当前位置:文档之家› 三相永磁同步电动机变频调速系统设计

三相永磁同步电动机变频调速系统设计

三相永磁同步电动机变频调速系统设计
三相永磁同步电动机变频调速系统设计

运动控制系统

课程设计

题目:三相永磁同步电动机变频调速系统设计

专业班级:自动化

姓名:

学号:

指导教师:

评阅意见:

指导老师签名:

日期:2014年月日

本论文在研究永磁同步电动机运行原理的基础上详细讨论了其变频调速的理论并且设计了一套基于DSP的永磁同步电动机磁场定向矢量控制系统。永磁同步电动机相对感应电动机来说具有体积小、效率高以及功率密度大等优点,因此自从上个世纪80年代,随着永磁材料性能价格比的不断提高,以及电力电子器件的进一步发展,永磁同步电动机的研究也进入了一个新的阶段。由于永磁同步电动机自身具有比感应电动机更为优越的性能,而且其dq变换算法相对简单、电机转子磁极的位置易于检测,因此交流调速的矢量控制理论在永磁同步电动机的控制领域也得到了同样的重视,有关永磁同步电动机矢量控制研究的成果陆续发表。本文就是应用电压矢量控制SVPWM实现对永磁同步电机的转矩控制,使其拥有直流电机的性能。

关键词:永磁同步电机矢量控制dq变换DSP

1 绪论 (1)

1.1 研究背景与意义 (1)

1.2 研究现状及应用前景 (1)

2 永磁同步电机的矢量控制方法 (3)

3 硬件电路设计 (4)

3.1 电流检测电路 (4)

3.2 转速检测和转子磁极位置检测电路 (5)

3.3 PWM发生电路 (6)

3.4 IPM智能功率模块驱动电路 (7)

3.5 系统保护电路 (8)

3.6 人机接口电路 (9)

4 软件设计 (9)

设计心得 (12)

参考文献 (13)

1 绪论

1.1 研究背景与意义

众所周知,电动机是以磁场为媒介进行机械能和电能相互转换的电磁装置。为了在电机内建立进行机电能量转换所必需的气隙磁场,可以有两种方法:一种是在电机绕组内通以电流来产生磁场,这种电励磁的电机既需要有专门的绕组和相关的装置,又需要不断的供给能量以维持励磁电流的持续流动;另一种方法是用永磁体来产生磁场。由于永磁体材料的固有特性,它经过预先磁化(充磁)后,不需要外加能量就能够在其周围空间建立磁场。永磁电机的发展是与永磁体材料的发展密切相关的。近几十年来,由于各种电机迅速发展的需要和电流充磁器的发明,人们对永磁材料的机理、构成和制造技术进行了深入研究,相继发现了碳钢、钨钢、钴钢等多种永磁材料。特别是20世纪30年代出现的铝镍钻永磁和50年代出现的铁氧体永磁,磁性能有了很大的提高,各种微型和小型电机又纷纷采用永磁体励磁。永磁电机的功率小至数毫瓦,大至几十千瓦,在军事、工农业和开常生活中得到了广泛的运用,产量急聚增加。

按照工作原理,电动机一般分为直流电动机和交流电动机两大类。直流电动机的转速容易控制和调节,在额定转速以下,保持励磁电流恒定,通过改变电枢电压的方法实现恒转矩调速;在额定转速以上,保持电枢电压恒定,可用改变励磁的方法实现恒功率调速。交流电动机的诞生已经有一百多年的历史。交流电动机又分为同步电动机和感应(异步)电动机两大类。20世纪80年代以前,在变速传动领域,直流调速一直占据主导电位。随着交流调速技术的发展使交流电机的应用更加广泛,但是其转矩控制性能却不如直流电机。因此如何使交流电机的静态控制性能与直流系统相媲美,一直是交流电机的研究方向。本文就是针对永磁同步电机进行的矢量控制的变压变频调速系统设计。

1.2 研究现状及应用前景

自从上个世纪80年代以来,随着电机调速控制理论、电力电子和微电子技术的迅速发展以及永磁材料性能价格比的不断提高,永磁同步电动机的变频调速进入了深入研究和广泛应用的阶段。由于永磁同步电动机自身具有比感应电动机更为优越的性能,而且其dq变换算法相对简单、电机转子磁极的位置易于

检测,因此交流调速的矢量控制理论在永磁同步电动机的控制领域也得到了同样的重视,有关永磁同步电动机矢量控制研究的成果陆续发表。与此同时,对永磁同步电动机的调速控制性能也提出了更高的要求:高性能的永磁同步电动机调速系统除了要有良好的转矩控制性能外,还应具有较宽的调速范围。

随着现代工业生产方式的益自动化发展的需要,对作为其中重要组成部分的现代电伺服系统提出了越来越高的性能和技术要求,以永磁同步电动机为核心的电伺服系统具有精度高,稳定性好,转速高,功率密度大等特点,已日渐成为电伺服驱动系统的主流,尤其是在高精度、高性能要求的中小功率伺服领域更是具有取代传统直流伺服系统的趋势。从其应用领域的特点和永磁同步电动机伺服系统自身技术的发展来看,今后永磁同步电动机伺服系统将向着以下两个方向发展:一个是适用于简易数控机床、办公自动化设备、家用电器、计算机外围设备以及对性能要求不高的工业运动控制等领域的简单、成本低的永磁同步电动机伺服系统;另一个方向则是适用于高精度数控机床、机器人、特种加工设备精细给进驱动以及航空、航天用的高性能的全数字化、智能化、柔性化的永磁同步电动机伺服系统。而后一个作为更能充分体现永磁同步电动机伺服系统优点的发展方向也必将是永磁同步电动机伺服系统的重点发展方向。

2 永磁同步电机的矢量控制方法

由电机学理论可知,在三相定子绕组中通入三相对称的电流,可以产生相应的三相磁动势。其合成磁动势是一个圆形的空间旋转磁势。而且可以证明,旋转磁势可以形成一个圆形旋转磁场(若不考虑磁滞和涡流损耗,则旋转磁势和旋转磁场在空间上同相位),并与电机的转子永磁体所产生的磁场相互作用形成电磁力,从而推动转子旋转。由于电动机的转速与电源频率保持严格的同步关系,因而速度不可调。与感应电动机的控制相类似,高性能的永磁同步电动机的变频调速策略也有两种:矢量控制和直接转矩控制。矢量控制技术是从直流电动机的控制中得到启发,其励磁磁通和电枢磁势方向互相垂直,两者互不影响,励磁绕组和电枢绕组又相互独立,故可分别调节其励磁电流和电枢电流,实现对转矩的独立控制。永磁同步电动机的矢量控制就是分别控制定子电流的幅值和相位,包含了id=0控制、cosφ=l控制、恒磁链控制、最大转矩/电流控制等不同的控制方法。

将永磁同步电机的转子励磁磁势方向定为d轴,超前90度的方向定义为q 轴,于是可以建立dq旋转坐标系。dq轴电流的控制是通过dq轴电压的控制实现的。但dq轴电压无法直接输出,需要转换到三相静止坐标系中输出,系统的控制方案可以设计为图2.1所示。

调节器

ASR ACR

2/3

三相

电压

源逆

变器

ACR

速度

计算

abc

位置传

感器

dq

θ给定

ω

iq

定uq

θ

Id给定=0

ω

iq

id

ia

ib

ic

θ

PM

图2.1 系统结构图

3 硬件电路设计

系统采用的DSP芯片为TMS320F2407,它是电机专用控制DSP,集成了相当多的电机控制外围电路,这使得系统硬件设计变得十分简单。硬件系统的主回路采用交一直一交电压型逆变器(VSI)形式,由不控整流桥、滤波电容、逆变器以及作为控制对象的永磁同步电动机等组成。硬件部分主要包括:人机接口、整流逆变装置、电流检测、光电码盘信号采集、系统保护等,硬件结构图如图3.1所示。对LF2407控制器而言,其输入量主要为每一采样周期采样的a、b相定子电流信号和由增量式脉冲编码器输出的电机转速信号,输出量主要为IPM功率模块的控制信号。

串行接口故障检测

DSP控制器TMS320LF2407

三相电源

三相整流

电路

IPM逆变

电路驱动电路

电流传感器

脉冲编码器PMSM

图3.1 系统硬件结构框图

3.1 电流检测电路

在没有中线时,可以认为电动机定子三相电流之和为0,因此检测a、b两相电流值可以重构出c相电流。本系统检测电流使用霍尔电流传感器。由于霍尔元件输出的是弱电流信号,因此必须将该电流信号转换成电压信号,且由于霍尔传感器的输出为有正负方向的电流信号,其转换得到的电压信号也有正负,而TMS320LF2407的片内A/D转换器的输入为0~+5V的电压信号,因而需要电平偏移电路,将有正负极性的电压信号转换为LF2407A/D转换器所需的单极性电

压信号。电流采样电路的原理框图如图3.2所示。

LEM

2.5V 电压偏移

ADC 输入电压

放大器输出电压

霍尔元件输出电压

图3.2 采样电路原理图

3.2 转速检测和转子磁极位置检测电路

高性能的变频调速系统一般都要求有高精度的速度和转子位置反馈元件。光电编码器是一种直接将角位移变量转换为数字信号的检测元件。因为具有较高的分辨率和简单的接口电路,所以特别适合于交流调速系统。系统中选用增量式光电脉冲编码器检测转速,转子速度和位置检测的DSP 外部接线电路如图3.3所示。图中PCA 、PCB 是从编码器上引出的增量式光电信号,两路信号相位相差90度。C1、C2、C4、C8是从编码器混合编码盘得到的反映电机转子绝对位置的光电信号,按照格雷码规律变化,其中,C1的变化频率是C2的一倍,是C4、C8的四倍,C4、C8同频率,但相位相差90度。整形后的信号,PCA 连接到DSP 的CAP1、CAP3管脚,PCB 连接到CAP2、CAP4管脚。格雷码信号Cl 、C2、C4、C8分别接到DSP 的4个通用10端口IOPA0、IOPA1、IOPA2、IOPA3。C1还同时连接到外部中断检测管脚XINT2和XINT3。

TMS320LF2407

隔离放大

混合编码盘

CAP4

CAP3CAP2CAP1IOPA3IOPA2IOPA1IOPA0XINT3XINT2

PCB PCA C1C2C4C8

图3.3 外部接线图

3.3 PWM发生电路

片上PWM发生电路是LF2407实现单片电机控制的又一硬件保证,它使在产生用于电机控制和运动控制场合的脉宽调制波形时,把CPU开销和用户的干预降至最少。在本系统中,我们使用空间矢量SVPWM波形发生器,由其产生的PWM信号进入死区发生单元,死区宽度从0~102.4μs可调。要产生一个PWM 信号,需要一个合适的定时器来重复产生一个与PWM周期相同的计数周期,一个比较寄存器保持着调制值。比较寄存器的值不断地与定时计数器的值相比较,当两个值匹配时,在相应的输出上就会产生一个变换(从高到低或从低到高)。当两个值之间的第二个匹配产生或一个定时周期结束时,相应的输出上会产生又一个转换(从低到高或从高到低)。通过这种方法,所产生的输出脉冲的开关时间就会与比较寄存器的值成比例。在每个定时器周期中,这个过程都会出现,但每次比较寄存器中的调制值是不同的,这要由控制软件根据每个采样周期的反馈量实时计算得到。这样在相应的输出引脚就会产生一个PWM信号。

在PWM发生电路中,还有一个关键部分即死区发生。在系统主回路中,两个功率器件被串联放在一个功率转换支路中。为避免击穿失效,两个器件的导通时问必须不能重叠,这样就需要一对非重叠的PWM输出来正确地开关这两个器件。为此,在一个功率器件的关断和另一个功率器件的导通之间要插入一段死区。这段延迟允许一个器件在同一桥臂上的另一器件导通之前完全关断。图3.4为一个全比较单元的死区逻辑的框图。死区单元的输入为PHl、PH2和PH3,分别来自于全比较单元的波形发生器。其输出有DTPHl、DTPHl-、DTPH2、DTPH2-、DTPH3和DTPH3-,分别对应于PHl、PH2和PH3。PWMx(1、3、5)信号的输出根据DTPHx来决定,ACTR控制高有效时输出DTPHx,低有效时输出为DTPHx 取反。PWMx(2、4、6)信号的输出根据DTPHx-一来决定,ACTR控制高有效时输出DTPHx-,低有效时输出为DTPHx-取反。DSP的死区根据ACTR的高低有效性而改变,高有效时不允许上下桥臂的控制信号同时为高电平,低有效时不允许同为低电平,因此DSP死区对高低电平开通的功率管都有效。软件产生死区只须将DBTCON高8位载入死区时间值即可实现。

DBTCON 死区控制寄存器

边沿检测

预定标

比较逻辑

DBTCON 死区控制寄存器

CLK

EN

计数器

DTPHX

DTPHx PHx

内部CPU 时钟

图3.4 死区逻辑框图

3.4 IPM 智能功率模块驱动电路

系统选用智能功率模块6MBP25RAl20构成的电压型变频器为三相桥式结构,模块工作时需外部提供独立的驱动电源基极控制信号,通过光电隔离电路接于模块接口。智能功率模块是把功率放大器件与起控制作用的逻辑电路和检测电路集成在一起,完成驱动信号放大、功率放大及各种保护等功能,具有IGBT 的开关特性。系统IPM 的驱动接口电路如图3.5所示。其外部控制电源有四组,三组电源分别为U 、V 、W 三相的上桥臂驱动电路供电,第四组电源供给三个下桥臂元件。六个IGBT 的基极驱动信号都是低电平有效的信号,与外部控制电路通过光电隔离器件TLP559隔离。TLP559将DSP 输出的0~5V 的PWM 信号转换成0~15V 的驱动信号。

R2110K

R11330

Q?NPN

C110.1μF

VUP1

VUPC

VCCD

PU+UP

4

7

1

2

2

3

1

5

6

8

OPT 1 T LP559

图3.5 IPM 的驱动接口电路

3.5 系统保护电路

为保证系统中功率转换电路及电机驱动电路的安全可靠,LF2407还提供了一个外部中断输入引脚一一PDPINT 。该中断为功率驱动保护专用设计。整个过程不需要程序干预,全部自动完成,这对实现各种故障状态的快速处理非常有用。为了保证系统的安全运行,实际系统中设计了如下的硬件故障检测和保护环节:

(1)直流过电压。当逆变器直流侧的电压高于某特定值时,会危及功率器件和滤波电容器的安全。因此为防止直流电压过高,设计了直流过电压保护电路;

(2)控制电路欠压。当控制电源电压过低时,会引起控制信号紊乱,使控制系统有可能发生误动作,为此设计了欠压保护,在欠压时停止控制系统的工作,以保护逆变器功率器件;

(3)IPM 故障。当IPM 内部检测到过流、短路、模块驱动控制电压欠压或者模块温度过高时,输出故障报警信号,使系统能够采取适当的方式关断功率器件。

系统保护功能框图如图3.6所示。

PDPINT 光电隔离

TMS320LF2407

过电压

欠压

过电流

各种

故障

图3.6 系统保护功能框图

3.6 人机接口电路

为了方便系统调试,系统设计了一套简单的人机接口电路,实现DSP和上位机之间的通讯。调试人员可以在系统运行之前设定电机的给定速度、PI调节器比例、积分系数等系统参数,并能够在电机运行时随时改变给定速度。TMS320LF2407提供了串行通讯接口(SCI),它的两个外部引脚分别是串行通讯数据的接收引脚和发送引脚。系统通过RS232协议与上位机的COM1口进行通讯。

4 软件设计

本系统软件程序结构是由一个主程序和四个中断程序组成。四个中断程序分被为定时器l下溢出中断,实现转速环和电流环的采样计算;XINT中断程序参与转子位置检测;CAP中断程序和定时器2中断服务程序共同实现M/T法转速的检测。图4.1为主程序流程图,图4.2、图4.3、图4.4、图4.5分别为四个中断程序流程图。

主程序

封锁PWM输出

启动系统主电路正常与上位机通讯参数设置

初始化

转子位置初始定位

开中断

关闭系统封锁PWM输出

关中断N

Y

N Y

N Y

定时器1中断服务程序保护现场

关中断

转速采样读光电编码器的计数值计算转子位置得转子位置的正余弦

计算电流反馈坐标变换电流调节

器计算

得指定电压值SVPWM运算控制输出

开中断

恢复现场中断返回

图 4.1 主程序流程图图 4.2 定时器1中断程序流程图

INT中断

服务程序

保护现场关中断读取格雷码求转子绝对位置记录当前计数值恢复现场开中断

返回

CAP3/4中断服

务程序

保护现场关中断

读取T2CNT,计算m2

停止定时器2,清零T2CNT 重新启动定时器

读取T3CNT值,计算m1

计算转速

屏蔽CAP3/4中断

恢复现场关中断

返回

图4.3 转子绝对位置处理程序图4.4 CAP3/4中断服务程序流程

定时器2中断程序

保护现场关中断

使能CAP3/4中断

恢复现场关中断

返回

图4.5 定时器2中断服务程序流程

设计心得

经过一周的课程设计,我对于运动控制这门课程又有了进一步的认识。在这一周中,通过和同学们讨论,和老师交流,最终完成了本次课程设计。通过此次设计,让我们对之前所学的各门课程(如单片机、DSP等)有了一个更深的理解,让我们能对于自己的专业又有一个更清醒的认识,能够站在更高的角度去审视我们学习的成果,也让我们有机会并且有意识地将以往所学的知识串成一个系统,让我们能够对自己所学有所思考,能够在各个环节上查漏补缺,知道我们学习的具体目的。在这次设计的过程中,我也遇到了许多的问题。让我对于之前走马观花式学过的知识或者没太弄明白的知识,最终都有了一个更清楚的认识。这次遇到了这么多麻烦,也算是对我之前学习不太仔细的一次教训吧!

参考文献

[1]陈伯时.电力拖动自动控制系统--运动控制系统[M].4版.北京:机械工业出版社,2010

[2]刘和平,等.DSP原理及电机控制应用--基于TMS320LF240x系列[M].北京:北京航空航天大学出版社,2006

[3]唐任远.现代永磁电机理论与设计.北京:机械工业出版社,2000

[4]徐广人,唐任远,安忠良.永磁同步电动机气隙磁场分析.沈阳电力高等专科学校校报,200l,3(2)

[5]万文斌,徐衍亮,唐任远.永磁同步电动机的高性能电流控制器.中国电机工程学报,2000,20(12)

永磁同步电动机结构原理3D

永磁同步电动机 这些年永磁同步电动机得到较快发展,其特点是功率因数高、效率高,在许多场合开始逐步取代最常用的交流异步电机,其中异步起动永磁同步电动机的性能优越,是一种很有前途的节能电机。 永磁同步电动机的定子结构与工作原理与交流异步电动机一样,多为4极形式,三相绕组按3相4极布置,通电产生4极旋转磁场。下图是有线圈绕组的定子.如下示意图1。 图1定子铁芯与绕组 如下图2是电机机座与定子。 图2机座与定子

永磁同步电动机与普通异步电动机的不同是转子结构,转子上安装有永磁体磁极,图3左就是一个安装有永磁体磁极的转子,永磁体磁极安装在转子铁芯圆周表面上,称为凸装式永磁转子。磁极的极性与磁通走向图3右,这是一个4极转子。 图3凸装式永磁转子 根据磁阻最小原理,也就是磁通总是沿磁阻最小的路径闭合,利用磁引力拉动转子旋转,于是永磁转子就会跟随定子产生的旋转磁场同步旋转。 图4左是另一种安装有永磁体磁极的转子,永磁体磁极嵌装在转子铁芯表面,称为嵌入式永磁转子。磁极的极性与磁通走向见图右,这也是一个4极转子。 图4嵌入式永磁转子铁芯1

图5右是一种嵌入式永磁转子,永磁体嵌装在转子铁芯内部,为防止永磁体磁通短路,在转子铁芯开有空槽或在槽内填充隔磁材料。磁极的极性与磁通走向见下右图,这也是一个4极转子。 图5嵌入式永磁转子铁芯2 下图6为装上转轴的嵌入式永磁转子 图6嵌入式永磁转 转子铁芯两侧装上风扇然后与定子机座组装成整机,见下图7。

图7永磁同步电动机剖面图 这种永磁同步电动机不能直接通三相交流的起动,因转子惯量大,磁场旋转太快,静止的转子根本无法跟随磁场旋转。这种永磁同步电动机多用在变频调速场合,启动时变频器输出频率从0开始上升到工作频率,电机则跟随变频器输出频率同步旋转,是一种很好的变频调速电动机。 通过在永磁转子上加装笼型绕组,接通电源旋转磁场一建立,就会在笼型绕组感生电流,转子就会像交流异步电动机一样起动旋转。这就是异步起动永磁同步电动机,是近些年开始普及的节能电机。如下图8为永磁转子铁芯 图8笼型绕组永磁转子铁芯 笼型转子有焊接式与铸铝式:在转子每个槽内插入铜条,铜条与转子铁芯两侧的铜端环焊接形成笼型转子;与普通交流异步电动机一样采用铸铝式转子,将熔化的铝液直接注入转子槽内,并同时铸出端环与风扇叶片,是较廉价的做法,下图9是一个铸铝式笼型转子。

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率 密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航 天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电 动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速 永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电 动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另 一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变 频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell 软件中的RMxprt 模块进行了一种调速永磁同步电 动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D 中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行 了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子 冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 永磁同步电动机的效率η、功率因数cos ?、起动转矩st T 和最大转矩max T 。本例所设计永磁同步电动机的额定数据及其性能指标如下: 额定数据 数值 额定功率 N 30kw P = 相数 =3m 额定线电压 N1=380V U 额定频率 =50Hz f 极对数 =3p 额定效率 N =0.94η 额定功率因数 N cos =0.95? 绝缘等级 B 级 计算额定数据:

maxwell软件- 调速永磁同步电机

13调速永磁同步电机 在用户已经掌握RMxprt 基本使用的前提下,我们将一些过程简化,以便介绍一些更高级的使用。有关RMxprt 的详细介绍请参考第一部分的章节。 13.1基本原理 调速永磁同步电机的转子转速是通过调节输入电压的频率来控制的。与标准的直流无刷电机不同,这种电机不需要位置传感器。 永磁同步电机的转子上安装永磁体(有内转子与外转子之分),定子上嵌有多相电枢绕组,其极数与转子相同。永磁同步电机既可用作发电机,也可用作电动机。当电机工作在电动状态时,定子多相绕组可由正弦交流电源供电或由直流电源经DC/AC 变换来供电。当电机工作在发电状态时,定子多相绕组为负载提供交流电源。 13.1.1 定子绕组正弦交流电源供电 永磁同步电机分析方法与三相凸极同步电机相同,电机既可工作在发电状态也可工作在电动状态,通常采用频域矢量图来分析电机的特性。电机发电状态矢量图如图13.1a ,电机电动状态矢量图如图13.1b 。 发电机 b. 电动机 图13.1 同步电机相量图 图13.1中,R 1、X d 、X q 分别为定子电枢的电阻、d 轴同步电抗和q 轴同步电抗。 aq 1q ad 1d X X X X X X +=+= (13.1) 上式中,X 1为电枢绕组漏电抗,X ad 和X aq 分别为d 轴电枢反应电抗和q 轴电枢反应电抗。 以输入电压U 为参考矢量, I 滞后U 的角度为φ, 称φ为功率因数角, 则电流矢量为: ?-∠=I I (13.2) 令I 滞后E 0的角度为ψ。则可得d 轴和q 轴的电流为:

? ?????=?? ????=ψψcos sin I I I q d I (13.3) 所以: q d 1 I I -=tan ψ (13.4) 13.1.1.1 发电机模型 在图13.1a ,OM 所代表的矢量可表示为: ) j j (aq 11X X R OM +++=I U (13.5) OM 所代表的矢量可用来确定E 0的位置。 令U 滞后E 0的角度为θ,对于发电机称θ为功角,则角度ψ为 θ?ψ+= (13.6) 对于给定的功角θ,我们有; ??? ???--=????????????-θ θsin cos U U E I I X R R X 0q d q 1 1d (13.7) 求得I d 和I q 为: ? ?????--+-+=??????θθθθsin )cos (sin )cos (U X U E R U R U E X X X R 1 I I d 0110q q d 2 1q d (17.8) 功率角φ: θψ?-= (13.9) 输出电功率: ?cos UI 3P 2= (13.10) 输入机械功率: ) (Fe Cua fw 21P P P P P +++= (13.11) 式中P fw 、P Cua 、P Fe 分别为风摩损耗、电枢铜损和铁心损耗 输入机械转矩: ω1 1P T = (13.12) ω为同步角速度rad/s 13.1.1.2 电动机模型 在图13.1, OM 所代表的矢量可表示为: ) j j (aq 11X X R OM ++-=I U (13.5’)

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell软件中的RMxprt模块进行了一种调速永磁同步电动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 T。本例所永磁同步电动机的效率η、功率因数cos?、起动转矩st T和最大转矩max 设计永磁同步电动机的额定数据及其性能指标如下: 计算额定数据:

(1) 额定相电压:N 220V U U == (2) 额定相电流:3 N N N N N 1050.9A cos P I mU η??== (3) 同步转速:160=1000r /min f n p = (4) 额定转矩:3 N N 1 9.5510286.5N m P T n ?==g 2.2 主要尺寸和气隙长度的确定 永磁电机的主要尺寸包括定子内径和定子铁心有效长度,它们可由如下公式 估算得到: 2 i11P D L C n '= N N N cos E K P P η?'=, 6.1p Nm dp C K K AB δ α=' 式中,i1D 为定子内径,L 为定子铁心长度,P '为计算功率,C 为电机常数。 E K 为额定负载时感应电势与端电压的比值,本例取0.96;p α'为计算极弧系数, 初选0.8;Nm K 为气隙磁场的波形系数,当气隙磁场为正弦分布时等于1.11;dp K 为电枢的绕组系数,初选0.92。A 为电机的线负荷,B δ为气隙磁密,A 和B δ的 选择非常重要,直接影响电机的参数和性能,应从电机的综合技术经济指标出发 来选取最合适的A 和B δ值,本例初选为200A/cm,0.7T A B δ==。 由上式可初步确定电机的2i1D L ,但要想进一步确定i1D 和L 各自的值,还应选择主要尺寸比i1i122L L pL D D p λπτπ===,其中τ为极距。通常,中小型同步电动机的0.6~2.5λ=,一般级数越多,λ也越大,本例初选1.4。 永磁同步电动机的气隙长度δ一般要比同规格的感应电动机的气隙大,主要 是因为适当的增加气隙长度可以在一定的程度上减小永磁同步电动机过大的杂 散损耗,减低电动机的振动与噪声和便于电动机的装配。所以设计永磁同步电动 机的气隙长度时,可以参照相近的感应电动机的气隙长度并加以适当的修改。本 例取=0.7mm δ。 确定电动机定子外径时,一般是在保证电动机足够散热能力的前提下,视具 体情况为提高电动机效率而加大定子外径还是为降低成本而减小定子外径。

KW调速永磁同步电动机电磁设计程序文件

11KW 变频起动永磁同步电动机电磁设计程序 及电磁仿真 1永磁同步电动机电磁设计程序 1.1额定数据和技术要求 除特殊注明外,电磁计算程序中的单位均按目前电机行业电磁计算时习惯使用的单位,尺寸以cm(厘米)、面积以cm 2(平方厘米)、电压以V (伏)、电流以A (安)、功率和损耗以(瓦)、电阻和电抗以Ω(欧姆)、磁通以Wb(韦伯)、磁密以T(特斯拉)、磁场强度以A/cm(安培/厘米)、转矩以N (牛顿)为单位。 1额定功率kw P n 11= 2相数 31=m 3额定线电压V U N 3801= 额定相电压Y 接法V U U N N 39.2193/1== 4额定频率50f HZ = 5电动机的极对数P =2 6额定效率87.0, =N η 7额定功率因数78.0cos , =N ? 8失步转矩倍数2.2* =poN T 9起动转矩倍数2.2* =stN T 10起动电流倍数2.2* =stN I 11额定相电流62.2478.087.039.21931011cos 105 , ,15=????=?=A U m P I N N N N N ?η 12额定转速1000=N n r/min 13额定转矩m N n P T N N N .039.1051000 11 55.91055.93=?=?=

14绝缘等级:B 级 15绕组形式:双层叠绕Y 接法 1.2主要尺寸 16铁心材料DW540-50硅钢片 17转子磁路结构形式:表贴式 18气隙长度cm 07.0=δ 19定子外径cm D 261= 20定子内径cm D i 181= 21转子外径86.17)07.0218(212=?-=-=cm D D i δ 22转子内径cm D i 62= 23定,转子铁心长度cm l l 1521== 24铁心计算长度cm l l a 152== 铁心有效长度cm cm l l a ef 14.15)07.0215(2=?+=+=δ 25定子槽数136Q = 26定子每极每相槽数332/362/11??==p m Q q =2 27极距cm P D i p 728.932/1814.32/1=??==πτ 28定子槽形:梨形槽 定子槽尺寸 cm h cm r cm b cm b cm h 72.153.078.038.008.002110101===== 29定子齿距cm Q D t i 5708.136 181 1 1== = π π

高压变频器在同步电动机上的应用知识

高压变频器在同步电动机上的应用知识 内容来源于 https://www.doczj.com/doc/bf15023036.html,/%C5%C9%BF%CB%D6%B1%C1%F7%B5%F7%CB%D9%C6%F7/blog/i tem/1e9a82156c0e724df919b84c.html 1.引言 大功率低速负载,如磨机、往复式压缩机等,使用多极同步电动机可以提高系统功率因数,更可以省去变速机构,如齿轮变速箱,降低系统故障率,简化系统维护。 同步电机物理过程复杂、控制难度高,高压同步电机调速系统必须安装速度/位置传感器,增加了故障率,系统可靠性较低。 单元串联多电平型变频器具有成本低,网侧功率因数高,网侧电流谐波小,输出电压波形正弦、基本无畸变,可靠性高等特点,高压大容量异步电机变频调速领域取了非常广泛应用。将单元串联多电平型变频器应用于同步电动机将有效提高同步电机变频调速系统可靠性,降低同步电机变频改造成本,提高节能改造带来效益,同时也为单元串联多电平型变频器打开一个广阔新市场。利德华福技术人员大量理论分析、计算机仿真和物理系统实验,解决了同步电机起动整步等关键问题,已于2006年4月底成功将单元串联多电平型高压变频器应用于巨化股份公司合成氨厂1000k W/6k V同步电动机上。以下将简要介绍实际应用中主要技术问题。 2.同步电动机工频起动投励过程 更好说明同步电机运行特点,先对同步电机工频起动投励过程进行简要介绍。 电网电压直接驱动同步电机工频运行时,同步电动机起动投励是一个比较复杂过程。当同步电机电枢绕组高压合闸时,高压断路器辅助触点告知同步电机励磁装置准备投励。此时,励磁装置自动同步电机励磁绕组上接入一个灭磁电阻,止励磁绕组上感应出高压,同时起动时提供一部分起动转矩。同步电机电枢绕组上电后,起动绕组和连有灭磁电阻励磁绕组共同作用下,电机开始加速。当速度到达95%同步转速时,励磁装置励磁绕组上感应电压选择合适时机投入励磁,电机被牵入同步速运行。同步电机凸极效应较强、起动负载较低,则励磁装置找到合适投励时机之前,同步电机已经进入同步运行状态。这种情况下,励磁装置将延时投励准则进行投励,即高压合闸后15秒强行投励。 3.变频器驱动同步电动机时起动整步过程 用变频器驱动同步电机运行时,使用与上述方式不同起动方式:带励起动。 变频器向同步电机定子输出电压之前,即启动前,先由励磁装置向同步电机励磁绕组通以一定励磁电流,然后变频器再向同步电机电枢绕组输出适当电压,起动电机。 同步电机与普通异步电机运行上主要区别是同步电机运行时,电枢电压矢量与转子磁极位置之间夹角必须某一范围之内,否则将导致系统失步。电机起动之初,这二者夹角是任意,必须适当整步过程将这一夹角控制到一定范围之内,然后电机进入稳定同步运行状态。,起动整步问题是变频器驱动同步电动机运行关键问题。 变频器驱动同步电动机起动整步过程主要分为以下几个步骤: 第一步,励磁装置投励。励磁系统向同步电机励磁绕组通以一定励磁电流,

永磁同步电机

高强度永磁同步电机 本实用新型涉及一种高强度永磁同步电机的转子结构,它由中心轴,铁芯和附着在其外圆表面上的至少1对圆弧面形的磁钢构成圆辊状结构,各相邻两磁钢侧面之间留有气隙,各磁钢通过相应的锁紧件与铁芯构成锁紧联结结构,它解决了现有技术强度差、磁钢易被甩出,易出现事故的问题,用于制作各型永磁同步电机。 交流永磁同步调速电梯电机之特性 石正铎路子明 我国电梯性能随着计算机控制技术和变频技术的发展有很大的提高,但是异步变频电动机存在低频低压低速时的转矩不够平稳进而影响低速段运行不理想的缺点。用永磁同步调速电机替代交流异步电机,用同步变频替代异步变频可以解决低速段的缺点和启动及运行中的抖动问题,使电梯运行更平稳、更舒适,同时减小电机的体积,降低噪音。采用有齿轮电梯曳引机,当电梯制动器失灵、轿厢产生自由落体时,可利用永磁同步电机的电流制动功能保证轿厢低速溜车,为电梯安全增加了一道安全屏障。 一、永磁同步电机与异步电机的主要区别及特点 由于异步电机是靠电机定子电流为电机转子励磁的,而永磁电机转子是用永磁体直接产生磁场不需要电励磁。因此永磁同步电机具有结构简单、运行可靠、体积小、重量轻、效率高、形状和尺寸灵活多样等特点。 二、交流永磁同步调速电梯电机的主要优点 1、结构简单运行可靠,由于永磁电机转子不需要励磁,省去了线圈或鼠笼,简化了结构,实现了无刷,减少了故障,维修方便简单,维修复杂系数大大降低。 2、低温升、小体积永磁同步电机与感应电机相比,因为不需要无功励磁电流,而具备: (1)、功率因数高近于1。 (2)、反电势正弦波降低了高次谐波的幅值,有效的解决了对电源的干扰。 (3)、减小了电机的铜损和铁损。 同步电机温升小(约38K),电机外形小,体积与异步电机相比,降低一至两个机座号。 3、高效率超节能,因为功率因数高(可近似为1),又省去电励磁,减少了定子电流和定子转子电阻的损耗,效率高(94~96%),满载起动电流比异步减少一半,所以节能效果明显,用于电梯时,同步电机可节能40%以上(用户实际使用后测试结果),轻载电流小,只相当于异步电机的10%,如11KW异步电机轻载时异步电机电流10A,而同步电机轻载电流只有0.7A。 4、调速范围宽,可达1:1000甚至于更高(异步电机只有1:100),调速精度极高,可大大提高电梯的品质。 5、永磁同步电梯电机在额定转速内保持恒转矩,对于提高电梯的运行稳定性至关重要。可以做到给定曲线与运行曲线重合,特别是电动机在低频、低压、低速时可提供足够的转矩,避免电梯在启动缓速过程抖动,改善电梯启制动过程的舒

11KW调速永磁同步电动机电磁设计程序2

11KW变频起动永磁同步电动机电磁设计程序 及电磁仿真 1永磁同步电动机电磁设计程序 1.1额定数据和技术要求 除特殊注明外,电磁计算程序中的单位均按目前电机行业电磁计算时习惯使用的单位,尺寸以cm(厘米)、面积以cm2(平方厘米)、电压以V (伏)、电流以A (安八功率和损耗以(瓦)、电阻和电抗以门(欧姆)、磁通以Wb(韦伯)、磁密以T(特斯拉)、磁场强度以A/cm(安培/厘米)、转矩以N (牛顿)为单位。 1额定功率P n =11kW 2相数叶=3 3额定线电压U N1 =380V 额定相电压丫接法U N =U N1 / 3 = 219.39V 4额定频率f =50HZ 5电动机的极对数P=2 6额定效率N =0.87 7额定功率因数cos N =0.78 8失步转矩倍数T;°N =22 9起动转矩倍数T;N =22 10起动电流倍数I;N =2.2 12 额定转速n N =1000r/min 13额定转矩T N二9.55P N 103二 9.55 11 二105.039N.m n N 11额定相电流I N P N X105 0U N N COS N 11 105 3 219.39 0.87 0.78 A-24.62

14绝缘等级:B级 15绕组形式:双层叠绕Y接法 1.2主要尺寸 16铁心材料DW540-50硅钢片 17转子磁路结构形式:表贴式 18气隙长度:=0.07cm 19定子外径D1 =26cm 20定子内径D i1 =18cm 21 转子外径D2二D H—2、=(18 -2 0.07)cm =17.86 22转子内径D i2 =6cm 23定,转子铁心长度h日2 =15cm 24铁心计算长度l a J =15cm 铁心有效长度l ef =la 2、=(15 2 0.07)cm = 15.14cm 25定子槽数Q1 = 36 26定子每极每相槽数q =Q1 /2gp =36/2 3 3=2 27极距巨p =蔥D i1/2P =3.14 18/2 9.728cm 28定子槽形:梨形槽定子槽尺寸 h01= 0.08cm b01= 0.38cm bi = 0.78cm r1 二 0.53cm h o2 = 1.72cm 巧“18^ 29定子齿距t1卩 1.5708cm Q136

高效永磁同步电动机设计技术研究

高效永磁同步电动机设计技术研究

目录 1、基本情况及背景介绍 (2) 2、高效永磁同步电动机关键技术的研究 (3) 2.1优化转子磁路结构,提高电机的可靠性 (3) 2.2永磁电机防退磁技术研究 (5) 2.3漏磁系数准确计算的研究 (7) 2.4稀土永磁材料的高温退磁特性及应用技术的研究 (10) 2.5稀土永磁材料的剩磁测试技术的研究 (14) 2.6电机的起动性能 (16) 2.7失步转矩倍数 (17) 2.8其它性能指标 (18)

1、基本情况及背景介绍 稀土永磁是一种高性能的功能材料,它的高剩磁密度、高矫顽力、高磁能积等优异磁性能特别适合于制造电机。用它制成的永磁同步电机,不需要用以产生磁场的无功励磁电流,可显著提高功率因数,减少定子电流和定子电阻损耗。在稳定运行时没有转子电阻损耗,使电机温升有较大裕度,从而可将风扇减小甚至不安装风扇,以减少风摩损耗提高电机效率。与普通的电励磁同步电动机相比,不需要用以产生磁场的励磁绕组和直流励磁电源,取消了容易出问题的集电环和电刷装置,成为无刷电机,运行可靠,又效率提高。因此,国内外都投入大量人力物力从事高效钕铁硼永磁电机的研制开发。 相对于异步电机,永磁同步电动机(PMSM)具有体积小、功率密度高等优点,效率比同规格的感应异步电机高2~8%。我国稀土永磁资源储量占世界储量的80%,发展永磁电机具有得天独厚的优势。 早在1980年,我国有关高校及科研院所就开始从事高效永磁电动机的研制开发,先后研制开发出多种类型电动机的样机,技术水平参差不齐,还存在着转子磁路单一、永磁材料可能退磁、测试和制造工艺复杂等问题,性能价格比不够理想,价格偏高。 为了充分发挥钕铁硼永磁材料的优异磁性能,针对钕铁硼永磁电动机在磁、电、机、热等方面的特点,进行技术集成和创新,特别对转子磁路结构、钕铁硼永磁材料的热稳定性做了深入研究,并应用于产品开发过程,提高其效率、性价比,可靠性(主要指不退磁),扩大应用领域,为把稀土资源优势转化为经济优势作贡献。

同步电机变频调速

同步电机变频调速 历史上最早出现的是直流电动机19世纪末,出现了交流电和交流电动机为了改善功率因数,同步电动机应运而生。同步电动机也是一种交流电机。既可以做发电机用,也可做电动机用,过去一般用于功率较大,转速不要求调节的生产机械,例如大型水泵,空压机等。 最初的同步电动机只用于拖动恒速负载或用于改善功率因数的场合。在恒定频率下运行的大型同步电动机又存在着容易发生失步和振荡的危险,以及起动困难等问题。 因此,在没有变频电源的情况下,很难对同步电动机的转速进行控制。 同步电动机历来是以转速与电源频率保持严格同步著称的。只要电源频率保持恒定,同步电动机的转速就绝对不变。 采用电力电子装置实现电压-频率协调控制,改变了同步电动机历来只能恒速运行不能调速的面貌。起动费事、重载时振荡或失步等问题也已不再是同步电动机广泛应用的障碍。 同步电机的特点与问题: 优点: (1)转速与电压频率严格同步; (2)功率因数高到1.0,甚至超前。 存在的问题: (1)起动困难; (2)重载时有振荡,甚至存在失步危险。 问题的根源: 供电电源频率固定不变 解决办法: 采用电压-频率协调控制 例如: 对于起动问题: 通过变频电源频率的平滑调节,使电机转速逐渐上升,实现软起动。 对于振荡和失步问题: 可采用频率闭环控制,同步转速可以跟着频率改变,于是就不会振荡和失步了。 同步电机和其它类型的旋转电机一样,由固定的定子和可旋转的转子两大部分组成。 下图给出了最常用的同步发电机的结构模型,其定子铁心的内圆均匀分布着定子槽,槽

内嵌放着按一定规律排列的三相对称交流绕组。这种同步电机的定子又称为电枢,定子铁心和绕组又称为电枢铁心和电枢绕组。 图中用AX 、BY 、CZ 三个 在空间错开120电角度分布的线 圈代表三相对称交流绕组。 同步电机的运行方式: 同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。 同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。 同步电机的突出优点:控制励磁来调节它的功率因数,可以使功率因数高到1.0,甚至超前。 同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。 同步调速系统的特点: (1)交流电机旋转磁场的同步转速ω1与定子电源频率 f 1 有确定的关系 同步电动机的稳态转速等于同步转速,转差 ωs = 0。 (2)异步电动机的磁场仅靠定子供电产生,而同步电动机除定子磁动势外,转子侧还有独立的直流励磁,或者用永久磁钢励磁。 目前采用的直流励磁方式分为两大类:一类是用直流发电机作为励磁电源的直流励磁机励磁系统;另一类是用硅整流装置将交流转化成直流后供给励磁的整流器励磁系统。 (3)同步电动机的气隙有隐极与凸极之分。凸极式转子上有明显凸出的成对磁极和励磁线圈。如对水轮发电机来说,由于水轮机的转速较低,要发出工频电能,发电机的极数就比较多,做成凸极式结构工艺上较为简单。另外,中小型同步电机多半也做成凸极式。 隐极式同步电机转子上没有凸出的磁极,气隙均匀。凸极式则不均匀,两轴的电感系 1 1p 2f n πω=

永磁式同步电机的特点及其分类

永磁式同步电机的特点及其分类 永磁式同步电动机结构简单、体积小、重量轻、损耗小、效率高,和直流电机相比,它没有直流电机的换向器和电刷等缺点。和异步电动机相比,它由于不需要无功励磁电流,因而效率高,功率因数高,力矩惯量比大,定子电流和定子电阻损耗减小,且转子参数可测、控制性能好;但它与异步电机相比,也有成本高、起动困难等缺点。和普通同步电动机相比,它省去了励磁装置,简化了结构,提高了效率。永磁同步电机矢量控制系统能够实现高精度、高动态性能、大范围的调速或定位控制,因此永磁同步电机矢量控制系统引起了国内外学者的广泛关注。 近年来,随着永磁材料性能的不断提高和完善,特别是钕铁硼永磁的热稳定性和耐腐蚀性的改善和价格的逐步降低以及电力电子器件的进一步发展,加上永磁电机研究开发经验的逐步成熟,经大力推广和应用已有研究成果,使永磁电机在国防、工农业生产和日常生活等方面获得越来越广泛的应用。正向大功率化(高转速、高转矩)、高功能化和微型化方面发展。目前,稀土永磁电机的单台容量已超过1000KW,最高转速已超过300000r/min,最低转速低于0.01r/min,最小电机的外径只有 0.8mm,长1.2mm。 我国是盛产永磁材料的国家,特别是稀土永磁材料钕铁硼资源在我国非常丰富,稀土矿的储藏量为世界其他各国总和的4倍左右,号称“稀土王国”。稀土永磁材料和稀土永磁电机的科研水平都达到了国际先进水平。因此,对我国来说,永磁同步电动机有很好的应用前景。充分发挥我国稀土资源丰富的优势,大力研究和推广应用以稀土永磁电机为代表的各种永磁电机,对实现我国社会主义现代化具有重要的理论意义和实用价值。 永磁同步电动机的转子磁钢的几何形状不同,使得转子磁场在空间的分布可分为正弦波和梯形波两种。因此,当转子旋转时,在定子上产生的反电动势波形也有两种:一种为正弦波;另一种为梯形波。这样就造成两种同步电动机在原理、模型及控制方法上有所不同,为了区别由它们组成的永磁同步电动机交流调速系统,习惯上又把正弦波永磁同步电动机组成的调速系统称为正弦型永磁同步电动机(PMSM)

变频调速电机的选型

变频调速电机的选型 变频调速电机一般均选择4级电机,基频工作点设计在50Hz,频率0-50HZ (转速0-1480r/min )范围内电机作恒 转矩运行,频率50-100HZ (转速1480-2800r/min )范围内电机作恒功率运行,整个调速范围为(0-2800r/min ),基本满足一般驱动设备的要求,其工作特性与直流调速电机相同,调速平滑稳定。如果在恒转矩调速范围内 要提高输出转矩,也可以选择6级或8级电机,但电机的体积相对要大一点。

由于变频调速电机的电磁设计运用了灵活的CAD设计软件,电机的基频设计点可以随时进 行调整,我们可以在计算机上精确的模拟电机在各基频点上的工作特性,由此也就扩大了电机的恒转矩调速范 围,根据电机的实际使用工况,我们可以在同一个机座号内把电机的功率做的更大,也可以在使用同一台变频 器的基础上将电机的输出转矩提的更高,以满足在各种工况条件下将电机的设计制造在最佳状态。变频调速电 机可以另外选配附加的转速编码器,可实现高精度转速、位置控制、快速动态特性响应的优点。也可配以电机 专用的直流(或交流)制动器以实现电机快速、有效、安全、可靠的制动性能。由于变频调速电机的基频可 调性设计,我们也可以制造出各种高速电机,在高速运行时保持恒转矩的特性,在一定程度上替代了原来的中 频电机,而且价格低廉。变频调速电机为三相交流同步或异步电动机,根据变频器的输出电源有三相380V 或三相220V,所以电机电源也有三相380V 或三相220V的不同区别,一般4KW以下的变频器才有三相220V可,由于变频电机是以电机的基频点 (或拐点)来划分不同的恒功率调速区和恒转矩调速区的,所以变频器基频点和变频电机基频点的设置都非常 重要。 同步变频与异步变频调速电机的区别 异步变频调速电机是由普通异步电机派生而来,由于要适应变频器输出电源的特性,电机在转子槽型,绝缘工艺,电磁 设计校核等作了很大的改动,特别是电机的通风散热,它在一般情况下附加了一个独立式强迫冷却风机,以适应电机在 低速运行时的高效散热和降低电机在高速运行时的风摩耗。变频器的输出一般显示电源的输出频率,转速输出显示为电 机的极数和电源输出频率的计算值,与异步电机的实际转速有很大区别,使用一般异步变频电动机时,由于异步电机的 转差率是由电机的制造工艺决定,故其离散性很大,并且负载的变化直接影响电机的转速,要精确控制电机的转速只能 采用光电编码器进行闭环控制,当单机控制时转速的精度由编码器的脉冲数决定,当多机控制时,多台电机的转速就无 法严格同步。这是异步电机先天所决定的。 同步变频调速电机的转子内镶有永磁体,当电机瞬间起动完毕后,电机转入正常运行,定子旋转磁场带动镶有永磁体的 转子进行同步运行,此时电机的转速根据电机的极数和电机输入电源频率形成严格的对应关系,转速不受负载和其他因 数影响。同样同步变频调速电机也附加了一个独立式强迫冷却风机,以适应电机在低速运行时的高效散热和降低电机在 高速运行时的风摩耗。由于电机的转速和电源频率的严格对应关系,使得电机的转速精度主要就取决于变频器输出电源 频率的精度,控制系统简单,对一台变频器控制多台电机实现多台电机的转速一致,也不需要昂贵的光学编码器进行闭 环控制。 1、咼效节能 3~10 2、可精确调速 3、高功率因数与异步变频调速电机相比,咼效节能。冋规格相比,该系列电机效率比异步变频电机效率咼个百分点。以1.5kW为利,两者效率差近7个百分点; 与异步变频系统相比,无需编码器即可进行准确的速度控制; 既可减少无功能量的消耗,又能降低变压器的容量 TYP变频调速永磁同步电机具有的三大优点:

永磁同步电机基础知识

(一) PMSM 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: d d s d d c q q q s q q c d di u R i L dt di u R i L dt ωψωψ?=+-????=++?? 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 cos sin 22cos()sin()3322cos()sin()33a d b q c u u u u u θθθπθπθπθπ?? ?-????? ??=--- ? ???? ???? ?+-+? ? (2)d/q 轴磁链方程: d d d f q q q L i L i ψψψ=+???=?? 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项 倍。

表贴式永磁同步电机磁极优化建模与分析

Modeling and Analyzing of Surface-Mounted Permanent-Magnet Synchronous Machines With Optimized Magnetic Pole Shape Zhenfei Chen1,Changliang Xia1,2,Qiang Geng2,and Yan Yan1 1School of Electrical Engineering and Automation,Tianjin University,Tianjin300072,China 2Tianjin Key Laboratory of Advanced Technology of Electrical Engineering and Energy,Tianjin Polytechnic University, Tianjin300387,China Two types of eccentric magnetic pole shapes for optimizing conventional surface-mounted permanent-magnet(PM)synchronous machines with radial magnetization are presented in this paper.An analytical method based on an exact subdomain model and discrete idea is proposed for obtaining the air-gap?ux density distribution in the improved motor.Cogging torque and back EMF analytical models are further built with the?eld solution,which provide useful tools for investigating motor performances with unequal thickness magnetic poles.The accuracy and feasibility of the models have been validated by a?nite element method.Based on the analytical models,the effects of pole shape parameters on motor performance are investigated.Results show that both pole shapes can perfect magnetic?eld distribution,decrease harmonic content of back EMF,reduce torque ripples,and improve the utilization of PMs. Index Terms—Exact subdomain model,?ux density distribution,magnetic pole shape optimization,surface-mounted permanent-magnet(PM)synchronous machine. I.I NTRODUCTION T HE surface-mounted permanent-magnet(PM) synchronous machine has been widely used in elevator,wind turbine,and hybrid electric vehicle applications due to its high ef?ciency,power factor,and torque density [1],[2].The PM pole,as a pivotal part of the PM motor, directly affects motor cost and behavior,such as magnetic ?eld,back EMF,torques,and so on.As a result,magnetic pole design is particularly important in PM motor design and has attracted lots of attention.Studies in[3]–[6]point out that the contributions of different PM parts are not uniform and magnetic pole optimization can not only improve PM material utilization,reduce magnet material cost,but also achieve more sinusoidal magnetic?eld distribution and lower cogging torque performance. The magnetic?eld calculation is an important prerequisite for the analysis of PM machines.Many methods have been proposed for magnetic?eld prediction in past few decades. In[7],the drawbacks and stability of numerical implementa-tion are discussed and a semianalytical framework is presented for solving2-D PM machine models in three different coordi-nates.Nevertheless,analytical modeling is usually much more complex for improved PM motors with optimized magnetic pole con?gurations,since the radial thickness of magnetic pole changes with the circumferential position,which makes its mathematical modeling more dif?cult than that of conven-tional magnetic poles.Several analytical methods are given in[8]–[10],which provide valuable theoretical references for magnetic pole design and analysis.Stator slotting is usually neglected or complicated pole boundary is simpli?ed to reduce the dif?culty of modeling,which also results in a low accuracy of the models. Manuscript received March3,2014;revised May11,2014;accepted May24,2014.Date of current version November18,2014.Corresponding author:C.Xia(e-mail:motor@https://www.doczj.com/doc/bf15023036.html,). Color versions of one or more of the?gures in this paper are available online at https://www.doczj.com/doc/bf15023036.html,. Digital Object Identi?er 10.1109/TMAG.2014.2327138Fig.1.PM pole shapes.(a)Conventional pole shape S0.(b)Outer arc eccentric pole shape SA.(c)Inner arc eccentric pole shape SB. In this paper,two types of eccentric magnetic pole designs are chosen for pole shape optimization of surface-mounted PM machines with radial magnetization.To solve the problem of unequal thickness magnetic pole modeling,a modi?ed subdomain model method based on discrete idea is proposed to predict magnetic?eld distribution in the air-gap.With the ?eld solution,cogging torque and back EMF models are built. The effects of magnetic pole dimensions on motor behavior are further investigated to draw some conclusions. II.A NALYTICAL M ODELING A.Eccentric Magnetic Pole Shapes Compared with the conventional magnetic pole,two kinds of eccentric magnetic pole shapes for improving the?eld distribution of surface-mounted PM motors are shown in Fig. 1.Fig.1(a)is the conventional magnetic pole shape designated as S0,Fig.1(b)is the outer arc eccentric magnetic pole shape designated as SA,and Fig.1(c)is the inner surface arc magnetic pole shape designated as SB. As shown in Fig.1,O is the center of motor and h m is the magnet thickness at the pole centerline.For conventional pole shape S0,its inner and outer arcs have the same centre O and the radial thickness does not change with position. R r and R m are the radii of magnet inner and outer surfaces,and h m=R m?R r.For the shape SA,the center of its outer arc moves to O and the radius changes to be R o.For the shape SB,the center of its inner arc moves to O ,and the radius 0018-9464?2014IEEE.Personal use is permitted,but republication/redistribution requires IEEE permission. See https://www.doczj.com/doc/bf15023036.html,/publications_standards/publications/rights/index.html for more information.

相关主题
文本预览
相关文档 最新文档