当前位置:文档之家› 数据结构-图习题

数据结构-图习题

数据结构-图习题
数据结构-图习题

?????????

??????

?????=01

00000001001010000

010*********

Edge 第8章 图

8-1 画出1个顶点、2个顶点、3个顶点、4个顶点和5个顶点的无向完全图。试证明在n 个顶点的无向完全图中,边的条数为n(n -1)/2。 【解答】 【证明】

在有n 个顶点的无向完全图中,每一个顶点都有一条边与其它某一顶点相连,所以每一个顶点有n -1

条边与其他n -1个顶点相连,总计n 个顶点有n(n -1)条边。但在无向图中,顶点i 到顶点j 与顶点j 到顶点i 是同一条边,所以总共有n(n -1)/2条边。

8-2 右边的有向图是强连通的吗?请列出所有的简单路径。 【解答】

判断一个有向图是否强连通,要看从任一顶点出发是否能够回到该顶

点。右面的有向图做不到这一点,它不是强连通的有向图。各个顶点自成强连通分量。

所谓简单路径是指该路径上没有重复的顶点。

从顶点A 出发,到其他的各个顶点的简单路径有A →B ,A →D →B ,A →B →C ,A →D →B →C ,A →D ,A →B →E ,A →D →E ,A →D →B →E ,A →B →C →F →E ,A →D →B →C →F →E ,A →B →C →F ,A →D →B →C →F 。

从顶点B 出发,到其他各个顶点的简单路径有B →C ,B →C →F ,B →E ,B →C →F →E 。 从顶点C 出发,到其他各个顶点的简单路径有C →F ,C →F →E 。

从顶点D 出发,到其他各个顶点的简单路径有D →B ,D →B →C ,D →B →C →F ,D →E ,D →B →E ,D →B →C →F →E 。

从顶点E 出发,到其他各个顶点的简单路径无。 从顶点F 出发,到其他各个顶点的简单路径有F →E 。

8-3 给出右图的邻接矩阵、邻接表和邻接多重表表示。 【解答】

(1) 邻接矩阵

1个顶点的 无向完全图

2个顶点的 无向完全图

3个顶点的 无向完全图 4个顶点的 无向完全图

5个顶点的 无向完全图

(2) 邻接表 (3) 邻接多重表(十字链表)

8-4 用邻接矩阵表示图时,若图中有1000个顶点,1000条边,则形成的邻接矩阵有多少矩阵元素?有多少非零元素?是否稀疏矩阵? 【解答】

一个图中有1000个顶点,其邻接矩阵中的矩阵元素有10002 = 1000000个。它有1000个非零元素(对于有向图)或2000个非零元素(对于无向图),因此是稀疏矩阵。

8-5 用邻接矩阵表示图时,矩阵元素的个数与顶点个数是否相关?与边的条数是否相关? 【解答】

用邻接矩阵表示图,矩阵元素的个数是顶点个数的平方,与边的条数无关。矩阵中非零元素的个数与边的条数有关。

8-6 有n 个顶点的无向连通图至少有多少条边?有n 个顶点的有向强连通图至少有多少条边?试举例说明。 【解答】

12345

0 1 2 3 4 5

(出边表)

(入边表)

12345data fin fout (A, B) (A, D) (B, C)

(B, E) (C, F) (D, B) (D, E) (F, E)

②③

④⑤或

②③

④⑤

②③

④⑤

②③

④⑤

n个顶点的无向连通图至少有n-1条边,n个顶点的有向强连通图至少有n条边。例如:

特例情况是当n = 1时,此时至少有0条边。

8-7对于有n个顶点的无向图,采用邻接矩阵表示,如何判断以下问题:图中有多少条边?任意两个顶点i和j之间是否有边相连?任意一个顶点的度是多少?

【解答】

用邻接矩阵表示无向图时,因为是对称矩阵,对矩阵的上三角部分或下三角部分检测一遍,统计其中的非零元素个数,就是图中的边数。如果邻接矩阵中A[i][j] 不为零,说明顶点i与顶点j之间有边相连。此外统计矩阵第i行或第i列的非零元素个数,就可得到顶点i的度数。

8-8对于如右图所示的有向图,试写出:

(1) 从顶点①出发进行深度优先搜索所得到的深度优先生成树;

(2) 从顶点②出发进行广度优先搜索所得到的广度优先生成树;

【解答】

(1) 以顶点①为根的深度优先生成树(不唯一):②③④⑤⑥

(2) 以顶点②为根的广度优先生成树:

8-9 试扩充深度优先搜索算法,在遍历图的过程中建立生成森林的左子女-右兄弟链表。算法的首部为void Graph::DFS ( const int v, int visited [ ], TreeNode * t ) 其中,指针t指向生成森林上具有图顶点v信息的根结点。(提示:在继续按深度方向从根v的某一未访问过的邻接顶点w向下遍历之前,建立子女结点。但需要判断是作为根的第一个子女还是作为其子女的右兄弟链入生成树。)

【解答】

为建立生成森林,需要先给出建立生成树的算法,然后再在遍历图的过程中,通过一次次地调用这个算法,以建立生成森林。

te mplate void Graph :: DFS_Tree ( const int v, int visited [ ], TreeNode *t ) {

//从图的顶点v出发, 深度优先遍历图, 建立以t (已在上层算法中建立)为根的生成树。

Visited[v] = 1; int first = 1; TreeNode * p, * q;

int w = GetFirstNeighbor ( v );//取第一个邻接顶点

while ( w != -1 ) {//若邻接顶点存在

if ( vosited[w] == 0 ) { //且该邻接结点未访问过

p = new TreeNode ( GetValue (w) );//建立新的生成树结点

if ( first == 1 ) //若根*t还未链入任一子女

{ t->setFirstChild ( p );first = 0; }//新结点*p成为根*t的第一个子女

else q->setNextSibling ( p );//否则新结点*p成为*q的下一个兄弟

q = p;//指针q总指示兄弟链最后一个结点

DFS_Tree ( w, visited, q );//从*q向下建立子树

}

w = GetNextNeighbor ( v, w );//取顶点v排在邻接顶点w的下一个邻接顶点}

}

下一个算法用于建立以左子女-右兄弟链表为存储表示的生成森林。

template void Graph :: DFS_Forest ( Tree& T ) {

//从图的顶点v出发, 深度优先遍历图, 建立以左子女-右兄弟链表表示的生成森林T。

T.root = NULL; int n =NumberOfVertices ( ); //顶点个数

TreeNode * p, * q;

int * visited = new int [ n ];//建立访问标记数组

for ( int v = 0; v < n; v++ ) visited[v] = 0;

for ( v = 0; v < n; v++ ) //逐个顶点检测

if ( visited[v] == 0 ) {//若尚未访问过

p = new TreeNode ( GetValue ( v ) );//建立新结点*p

if ( T.root == NULL ) T.root = p;//原来是空的生成森林, 新结点成为根

else q-> setNextSibling ( p );//否则新结点*p成为*q的下一个兄弟

q = p;

DFS_Tree ( v, visited, p );//建立以*p为根的生成树

}

}

8-10 用邻接表表示图时,顶点个数设为n,边的条数设为e,在邻接表上执行有关图的遍历操作时,时间代价是O(n*e)?还是O(n+e)?或者是O(max(n,e))?

【解答】

在邻接表上执行图的遍历操作时,需要对邻接表中所有的边链表中的结点访问一次,还需要对所有的顶点访问一次,所以时间代价是O(n+e)。

8-11 右图是一个连通图,请画出

(1) 以顶点①为根的深度优先生成树;

(2) 如果有关节点,请找出所有的关节点。

(3)如果想把该连通图变成重连通图,至少在图中加几条边?如何加?

【解答】

(1) 以顶点①为根的深度优先生成树:⑩①②

③④⑤

(2) 关节点为 ①,②,③,⑦,⑧

(3) 至少加四条边 (1, 10), (3, 4), (4, 5), (5, 6)。从③的子孙结点⑩到③的祖先结点①引一条边,从②

的子孙结点④到根①的另一分支③引一条边,并将⑦的子孙结点⑤、⑥与结点④连结起来,可使其变为重连通图。

8-12试证明在一个有n 个顶点的完全图中,生成树的数目至少有2n-1-1。 【证明】略

8-13 编写一个完整的程序,首先定义堆和并查集的结构类型和相关操作,再定义Kruskal 求连通网络的最小生成树算法的实现。并以右图为例,写出求解过程中堆、并查集和最小生成树的变化。 【解答】 求解过程的第一步是对所有的边,按其权值大小建堆:

② ③

④ ⑤

11 7

6

8

5

10

9

7

① ②

⑥ ⑦ ⑧

① ②

⑥ ⑦ ⑧

加(1, 2), (1, 3),

(2,3)

加(2, 4)

加(3, 4)

加(3, 5) 加(3, 6)

加(5, 6)

求解过程中并查集与堆的变化:

最后得到的生成树如下

完整的程序如下:

#include

template class MinHeap { public: enum { MaxHeapSize = 50 };

MinHeap ( int Maxsize = MaxHeapSize ); MinHeap ( Type Array[ ], int n ); void Insert ( const Type &ele ); void RemoveMin ( Type &Min );

void Output ();

private: void FilterDown ( int start , int end ); void FilterUp ( int end ); Type *pHeap ; int HMaxSize ;

int CurrentSize ; };

class UFSets { public:

3 1 -6 3 3 5 1 3 11 3 5 7

2 4 9

2 3 10

3 6 8 ①

② ③

④ ⑤

6

7

5

7

9

③ ④

选(3,4,5)

③ ④ ⑤ ⑥

选(5,6,6)

③ ④ ⑤ ⑥

选(1,2,7)

① ② ③ ④ ⑤

选(3,5,7) ① ② 1 3 11

2 4 9 2

3 10

3 6 8

③ ④ ⑤

⑥ 选(3,6,8), 在同一连通分量上, 不加 ① ② 1 3 11

2 3 10 2 4 9

③ ④ ⑤

⑥ 选(2,4,9), 结束

① ②

1 3 11

2 3 10

0 1 2 3 4 5 6

并查集的存储表示

enum { MaxUnionSize = 50 };

UFSets ( int MaxSize = MaxUnionSize );

~UFSets () { delete [ ] m_pParent; }

void Union ( int Root1, int Root2 );

int Find ( int x );

private:

int m_iSize;

int *m_pParent;

};

class Graph {

public:

enum { MaxVerticesNum = 50 };

Graph( int Vertices = 0) { CurrentVertices = Vertices; InitGraph(); } void InitGraph ();

void Kruskal ();

int GetVerticesNum () { return CurrentVertices; }

private:

int Edge[MaxVerticesNum][MaxVerticesNum];

int CurrentVertices;

};

class GraphEdge {

public:

int head, tail;

int cost;

int operator <= ( GraphEdge &ed );

};

GraphEdge :: operator <= ( GraphEdge &ed ) {

return this->cost <= ed.cost;

}

UFSets :: UFSets ( int MaxSize ) {

m_iSize = MaxSize;

m_pParent = new int[m_iSize];

for ( int i = 0; i < m_iSize; i++ ) m_pParent[i] = -1;

}

void UFSets :: Union ( int Root1, int Root2 ) {

m_pParent[Root2] = Root1;

}

int UFSets :: Find ( int x ) {

while ( m_pParent[x] >= 0 ) x = m_pParent[x];

return x;

}

template MinHeap :: MinHeap ( int Maxsize ) { HMaxSize = Maxsize;

pHeap = new Type[HMaxSize];

CurrentSize = -1;

}

template MinHeap :: MinHeap ( Type Array[], int n ) { HMaxSize = ( n < MaxHeapSize ) ? MaxHeapSize : n;

pHeap = new Type[HMaxSize];

for ( int i = 0; i < n; i++ ) pHeap[i] = Array[i];

CurrentSize = n-1;

int iPos = ( CurrentSize - 1 ) / 2;

while ( iPos >= 0 ) {

FilterDown ( iPos, CurrentSize );

iPos--;

}

}

template void MinHeap :: FilterDown ( int start, int end ) { int i = start, j = 2 * start + 1;

Type Temp = pHeap[i];

while ( j <= end ) {

if ( j < end && pHeap[j+1] <= pHeap[j] ) j++;

if ( Temp <= pHeap[j] ) break;

pHeap[i] = pHeap[j];

i = j; j = 2 * j + 1;

}

pHeap[i] = Temp;

}

template void MinHeap :: FilterUp ( int end ) { int i = end, j = ( end - 1 ) / 2;

Type Temp = pHeap[i];

while ( i > 0 ) {

if ( pHeap[j] <= Temp ) break;

pHeap[i] = pHeap[j];

i = j; j = ( j - 1 ) / 2;

}

数据结构实验

实验2 查找算法的实现和应用?实验目的 1. 熟练掌握静态查找表的查找方法; 2. 熟练掌握动态查找表的查找方法; 3. 掌握hash表的技术. ?实验内容 1.用二分查找法对查找表进行查找; 2.建立二叉排序树并对该树进行查找; 3.确定hash函数及冲突处理方法,建立一个hash表并实现查找。 程序代码 #include using namespace std; int main() { int arraay[10]={1,2,3,4,5,6,7,8,9,10}; int binary_search(int a[10],int t); cout<<"Enter the target:"; int target; cin>>target; binary_search(arraay,target); return 0; } int binary_search(int a[10],int t) { int bottom=0,top=9; while(bottom

cout<<"Not present!"; } return 0; } 结果 二叉排序树 #include #include #include using namespace std; typedef int keyType; typedef struct Node { keyType key; struct Node* left; struct Node* right; struct Node* parent; }Node,*PNode; void inseart(PNode* root, keyType key) { PNode p = (PNode)malloc(sizeof(Node)); p -> key = key;

数据结构实验十一:图实验

一,实验题目 实验十一:图实验 采用邻接表存储有向图,设计算法判断任意两个顶点间手否存在路径。 二,问题分析 本程序要求采用邻接表存储有向图,设计算法判断任意两个顶点间手否存在路径,完成这些操作需要解决的关键问题是:用邻接表的形式存储有向图并输出该邻接表。用一个函数实现判断任意两点间是否存在路径。 1,数据的输入形式和输入值的范围:输入的图的结点均为整型。 2,结果的输出形式:输出的是两结点间是否存在路径的情况。 3,测试数据:输入的图的结点个数为:4 输入的图的边得个数为:3 边的信息为:1 2,2 3,3 1 三,概要设计 (1)为了实现上述程序的功能,需要: A,用邻接表的方式构建图 B,深度优先遍历该图的结点 C,判断任意两结点间是否存在路径 (2)本程序包含6个函数: a,主函数main() b,用邻接表建立图函数create_adjlistgraph() c,深度优先搜索遍历函数dfs() d,初始化遍历数组并判断有无通路函数dfs_trave() e,输出邻接表函数print() f,释放邻接表结点空间函数freealgraph() 各函数间关系如右图所示: 四,详细设计 (1)邻接表中的结点类型定义:

typedef struct arcnode{ int adjvex; arcnode *nextarc; }arcnode; (2)邻接表中头结点的类型定义: typedef struct{ char vexdata; arcnode *firstarc; }adjlist; (3)邻接表类型定义: typedef struct{ adjlist vextices[max]; int vexnum,arcnum; }algraph; (4)深度优先搜索遍历函数伪代码: int dfs(algraph *alg,int i,int n){ arcnode *p; visited[i]=1; p=alg->vextices[i].firstarc; while(p!=NULL) { if(visited[p->adjvex]==0){ if(p->adjvex==n) {flag=1; } dfs(alg,p->adjvex,n); if(flag==1) return 1; } p=p->nextarc; } return 0; } (5)初始化遍历数组并判断有无通路函数伪代码: void dfs_trave(algraph *alg,int x,int y){ int i; for(i=0;i<=alg->vexnum;i++) visited[i]=0; dfs(alg,x,y); } 五,源代码 #include "stdio.h" #include "stdlib.h" #include "malloc.h" #define max 100 typedef struct arcnode{ //定义邻接表中的结点类型 int adjvex; //定点信息 arcnode *nextarc; //指向下一个结点的指针nextarc }arcnode; typedef struct{ //定义邻接表中头结点的类型 char vexdata; //头结点的序号 arcnode *firstarc; //定义一个arcnode型指针指向头结点所对应的下一个结点}adjlist; typedef struct{ //定义邻接表类型 adjlist vextices[max]; //定义表头结点数组

数据结构实验

数据结构实验指导书

实验一线性表的顺序存储结构 一、实验学时 4学时 二、背景知识:顺序表的插入、删除及应用。 三、目的要求: 1.掌握顺序存储结构的特点。 2.掌握顺序存储结构的常见算法。 四、实验内容 1.从键盘随机输入一组整型元素序列,建立顺序表。(注意:不可将元素个数和元素值写死在程序中) 2.实现该顺序表的遍历(也即依次打印出每个数据元素的值)。 3.在该顺序表中顺序查找某一元素,如果查找成功返回1,否则返回0。 4.实现把该表中某个数据元素删除。 5.实现在该表中插入某个数据元素。 6.实现两个线性表的归并(仿照课本上P26 算法2.7)。 7. 编写一个主函数,调试上述6个算法。 五、实现提示 1.存储定义 #include #include #define MAXSIZE 100 //表中元素的最大个数

typedef int ElemType;//元素类型 typedef struct list{ ElemType *elem;//静态线性表 int length; //表的实际长度 int listsize; //表的存储容量 }SqList;//顺序表的类型名 2.建立顺序表时可利用随机函数自动产生数据。 3.为每个算法功能建立相应的函数分别调试,最后在主函数中调用它们。 六、注意问题 插入、删除元素时对于元素合法位置的判断。 七、测试过程 1.先从键盘输入元素个数,假设为6。 2.从键盘依次输入6个元素的值(注意:最好给出输入每个元素的提示,否则除了你自己知道之外,别人只见光标在闪却不知道要干什么),假设是:10,3,8,39,48,2。 3.遍历该顺序表。 4.输入待查元素的值例如39(而不是待查元素的位置)进行查找,因为它在表中所以返回1。假如要查找15,因为它不存在,所以返回0。 5.输入待删元素的位置将其从表中删掉。此处需要注意判断删位置是否合法,若表中有n个元素,则合法的删除位

数据结构实验报告七查找、

云南大学软件学院数据结构实验报告 (本实验项目方案受“教育部人才培养模式创新实验区(X3108005)”项目资助)实验难度: A □ B □ C □ 学期:2010秋季学期 任课教师: 实验题目: 查找算法设计与实现 姓名: 王辉 学号: 20091120154 电子邮件: 完成提交时间: 2010 年 12 月 27 日

云南大学软件学院2010学年秋季学期 《数据结构实验》成绩考核表 学号:姓名:本人承担角色: 综合得分:(满分100分) 指导教师:年月日(注:此表在难度为C时使用,每个成员一份。)

(下面的内容由学生填写,格式统一为,字体: 楷体, 行距: 固定行距18,字号: 小四,个人报告按下面每一项的百分比打分。难度A满分70分,难度B满分90分)一、【实验构思(Conceive)】(10%) 1 哈希表查找。根据全年级学生的姓名,构造一个哈希表,选择适当的哈希函数和解决冲突的方法,设计并实现插入、删除和查找算法。 熟悉各种查找算法的思想。 2、掌握查找的实现过程。 3、学会在不同情况下运用不同结构和算法求解问题。 4 把每个学生的信息放在结构体中: typedef struct //记录 { NA name; NA tel; NA add; }Record; 5 void getin(Record* a)函数依次输入学生信息 6 人名折叠处理,先将用户名进行折叠处理折叠处理后的数,用除留余数法构造哈希函数,并返回模值。并采用二次探测再散列法解决冲突。 7姓名以汉语拼音形式,待填入哈希表的人名约30个,自行设计哈希函数,用线性探测再散列法或链地址法处理冲突;在查找的过程中给出比较的次数。完成按姓名查询的操作。将初始班级的通讯录信息存入文件。 二、【实验设计(Design)】(20%) (本部分应包括:抽象数据类型的功能规格说明、主程序模块、各子程序模块的伪码说明,主程序模块与各子程序模块间的调用关系) 1抽象数据类型的功能规格说明和结构体: #include

数据结构实验答案1

重庆文理学院软件工程学院实验报告册 专业:_____软件工程__ _ 班级:_____软件工程2班__ _ 学号:_____201258014054 ___ 姓名:_____周贵宇___________ 课程名称:___ 数据结构 _ 指导教师:_____胡章平__________ 2013年 06 月 25 日

实验序号 1 实验名称实验一线性表基本操作实验地点S-C1303 实验日期2013年04月22日 实验内容1.编程实现在顺序存储的有序表中插入一个元素(数据类型为整型)。 2.编程实现把顺序表中从i个元素开始的k个元素删除(数据类型为整型)。 3.编程序实现将单链表的数据逆置,即将原表的数据(a1,a2….an)变成 (an,…..a2,a1)。(单链表的数据域数据类型为一结构体,包括学生的部分信息:学号,姓名,年龄) 实验过程及步骤1. #include #include #include #define OK 1 #define ERROR 0 #define TRUE 1 #define FALSE 0 #define ElemType int #define MAXSIZE 100 /*此处的宏定义常量表示线性表可能达到的最大长度*/ typedef struct

{ ElemType elem[MAXSIZE]; /*线性表占用的数组空间*/ int last; /*记录线性表中最后一个元素在数组elem[ ]中的位置(下标值),空表置为-1*/ }SeqList; #include "common.h" #include "seqlist.h" void px(SeqList *A,int j); void main() { SeqList *l; int p,q,r; int i; l=(SeqList*)malloc(sizeof(SeqList)); printf("请输入线性表的长度:"); scanf("%d",&r); l->last = r-1; printf("请输入线性表的各元素值:\n"); for(i=0; i<=l->last; i++) { scanf("%d",&l->elem[i]); } px(l,i); printf("请输入要插入的值:\n");

数据结构实验报告图实验

图实验一,邻接矩阵的实现 1.实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现 2.实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历 3.设计与编码 MGraph.h #ifndef MGraph_H #define MGraph_H const int MaxSize = 10;

template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ } void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; int vertexNum, arcNum; }; #endif MGraph.cpp

#include using namespace std; #include "MGraph.h" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0; for(k = 0; k < arcNum; k++) {

数据结构_实验六_报告

实验报告 实验六图的应用及其实现 一、实验目的 1.进一步功固图常用的存储结构。 2.熟练掌握在图的邻接表实现图的基本操作。 3.理解掌握AOV网、AOE网在邻接表上的实现以及解决简单的应用问题。 二、实验内容 一>.基础题目:(本类题目属于验证性的,要求学生独立完成) [题目一]:从键盘上输入AOV网的顶点和有向边的信息,建立其邻接表存储结构,然后对该图拓扑排序,并输出拓扑序列. 试设计程序实现上述AOV网 的类型定义和基本操作,完成上述功能。 [题目二]:从键盘上输入AOE网的顶点和有向边的信息,建立其邻接表存储结构,输出其关键路径和关键路径长度。试设计程序实现上述AOE网类型定义和基本操作,完成上述功能。 测试数据:教材图7.29 【题目五】连通OR 不连通 描述:给定一个无向图,一共n个点,请编写一个程序实现两种操作: D x y 从原图中删除连接x,y节点的边。 Q x y 询问x,y节点是否连通 输入 第一行两个数n,m(5<=n<=40000,1<=m<=100000) 接下来m行,每行一对整数 x y (x,y<=n),表示x,y之间有边相连。保证没有重复的边。 接下来一行一个整数 q(q<=100000) 以下q行每行一种操作,保证不会有非法删除。 输出 按询问次序输出所有Q操作的回答,连通的回答C,不连通的回答D 样例输入

3 3 1 2 1 3 2 3 5 Q 1 2 D 1 2 Q 1 2 D 3 2 Q 1 2 样例输出 C C D 【题目六】 Sort Problem An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not. 【Input】 Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n<= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. 1 <= m <= 100. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input. 【Output】 For each problem instance, output consists of one line. This line should be one of the following three: Sorted sequence determined: y y y… y. Sorted sequence cannot be determined. Inconsistency found.

数据结构实验七图的创建与遍历

实验七图的创建与遍历 实验目的: 通过上机实验进一步掌握图的存储结构及基本操作的实现。 实验内容与要求: 要求: ⑴能根据输入的顶点、边/弧的信息建立图; ⑵实现图中顶点、边/弧的插入、删除; ⑶实现对该图的深度优先遍历; ⑷实现对该图的广度优先遍历。 备注:单号基于邻接矩阵,双号基于邻接表存储结构实现上述操作。算法设计: #include #include #define INFINITY 32767 #define MAX_VEX 20 //最大顶点个数 #define QUEUE_SIZE (MAX_VEX+1) //队列长度 using namespace std; bool *visited; //访问标志数组 //图的邻接矩阵存储结构 typedef struct{ char *vexs; //顶点向量 int arcs[MAX_VEX][MAX_VEX]; //邻接矩阵 int vexnum,arcnum; //图的当前顶点数和弧数 }Graph; //队列类 class Queue{ public: void InitQueue() { base=(int *)malloc(QUEUE_SIZE*sizeof(int)); front=rear=0;

. } void EnQueue(int e) { base[rear]=e; rear=(rear+1)%QUEUE_SIZE; } void DeQueue(int &e) { e=base[front]; front=(front+1)%QUEUE_SIZE; } public: int *base; int front; int rear; }; //图G中查找元素c的位置 int Locate(Graph G,char c) { for(int i=0;i

数据结构实验报告图实验

邻接矩阵的实现 1. 实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现2. 实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历3.设计与编码MGraph.h #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; }

int vertexNum, arcNum; }; #endif MGraph.cpp #include using namespace std; #include "MGraph.h" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0; for(k = 0; k < arcNum; k++) { cout << "Please enter two vertexs number of edge: " cin >> i >> j; arc[i][j] = 1; arc[j][i] = 1; } }

数据结构实验

实验1 (C语言补充实验) 有顺序表A和B,其元素值均按从小到大的升序排列,要求将它们合并成一 个顺序表C,且C的元素也是从小到大的升序排列。 #include main() { intn,m,i=0,j=0,k=0,a[5],b[5],c[10];/* 必须设个m做为数组的输入的计数器,不能用i ,不然进行到while 时i 直接为5*/ for(m=0;m<=4;m++)scanf("%d",&a[m]);// 输入数组a for(m=0;m<=4;m++)scanf("%d",&b[m]);// 输入数组b while(i<5&&j<5) {if(a[i]b[j]){c[k]=b[j];k++;j++;} else{c[k]=a[i];k++;i++;j++;}// 使输入的两组数组中相同的数只输出一 个 } if(i<5) for(n=i;n<5;n++) {c[k]=a[n];k++;} elseif(j<5) for(n=j;n<5;n++) {c[k]=b[n];k++;} for(i=0;i

求A QB #include main() { inti,j,k=0,a[5],b[5],c[5];//A=a[5],B=b[5],A n B=c[5] for(i=0;i<5;i++)scanf("%d",&a[i]);// 输入a 数组 for(i=0;i<5;i++)scanf("%d",&b[i]);〃输入b 数组 for(i=0;i<5;i++) {for(j=0;j<5;j++) if(a[i]==b[j]){c[k]=a[i];k++;}// 当有元素重复时,只取一个放入 c 中} for(i=0;i #defineN4 main() { inti,j,m,k,a[N+1];//k 为最后输出数组的长度变量

数据结构第六章实验

#include #include #include typedef struct{ unsigned int weight; unsigned int parent,lchild,rchild; }HTNode,*HuffmanTree; typedef char * *HuffmanCode; /*void Select(HuffmanTree &HT,int n,int &s1,int &s2) { s1=1;int j; for(j=1;j<=n;j++) { while(HT[j].parent==0) { if(HT[s1].weight>HT[j].weight) s1=j; } } HT[s1].parent=1; if(s1!=1)s2=1;else s2=2; for( j=1;j<=n;j++) { while(HT[j].parent==0) { if(HT[s2].weight>HT[j].weight) s2=j; } } }错误,未查出原因*/ int min(HuffmanTree t,int i) { int j,flag; unsigned int k; for(j=1;j<=i;j++) if(t[j].weight

数据结构实验六

洛阳理工学院实验报告

附:源程序: #include #include #include #define ENDKEY -1 #define NULL 0 #define OK 1 typedef struct node { int key; struct node *lchild,*rchild; }BSTNode, *BSTree; int InsertBST(BSTree *bst,int key) //插入函数{ BSTree s; if (*bst==NULL) { s=(BSTree)malloc(sizeof(BSTNode)); s->key=key; s->lchild=NULL; s->rchild=NULL; *bst=s; return OK; } else if(key<=(*bst)->key)

{ InsertBST(&((*bst)->lchild),key); return OK; } else if(key>(*bst)->key) { InsertBST(&((*bst)->rchild),key); return OK; } } void CreateBST(BSTree *bst) { int key; *bst=NULL; scanf("%d", &key); while (key!=ENDKEY) { InsertBST(bst, key); scanf("%d", &key); } } BSTree SearchBST(BSTree bst, int key) { if(!bst) return NULL; else if(bst->key==key) return bst; //查找成功 else if(bst->key>key) return SearchBST(bst->lchild,key); else return SearchBST(bst->rchild,key);

数据结构实验六 图的应用及其实现

实验六图的应用及其实现 一、实验目的 1.进一步功固图常用的存储结构。 2.熟练掌握在图的邻接表实现图的基本操作。 3.理解掌握AOE网在邻接表上的实现及解决简单的应用问题。 二、实验内容 [题目]:从键盘上输入AOE网的顶点和有向边的信息,建立其邻接表存储结构,输出其关键路径和关键路径长度。试设计程序实现上述AOE网类型定义和基本操作,完成上述功能。 三、实验步骤 (一)、数据结构与核心算法的设计描述 本实验题目是基于图的基本操作以及邻接表的存储结构之上,着重拓扑排序算法的应用,做好本实验的关键在于理解拓扑排序算法的实质及其代码的实现。 (二)、函数调用及主函数设计 以下是头文件中数据结构的设计和相关函数的声明: typedef struct ArcNode // 弧结点 { int adjvex; struct ArcNode *nextarc; InfoType info; }ArcNode; typedef struct VNode //表头结点 { VertexType vexdata; ArcNode *firstarc; }VNode,AdjList[MAX_VERTEX_NUM]; typedef struct //图的定义 { AdjList vertices; int vexnum,arcnum; int kind; }MGraph; typedef struct SqStack //栈的定义 { SElemType *base; SElemType *top; int stacksize;

}SqStack; int CreateGraph(MGraph &G);//AOE网的创建 int CriticalPath(MGraph &G);//输出关键路径 (三)、程序调试及运行结果分析 (四)、实验总结 在做本实验的过程中,拓扑排具体代码的实现起着很重要的作用,反复的调试和测试占据着实验大量的时间,每次对错误的修改都加深了对实验和具体算法的理解,自己的查错能力以及其他各方面的能力也都得到了很好的提高。最终实验结果也符合实验的预期效果。 四、主要算法流程图及程序清单 1、主要算法流程图: 2、程序清单: 创建AOE网模块: int CreateGraph(MGraph &G) //创建有向网 { int i,j,k,Vi,Vj; ArcNode *p; cout<<"\n请输入顶点的数目、边的数目"<

数据结构实验报告(图)

附录A 实验报告 课程:数据结构(c语言)实验名称:图的建立、基本操作以及遍历系别:数字媒体技术实验日期: 12月13号 12月20号 专业班级:媒体161 组别:无 姓名:学号: 实验报告内容 验证性实验 一、预习准备: 实验目的: 1、熟练掌握图的结构特性,熟悉图的各种存储结构的特点及适用范围; 2、熟练掌握几种常见图的遍历方法及遍历算法; 实验环境:Widows操作系统、VC6.0 实验原理: 1.定义: 基本定义和术语 图(Graph)——图G是由两个集合V(G)和E(G)组成的,记为G=(V,E),其中:V(G)是顶点(V ertex)的非空有限集E(G)是边(Edge)的有限集合,边是顶点的无序对(即:无方向的,(v0,v2))或有序对(即:有方向的,)。 邻接矩阵——表示顶点间相联关系的矩阵 设G=(V,E) 是有n 1 个顶点的图,G 的邻接矩阵A 是具有以下性质的n 阶方阵特点: 无向图的邻接矩阵对称,可压缩存储;有n个顶点的无向图需存储空间为n(n+1)/2 有向图邻接矩阵不一定对称;有n个顶点的有向图需存储空间为n2 9

无向图中顶点V i的度TD(V i)是邻接矩阵A中第i行元素之和有向图中, 顶点V i的出度是A中第i行元素之和 顶点V i的入度是A中第i列元素之和 邻接表 实现:为图中每个顶点建立一个单链表,第i个单链表中的结点表示依附于顶点Vi的边(有向图中指以Vi为尾的弧) 特点: 无向图中顶点Vi的度为第i个单链表中的结点数有向图中 顶点Vi的出度为第i个单链表中的结点个数 顶点Vi的入度为整个单链表中邻接点域值是i的结点个数 逆邻接表:有向图中对每个结点建立以Vi为头的弧的单链表。 图的遍历 从图中某个顶点出发访遍图中其余顶点,并且使图中的每个顶点仅被访问一次过程.。遍历图的过程实质上是通过边或弧对每个顶点查找其邻接点的过程,其耗费的时间取决于所采用的存储结构。图的遍历有两条路径:深度优先搜索和广度优先搜索。当用邻接矩阵作图的存储结构时,查找每个顶点的邻接点所需要时间为O(n2),n为图中顶点数;而当以邻接表作图的存储结构时,找邻接点所需时间为O(e),e 为无向图中边的数或有向图中弧的数。 实验内容和要求: 选用任一种图的存储结构,建立如下图所示的带权有向图: 要求:1、建立边的条数为零的图;

数据结构图实验报告

数据结构教程 上机实验报告 实验七、图算法上机实现 一、实验目的: 1.了解熟知图的定义和图的基本术语,掌握图的几种存储结构。 2.掌握邻接矩阵和邻接表定义及特点,并通过实例解析掌握邻接矩阵和邻接表的类型定义。 3.掌握图的遍历的定义、复杂性分析及应用,并掌握图的遍历方法及其基本思想。 二、实验内容: 1.建立无向图的邻接矩阵 2.图的xx优先搜索 3.图的xx优先搜索 三、实验步骤及结果: 1.建立无向图的邻接矩阵: 1)源代码: #include "stdio.h" #include "stdlib.h" #define MAXSIZE 30 typedefstruct{charvertex[MAXSIZE];//顶点为字符型且顶点表的长度小于MAXSIZE intedges[MAXSIZE][MAXSIZE];//边为整形且edges为邻近矩阵

}MGraph;//MGraph为采用邻近矩阵存储的图类型 voidCreatMGraph(MGraph *g,inte,int n) {//建立无向图的邻近矩阵g->egdes,n为顶点个数,e为边数inti,j,k; printf("Input data of vertexs(0~n-1): \n"); for(i=0;ivertex[i]=i; //读入顶点信息 for(i=0;iedges[i][j]=0; //初始化邻接矩阵 for(k=1;k<=e;k++)//输入e条边{}printf("Input edges of(i,j): "); scanf("%d,%d",&i,&j); g->edges[i][j]=1; g->edges[j][i]=1;}void main(){inti,j,n,e; MGraph *g; //建立指向采用邻接矩阵存储图类型指针 g=(MGraph*)malloc(sizeof(MGraph));//生成采用邻接举证存储图类型的存储空间}2)运行结果: printf("Input size of MGraph: "); //输入邻接矩阵的大小scanf("%d",&n); printf("Input number of edge: "); //输入邻接矩阵的边数scanf("%d",&e);

数据结构实验四五六

数据结构实验 实验四、图遍历的演示。 【实验学时】5学时 【实验目的】 (1)掌握图的基本存储方法。 (2)熟练掌握图的两种搜索路径的遍历方法。 【问题描述】 很多涉及图上操作的算法都是以图的遍历操作为基础的。试写一个程序,演示连通的无向图上,遍历全部结点的操作。 【基本要求】 以邻接多重表为存储结构,实现连通无向图的深度优先和广度优先遍历。以用户指定的结点为起点,分别输出每种遍历下的结点访问序列和相应生成树的边集。 【测试数据】 教科书图7.33。暂时忽略里程,起点为北京。 【实现提示】 设图的结点不超过30个,每个结点用一个编号表示(如果一个图有n个结点,则它们的编号分别为1,2,…,n)。通过输入图的全部边输入一个图,每个边为一个数对,可以对边的输入顺序作出某种限制。注意,生成树的边是有向边,端点顺序不能颠倒。

【选作内容】 (1)借助于栈类型(自己定义和实现),用非递归算法实现深度优先遍历。(2)以邻接表为存储结构,建立深度优先生成树和广度优先生成树,再按凹入表或树形打印生成树。 (3)正如习题7。8提示中分析的那样,图的路径遍历要比结点遍历具有更为广泛的应用。再写一个路径遍历算法,求出从北京到广州中途不过郑州的所有简单路径及其里程。 【源程序】 #include #include #include #define MAX_VERTEX_NUM 20 #define STACK_INIT_SIZE 100 #define STACKINCREMENT 10 #define TRUE 1 #define OK 1 #define FALSE 0 #define ERROR 0 #define OVERFLOW -2 typedef enum{DG,DN,UDG,UDN}GraphKind;//{有向图,有向网,无向图,无向网} bool visited[MAX_VERTEX_NUM];

数据结构实验六 堆栈实验

一,实验题目 实验六堆栈实验 设计算法,把一个十进制整数转化为二进制数输出。 二,问题分析 本程序要求将一个十进制整数转化为二进制数输出。完成此功能所要解决的问题是熟练掌握和运用入栈和出栈操作,实现十进制整数转化为二进制数。 (1)数据的输入形式和输入值得范围:输入的是一个十进制整数,且其为正整数。 (2)结果的输出形式:输出的是一个二进制整数 (3)测试数据:1)9 2)4500 三,概要设计 1.为了实现上述程序功能,需要: 构造一个空的顺序栈s 将十进制整数除以2的余数入栈 将余数按顺序出栈 2.本程序包含7个函数: 1)主函数main(); 2)顺序栈判栈空函数stackempty(seqstack *s) 3)顺序栈置空栈函数seqstack *initstack(seqstack *s) 4)顺序栈入栈函数push(seqstack *s,int x) 5)顺序栈出栈函数pop(seqstack *s) 6)顺序栈取栈顶元素函数gettop(seqstack *s) 7)将十进制数转换为二进制数函数setnum(int num) 各函数间关系如下:

四,详细设计 1,顺序表的结构类型定义: typedef struct{ int data[maxlen]; int top; }seqstack; 2,顺序栈入栈函数的伪代码: void push(seqstack *s,int x){ if(s->top<=maxlen-1&&s->top>=-1){ s->top++; s->data[s->top]=x;} else printf("error");} 3,顺序栈出栈函数的伪代码: void pop(seqstack *s){ if(s->top>=0) s->top--; else printf("error"); } 4,将十进制数转换为二进制数函数伪代码: void setnum(int num){ seqstack s; initstack(&s); while(num){ int k=num%2; push(&s,k); num=num/2;} while(!stackempty(&s)){ int x=gettop(&s); printf("%d",x); pop(&s); } } 五,源代码 #include "stdio.h" #define maxlen 100 typedef struct{ //定义顺序栈的结构类型 int data[maxlen]; int top; }seqstack; int stackempty(seqstack *s){ //顺序栈判栈空算法if(s->top>=0) return 0; else return 1; } seqstack *initstack(seqstack *s){ //顺序栈置空栈算法s->top=-1; return s; }

数据结构实验—图实验报告

精品文档数据结构 实 验 报 告

目的要求 1.掌握图的存储思想及其存储实现。 2.掌握图的深度、广度优先遍历算法思想及其程序实现。 3.掌握图的常见应用算法的思想及其程序实现。 实验内容 1.键盘输入数据,建立一个有向图的邻接表。 2.输出该邻接表。 3.在有向图的邻接表的基础上计算各顶点的度,并输出。 4.以有向图的邻接表为基础实现输出它的拓扑排序序列。 5.采用邻接表存储实现无向图的深度优先递归遍历。 6.采用邻接表存储实现无向图的广度优先遍历。 7.在主函数中设计一个简单的菜单,分别调试上述算法。 源程序: 主程序的头文件:队列 #include #include #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define OVERFLOW -2 typedef int QElemType; typedef struct QNode{ //队的操作 QElemType data; struct QNode *next; }QNode,*QueuePtr; typedef struct { QueuePtr front; QueuePtr rear; }LinkQueue; void InitQueue(LinkQueue &Q){ //初始化队列 Q.front =Q.rear =(QueuePtr)malloc(sizeof(QNode)); if(!Q.front) exit(OVERFLOW); //存储分配失败 Q.front ->next =NULL; } int EnQueue(LinkQueue &Q,QElemType e) //插入元素e为Q的新的队尾元素{ QueuePtr p; p=(QueuePtr)malloc(sizeof(QNode)); if(!p) exit(OVERFLOW); p->data=e;

相关主题
文本预览
相关文档 最新文档