当前位置:文档之家› 支撑体系设计及计算书

支撑体系设计及计算书

支撑体系设计及计算书
支撑体系设计及计算书

桥梁模板与支撑体系设计及计算书

支撑体系设计说明:面板采用18mm厚的胶合模板,面板背楞用枋木支撑,采用?48×3.5水平钢管作为背楞(木枋)的支撑。满堂支架的搭设规格为:立杆间距0.6m×0.6m,横杆步距1.2m。立杆顶端采用可调节的顶托作为集中荷载的传递构件。

支撑体系搭设的构造应满足以下要求:

1、扫地杆:离地高度不超过0.2m。

2、剪刀撑:每隔四排立杆或3.0m设置一道垂直剪撑,垂直剪刀撑钢管与地面成45-60度角,水平剪刀撑按照其两端与中间每隔四排立杆从顶部开始向下每隔3步设置一道水平剪刀撑,每道剪刀撑宽度不小于4跨,且最大不大于6m。

3、立杆顶端的顶托伸出上部第一根水平杆的长度不得超过20cm (自由端长度。注:自由端长度为模板支架立杆伸出顶层横向水平杆中心线支撑点的长度)。

由于本桥梁结构模板支撑成型下是规划5#路,架空高度在23.5~3.9m,空间面积远大于桥梁截面面积,可以不考虑风荷载。

一、现浇箱梁模板支撑体系计算

(一)、参数信息

1、立杆参数:

立杆的纵距b=0.6m

立杆的横距1=0.6m

立杆的步距h=1.20m

伸出长度:0.2m

2、荷载参数:

箱梁端部厚:1.2m

①砼自重选用25KN/m3

②模板自重采用0.3 KN/m2

③施工均布荷载选用 2.5 KN/m2

④振捣砼荷载 2 KN/m2(水平模板)

4 KN/m2(垂直模板)

⑤钢筋自重 1.43 KN/m3(每立方钢筋砼钢筋自重)

3、地基参数

地基承载力标准值取400 KN/m2

基础底面面积取50mm×50mm

4、木方参数:

木方的宽度80mm

木方的高度50mm

木方的弹性模量为E=7650N/mm2

木方自重0.3KN/m2

木方的顺纹抗剪强度取f t=1.87N/mm2

木方的抗弯强度取f w=17.9N/mm2

木方的截面惯性矩I:I=bh3/12=803×50/12=2.13×106mm4

木方的截面抵抗矩W:

W= bh2/6=802×50/6=5.33×104mm3

5、面板参数:

面板厚为18mm

面板的顺纹抗剪强度取f t=1.87N/mm2

面板的抗弯强度取f w=17.9N/mm2

面板的弹性模量为E=4680N/mm2

面板的截面惯性矩I:

I=bh3/12=1000×183/12=4.86×105mm4

面板的截面抵抗矩w

W= bh2/6=1000×182/6=5.4×104mm3

6、其他参数:

搭设高度取23.5m

伸出长度取0.45m

钢管规格:Φ48mm×3.5mm

钢管立杆净截面面积(cm2):A=1930mm2,受力面积489 mm2;

钢管截面抵抗矩W

W=20042mm3,

钢管截面惯性矩I:

I=1.22×107mm4,

钢管的弹性模量

E=2.1×105N/mm2,

钢管的抗弯强度取f

f=215 N/mm2

钢管抗剪强度取f t=120N/mm2

(二)、模板面板计算

规格1830×915×18mm。受力验算取单块板验算,按三跨连续梁计算,其计算简图如下所示:

恒荷载设计值:g=0.36+28.5+1.89=30.75KN/m2

活荷载设计值:q=3.5+2.8+5.6=11.9 KN/m2

荷载总设计值:g+q=30.75+11.9=42.65 KN/m2

内力计算:按三等跨连续梁计算内力(为简化起见,凡超过三跨的模板均按三跨连续计算),本结构为受弯结构,需要验算其抗弯强度、抗剪强度和刚度,根据荷载组合要求。将面荷载转为线荷载模板面板取0.915m板宽带计算。

当在满载作用下时,三等跨连续梁的最大弯矩在B、C支座,最大剪力发生在B支座左侧及C支座右侧。

即支座弯矩M B=0.1×(g+q)×12

支座剪力Q B左= -0.6×(g+q)×1

1、抗弯强度计算:

M=0.1×42.65×1×0.32=0.38KNm

截面抗剪强度计算值:

σ=M/W≤f w=17.9 N/mm2

W= bh2/6=1000×182/6=5.4×104 mm3

σ=0.33×106/(5.4×104)=6.1N/mm2< f w=17.9N/mm2

(满足要求)

2、抗剪计算:

Q B左= -0.6×(g+q)×1= -0.6×37.05×1×0.3= -6.669 KN

截面抗剪强度计算值:

τ=3Q/2bh≤f t=1.87N/mm2

τ=3×6669/(2×1000×18)=0.56N/mm2≤f t=1.87N/mm2

(满足要求)

3、刚度验算。即验算在荷载(g+q)作用下挠度是否满足要求。施工规范规定:结构表面不隐蔽时模板容许最大挠度[w]=l/300,最大挠度发生在第1、3跨的跨中。

挠度计算:ω1=ω3=0.677(g+q)l4/100EI≤[w]

面板最大挠度计算:

w=0.677×37.05×l×3004/(100×4680×4.86×105)=0.90mm w=0.90mm <[ω]=300/250=1.2mm

满足要求。

(三)、背楞钢管受力验算

规格48mm×3.5mm的钢管。受力验算取单块板长度183mm验算,按三跨连续梁计算,平均跨长600mm,其计算简图如下所示:

恒荷载设计值:g=9.225+0.0461=9.27KN/m

活荷载设计值:q=6.3×0.3=1.89 KN/m

荷载总设计值:g+q=9.27+1.89=11.16 KN/m

内力计算:按三等跨连续梁计算内力(为简化起见,凡超过三跨的模板均按三跨连续计算),本结构为受弯结构,需要验算其抗弯强度和刚度。根据荷载组合要求,

当在满载作用下时,三等跨连续梁的最大弯矩在B、C支座,最大剪力发生在B支座左侧及C支座右侧。

即支座弯矩M B=0.1×(g+q)×l2

支座剪力Q B左= -0.6×(g+q)×l

1、抗弯强度计算:

M=0.1×11.16×0.62=0.40KNm

截面抗剪强度计算值:

σ=M/W≤f w=215MPa

W=5078mm3

σ=0.40×106/(5.078×103)=78MPa< fw=215MPa (满足要求)

2、抗剪计算:

Q B左= -0.6×(g+q)×l= -0.6×11.16×0.6= -4.018 KN 截面抗剪强度计算值:

τ=3Q/2bh≤[f]=120N/mm2

τ=3×4018/(2×489)=12.3N/mm2≤ft=120N/mm2 (满足要求)

3、刚度验算。即验算在荷载(g+q)作用下挠度是否满足要求。施工规范规定:结构表面隐藏时模板容许最大挠度[w]=l/300,最大挠度发生在第1、3跨的跨中。

挠度计算:ω1=ω3=0.677(g+q)l4/100EI≤[w]

钢管最大挠度计算w=0.677×11.16×6004/(100×2.1×105×1.22×105)=0.36mm<[ω]=600/300=2mm(满足要求)。

(四)、主楞水平横向钢管受力计算

规格48mm×3.5mm的钢管。受力验算取单块板长度183mm验算,按三跨连续梁计算,平均跨长600mm,其计算简图如下所示:

恒荷载设计值:G=5.562+0.03=5.592KN

活荷载设计值:Q=1.89×0.6=1.134 KN

总荷载设计值:G+Q=5.592+1.134=6.726 KN

内力计算:按三等跨连续梁计算内力(为简化起见,凡超过三跨的模板均按三跨连续计算),本结构为受弯结构,需要验算其抗弯强度和刚度。根据荷载组合要求,

当在集中荷载作用下时,三等跨连续梁的最大弯矩在B、C支座,最大剪力发生在B支座左侧及C支座右侧。

即第1跨跨中弯矩M=κ1Gι+κ2 Qι

支座剪力V=κ3G +κ4Q

1、抗弯强度计算:

M=0.175×5.592×0.6+0.213×1.134×0.6=0.732KNm 截面抗剪强度计算值:

σ=M/W≤f w=215MPa

W=5078mm3

σ=0.79×106/(5.078×103)=144.1MPa< f w=215MPa

满足要求。

2、抗剪计算:

V A,max=κ3G +κ4Q=0.35×5.592+0.425×1.134=2.63KN

V Bl,max=κ3G +κ4Q=-0.65×5.592-0.575×1.134=-4.64KN

V Br,max=κ3G +κ4Q=0.5×5.592+0×1.134=3.066KN 故在B支座右侧剪力最大V Br,max=3.066KN

截面抗剪强度计算值:

τ=3Q/2bh≤[f]=120N/mm2

τ=3×3066/(2×489)=9.41N/mm2≤[f]=120N/mm2(满足要求)

3、刚度验算。即验算在荷载(g+q)作用下挠度是否满足要求。施工规范规定:结构表面隐蔽时模板容许最大挠度[w]=l/300,最大挠度发生在第1、3跨的跨中。

挠度计算:ω1=ω3= pl3/(48EI)≤[w]

钢管最大挠度计算

w=6.726×1000×6003/(48×2.1×105×1.22×105)=1.18mm

w=1.18mm <[ω]=600/300=2mm(满足要求)。

(五)、扣件抗滑移的计算

纵向或横向水平杆与立杆连接时,扣件的抗滑承载力按照下式计算(规范5.2.5):R≤R C

其中R C-扣件抗滑承载力设计值,当直角扣件的拧紧力矩达40-65N.m时,试验表明:单扣件在12KN的荷载下会滑动,其抗滑承载力可取8KN;双扣件在20KN的荷载下会滑动,其抗滑承载力取12KN。

采用单扣件进行验算,其在12KN的荷载下会滑动,其抗滑承载力可取8.0KN。按照最不利的中间跨进行验算,受力影响范围为600mm×600mm,受力大小为水平横杆传递的荷载+扣件自重:6726N+1.2×13.2N×2=6.758KN≤8KN

满足要求,但考虑到顶板厚度较大,局部施工过程可能出现较大的集中荷载,为保证支撑体系的稳定和安全,本工程采用顶托作为荷

载承重支撑点,通过顶托将上部荷载直接传递至立杆的轴心。(六)、立杆受力验算

1、钢管脚手架的自重(KN)

立杆纵距查表值1=0.75m 步距查表值h=1.20m

按照最不利的中间跨进行验算,其受力范围为750mm×750mm。

②稳定性验算

立杆为?48×3.5钢管:A=1930mm2,W=20042mm3,I=1.22×107mm4,i=(I/A) 1/2=15.8mm,fm=205 MPa。

按照扣件式钢管脚手架安全技术规范要求,满堂支架稳定性验算须进行顶部立杆段和非顶部立杆段的稳定性验算。非顶部立杆段取竖向荷载最大的底部立杆段进行验算。

<1>顶部立杆段验算

计算长度L0=kμ1(h+2a)=1.155*1.719*(1.2+2*0.2)=3.177m k-满堂支撑架立杆计算长度附件系数,H<8m,取k=1.155;

μ1-考虑满堂支架整体稳定因素的单杆计算长度系数,查表取1.719;

h-立杆步距,h=1.2m;

a-立杆伸出顶层水平杆中心线至支撑点的长度,取a=0.2m。

L0=3177mm,长细比λ=L0/i=3177/15.8=201,查表得稳定系数ψ=0.179

σ=N/(ψA)=6758/(0.179×489)=77.2N/mm2< fm=205 N/mm2,顶部立杆段满足稳定性要求。

<2>底部立杆段验算

计算长度L0=kμ2h=1.155*2.225*1.2=3.084m

k-满堂支撑架立杆计算长度附件系数,H<8m,取k=1.155;

μ2-考虑满堂支架整体稳定因素的单杆计算长度系数,

查表取2.225;

h-立杆步距,h=1.2m;

L0=3084mm,长细比λ=L0/i=3084/15.8=195.2,查表得稳定系数ψ=0.189

σ=N/(ψA)=7504.8/(0.189×489)=81.2N/mm2< fm=205 N/mm2,

底部立杆段满足要求。

二、现浇箱涵墙身板模支撑体系计算书

(一)、墙模板基本参数

1、面板参数:

面板的厚度h=15.00mm

面板的弹性模量E=4680 N/mm2

面板的抗弯强度fw=17.9 N/mm2

面板的抗剪强度ft=1.87 N/mm2

2、木方和刚楞的参数

方木抗弯设计值f w=17.9 N/mm2

方木的弹性模量E=7650 N/mm2

方木的抗剪设计值f t=1.87 N/mm2

刚楞的弹性模量E=2.1×105 N/mm2

刚楞抗弯强度fc=205 N/mm2

3、构造参数:

楼梯模板支撑体系计算书

楼梯模板支撑体系计算书 一、参数信息模板支架参数横向间距或排距(m):1、00;纵距(m):1、00;步距(m):1、0;立杆上端伸出至模板支撑点长度(m):0、10;模板支架搭设高度(m):3、3;采用的钢管(mm):Φ4 83、0 ;板底支撑连接方式:方木支撑;立杆承重连接方式:可调顶托;荷载参数模板与木板自重(kN/m2):0、500;混凝土与钢筋自重(kN/m3): 24、000;施工均布荷载标准值(kN/m2):2、000;材料参数面板采用胶合面板,厚度为15mm;板底支撑采用方木;面板弹性模量E(N/mm2):4000;面板抗弯强度设计值(N/mm2): 11、5;木方弹性模量E(N/mm2):8000、000;木方抗弯强度设计值(N/mm2): 11、000;木方抗剪强度设计值(N/mm2):1、400;木方的间隔距离(mm):2 50、0;木方的截面宽度(mm): 40、00;木方的截面高度(mm): 70、00;40X70模板支架立面图 二、模板面板计算模板面板为受弯构件,按三跨连续梁对面板进行验算其抗弯强度和刚度模板面板的截面惯性矩I和截面抵抗矩W分别为:

W=bh2/6=10001515/6=37500mm3 I=bh3/12=1000151515/12=mm4模板面板的按照三跨连续梁计算。α1-1 剖面图受力分解图 1、荷载计算静荷载为钢筋混凝土楼板和模板面板的自重(kN/m):钢筋混凝土梯段板厚度为100mm,踏步高度为175mm,宽度为260mm,每一梯段板的踏步数为8步。钢筋混凝土梯段板自重为:0、17525+0、1025/=5、104 kN/㎡其中:根据图纸可得 α=31故== 0、857q1 =5、1041+0、51 =5、604 kN/m;活荷载为施工人员及设备荷载(kN/m): q2 =21=2 kN/m; 2、强度计算计算公式如下:M=0、1ql2其中:q为垂直与面板的均布荷载,q=(1、 25、604+1、42)=8、162kN/m 最大弯矩M=0、 18、1622502=510 12、5Nmm;面板最大应力计算值σ =M/W=510 12、5/37500 =1、360 N/mm2;面板的抗弯强度设计值 [f]=11N/mm2;面板的最大应力计算值为1、360 N/mm2 小于面板的抗弯强度设计值11 N/mm2,满足要求! 3、挠度计算挠度计算公式为: ν=0、677ql4/(100EI)≤[ν]=l/250其中q =q1=5、604 =5、92 50、857 =4、802 kN/m面板最大挠度计算值ν= 0、67

盘式制动器课程设计方案

中北大学 课程设计说明书 学生姓名:学号: 学院(系):机电工程学院 专业:车辆工程 题目:夏利汽车盘式制动器方案设计 综合成绩: 职称: 年月日

目录 一、夏利汽车主要性能参数---------------------4 二、制动器的形式-----------------------------5 三、盘式制动器主要参数的确定-----------------7 四、盘式制动器制动力矩的设计计算-------------9 五、盘式制动器制器的校核计算----------------10 1.前轮制动器制动力矩的校核计算 2.摩擦衬片的磨损特性计算 六、经过计算最终确定后轮制动器的参数--------13 七、设计小结--------------------------------13 八、设计参考资料----------------------------13

轿车前轮制动器设计说明书前言汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。本次课程设计根据任务要求只对夏利汽车盘式制动器方案设计。

一、汽车主要性能参数 主要尺寸和参数: (1)、轴距:L=2405mm (2)、总质量:M=900kg (3)、质心高度:0.65m (4)、车轮半径:165mm (5)、轮辋内径:120mm (6)、附着系数:0.8 (7)、制动力分配比:后制动力/总制动力=0.19 (8)、前轴负荷率:60%;即质心到前后轴距离分别为 L1=L?(1?60%)=962mm L2=L?60%=1443mm (9)、轮胎参数:165/70R13; 轮胎有效半径r e为: 轮胎有效半径=轮辋半径+(名义断面宽度×高宽比) 所以轮胎有效半径r e=(240 2 +165×70%)=235.5mm (10)、制动性能要求:初速度为50KM/h时,制动距离为15m。则 满足制动性能要求的制动减速度由:S=1 3.6(τ2‘+τ2“ 2 )μ0+μ02 25.92 a bmax 计算最大减速度 a bmax,其中μ0=U =50Km/h;S=15m;τ2‘= 0.05s;τ2“=0.2s。经计算得 最大减速度 a bmax≈7.47m s2 ?

楼梯模板支撑体系计算书

楼梯模板支撑体系计算书

————————————————————————————————作者:————————————————————————————————日期:

楼梯模板支撑体系计算书 一、参数信息 模板支架参数 横向间距或排距(m):1.00;纵距(m):1.00;步距(m):1.0; 立杆上端伸出至模板支撑点长度(m):0.10;模板支架搭设高度(m):3.3;采用的钢管(mm):Φ48×3.0 ;板底支撑连接方式:方木支撑;立杆承重连接方式:可调顶托; 荷载参数 模板与木板自重(kN/m2):0.500;混凝土与钢筋自重(kN/m3):24.000;施工均布荷载标准值(kN/m2):2.000; 材料参数 面板采用胶合面板,厚度为15mm;板底支撑采用方木; 面板弹性模量E(N/mm2):4000;面板抗弯强度设计值(N/mm2):11.5; 木方弹性模量E(N/mm2):8000.000;木方抗弯强度设计值(N/mm2):11.000;木方抗剪强度设计值(N/mm2):1.400;木方的间隔距离(mm):250.0; 木方的截面宽度(mm):40.00;木方的截面高度(mm):70.00;

40X70 模板支架立面图 二、模板面板计算 模板面板为受弯构件,按三跨连续梁对面板进行验算其抗弯强度和刚度模板面板的截面惯性矩I和截面抵抗矩W分别为: W=bh2/6=1000×15×15/6=37500mm3 I=bh3/12=1000×15×15×15/12=281250mm4 模板面板的按照三跨连续梁计算。

1-1剖面图 受力分解图 1、荷载计算 静荷载为钢筋混凝土楼板和模板面板的自重(kN/m): 钢筋混凝土梯段板厚度为100mm,踏步高度为175mm,宽度为260mm,每一梯段板的踏步数为8步。 钢筋混凝土梯段板自重为:2 1 ×0.175×25+0.10×25/α cos=5.104 kN/㎡ 其中:根据图纸可得α=31° 故 α cos=? 31 cos= 0.857 q1 = 5.104×1+0.5×1 = 5.604 kN/m; 活荷载为施工人员及设备荷载(kN/m): q2 = 2×1= 2 kN/m; 2、强度计算 α

盘式制动器说明书

第二章可控自冷盘式制动器 K P Z— / ?? ?? 制动器副数?规格 ?? ?制动盘直径 ?? ?制动 ?? ?盘式 ?? ?可控 ?? ?KPZ型号含义 1.可控盘闸系统的选用型号含义 2. 结构特征与工作原理 2.1 机械系统结构及工作原理 ?? ?1 电动机;2 联轴器;3 牵引体;4 传动轮;5 联轴器;6 垂直轴减速器;7 制动盘;8 弹簧;9 活塞;10 闸瓦; 11 油管 图1 制动装置布置图 自冷盘式可控制动装置主要由制动盘,液压制动器(含活塞、闸瓦、弹簧等),底座,液压站等组成,图1是制动装置在系统中的布置示意图。它主要由制动盘7和液压制动器(8,9,10)等组成。盘式制动装置的制动力是由闸瓦10与制动盘7摩擦而产生的。因此调节闸瓦对制动盘的正压力即可改变制动力。而制动器的正压力N 的大小决定于油压P与弹簧8的作用结果。当机电设备正常工作时,油压P达最大值,此时正压力N为0,并且闸瓦与制动盘间留有1-1.5mm的间隙,即制动器处于松闸状态。当机电设备需要制动时,根据工况和指令情况,电液控制系统将按预定的程序自动减小油压以达到制动要求。 2. 盘式制动器的安装说明: 2.1 盘式制动器主机的安装: 盘式制动装置安装前要准确测定位置及距离。通常制动盘与减速器的某一低速轴相连,也可以直接与驱动轮连接实现各种工作制动。 安装制动器时制动闸座与底座安装必须对中安装。制动盘安装后要求盘面的旋转跳动量≤0.1mm,闸盘与闸瓦的平行度≤0.2mm。盘式制动器在松闸状态下,闸瓦与制动盘的间隙为1~1.5mm;制动时,闸瓦与制动盘工作面的接触面积不应小于80%。

安装于减速机倒数二轴上安装于滚筒轴上 电动机; 2-联轴器; 3-牵引体; 4-传动轮; 5-联轴器; 6-减速器; 7-制动盘; 8, 9, 10-液压制动器; 11-油管 图2 制动装置安装布置示意图 其中制动盘安装分两种情况,1、胀套联接2、键连接 2.2 盘式制动装置的连接方式 胀套联接 KZP自冷盘式可控制动装置胀套联接 胀套示意图 表3 安装尺寸表 和无损伤。在清洗后的胀套结合面上均匀涂一层薄润滑油(不含二硫化钼等极压添加剂),预装到滚筒轴上。把制动盘推移到滚筒轴上,使达到设计规定的位置,然后按胀套拧紧力矩的要求将胀套螺钉拧紧。 拧紧胀套螺钉的方法: (1) 使用扭矩扳手,按对角、交叉的原则均匀的拧紧。 (2) 拧紧螺钉时按以下步骤拧紧: a. 以1/3MAX值拧紧 b. 以2/3MAX值拧紧 c. 以MAX值拧紧 d. 以MAX值检查全部螺钉 安装完毕后,在胀套外漏端面及螺钉头部涂上一层防锈油脂,并进行整体二次灌浆。

毕业设计盘式制动器设计说明书

汽车盘式制动器设计 摘要:本文主要是介绍盘式制动器的分类以及各种盘式制动器的优缺点,对所选车型制动器的选用方案进行了选择,针对盘式制动器做了主要的设计计算,同时分析了汽车在各种附着系数道路上的制动过程,对前后制动力分配系数和同步附着系数、利用附着系数、制动效率等做了计算。在满足制动法规要求及设计原则要求的前提下,提高了汽车的制动性能。 关键词:盘式制动器;制动力分配系数;同步附着系数;利用附着系数;制动效率

Automobile disc brake design Abstract:This paper is mainly the disc brake of the classification and various kinds of disc brake of the advantages and disadvantages are introduced, the selection scheme of the chosen vehicle brake was selected and for disc brake do the main design calculation and analysis of the car in a variety of attachment coefficient road on the braking process of, of braking force distribution coefficient and the synchronous adhesion coefficient, utilization coefficient of adhesion, braking efficiency calculated. Under the premise of meeting the requirements of the braking regulation requirement and design principle and improve the braking performance of automobile. Key words: Disc brake,Braking force distribution,coefficient,Synchronization coefficient,Synchronous adhesion coefficient,The use of adhesion coefficient,Braking efficiency

t高密度澄清池设计计算书环境平台

中间总集水槽宽度:B=0.9(1.5Q )0.4 =0.9×(1.5×0.463) =0.78m 40000t/d 高密度澄清池设计计算书 一、设计水量 Q=40000t/d=1666.7t/h=0.463m 3/s 二、构筑物设计 水的有效水深:本项目的有效水深按 6.8 米设计。 1、絮凝池:停留时间 6~10min ,取 8 min 。 则有效容积:V=1666.7×8/60=222.3 m 3 平面有效面积:A=222.3/6.8=32.7m 2。 取絮凝池为正方形,则计算并取整后。絮凝池的有效容积: 5.7m×5.7m× 6.8m(设计水深)=221m 3。 原水在絮凝池中的停留时间为 7.96min 2、澄清区 斜管上升流速:12~25m/h ,取 22.5 m/h 。——斜管面积 A 1=74.08m 2。 沉淀段入口流速取 60 m/h 。——沉淀入口段面积 A 2=27.78m 2。 0.4 取 B=0.9m 。 从已知条件中可以列出方程: X·X1=27.78——① (X-1.3)·(X-X1-0.25-0.5)=74.08——② 可以推出:A=X 3-2.05X 2-100.885X+36.114=0 当 X=11 时A=9.33>0 当 X=10.9 时A=-12.064<0 所以取 X=11。即澄清池的尺寸:11m×11m×6.8m=822.8m 3原水在澄清池中的停留时间:t=822.8/0.463=1777.1s=29.6min 。 斜管区面积:9.7m×7.7m=74.69m 2 水在斜管区的上升流速:0.463/74.69=0.0062m/s=6.2mm/s=22.32m/h 1

模板支撑体系专家论证计算书

截面过大梁安装 地下室中一部分梁截面过大需要另行计算,以梁KL5(500mm×1850mm)为计算对象。 一、截面过大梁模板安装步骤 1、搭设满堂红脚手架,满堂红脚手架的搭设方法详见专项方案。 2、脚手架在梁两侧部位立杆间距为800mm,立杆沿梁跨度方向间距400mm, 水平杆步距1500mm,在梁的中部加设一根立杆作为支撑,沿梁跨度方向间距400mm,梁底支撑小横杆间距为400mm。在小横杆下部与立杆连接处需使用两个扣件,降低扣件发生滑移的可能。 3、梁侧模板采用15mm厚多层板,梁侧模次楞采用50mm×80mm方木2根 合并垂直于梁方向设置,沿梁跨度方向均匀布置,间距250mm。主楞采用2根φ48×3.5mm的圆钢管沿梁长方向设置,主楞竖直方向为5排,主楞到梁底距离依次是200mm、500mm、800mm、1100mm、1400mm,采用M12对拉螺栓连接两侧钢管,沿梁跨度方向间距250,梅花形布置。梁底楞采用50mm×80mm方木4根,沿梁底水平方向均匀布置。下设支撑顶杆1排,间距400mm。底部小横杆间距400mm。 4、严格控制小横杆的标高,以保证上部梁顶标高。小横杆标高调整完毕后 将梁轴线引到脚手架上,开始铺设梁底模板。 5、为防止架体在混凝土浇筑时产生水平位移,架体在梁下位置单独设剪刀 撑。 6、梁底板铺设完毕后开始支设侧模及安装侧模的主次楞,在保证梁模板的 尺寸,平整度等指标后,开始加固模板。 7、模板加固完毕后对模板进行检查,并对模板拼缝处,孔洞处做处理,防 止在浇筑混凝土的过程中发生漏浆。 8、模板完成之后,对支设模板过程中留下的垃圾及杂物进行清理,保证整 体的清洁度,以便于进行下一步施工。 9、当梁的跨度大于4m时框架梁应该起拱,起拱高度为跨度的2‰。 10、梁成型后的模板见下图:

盘式制动器设计

目录 绪论 (3) 一、设计任务书 (3) 二、盘式制动器结构形式简介 ................... 错误!未定义书签。 2.1、盘式制动器的分类...................... 错误!未定义书签。 2.2、盘式制动器的优缺点.................... 错误!未定义书签。 2.3、该车制动器结构的最终选择.............. 错误!未定义书签。 三、制动器的参数和设计 ....................... 错误!未定义书签。 3.1、制动盘直径 ........................... 错误!未定义书签。 3.2、制动盘厚度 ........................... 错误!未定义书签。 3.3、摩擦衬块的内半径和外半径.............. 错误!未定义书签。 3.4、摩擦衬块面积 ......................... 错误!未定义书签。 3.5、制动轮缸压强 ......................... 错误!未定义书签。 3.6、摩擦力的计算和摩擦系数的验算.......... 错误!未定义书签。 3.7、制动力矩的计算和验算.................. 错误!未定义书签。 3.8、驻车制动计算 ......................... 错误!未定义书签。 四、制动器的主要零部件的结构设计 ............. 错误!未定义书签。 4.1、制动盘 ............................... 错误!未定义书签。 4.2、制动钳 ............................... 错误!未定义书签。 4.3、制动块 ............................... 错误!未定义书签。 4.4、摩擦材料 ............................. 错误!未定义书签。

空气采样探测器设计方案

空气采样探测器设计方案 极早期主动式空气采样感烟探测系统技术方案 一、项目概述 本项目为暗室工程新建项目~单层高度20米以上~考虑到防火要求~因空间高~不宜采用普通点型火灾探测设备~为达到暗室高大空间的火灾防护能力~最大限度的减少~避免火灾隐患~确保整个火车站正常运营状态。我方采用了澳大利亚Vision生产的极早期主动式空气采样感烟探测系统VESDA对大楼火灾系统进行监控。利用VESDA系统先进的探测技术~卓越的探测性能对高大空间提供可靠的保障。系统主要由安装在现场的VESDA标准型探测器和设置在主站房一层消防控制室的集中监控微机组成。整个系统连接成一个网络~可以通过监控微机对全部前端探测器进行编程~监控和维护等工作。 二、方案设计依据 本方案在设计过程中依据了下列相关文件 , 《火灾自动报警系统设计规范,GB50116,98,》 , 《火灾自动报警系统施工及验收规范,GB 50166,92,》 , 《火灾报警器通用技术条件,GB4717,1993,》 , 《消防联动控制设备通用技术条件 GB16806,1997》 , 《VESDA System Design Manual Version 2.2》,Vision公司 设计手册, , 《VESDA设计规范2002》,北京华脉金威公司企业标准, , 《VESDA施工及验收规范2002》,北京华脉金威公司企业标准, 三、 VESDA产品功能及介绍 3.1. 综述

VESDA——VERY EARLY SMOKE DETECTION APPARATUS~中文翻译为:极早期的烟雾探测设备~这是根据产品的功能而起的名字。而根据其原理特点~也称其为主动吸气式或采样式烟雾探测器。 澳大利亚Vision公司生产的VESDA的第一代产品早在七十年代就已研制出来了。在1983年就已开始推向全球~并被广泛采用。VESDA以其先进的技术和完善的品质享有最高声誉~成为保障高价值财产和重要设备设施安全的第一选择。 3.2. 燃烧过程的认识 火情的发展一般分为四个阶段:不可见烟,阴燃,阶段、可见烟阶段、明火阶段和高温阶段。上图展示了火灾的整个演变过程。传统的火灾报警系 火灾发展趋势与VESDA探测范围示意图 统通常是在可见烟阶段才能探测到烟雾~发出警报~此时火情所造成巨大的经济和财产损失已不可避免。请注意:在此之前~不可见烟阶段给我们提供了充裕的时间~VESDA可以及早探测险情~并控制火情的发生和曼延。

(完整版)毕业设计浮钳盘式制动器

原始数据: 整车质量:空载:1550kg ;满载:2000kg 质心位置:a=L 1=1.35m ;b=L 2=1.25m 质心高度:空载:hg=0.95m ;满载:hg=0.85m 轴 距:L=2.6m 轮 距: L 0=1.8m 最高车速:160km/h 车轮工作半径:370mm 轮毂直径:140mm 轮缸直径:54mm 轮 胎:195/60R14 85H 1.同步附着系数的分析 (1)当0φφ<时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力; (2)当0φφ>时:制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去方向稳定性; (3)当0φφ=时:制动时汽车前、后轮同时抱死,是一种稳定工况,但也丧失了转向能力。 分析表明,汽车在同步附着系数为0φ的路面上制动(前、后车轮同时抱死)时,其制动减速度为g qg dt du 0φ==,即0φ=q ,q 为制动强度。而在其他附着系数φ的路面上制动时,达到前轮或后轮即将抱死的制动强度φ

根据相关资料查出轿车≥0φ0.6,故取6.00=φ. 同步附着系数:=0φ0.6 2.确定前后轴制动力矩分配系数β 常用前制动器制动力与汽车总制动力之比来表明分配的比例,称为制动器制动 力分配系数,用β表示,即:u F F u 1 =β,21u u u F F F += 式中,1u F :前制动器制动力;2u F :后制动器制动力;u F :制动器总制动力。 由于已经确定同步附着系数,则分配系数可由下式得到: 根据公式:L h L g 02φβ+= 得:68.06 .285.06.025.1=?+=β 3.制动器制动力矩的确定 为了保证汽车有良好的制动效能,要求合理地确定前,后轮制动器的制动力矩。 根据汽车满载在沥青,混凝土路面上紧急制动到前轮抱死拖滑,计算出后轮制动器的最大制动力矩2M μ 由轮胎与路面附着系数所决定的前后轴最大附着力矩: e g r qh L L G M ?υ)(1max 2-= 式中:?:该车所能遇到的最大附着系数; q :制动强度; e r :车轮有效半径; max 2μM :后轴最大制动力矩;

转换层高大模板支撑体系施工方案(1)

中迪国际社区 高 大 模 板 施 工 方 案 编制人: 审核人: 审批人: 编制单位:中迪国际社区项目部编制时间:二0一七年二月十日

目录 模板及转换层高大模板支撑体系施工方案2 1、编制依据3 2、工程概况3 3、架体搭设;4 4、高大模板支撑系统布置6 4.1 模板系统搭设要求6 4.2模板工程施工工艺流程12 5、模板施工方法13 6、模板质量要求及拆除条件17 7、安全注意事项19 8、高大模板安全及验收要求23 9、突发事件分险分析26 9.1紧急处理领导小组及职责27 9.2由项目经理任队长,技术、安全土建工程师任副队长28 9.3应急准备和响应通用要求28 10模板计算书29 模板及转换层高大模板支撑体系施工方案

1.编制依据 1.1《建设工程高大模板支撑系统施工安全监督管理导则>>建质(2009)254#文 1.2《进一步加强工程模板支撑体系安全管理的通知》成建安监发(2012)19#文 1.3《建筑施工手册》(第四版) 1.4《建筑工程施工质量验收统一标准》(GB50300-2013) 1.5建筑施工模板安全技术规X(JGJ162-2008) 1.6建筑施工扣件式钢管脚手架安全技术规X(JGJ130-2011) 1.7建质[2009]87《危险性较大的分部分项工程安全管理办法>> 1.8《混凝土结构工程施工质量验收规X》GB 50204-2015 1.9《混凝土结构工程施工规X》GB 50666-2011 2.0《建筑结构荷载规X》GB 50009-2012 2.1《建筑安全生产检查标准》JGJ 59-2011 2.2《建筑施工高处作业安全技术规X》JGJ 80—1991 2.3已经审核、审批通过《施工组织总设计》未罗列的国家、省市地方现行法律法规、标准规X及图纸会审、设计变更等相关文件亦应参照执行。 2、工程概况 一、工程概况: 1、建设单位:XX东方恒达房地产开发XX 2、设计单位:XX海迈建筑工程设计XX 3、地勘单位:达州市水利电力建筑勘察XX 4、质量监督单位:XX枣山物流商贸园区管委会 5、安全监督单位:XX枣山物流商贸园区管委会 6、监理单位:XX西华工程招标监理XX 7、施工单位:XX金马建筑工程XX 8、建设地点:XX市枣山物流商贸园区GC2015-3号

弱电系统计算书

建筑弱电课程设计计算书 一、消防、报警及控制系统 1、工程概况 此次设计工程为蚌埠绿地中央广场,40层建筑,首层设有健身房、校长室、学生处、教务处、办公室、更衣室、消控室等功能室。设计高度不超过6米。其消防设计采用火灾报警系统一级保护对象设计,采用控制中心报警系统。消防控制室内置火灾自动报警控制、消防联动控制装置、彩色图形显示装置、消防专用电话总机、火灾应急广播控制盘,负责整个建筑内的火灾报警信号、消防设备的集中监控和消防指挥。 2、探测器数目的确定 以下均选择离子感烟探测器。因为是一级保护对象,故k=0.8。 【1】健身房 (1)确定感烟探测器的保护面积A 和保护半径R 。 因保护区域面积2 10.213.1133.62S m =?=。 房间高度6h m ≤。 顶棚坡度0o θ=,即15o θ≤。 查表3-3可得,感烟探测器: 保护面积 2 60A m =; 保护半径 5.8R m =。 (2)计算所需探测器数N 根据建筑设计防火规范,因为是一级保护对象,取0.8K =。 133.62 2.780.860 S N KA ≥==? (只),取3只。 (3)确定探测器安装间距a ,b 查极限曲线D 由式22 5.811.6D R m ==?=,2 60A m =,查图3-36得极限曲线为D5。 确定a ,b 认定a=6m,对应D5查得b=9m 。 (4)由平面图按a 、b 值布置3只探测器。 (5)校核 222269 5.42222a b r m ????????=+=+= ? ? ? ????????? 即5.8m=R>r=5.4m 满足保护半径R 的要求。 【2】校长室、学生处、教务处、办公室和消控室 (1)确定感烟探测器的保护面积A 和保护半径R 。 因保护区域面积2 5.4 3.619.44S m =?=。 房间高度12h m ≤。 顶棚坡度0o θ=,即15o θ≤。 查表3-3可得,感烟探测器:

高层建筑转换层及支撑体系的技术设计参考文本

高层建筑转换层及支撑体系的技术设计参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

高层建筑转换层及支撑体系的技术设计 参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 (作者:吴家强)一、工程概况 阳光棕榈园10#、11#楼是阳光棕榈园一期工程的组成 部分,工程位于深圳市南山区前海路,地下一层,地上23 层,工程转换层位于二层。阳光棕榈园10#、11#楼转换层 层高为5.65m,转换层框支架、托梁截面尺寸为600× 1600、700×1600、7500×1600、8500×1600等。这些 梁体积大,重量大,其模板与支撑的设计是施工的关键。 本工程施工前经周密的技术设计,采用现有的普钢管及钢 支撑、七夹板与木方,解决了施工中的难题,现就其支撑 设计进行叙述如下。 二、模板与满堂脚手架支撑的设计方案

(一)模板工程设计方案: 以较典型的转换层大梁850×1600进行计算(见图1)。 图1 850×1600转换大梁模板及支撑体系图 (1)梁底采用50×100木方,梁宽800~850mm 者,纵向设5排50×100木方,间距中对中 200~250mm;梁宽600~750mm者纵向设4排50×100木方,间距中对中200~250mm横向木方间距取300,上铺梁底模。 (2)梁侧模 不论梁高低,梁侧模均采用七合板,50×100作模档。水平模挡间距为400mm,竖向模挡间距为400mm,整体梁采用M12螺杆对拉,螺杆从梁底开始设置,水平及竖向间距均按400mm设置。

盘式制动器设计说明书

错误!未找到引用源。盘式制动器设计说明书 一汽车制动系概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。 对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力,统称为制动力。这样的一系列专门装置即成为制动系。 1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。 2 制动系的组成 任何制动系都具有以下四个基本组成部分: (1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中,产生制动能量的部位称为制动能源。 (2)控制装置——包括产生制动动作和控制制动效果的各种部件。 (3)传动装置——包括将制动能量传输到制动器的各个部件。 (4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。 较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 3 制动系的类型 (1)按制动系的功用分类 1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。 2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。 3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系是汽车必须具备的。 4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。 (2)按制动系的制动能源分类 1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。 2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。 3)伺服制动系——兼用人力和发动机动力进行制动的制动系。 按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁等。同时采用两种以上传能方式的制动系,可称为组合式制动系。 4 设计制动系时应满足如下主要要求: 1)具有足够的制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两相指标来评定的;驻坡能力是以汽车在良好路面上能可靠的停驻

空气采样探测器设计方案

.. w 极早期主动式空气采样感烟探测系统技术方案 一、项目概述 本项目为暗室工程新建项目,单层高度20米以上,考虑到防火要求,因空间高,不宜采用普通点型火灾探测设备,为达到暗室高大空间的火灾防护能力,最大限度的减少,避免火灾隐患,确保整个火车站正常运营状态。我方采用了澳大利亚Vision生产的极早期主动式空气采样感烟探测系统VESDA对大楼火灾系统进行监控。利用VESDA系统先进的探测技术,卓越的探测性能对高大空间提供可靠的保障。系统主要由安装在现场的VESDA标准型探测器和设置在主站房一层消防控制室的集中监控微机组成。整个系统连接成一个网络,可以通过监控微机对全部前端探测器进行编程,监控和维护等工作。 二、方案设计依据 本方案在设计过程中依据了下列相关文件 ?《火灾自动报警系统设计规(GB50116-98)》 ?《火灾自动报警系统施工及验收规(GB 50166-92)》 ?《火灾报警器通用技术条件(GB4717-1993)》 ?《消防联动控制设备通用技术条件 GB16806-1997》 ?《VESDA System Design Manual Version 2.2》(Vision公司设计手册) ?《VESDA设计规2002》(华脉金威公司企业标准) ?《VESDA施工及验收规2002》(华脉金威公司企业标准)

三、VESDA产品功能及介绍 3.1.综述 VESDA——V ERY E ARLY S MOKE D ETECTION A PPARATUS,中文翻译为:极早期的烟雾探测设备,这是根据产品的功能而起的名字。而根据其原理特点,也称其为主动吸气式或采样式烟雾探测器。 澳大利亚Vision公司生产的VESDA的第一代产品早在七十年代就已研制出来了。在1983年就已开始推向全球,并被广泛采用。VESDA以其先进的技术和完善的品质享有最高声誉,成为保障高价值财产和重要设备设施安全的第一选择。 3.2.燃烧过程的认识 火情的发展一般分为四个阶段:不可见烟(阴燃)阶段、可见烟阶段、明火阶段和高温阶段。上图展示了火灾的整个演变过程。传统的火灾报警系 火灾发展趋势与VESDA探测范围示意图 统通常是在可见烟阶段才能探测到烟雾,发出警报,此时火情所造成巨大的经济和财产损失已不可避免。请注意!在此之前,不可见烟阶段给我们提供了充裕的时间,VESDA可以及早探测险情,并控制火情的发生和曼延。

转换层大梁模板施工方案

转换层模板施工方案 第一节工程概况 1.1 编制依据 1、****施工组织设计; 2、施工设计图纸; 3、建筑施工计算手册; 4、混凝土结构工程施工质量验收规范; 5、建筑结构荷载规范; 6、工程施工现场实际情况。 1.2工程概况: ****工程转换层位置为三层,标高12.45m,下部为二层裙楼,转换层层高6.500m,转换层大梁最大截面尺寸为1400X1700mm最大主筋直径①32皿级螺纹钢筋,箍筋最大直径①14 H级螺纹钢筋,转换层梁钢筋均采用直螺纹套筒连接。转换层墙柱墙柱混凝土强度等级C50梁板混凝土强度等级均为C6Q 1. 3工程特点难点 ****工程转换层施工主要突出的特点难点有:工程转角位置多,测量定位困难;本工程裙楼2层、地下室2层,其转换层梁板模支撑系统设计与搭设较困难;框支柱与框支梁柱头位置钢筋满足锚固长度的排距控制与钢筋穿铁顺序确定;保护层控制与砼抗裂控制。 针对测量定位困难,项目上采用在楼板上留孔,用激光垂准仪进行投测, 确定主要控制线,由控制线进行定位,先在二层楼板面将框支梁放线定位,然后再在框支梁对应位置搭设其支模架,铺设梁底板前,再次吊线核对其位置。对转换层梁板模支撑系统在方案设计中选择多单元最不利位置进行验算,依次验算支撑系统及下层结构的承载能力,对下层结构不满足承载要求时对结构进行调整加强,并报设计院复核,详模板、支撑体系计算。对柱头框架梁钢筋除了理论上计算出钢筋穿筋位置间距外,按实际比例绘出节

点图,对操作班组进行交底指导施工。对于砼质量控制,在确定钢筋排距位置后对梁、柱头等钢筋密集处先找好下料点,作好记录,采用布料杆灵活布料,砼分层浇筑,加强养护及内外温差控制,对钢筋重叠过高造成砼保护层过厚位置采用挂钢筋网片处理,防止砼表面开裂。 第二节模板工程 转换层结构施工中支承方案的选择,根据施工经验,本工程转换层支撑 体系拟采取如下方案:二层梁板支撑系统不拆除,首层梁板及地下室梁板局部加设顶撑,由上至下逐层转递荷载,直至地下室底板。 本方案模板支撑系统的计算顺序以:选择计算单元(选择多个计算单元)——? 荷载清理梁侧板、底板强度计算 ------- k梁底枋计算?梁侧枋计算? 钢管围柃计算一对拉螺栓计算一支承钢管脚手架计算一二层梁板结构计算 3.1模板支撑体系计算 框支梁模板工程:材料采用七层板(18厚),50 X 80硬木枋,80 X100 硬木枋,①48 X 3.5脚手架钢管,扣件。转换层模板工艺如下:支二层墙、柱模板——支三层框支梁底模——支梁侧模——支设平台板 框支梁支撑系统见附图 (一)、模板支撑验算。 1、选计算单元 根据《3#楼三层梁平法施工图》结3-31可知转换层梁产生荷载最大、对 下部支撑最不利的梁为3-J ~3-N轴交3-18轴处KZL2-3(2)梁(1400X 1700, L 净 =8.15m),因此,确定取该梁作为核验单元。梁底支撑立杆间距(跨度方向) L=500mm立杆步距H=2.200m ,梁底垂直于截面方向设4根立杆间距@500mm, 支模采用材料:18mm厚优质胶合板;100X 50木枋;①48架管围柃;①48架管支撑架。(详

盘式制动器设计说明书

盘式制动器设计说明书 一汽车制动系概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。 对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力,统称为制动力。这样的一系列专门装置即成为制动系。 1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。 2 制动系的组成 任何制动系都具有以下四个基本组成部分: (1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中,产生制动能量的部位称为制动能源。 (2)控制装置——包括产生制动动作和控制制动效果的各种部件。 (3)传动装置——包括将制动能量传输到制动器的各个部件。 (4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。 较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 3 制动系的类型 (1)按制动系的功用分类 1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。 2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。 3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系是汽车必须具备的。 4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。 (2)按制动系的制动能源分类 1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。 2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。 3)伺服制动系——兼用人力和发动机动力进行制动的制动系。 按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁等。同时采用两种以上传能方式的制动系,可称为组合式制动系。 4 设计制动系时应满足如下主要要求: 1)具有足够的制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两相指标来评定的;驻坡能力是以汽车在良好路面上能可靠的停驻的最大坡度来评定的。详见GB/T7258-2004

探测器设计布置计算书

探测器设计布置计算书 一、设计题目 1、设计题目 火灾自动报警系统探测器的布置 2、设计范围 鹤岗国土资源局办公楼 二、计算及分析 1、设计分析 根据式N=S/KA (4-1)式中, N为探测器数量(N只取整数),S为该探测区域面积,m2;A为探测器的保护面积,m2;K为修正系数,特级保护对象宜取0.7~0.8,一级保护对象宜取0.8~0.9,二级保护对象宜取0.9~1.0 因为此次工程中的鹤岗国土资源局办公楼属于二级保护对象,所以修正系数k为1.0 2、计算 地下一层 ①风机房合用前室 因为风机房和合用前室面积大致相同所以一同计算 面积S大约为16.24m2 使用感烟探测器,因为屋顶坡度θ≤15°S≤80 h≤12

于是根据查表得,保护面积A=80 m2,保护半径R=6.7m 。由公式:N=S/KA 得N=S/KA=16.24m2/1×80m2=0.203 根据其布局布置1个感烟探测器。 ②水箱间配电房水泵房 因为这三间的面积大致相同所以一同计算 面积S大约为25.74m2 使用感烟探测器因为屋顶坡度θ≤15°S≤80 h≤12 于是根据查表得,保护面积A=80 m2,保护半径R=6.7m 。由公式:N=S/KA 得N=S/KA=25.74m2/1×80m2=0.32 根据其布局布置1个感烟探测器。 ③设备用房 面积S大约为70.59m2 使用感烟探测器因为屋顶坡度θ≤15°S≤80 h≤12 于是根据查表得,保护面积A=80 m2,保护半径R=6.7m 。由公式:N=S/KA 得N=S/KA=70.59m2/1×80m2=0.88 根据其布局布置1个感烟探测器。 ④地下汽车库 面积S大约为 660.23 m2 使用感温探测器因为屋顶坡度θ≤15°S>30 h≤8 于是根据查表得,保护面积A=20 m2,保护半径R=3.6m 。由公式:N=S/KA 得N=S/KA=660.23m2/1×20m2=33.01(只)根据其布局布置34个感烟探测器。

转换层工程荷载计算

转换层荷载计算 一、受力分析: 由于转换层施工时产生的荷载非常大,且上下层结构梁位置不对称,转换层大梁施工时产生荷载通过模板支撑系统直接传递于下层梁板面上,考虑第四、五层楼板模板不拆除,因此上部荷载通过模板支撑系统同时由下面两层即四、五层来承载,计算时只要板、梁满足最大承载力要求即可。 1.63—68/W—Y1轴板为研究对象计算,受力如下图所示: 2.取37—45/W轴梁为研究对象计算,受力如下图所示:

二、承载力计算: 1.板的计算; 1.1 板设计受弯承载力计算(第四、五层板标高为17.600m、21.900m) 考虑第四、五层模板不予以拆除,以承受上部转换层传来荷载。 已知:b×h=1000×130 砼C35,fy取340N/mm2( 25)fcm=19 N/mm2 As=402mm2( 8@125) ζ=Asfy/bh0fcm=402×340/1000×100×19=0.072KN·M 查表得as=0.072 Mu=as×b×h02×fcm=0.072×1000×1002×19=12.73 KN·M 1.2 转换层荷载计算: 已知:b×h=700×2600 L=7.2m 大梁砼分二次浇筑,第一次浇筑高度为1.3m。 钢筋砼自重:1.2×(26KN/m3×0.7m×1.3m×7.2m)=204.4KN 模板及支架自重:1.2×0.9×(0.85KN/m3×0.7m×1.3m×7.2m)=6.0KN 施工人员及设备荷载自重:1.4×(1KN/M2×0.7m×7.2m)=7.056KN 振捣砼时产生的荷载:1.4×(2.0KN/m2×0.7m×7.2m)=14.112KN 则荷载总重:N=204.4+6+7.056+14.112=231.568KN q=231.568/7.2=32.16 KN/M M=qL2/24=32.16×7.22/24=69.47 KN·M 则上部荷载M﹥2Mu=2×12.73=25.46 KN·M,即施工时四、五层楼板同时承载也不能满足要求。 1.3建议 通过计算建议第四、五层楼板钢筋作调整,改为 12@100双层双向。

相关主题
文本预览
相关文档 最新文档