................................................... 错误!未定义书签。 4.4 效率分析 ...................................................... 错误!未定义书签。 5 实验总结与评价 ........... 错误!未定义书签。 1 课程实验概述 这门课是为了让学生了解和熟练应用C语言进行编程和对数据结构进一步深入了解的延续。

(完整版)数据结构---C语言描述-(耿国华)-课后习题答案

第一章习题答案 2、××√ 3、(1)包含改变量定义的最小范围 (2)数据抽象、信息隐蔽 (3)数据对象、对象间的关系、一组处理数据的操作 (4)指针类型 (5)集合结构、线性结构、树形结构、图状结构 (6)顺序存储、非顺序存储 (7)一对一、一对多、多对多 (8)一系列的操作 (9)有限性、输入、可行性 4、(1)A(2)C(3)C 5、语句频度为1+(1+2)+(1+2+3)+…+(1+2+3+…+n) 第二章习题答案 1、(1)一半,插入、删除的位置 (2)顺序和链式,显示,隐式 (3)一定,不一定 (4)头指针,头结点的指针域,其前驱的指针域 2、(1)A(2)A:E、A B:H、L、I、E、A C:F、M D:L、J、A、G或J、A、G (3)D(4)D(5)C(6)A、C 3、头指针:指向整个链表首地址的指针,标示着整个单链表的开始。 头结点:为了操作方便,可以在单链表的第一个结点之前附设一个结点,该结点的数据域可以存储一些关于线性表长度的附加信息,也可以什么都不存。 首元素结点:线性表中的第一个结点成为首元素结点。 4、算法如下: int Linser(SeqList *L,int X) { int i=0,k; if(L->last>=MAXSIZE-1) { printf(“表已满无法插入”); return(0); } while(i<=L->last&&L->elem[i]last;k>=I;k--) L->elem[k+1]=L->elem[k]; L->elem[i]=X;

L->last++; return(1); } 5、算法如下: #define OK 1 #define ERROR 0 Int LDel(Seqlist *L,int i,int k) { int j; if(i<1||(i+k)>(L->last+2)) { printf(“输入的i,k值不合法”); return ERROR; } if((i+k)==(L->last+2)) { L->last=i-2; ruturn OK; } else {for(j=i+k-1;j<=L->last;j++) elem[j-k]=elem[j]; L->last=L->last-k; return OK; } } 6、算法如下: #define OK 1 #define ERROR 0 Int Delet(LInkList L,int mink,int maxk) { Node *p,*q; p=L; while(p->next!=NULL) p=p->next; if(minknext->data>=mink)||(p->data<=maxk)) { printf(“参数不合法”); return ERROR; } else { p=L; while(p->next-data<=mink)

数据结构实验图的基本操作

浙江大学城市学院实验报告 课程名称数据结构 实验项目名称实验十三/十四图的基本操作 学生姓名专业班级学号 实验成绩指导老师(签名)日期2014/06/09 一.实验目的和要求 1、掌握图的主要存储结构。 2、学会对几种常见的图的存储结构进行基本操作。 二.实验内容 1、图的邻接矩阵定义及实现: 建立头文件test13_AdjM.h,在该文件中定义图的邻接矩阵存储结构,并编写图的初始化、建立图、输出图、输出图的每个顶点的度等基本操作实现函数。同时建立一个验证操作实现的主函数文件test13.cpp(以下图为例),编译并调试程序,直到正确运行。 2、图的邻接表的定义及实现: 建立头文件test13_AdjL.h,在该文件中定义图的邻接表存储结构,并编写图的初始化、建立图、输出图、输出图的每个顶点的度等基本操作实现函数。同时在主函数文件test13.cpp中调用这些函数进行验证(以下图为例)。

3、填写实验报告,实验报告文件取名为report13.doc。 4、上传实验报告文件report13.doc到BB。 注: 下载p256_GraphMatrix.cpp(邻接矩阵)和 p258_GraphAdjoin.cpp(邻接表)源程序,读懂程序完成空缺部分代码。 三. 函数的功能说明及算法思路 (包括每个函数的功能说明,及一些重要函数的算法实现思路) 四. 实验结果与分析 (包括运行结果截图、结果分析等)

五.心得体会

程序比较难写,但是可以通过之前的一些程序来找到一些规律 (记录实验感受、上机过程中遇到的困难及解决办法、遗留的问题、意见和建议等。) 【附录----源程序】 256: //p-255 图的存储结构以数组邻接矩阵表示, 构造图的算法。 #include #include #include #include typedef char VertexType; //顶点的名称为字符 const int MaxVertexNum=10; //图的最大顶点数 const int MaxEdgeNum=100; //边数的最大值 typedef int WeightType; //权值的类型 const WeightType MaxValue=32767; //权值的无穷大表示 typedef VertexType Vexlist[MaxVertexNum]; //顶点信息,定点名称 typedef WeightType AdjMatrix[MaxVertexNum][MaxVertexNum]; //邻接矩阵typedef enum{DG,DN,AG,AN} GraphKind; //有向图,有向网,无向图,无向网typedef struct{ Vexlist vexs; // 顶点数据元素 AdjMatrix arcs; // 二维数组作邻接矩阵 int vexnum, arcnum; // 图的当前顶点数和弧数 GraphKind kind; // 图的种类标志 } MGraph; void CreateGraph(MGraph &G, GraphKind kd)// 采用数组邻接矩阵表示法,构造图G {//构造有向网G int i,j,k,q; char v, w; G.kind=kd; //图的种类 printf("输入要构造的图的顶点数和弧数:\n"); scanf("%d,%d",&G.vexnum,&G.arcnum); getchar();//过滤回车 printf("依次输入图的顶点名称ABCD...等等:\n"); for (i=0; i

数据结构实验报告--图实验

图实验 一,邻接矩阵的实现 1.实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现 2.实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历 3.设计与编码 MGraph.h #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ } void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; int vertexNum, arcNum; }; #endif MGraph.cpp #include using namespace std; #include "MGraph.h" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e)

{ int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0; for(k = 0; k < arcNum; k++) { cout << "Please enter two vertexs number of edge: "; cin >> i >> j; arc[i][j] = 1; arc[j][i] = 1; } } template void MGraph::DFSTraverse(int v) { cout << vertex[v]; visited[v] = 1; for(int j = 0; j < vertexNum; j++) if(arc[v][j] == 1 && visited[j] == 0) DFSTraverse(j); } template void MGraph::BFSTraverse(int v) { int Q[MaxSize]; int front = -1, rear = -1; cout << vertex[v]; visited[v] = 1; Q[++rear] = v; while(front != rear) { v = Q[++front]; for(int j = 0;j < vertexNum; j++) if(arc[v][j] == 1 && visited[j] == 0){ cout << vertex[j]; visited[j] = 1;

(完整word版)数据结构第五章数组和广义表习题及答案

习题五数组和广义表 一、单项选择题 1.常对数组进行的两种基本操作是() A.建立与删除 B. 索引与修改 C. 查找与修改 D. 查找与索引2.对于C语言的二维数组DataType A[m][n],每个数据元素占K个存储单元,二维数组中任意元素a[i,j] 的存储位置可由( )式确定. A.Loc[i,j]=A[m,n]+[(n+1)*i+j]*k B.Loc[i,j]=loc[0,0]+[(m+n)*i+j]*k C.Loc[i,j]=loc[0,0]+[(n+1)*i+j]*k D.Loc[i,j]=[(n+1)*i+j]*k 3.稀疏矩阵的压缩存储方法是只存储 ( ) A.非零元素 B. 三元祖(i,j, aij) C. aij D. i,j 4. 数组A[0..5,0..6]的每个元素占五个字节,将其按列优先次序存储在起始地址为1000的内存单元中,则元素A[5,5]的地址是( )。 A. 1175 B. 1180 C. 1205 D. 1210 5. A[N,N]是对称矩阵,将下面三角(包括对角线)以行序存储到一维数组T[N(N+1)/2]中,则对任一上三角元素a[i][j]对应T[k]的下标k是()。 A. i(i-1)/2+j B. j(j-1)/2+i C. i(j-i)/2+1 D. j(i-1)/2+1 6. 用数组r存储静态链表,结点的next域指向后继,工作指针j指向链中结点,使j 沿链移动的操作为( )。 A. j=r[j].next B. j=j+1 C. j=j->next D. j=r[j]-> next 7. 对稀疏矩阵进行压缩存储目的是()。 A.便于进行矩阵运算 B.便于输入和输出 C.节省存储空间 D.降低运算的时间复杂度 8. 已知广义表LS=((a,b,c),(d,e,f)),运用head和tail函数取出LS中原子e的运算是( )。 A. head(tail(LS)) B. tail(head(LS)) C. head(tail(head(tail(LS))) D. head(tail(tail(head(LS)))) 9. 广义表((a,b,c,d))的表头是(),表尾是()。 A. a B.() C.(a,b,c,d) D.(b,c,d) 10. 设广义表L=((a,b,c)),则L的长度和深度分别为()。 A. 1和1 B. 1和3 C. 1和2 D. 2和3 11. 下面说法不正确的是( )。 A. 广义表的表头总是一个广义表 B. 广义表的表尾总是一个广义表 C. 广义表难以用顺序存储结构 D. 广义表可以是一个多层次的结构 二、填空题 1.通常采用___________存储结构来存放数组。对二维数组可有两种存储方法:一种是以___________为主序的存储方式,另一种是以___________为主序的存储方式。 2. 用一维数组B与列优先存放带状矩阵A中的非零元素A[i,j] (1≤i≤n,i-2≤j≤i+2),B 中的第8个元素是A 中的第_ _行,第_ _列的元素。

数据结构中图的全部操作

#include #include #include #include #include #include using namespace std; #define MAX_VERTEX_NUM 100 #define INFINITY INT_MAX #define EXTERN 10 #define OK 1 #define ERROR -1 #define MAX -1 #define MAXW 10000 typedef int Status; typedef bool VisitIf; typedef char VertexType;//顶点数据类型 typedef int VRType; //顶点关系( 表示是否相邻) typedef int InfoType; //弧相关信息

typedef enum{DG,DN,UDG,UDN} GraphKind;//图的类型 bool visited[MAX_VERTEX_NUM]; //邻接矩阵 typedef struct ArcCell { VRType adj;//权值 InfoType *info; }ArcCell,AdjMartix[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; typedef struct { VertexType vexs[MAX_VERTEX_NUM]; //顶点向量 AdjMartix arcs; //邻接矩阵 int vexnum,arcnum; //图当前顶点数,弧数 GraphKind Kind; //图的类型 }MGraph; bool VexExist(MGraph G,VertexType v)//判断定点是否在图中{

数据结构实验报告(图)

附录A 实验报告 课程:数据结构(c语言)实验名称:图的建立、基本操作以及遍历系别:数字媒体技术实验日期: 12月13号 12月20号 专业班级:媒体161 组别:无 姓名:学号: 实验报告内容 验证性实验 一、预习准备: 实验目的: 1、熟练掌握图的结构特性,熟悉图的各种存储结构的特点及适用范围; 2、熟练掌握几种常见图的遍历方法及遍历算法; 实验环境:Widows操作系统、VC6.0 实验原理: 1.定义: 基本定义和术语 图(Graph)——图G是由两个集合V(G)和E(G)组成的,记为G=(V,E),其中:V(G)是顶点(V ertex)的非空有限集E(G)是边(Edge)的有限集合,边是顶点的无序对(即:无方向的,(v0,v2))或有序对(即:有方向的,)。 邻接矩阵——表示顶点间相联关系的矩阵 设G=(V,E) 是有n 1 个顶点的图,G 的邻接矩阵A 是具有以下性质的n 阶方阵特点: 无向图的邻接矩阵对称,可压缩存储;有n个顶点的无向图需存储空间为n(n+1)/2 有向图邻接矩阵不一定对称;有n个顶点的有向图需存储空间为n2 9

无向图中顶点V i的度TD(V i)是邻接矩阵A中第i行元素之和有向图中, 顶点V i的出度是A中第i行元素之和 顶点V i的入度是A中第i列元素之和 邻接表 实现:为图中每个顶点建立一个单链表,第i个单链表中的结点表示依附于顶点Vi的边(有向图中指以Vi为尾的弧) 特点: 无向图中顶点Vi的度为第i个单链表中的结点数有向图中 顶点Vi的出度为第i个单链表中的结点个数 顶点Vi的入度为整个单链表中邻接点域值是i的结点个数 逆邻接表:有向图中对每个结点建立以Vi为头的弧的单链表。 图的遍历 从图中某个顶点出发访遍图中其余顶点,并且使图中的每个顶点仅被访问一次过程.。遍历图的过程实质上是通过边或弧对每个顶点查找其邻接点的过程,其耗费的时间取决于所采用的存储结构。图的遍历有两条路径:深度优先搜索和广度优先搜索。当用邻接矩阵作图的存储结构时,查找每个顶点的邻接点所需要时间为O(n2),n为图中顶点数;而当以邻接表作图的存储结构时,找邻接点所需时间为O(e),e 为无向图中边的数或有向图中弧的数。 实验内容和要求: 选用任一种图的存储结构,建立如下图所示的带权有向图: 要求:1、建立边的条数为零的图;

数据结构课后习题及解

数据结构课后习题及解析第五章

第五章习题 5.1 假设有6行8列的二维数组A,每个元素占用6个字节,存储器按字节编址。已知A的基地址为 1000,计算: 数组A共占用多少字节; 数组A的最后一个元素的地址; 按行存储时元素A 36 的地址; 按列存储时元素A 36 的地址; 5.2 设有三对角矩阵A n×n ,将其三条对角线上的元素逐行地存于数组B(1:3n-2)中,使得B[k]= a ij , 求: (1)用i,j表示k的下标变换公式; (2)用k表示i,j的下标变换公式。 5.3假设稀疏矩阵A和B均以三元组表作为存储结构。试写出矩阵相加的算法,另设三元组表C存放 结果矩阵。 5.4在稀疏矩阵的快速转置算法5.2中,将计算position[col]的方法稍加改动,使算法只占用一个 辅助向量空间。 5.5写一个在十字链表中删除非零元素a ij 的算法。 5.6画出下面广义表的两种存储结构图示: ((((a), b)), ((( ), d), (e, f))) 5.7求下列广义表运算的结果: (1)HEAD[((a,b),(c,d))]; (2)TAIL[((a,b),(c,d))]; (3)TAIL[HEAD[((a,b),(c,d))]]; (4)HEAD[TAIL[HEAD[((a,b),(c,d))]]]; (5)TAIL[HEAD[TAIL[((a,b),(c,d))]]];

实习题 若矩阵A m×n 中的某个元素a ij 是第i行中的最小值,同时又是第j列中的最大值,则称此元素为该 矩阵中的一个马鞍点。假设以二维数组存储矩阵,试编写算法求出矩阵中的所有马鞍点。 第五章答案 5.2设有三对角矩阵A n×n,将其三条对角线上的元素逐行的存于数组B[1..3n-2]中,使得B[k]=a ij,求:(1)用i,j表示k的下标变换公式;(2)用k表示i、j的下标变换公式。 【解答】(1)k=2(i-1)+j (2) i=[k/3]+1, j=[k/3]+k%3 ([ ]取整,%取余) 5.4在稀疏矩阵的快速转置算法5.2中,将计算position[col]的方法稍加改动,使算法只占用一个辅助向量空间。 【解答】算法(一) FastTransposeTSMatrix(TSMartrix A, TSMatrix *B) {/*把矩阵A转置到B所指向的矩阵中去,矩阵用三元组表表示*/ int col,t,p,q; int position[MAXSIZE]; B->len=A.len; B->n=A.m; B->m=A.n; if(B->len>0) { position[1]=1; for(t=1;t<=A.len;t++) position[A.data[t].col+1]++; /*position[col]存放第col-1列非零元素的个数, 即利用pos[col]来记录第col-1列中非零元素的个数*/ /*求col列中第一个非零元素在B.data[ ]的位置,存放在position[col]中*/ for(col=2;col<=A.n;col++) position[col]=position[col]+position[col-1]; for(p=1;p

相关主题
文本预览
相关文档 最新文档