当前位置:文档之家› 竞赛数学不等式完整版

竞赛数学不等式完整版

竞赛数学不等式完整版
竞赛数学不等式完整版

不等式证明的基本技巧

数学竞赛的历史,可以追溯到16世纪意大利求解三次方程“擂台战”。而1894年匈牙利举办的全国中学数学竞赛,可以说是开中学生数学竞赛的先河。中国的少年在IMO 上屡屡夺标,不仅展示了炎黄子孙的才能和苦学精神,而且肯定了中国在数学教学和奥林匹克数学培训中的可贵经验。如果说,一名中学生,他有可能选择是否接受竞赛数学的培训,那作为一名中学数学老师没有理由对中学数学中这块领域毫无所知,所以作为师范生的我们有必要学好数学竞赛这门课程。

在学习竞赛数学这门课程过程中,我比较注重它的思想和方法,课余时间我还会借阅有关课外书籍,这些有富于我们数学创造力和思维能力的提高。对于不等式部分我很感兴趣,并做了一些研究。竞赛数学中的不等式问题按范围可分为代数不等式、三角不等式与几何不等式,按可形式分为不等式求解、不等式证明与不等式应用,这些都是属于竞赛数学中较重要的部分。下面就不等式证明这一部分我给大家做一些介绍。

证明不等式的主要方法是根据不等式的性质和已知的恒不等式,进行合乎逻辑的等价变换。不等式证明基本方法与技巧主要有比较法、放缩法、代换法、分析综合法、反证法、数学归纳法、配方与判别式法、构造法、导数法、辅助函数法公式法、调整法等。下面举例说明证明不等式的常用技巧。

例1 设a,b,c 为正数,证明??

?

??-++≤??? ??-+33322abc c b a ab b a .

()().

23232233333ab abc c ab abc b a c b a ab b a abc c b a +-+-+-++?

?

?

??-+-??? ??-++==

x

x y ab abc c x 3233

3623230y 0x c y ab +-+-=,

,,则=,=设 ()()()

()()()()

()()0

2222222

2

22

3

2

2

3

≥++--?

?

? ??-+----++---x y x y x y x y xy x y x y x y x y y y y x y x y x x

x x y =

====

.2

时等号成立=即=仅当c ab y x

??

?

??-++≤??? ??-+33322abc c b a ab b a 所以.

分析 这里主要是运用了比较法,欲证A ≥B ,证A-B ≥0即可,并且在这

过程中需作适当的等量替换.若A,B>0,则证B

A

≥1亦可.这就是比较法的主要思

路.

例2 .1716,1

80

1 S k

S k 求证=设=∑

证 对自然数k ,显然成立 ,121+++-k k k k k 取倒数可得

()()

,

121

12,

1

1

21

1

1

---+-+++k k k

k k k k k k k

对k 从m 到n 求和交叉相消可得 (

)()

121

12---+∑

m n k

m n n

m

k =

所以,在上式的左式中m =1,n =80,即得16

1718021 -+s 因此16

例3 .1111,,,c c

b b a a

c b a c b a R c b a +++++≤+++++∈求证:

证 构造函数()[)时,

则当=

x x x x

x f 2

10,0,1x

≤+∞∈+ ()()()

011112

1121122 x x x x x x x x x f ++-

+-+==

所以函数()[)上是严格递增的,由,在=

∞++01x

x

x f ()().c b a f c b a f c b a c b a ++≤++++≤++有 即

c

b a

c b a c

b a

c b a +++++≤

+++++11

()()()

c b a c

c b a b c b a ++++

+++++++111a =

c

c b

b a

a ++

++

+≤

111

分析 不等式中四个式子形式相似,相当于函数()x

x

x f +1=

在相应四个点的函数值,由此我们设置辅助函数来研究不等式.利用不等式的特点,构造辅助函数,将不等式的证明转化为函数增减性或极值来研究,是很有效的方法。

例4 设a ,b ,c 是三角形的三边长,求证

()()()02

2

2

≥-+-+-a c a c b c b a b c b a ,.并确定等号成立的条件

证 (),,,c b a 2

1

s c s z b s y a s x s ---++===,再令=为半圆周,即令 ,且则0,, z y x

.,,y x c x z b z y a +++=== 此代换把欲证之不等式变为

,022

2

2333≥??

? ?

?++-??? ??++xy zx yz z y x z y

x x z y

又可变为 ()

()

(),02

2

2

≥++---z y y z x z xy

zx

yz

最后一式显然成立,故知欲证不等式成立,且等号成立当且仅当 x=y=z, 即 a=b=c.

分析 本题证法常用于与三角形有关的不等式,构造几何图形,解释代数公式,利用几何的性质,推导相应的结果,本题如设a ≥b ≥c ,则失去一般性(因题设不等式左边对a ,b ,c 不是对称多项式)

例5 设x ,y ,z 为实数,x+y+z=0,求证 ()()

z y

x z y x 22

2

33

3

6

3

2

++++≤

证 以x ,y ,z 为根的三次方程为(t-x )(t-y )(t-z )=0, .,03

xyz q xy zx yz p q pt t -++++==,其中=即 因 x+y+z=0,故

()

==??

? ??++

-???

?

??

??? ?

?++

-++z y

x

z y

x z y x p 2

2

222

2

2

2121

().31313

3

333

32

2

2??

?

?

?++

-???

??

???? ?

?++

-??? ??---++++z y x z y

x z y

x xy zx yz z y x q == 有三次方程有三实根可知 ,0323

2≤+??

? ?????

???p q t =

代入即得欲证之不等式.

分析 利用02

≥x 和配方的证法,称为配方法.()()0,0,2

≥++x f a c bx a x f x =设

恒成立等价于判别式,042

≤-?ac b =这就是二次函数判别式法。设 ()()式有三个实根等价于判别

则=x f q px x f x ,3

++,0323

2≤+??

?

? ????? ??p q =

这是三次函数判别式法。

例6 ()():,n

1

31211求证=已知N n n f ∈+???+++

()

().12

22 n n f n

+ 证 用数学归纳法证

当n=2时,()

成立==2

41225413121122

+++f

假设n=k 时命题成立,即 ()

时,=则当1k n ,2

22++k f k

()()2

222221

2

1

11

1

k

k k

k

k

k f f

++

+???+++++

+=

2

221111

1122++++???++++k k k k

结论成立===,22

)1(212222

21+++++++k k k k k

综上所述,不等式()()成立12

2

2 n n f

n

+.

分析 与自然数n 有关的不等式问题,往往采用数学归纳法.应用数学归纳法, 假设n=k 成立,推证n=k+1时成立,但这个过程中往往需要较高的变形技巧.

上面就是我例举的几个常用方法的应用,其他方法在这里我就不一一举例了,注意上述方法还可综合运用。在对这门课程的学习、钻研时,我深刻地认识到自己专业知识还不够精深,需要学习的东西还很多,我相信,只要不怕困难,敢于钻研,经过努力,我一定能够收获更多有关竞赛数学这门科的知识,深化且不断地提高自己的知识层面,为将来当一位合格的教师做好准备!

高中数学奥赛讲义:竞赛中常用的重要不等式

不等式是数学竞赛的热点之一。由于不等式的证明难度大,灵活性强,要求很高的技巧,常常使它成为各类数学竞赛中的“高档”试题。而且,不论是几何、数论、函数或组合数学中的许多问题,都可能与不等式有关,这就使得不等式的问题(特别是有关不等式的证明)在数学竞赛中显得尤为重要。证明不等式同大多数高难度的数学竞赛问题一样,没有固定的模式,证法因题而异,灵活多变,技巧性强。但它也有一些基本的常用方法,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。 竞赛中常用的重要不等式 【内容综述】 本讲重点介绍柯西不等式、排序不等式、切比雪夫不等式的证明与应用 【要点讲解】 目录§1 柯西不等式 §2 排序不等式 §3 切比雪夫不等式 ★ ★ ★ §1。柯西不等式 定理1 对任意实数组恒有不等式“积和方不大于方和积”,即 等式当且仅当时成立。 本不等式称为柯西不等式。 思路一证不等式最基本的方法是作差比较法,柯西不等式的证明也可首选此法。 证明1 ∴右-左= 当且仅当定值时,等式成立。 思路2 注意到时不等式显然成立,当时,不等式左、右皆正,因此可考虑作商比较法。

证明2 当时等式成立;当时,注意到 =1 故 当且仅当 且 (两次放缩等式成立条件要一致)

即同号且常数, 亦即 思路3 根据柯西不等式结构,也可利用构造二次函数来证明。 证明3 构造函数 。 由于恒非负,故其判别式 即有 等式当且仅当常数时成立。 若柯西不等式显然成立。 例1 证明均值不等式链: 调和平均数≤算术平均数≤均方平均数。 证设本题即是欲证: 本题证法很多,现在我们介绍一种主要利用柯西不等式平证明的方法 (1)先证① 注意到欲证①,即需证 ② 此即 由柯西不等式,易知②成立,从而①真

高中数学竞赛均值不等式讲义

均值不等式 1.均值不等式 知识点1: 二元均值不等式可以推广到n 元,即: 设,,, 123 a a a a n 为n 个非负实数,则 12n a a a n ++ + ≥1 23 a a a a n === =). 如何证明? 知识点2: 设,,, 123 a a a a n 为n 个非负实数 ,n Q , 12n n a a a A n ++ += , n G =, 12 111n n n H a a a = ++,则n n n n Q A G H ≥≥≥(等号成立当且仅当 123a a a a n ====) 更一般的平均值的定义: 设正数(1,2,3...)i a i n =,则α的幂平均值=1 1 ( )n i i a n α α =∑,特 别的,我们有: lim ()n f G αα→=,1 1 ()( )n i i a f n α α α==∑为关于α的增函数. 知识点3:重要结论 (1)2 22,,,.a b c R a b c ab bc ac ∈++≥++ (2) ()2 ,,,3().a b c R a b c ab bc ac ∈++≥++ (3) 2222,,,3()().a b c R a b c a b c ∈++≥++ (4) 2,,,()3().a b c R ab bc ca abc a b c ∈++≥++ (5) ,,,()()()()().a b c R a b b c a c abc a b c ab cb ac ∈++++=++++ (6) 222;2a a a b b a b b -≥-+≥(a,b,c>0) (7) 2222221 ()()3 a b b c c a a b c a b c ++≤++++(a,b,c>0) (8)正实数(1,2,3...)i a i n =,则 21 1 1 n n i i i i a n a ==?≥∑∑ (当且仅当12...n a a a ===); (9) 222222222222()()()()()a b b c c a ab bc ca a b c a bc b ca c ab ++++=++++ 知识点4:加权平均值不等式 已知 12+...1(0,1,2.,,,) n i w w w w i n +=>=,则对任意正实数 12112212........n w w w n n n w a w a w a a a a +++≥.

初中数学竞赛专题:不等式

初中数学竞赛专题:不等式 §5.1 一元一次不等式(组) 5.1.1★已知2(2)3(41)9(1)x x x ---=-,且9y x <+,试比较1π y 与 10 31 y 的大小. 解析 首先解关于x 的方程得10x =-.将10x =-代入不等式得109y <-+,即1y <-.又因为110π 31 <,所以110π 31 y y > 5.1.2★解关于x 的不等式 233122x x a a +--> . 解析 由题设知0a ≠,去分母并整理得 (23)(23)(1)a x a a +>+-. 当230a +>,即3 (0)2 a a >-≠时,1x a >-; 当230a +=,即32 a =-时,无解; 当230a +<,即32 a <-时,1x a <-. 评注 对含有字母系数的不等式的解,也要分情况讨论. 5.1.3★★已知不等式(2)340a b x a b -+-<的解为49 x >,求不等式(4)230a b x a b -+->的解. 解析 已知不等式为(3)43a b x b a -<-.由题设知 20, 434.29a b b a a b -等价于 721 ()2028 a a x a a -+->, 即5528ax a ->,解得14 x >-. 所求的不等式解为14 x >-.

5.1.4★★如果关于x 的不等式 (2)50a b x a b -+-> 的解集为10 7 x < ,求关于x 的不等式ax b >的解集. 解析 由已知得 (2)5a b x b a ->-,① 710x ->-.② 由已知①和②的解集相同,所以 27, 510, a b b a -=-?? -=-? 解得 5, 3. a b =-?? =-? 从而ax b >的解集是3 5 x <. 5.1.5★求不等式 111 (1)(1)(2)326 x x x +---≥ 的正整数解. 解析 由原不等式可得1736x ≤,所以72 x ≤是原不等式的解.因为要求正整数解,所以原不等式的正整数解为1x =,2,3. 5.1.6★★如果不等式组90, 80x a x b -?? -

竞赛均值不等式专题讲解

均值不等式专题讲解 一、几个重要的均值不等式 ①,、)(2 22 22 2 R b a b a ab ab b a ∈+≤?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 112 +2 a b +≤≤≤2 2 2b a +。. 二、用均值不等式求最值 利用均值不等式求最值的记忆口诀为:“一正二定三相等”,三者缺一不可: 一 正:利用均值不等式解题要先保证各式都是正数; 二 定:求和的 积要固定,求积的 和要固定; 三相等:只有在各式都相等的前提下,和与积才能取到最值。 例1:下列命题中正确的是【 】 A 、x x 1 + 的最小值为2; B 、x x -+2 2的最小值为2; C 、b a a b +的最小值为2; D 、θθcot tan +的最小值为2。 点评:各式都是正数是利用均值不等式解题的前提,缺少这个条件足以致命。 例2:你能指出下列推导过程错在哪里吗? ⑴若0>x ,则221213x x x x x ++=+≥332 23123?=???x x x ; ⑵若?? ? ??∈2,0πx ,则x x x x sin 2sin sin 2sin 2+=+≥22sin 2sin 2=?x x ; ⑶若R x ∈,则 ( ) 4 144 144 1)4(4 52 22 2 2 2 2 2 2 ++ += +++= +++= ++x x x x x x x x ≥2。

数学竞赛选讲不等式证明

§14不等式的证明 不等式在数学中占有重要地位,由于其证明的困难性和方法的多样性,而成为竞赛和高考的热门题型. 证明不等式就是对不等式的左右两边或条件与结论进行代数变形和化归,而变形的依据是不等式的性质,不等式的性分类罗列如下: 不等式的性质:.0,0<-?<>-?≥b a b a b a b a 这是不等式的定义,也是比较法的依据. 对一个不等式进行变形的性质: (1)a b b a (对称性) (2)c b c a b a +>+?>(加法保序性) (3).0,;0,bc ac c b a bc ac c b a >?>> (4)*).(,0N n b a b a b a n n n n ∈> >?>> 对两个以上不等式进行运算的性质. (1)c a c b b a >?>>,(传递性).这是放缩法的依据. (2).,d b c a d c b a +>+?>> (3).,d b c a d c b a ->-?<> (4).,,0,0bc ad d b c a c d b a >>?>>>> 含绝对值不等式的性质: (1).)0(||2 2 a x a a x a a x ≤≤-?≤?>≤ (2).)0(||2 2 a x a x a x a a x -≤≥?≥?>≥或 (3)|||||||||||| b a b a b a +≤±≤-(三角不等式). (4).||||||||2121n n a a a a a a +++≤+++ΛΛ 证明不等式的常用方法有:比较法、放缩法、变量代换法、反证法、数学归纳法、构造函 数方法等.当然在证题过程中,常可“由因导果”或“执果索因”.前者我们称之为综合法;后者称为分析法.综合法和分析法是解决一切数学问题的常用策略,分析问题时,我们往往用分析法,而整理结果时多用综合法,这两者并非证明不等式的特有方法,只是在不等式证明中使用得更 为突出而已.此外,具体地证明一个不等式时,可能交替使用多种方法. 例题讲解 1.,0,,>c b a 求证:.6)()()(abc a c ca c b bc b a ab ≥+++++ 2.0,,>c b a ,求证:.) (3 c b a c b a ab c c b a ++≥ 3.:.222,,,3 33222222ab c ca b bc a b a c a c b c b a c b a R c b a ++≤+++++≤ ++∈+ 求证 4.设* 21,,,N a a a n ∈Λ,且各不相同, 求证:.321312112 23221n a a a a n n ++++≤+ +++ΛΛ.

高中数学竞赛之路

金牌学生推荐(可参照选择) 一、第零阶段:知识拓展 《数学选修4-1:几何证明选讲》《数学选修4-5:不等式选讲》《数学选修4-6:初等数论初步》 二、全国高中数学联赛各省赛区预赛(即省选初赛) 1、《五年高考三年模拟》B版或《3年高考2年模拟》第二轮复习用 2、《高中数学联赛备考手册》华东师范大学出版社(推荐指数五颗星) 3、《奥赛经典:超级训练系列》高中数学沈文选主编湖南师范大学出版社(推荐指数五颗星) 4、单樽《解题研究》(推荐指数五颗星) 5、单樽《平面几何中的小花》(个别地区竞赛会考到平几) 6、《平面几何》浙江大学出版社 7、奥林匹克小丛书第二版《不等式的解题方法与技巧》苏勇熊斌著 三、第二阶段:全国高中数学联赛 一试 0、《奥林匹克数学中的真题分析》沈文选湖南师范大学出版社(推荐指数五颗星)1、《高中数学联赛考前辅导》熊斌冯志刚华东师范大学出版社2、《数学竞赛培优教程(一试)》浙江大学出版社3、命题人讲座《数列与数学归纳法》单樽4、《数列与数学归纳法》(小丛书第二版,冯志刚)5、《数列与归纳法》浙江大学出版社韦吉珠6、《解析几何的技巧》单樽(建议买华东师大出版的版本)7、《概率与期望》单樽8、《同中学生谈排列组合》苏淳9、《函数与函数方程》奥林匹克小丛书第二版10、《三角函数》奥林匹克小丛书第二版11、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星)12、《圆锥曲线的几何性质》13、《解析几何》浙江大学出版社 二试 平几1、高中数学竞赛解题策略(几何分册)沈文选(推荐指数五颗星) 2、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 3、奥林匹克小丛书第二版《平面几何》 4、浙大小红皮《平面几何》 5、沈文选《三角形的五心》 6、田廷彦《三角与几何》 7、田廷彦《面积与面积方法》不等式 8、《初等不等式的证明方法》韩神 9、命题人讲座《代数不等式》计神10、《重要不等式》中科大出版社11、奥林匹克小丛书《柯西不等式与平均值不等式》数论(9,10,11选一本即可,某位大神说二试改为四道题以来没出过难题)12、奥林匹克小丛书初中版《整除,同余与不定方程》13、奥林匹克小丛书《数论》14、命题人讲座《初等数论》冯志刚组合15、奥林匹克小丛书第二版《组合数学》16、奥林匹克小丛书第二版《组合几何》17、命题人讲座刘培杰《组合问题》18、《构造法解题》余红兵19、《从特殊性看问题》中科大出版社20、《抽屉原则》常庚哲 四、中国数学奥林匹克(Chinese Mathematical Olympiad)及以上 命题人讲座《圆》田廷彦《近代欧式几何学》《近代的三角形的几何学》《不等式的秘密》范建熊、隋振林《奥赛经典:奥林匹克数学中的数论问题》沈文选《奥赛经典:数学奥林匹克高级教程》叶军《初等数论难题集》命题人讲座《图论》奥林匹克小丛书第二版《图论》《走向IMO》

数学竞赛历年的不等式题

(2006年全国)2. 设2log (21)log 2 1x x x x +->-,则x 的取值范围为 A . 112x << B .1 , 12 x x >≠且 C . 1x > D . 01x << 【答】( B ) 【解】因为2 0,1210 x x x x >≠?? +->?,解得 1 ,12x x >≠. 由2log (21)log 2 1x x x x +->- 32log (2)log 2x x x x x ?+-> 32 01 22 x x x x <? ? +->? 解得 1x >,所以x 的取值范围为 1 , 12x x >≠且. 1.(05)使关于x k ≥有解的实数k 的最大值是( ) A 解 : 令 6, y x =≤≤ 则 2(3)(6)2[(3)y x x x =-+-+≤- (6)] 6.x +- =0y k ∴<≤实数 D 。 (2004年全国)3.不等式2log 21 1log 32 12++ -x x >0的解集是( C ) A .[2,3] B .(2,3) C .[2,4] D .(2,4) 解:原不等式等价于2 2331log 0222 log 10 x x ++>?-≥? 解得20log 11,24x x ≤-<∴≤<.故选C . (2003年全国)5已知x ,y 都在区间(-2,2)内,且xy =-1,则函数 u =244 x -+2 99y -的最小值是D (A) 58 (B)11 24 (C)712 (D)512 (2003年全国)7不等式|x |3-2x 2-4|x |+3<0的解集是__________.7、}2 5 133215| {-<<-<<-x x x 或; (2003年全国)13已知 52 3 ≤≤x ,证1923153212<-+-++x x x

均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇) 第一篇:常用均值不等式及证明证明 常用均值不等式及证明证明 这四种平均数满足hn?gn? an?qn ?、ana1、a2、 ?r?,当且仅当a1?a2?? ?an时取“=”号 仅是上述不等式的特殊情形,即d(-1)≤d(0)≤d(1)≤d(2)由以上简化,有一个简单结论,中学常用 均值不等式的变形: (1)对实数a,b,有a 2 22 ?b2?2ab (当且仅当a=b时取“=”号),a,b?0?2ab (4)对实数a,b,有 a?a-b??b?a-b? a2?b2? 2ab?0 (5)对非负实数a,b,有 (8)对实数a,b,c,有

a2? b2?c2?ab?bc?ac a?b?c?abc(10)对实数a,b,c,有 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设a≥0,b≥0,则?a?b??an?na?n-1?b n 注:引理的正确性较明显,条件a≥0,b≥0可以弱化为a≥0 ,a+b≥0 (用数学归纳法)。 当n=2时易证; 假设当n=k时命题成立,即 那么当n=k+1时,不妨设ak?1是则设 a1,a2,?,ak?1中最大者, kak?1?a1?a2???ak?1 s?a1?a2???ak 用归纳假设 下面介绍个好理解的方法琴生不等式法 琴生不等式:上凸函数f?x?,x1,x2,?,xn是函数f?x?在区间(a,b)内的任意n个点, 设f?x??lnx,f

?x?为上凸增函数所以, 在圆中用射影定理证明(半径不小于半弦) 第二篇:均值不等式证明 均值不等式证明一、 已知x,y为正实数,且x+y=1求证 xy+1/xy≥17/4 1=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥2 当且仅当xy=1/xy时取等 也就是xy=1时 画出xy+1/xy图像得 01时,单调增 而xy≤1/4 ∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4 得证 继续追问: 拜托,用单调性谁不会,让你用均值定理来证 补充回答: 我真不明白我上面的方法为什么不是用均值不等式证的法二: 证xy+1/xy≥17/4

初中数学竞赛专题训练之不等式含答案

初中数学竞赛专项训练(4) (不等式) 一、选择题: 1、若不等式|x+1|+|x-3|≤a 有解,则a 的取值范围是 ( ) A. 0<a ≤4 B. a ≥4 C. 0<a ≤2 D. a ≥2 2、已知a 、b 、c 、d 都是正实数,且 d c b a <,给出下列四个不等式:①d c c b a a +>+ ②d c c b a a +<+ ③d c c b a b +>+ ④d c d b a b +<+其中正确的是 ( ) A. ①③ B. ①④ C. ②④ D. ②③ 3、已知a 、b 、 c 满足a <b <c ,ab+bc+ac =0,abc =1,则 ( ) A. |a+b |>|c| B. |a+b|<|c| C. |a+b|=|c| D. |a+b|与|c|的大小关系不能确定 4、关于x 的不等式组???????+<+->+a x x x x 2 3535 2只有5个整数解,则a 的取值范围是 ( ) A. -6 a C. 7 2- 无解 ③若a ≠0,则方程b ax =有惟一解 ④若a ≠0,则不等式b ax >的解为a b x >,其中 ( ) A. ①②③④都正确 B. ①③正确,②④不正确 C. ①③不正确,②④正确 D. ①②③④都不正确 7、已知不等式①|x-2|≤1 ②1)2(2≤-x ③0)3)(1(≤--x x ④03 1≤--x x 其中解集是31≤≤x 的不等式为 ( ) A. ① B. ①② C. ①②③ D. ①②③④ 8、设a 、b 是正整数,且满足56≤a+b ≤59,0.9<b a <0.91,则b 2-a 2等于 ( ) A. 171 B. 177 C. 180 D. 182 二、填空题: 1、若方程 12 2-=-+x a x 的解是正数,则a 的取值范围是_________ 2、乒乓球队开会,每名队员坐一个凳子,凳子有两种:方凳(四脚)或圆凳(三脚),一个小孩走进会场,他数得人脚和凳脚共有33条(不包括小孩本身),那么开会的队员共有____名。

高中数学竞赛培优——不等式

不等式 例1. 已知122016,,,x x x ??? 均为正实数,则 3201621112122015122016 4x x x x x x x x x x x x x + ++???++?????? 的最小值__________ 例2. 已知二次函数()20y ax bx c a b =++≥< ,则24a b c M b a ++= - 的最小值为 ____________ 例3. 记223 (,)()(),03x F x y x y y y =-++≠ ,则(),F x y 的最小值是________ 例4. 已知[],1,3,4,a b a b ∈+= 求证:1146103 a b a b ≤+ ++< 例5. 设0,1,2,,,i x i n ≥=???约定11,n x x += 证明:() () 2 12 2 1 11 .2 11n k k k k x x x +=++ ≥ ++∑ 证明:因0,1,2,,,i x i n ≥=???令2tan ,0,,1,2,,2k k k x k n πθθ?? =∈=??????? 约定 11, n θθ+= () () 2 44 112 2 11 =cos sin 11k k k k k x x x θθ++++ +++() 2 222211 cos sin 2 2 k k k k θθ+++≥ = 所以() () 2 22112 2 11 11 =.2211n n k k k k k k k x x x ++==++ ≥++∑ ∑ 例6. 设2,,n n N +≥∈ 求证:ln 2ln 3ln 1 .23n n n ?????< ()ln 1n n <- 例7. 已知* ,,n N x n ∈≤求证:2(1)n x x n n e x n --≤. 【证明】原不等式等价于2 ((1))x n n x n x n e n -≤-?. 当2x n ≥,上述不等式左边非正,不等式成立; 当2x n <时,由1(0)y e y y ≥+≥及贝努力不等式(1)1(1,1)n y ny n y +≥+≥>-,

数学培优讲义(均值不等式)

数学培优讲义 均值不等式 均值不等式是高中数学的必修内容,它作为几个重要不等式之一在高考、数学竞赛中都有广泛的应用。本节主要内容是两个、三个或n 个(n ∈N +)正数的算术平均数不小于它的几何平均数,借助均值不等式证明其它不等式以及求函数的最值。主要的手段是合理地构造定和、定积、巧妙地利用等号的成立条件来实现证明和求最值。 定理1、),(222R b a ab b a ∈≥+ 推论1、),(2+∈≥+R b a ab b a 2 2??? ??+≤b a ab 推论2、 ),,(33+∈≥++R c b a abc c b a 3 3??? ??++≤c b a abc 推论3、 ),...,,(......212121+∈≥+++R a a a a a a n a a a n n n n (等号成立的条件是n a a a =???==21) 例 题 分 析 例1、已知a 1,a 2,…, a n 是n 个正数,满足a 1.a 2…a n =1 求证:(1+ a 1)(1+ a 2)…(1+ a n )n 2≥ 练习1、已知a 1,a 2,…, a n 是n 个正数,满足a 1.a 2…a n =1 求证:(2+ a 1)(2+ a 2)…(2+ a n )n 3≥ 练习2、设a >b >0,那么a 2+)(1 b a b -的最小值是_____

例2、(1)的最大值;求函数设)cos 1(2sin ,0αα πα+=<> 练习2、设a >b >c ,证明 4≥--+--c b c a b a c a 练习3、设X 1, X 2…X n +∈R ,求证≥++++-1221322221...X X X X X X X X n n n X 1+ X 2+…+ X n 练习4、的最小值,求设xz y z x y z x z y x ++-- ->>)(272

高中奥林匹克数学竞赛讲座三角恒等式和三角不等式

高中奥林匹克数学竞赛讲座 三角恒等式和三角不等式 知识、方法、技能 三角恒等变形,既要遵循代数式恒等变形的一般法则,又有三角所特有的规律. 三角恒等式包括绝对恒等式和条件恒等式两类。证明三角恒等式时,首先要观察已知与求证或所证恒等式等号两边三角式的繁简程度,以决定恒等变形的方向;其次要观察已知与求证或所证恒等式等号两边三角式的角、函数名称、次数以及结构的差别与联系,抓住其主要差异,选择恰当的公式对其进行恒等变形,从而逐步消除差异,统一形式,完成证明.“和差化积”、“积化和差”、“切割化弦”、“降次”等是我们常用的变形技巧。当然有时也可以利用万能公式“弦化切割”,将题目转化为一个关于2 tan x t =的代数恒等式的证明问题. 要快捷地完成三角恒等式的证明,必须选择恰当的三角公式. 为此,同学们要熟练掌握 上图为三角公式脉络图,由图可见两角和差的三角函数的公式是所有三角公式的核心和基础. 此外,三角是代数与几何联系的“桥梁”,与复数也有紧密的联系,因而许多三角问题往往可以从几何或复数角度获得巧妙的解法. 三角不等式首先是不等式,因此,要掌握证明不等式的常用方法:配方法、比较法、放缩法、基本不等式法、数学归纳法等. 其次,三角不等式又有自己的特点——含有三角式,因而三角函数的单调性、有界性以及图象特征等都是处理三角不等式的锐利武器. 三角形中有关问题也是数学竞赛和高考的常见题型. 解决这类问题,要充分利用好三角

形内角和等于180°这一结论及其变形形式. 如果问题中同时涉及边和角,则应尽量利用正弦定理、余弦定理、面积公式等进行转化,实现边角统一. 求三角形面积的海伦公式 )](2 1 [))()((c b a p c p b p a p p S ++= ---=其中,大家往往不甚熟悉,但十分有用. 赛题精讲 例1:已知.cos sin )tan(:,1||),sin(sin A A A -= +>+=ββ βαβαα求证 【思路分析】条件涉及到角α、βα+,而结论涉及到角βα+,β.故可利用 αβαβββαα-+=-+=)()(或消除条件与结论间角的差异,当然亦可从式中的“A ” 入手. 【证法1】 ),sin(sin βαα+=A ),sin()sin(βαββα+=-+∴A ), cos(sin ))(cos sin(), sin(sin )cos(cos )sin(βαβββαβαββαββα+=-++=+-+A A . cos sin )tan(, 0)cos(, 0cos ,1||A A A -= +≠+≠-∴>ββ βαβαβ从而 【证法2】 αβαβββαβααββββ sin )sin(cos sin )sin() sin(sin cos sin sin sin -++= +- = -A ). tan(sin )cos(sin )sin(])sin[()sin(cos sin )sin(βαββαβ βαββαβαββ βα+=++=-+-++= 例2:证明:.cos 64cos 353215cos 77cos 7x x x ocs x x =+++ 【思路分析】等号左边涉及角7x 、5x 、3x 、x 右边仅涉及角x ,可将左边各项逐步转化为x sin 、 x cos 的表达式,但相对较繁. 观察到右边的次数较高,可尝试降次. 【证明】因为,cos 33cos cos 4,cos 3cos 43cos 3 3 x x x x x x +=-=所以 从而有x x x x x 226cos 9cos 3cos 63cos cos 16++= = )2cos 1(2 9 )2cos 4(cos 326cos 1x x x x +++++

竞赛数学解题研究之不等式

《竞赛数学解题研究》之不等式证明 一、公式法 1、柯西不等式:设n a a a ,,,21 与n b b b ,,,21 为任意两数组,则 ≤+++22211)(n n b a b a b a )(22221n a a a +++ )(2 2221n b b b +++ 等号当且仅当n n b a b a b a === 22 11时成立。 例1、设16,822222=++++=++++e d c b a e d c b a ,求e 的最大值。(第7届美国数学竞赛) 例2、设P 是锐角ABC ?内一点,P 到三边BC 、CA 、AB 的垂足分别是D 、E 、F 求出(并加以证明)使2 2 2 PF PE PD ++达到最小值的点P 。(1990年,浙江省高中数学夏令营) 例3、设P 是ABC ?内一点,P 到三边BC 、CA 、AB 的垂足分别是D 、E 、F 求出(并加以证明)使PF AB PE CA PD BC ++达到最小值的点P 。(IMO22,1981)

例4、设n a a a ,,,21 为两两互不相等的正整数,求证:∑∑==≤n i i n i i a i 1211 (IMO20) 例5、求出所有的实数a ,使得存在非负实数521,,,x x x ,满足下列关系: a kx k k =∑=5 1 , 2 5 1 3 a x k k k =∑=, 35 1 5 a x k k k =∑= 例6、设y x b a ,,,都是实数,并且,122=+b a ,122=+y x 试证:1||≤+by ax (1963年成都市数学竞赛试题) 2、均值不等式 设n a a a ,,,21 为n 个正数,则 n n n a a a n a a a 2121≥+++等号当且仅当 n a a a === 21时成立。 例1、已知ABC ?的面积S 及角A 均为定值,记A 的两夹边为b,c 则当2 2 32c b +取最小值时,c b 的值为多少。(1985年长沙市数学竞赛)

高中数学竞赛辅导讲义第九讲 不等式

第九章 不等式 一、基础知识 不等式的基本性质: (1)a>b ?a-b>0; (2)a>b, b>c Ta>c ; (3)a>b Ta+c>b+c ; (4)a>b, c>0Tac>bc ; (5)a>b, c<0Tacb>0, c>d>0Tac>bd; (7)a>b>0, n ∈N +Ta n >b n ; (8)a>b>0, n ∈N +Tn n b a >; (9)a>0, |x|a ?x>a 或x<-a; (10)a, b ∈R ,则|a|-|b|≤|a+b|≤|a|+|b|; (11)a, b ∈R ,则(a-b)2≥0?a 2+b 2≥2ab; (12)x, y, z ∈R +,则x+y ≥2xy , x+y+z .33xyz 3 前五条是显然的,以下从第六条开始给出证明。 (6)因为a>b>0, c>d>0,所以ac>bc, bc>bd ,所以ac>bd ;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若n n b a £,由性质(7)得n n n n b a )()(£,即a ≤b ,与a>b 矛盾,所以假设不成立,所以n n b a >;由绝对值的意义知(9)成立;-|a|≤a ≤|a|, -|b|≤b ≤|b|,所以-(|a|+|b|)≤a+b ≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为|a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-22)(y x xy -=≥0,所以x+y ≥xy 2,

高中数学竞赛大纲的内容和知识点

高中数学竞赛大纲应该掌握的内容和知识点 1.集合(set) 1.1集合的阶,集合之间的关系。 1.2集合的分划 1.3子集,子集族 1.4容斥原理 2.函数(function) 2.1函数的定义域、值域 2.2函数的性质 2.2.1单调性 2.2.2奇偶性 2.2.3周期性 2.2.4凹凸性 2.2.5连续性 2.2.6可导性 2.2.7有界性 2.2.8收敛性 2.3初等函数 2.3.1一次、二次、三次函数 2.3.2幂函数 2.3.3双勾函数 2.3.4指数、对数函数 2.4函数的迭代 2.5函数方程 3.三角函数(trigonometric function)3.1三角函数图像与性质 3.2三角函数运算 3.3三角恒等式、不等式、最值 3.4正弦、余弦定理 3.5反三角函数 3.6三角方程 4.向量(vector) 4.1向量的运算 4.2向量的坐标表示,数量积 5.数列(sequence) 5.1数列通项公式求解 5.1.1换元法 5.1.2特征根法5.1.3不动点法,迭代法 5.1.4数学归纳法,递归法 6.不等式(inequality) 6.1解不等式 6.2重要不等式 6.2.1均值不等式 6.2.2柯西不等式 6.2.3排序不等式 6.2.4契比雪夫不等式 6.2.5赫尔德不等式 6.2.6权方和不等式 6.2.7幂平均不等式 6.2.8琴生不等式 6.2.9 Schur不等式 6.2.10嵌入不等式 6.2.11卡尔松不等式 6.3证明不等式的常用方法 6.3.1利用重要不等式 6.3.2调整法 6.3.3归纳法 6.3.4切线法 6.3.5展开法 6.3.6局部法 6.3.7反证法 6.3.8其他 7.解析几何(analytic geometry)7.1直线与二次曲线方程 7.2直线与二次曲线性质 7.3参数方程 7.4极坐标系 8.立体几何(solid geometry)8.1空间中元素位置关系 8.2空间中距离和角的计算 8.3棱柱,棱锥,四面体性质 8.4体积,表面积 8.5球,球面 8.6三面角

初中数学竞赛题中有关不等式的解题策略

初中数学竞赛题中有关不等式的解题策略 例1关于x 的不等式组255332 x x x x a +?-???+?+??><只有5个整数解,则a 的取值范围是( ) 11111111.6.6.6.62222 A a B a C a D a ---≤--≤--≤≤-<<<< 例2某个篮球运动员共参加了10场比赛,他在第6,第7,第8,第9场比赛中分别获得了 23,14,11和20分,他的前9场比赛的平均分比前5场比赛的平均分要高.如果他的10场比赛 的平均分超过18分,问:他在第10场比赛中至少得了多少分? 例3已知x ,y ,z 是正整数,求方程 11178x y z ++=的正整数解. 例4设a ,b 为正整数,且 2537 a b <<,求a+b 的最小值 .

变式:使得不等式981715 n n k <<+对唯一的整数k 成立的最大正整数n 为 . 例5五个整数a 、b 、c 、d 、e ,它们两两相加的和按从小到大顺序排分别是183,186,187, 190,191,192,193,194,196,x.已知e d c b a ≤≤≤≤,x >196.求a 、b 、c 、d 、e 及 x 的值. 例6实数a ,b ,c 满足a+b+c=1.求a 2+b 2+c 2的最小值. 例7设S=++…+,求不超过S 的最大整数[S ]. 例8 ,求[S ]. 例9设3333311111=+++++12320102011 S ,则4S 的整数部分等于( ) A.4 B.5 C.6 D.7

应用练习: 1.若不等式2|x-1|+3|x-3|≤a 有解,则实数a 最小值是( ) A.1 B.2 C.4 D.6 2.若不等式|x-4|+|3-x|<m 恒不成立,实数m 的取值范围是( ) A .m <2 B .m <1 C .m≤1 D .m <0 3.设a ,b 是常数,不等式 10x a b +>的解集是15x <,则关于x 的不等式bx-a >0的解集是( ) A .x > 15 B .x <- 15 C .x >-15 D .x < 15 4.已知△ABC 的三条边a,b,c 满足321a b c =+,则∠A=( ) A 、锐角 B 、 直角 C 、 钝角 D 、非直角 5.若△ABC 的三个内角满足3∠A >5∠B ,3∠C <2∠B ,则△ABC 必是 三角形. 6. x 1,x 2,……,x 100是自然数,且x 1<x 2<……<x 100,若x 1+x 2+……+x 100=7001,那么, x 1+x 2+……+x 50的最大值是( ) A.2225 B.2226 C.2227 D.2228 7.如果7 889 q p <<,p ,q 是正整数,则p 的最小值是( ) A .15 B .17 C .72 D .144 8.计算:已知,求M 的整数部分. (第6届睿达杯八年级复赛) 9.已知13,28,a b a b ≤+≤≤-≤若9,t a b =+则t 的取值范围是 . 10.已知21141,,=2 n n n a a a a a +==+则 ; 12320141111 ,111 1s a a a a =++++++++则与s 最接近的整数为 . 11.已知关于x 的不等式组230,320a x a x +>??-≥? 恰有3个整数解,则这三个整数解是 ; a 的取值范围是 . 12“姑苏城外寒山寺,夜半钟声到客船”,每逢除夕夜,寒山寺主持便敲钟108响,祈求天下太平.已知寺外的江中有两条客船,当第一次钟声响起时,两船分别以3cm/s 、9cm/s 的速度从江边分别向上游、下游行驶.若寒山寺到江边的距离忽略不计,且每隔9秒钟响一次,声音传播速度为300m/s.试求当上游的船客听到第108次钟声时,下游的船客只听到了多少次钟声?

高中数学竞赛解题方法篇

高中数学竞赛中不等式的解法 摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。 希望对广大喜爱竞赛数学的师生有所帮助。 不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个着名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用. 1.排序不等式 定理1 设1 212...,...n n a a a b b b ≤≤≤≤≤≤,则有 1211...n n n a b a b a b -+++ (倒序积和) 1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和) 其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或12...n b b b ===时成立. (说明: 本不等式称排序不等式,俗称倒序积和乱序积和 顺序积和.) 证明:考察右边不等式,并记1212...n r r n r S a b a b a b =+++。 不等式 1212...n r r n r S a b a b a b ≤+++的意义:当 121,2,...,n r r r n ===时,S 达到最大值 1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个 ()k a k n <搭配时有 .n n k n n r k r n n a b a b a b a b +≤+ (1-1) 事实上, ()()()0n n n n n k r k n n r n r n k a b a b a b a b b b a a +-+=--≥ 不等式(1-1)告诉我们当n r n <时,调换n b 和n r b 的位置(其余n-2项不变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了 1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++. 再证不等式左端,

全国高中数学竞赛专题不等式

全 国高中数学竞赛专题-不等式 证明不等式就是对不等式的左右两边或条件与结论进行代数变形和化归,而变形的依据是不等式的性质,不等式的 性质分类罗列如下: 不等式的性质:.0,0<-?<>-?≥b a b a b a b a 这是不等式的定义,也是比较法的依据. 对一个不等式进行变形的性质: (1)a b b a (对称性) (2)c b c a b a +>+?>(加法保序性) (3).0,;0,bc ac c b a bc ac c b a >?>> (4)*).(,0N n b a b a b a n n n n ∈>>?>> 对两个以上不等式进行运算的性质. (1)c a c b b a >?>>,(传递性).这是放缩法的依据. (2).,d b c a d c b a +>+?>> (3).,d b c a d c b a ->-?<> (4).,,0,0bc ad d b c a c d b a >>? >>>> 含绝对值不等式的性质: (1).)0(||2 2 a x a a x a a x ≤≤-?≤?>≤ (2).)0(||2 2 a x a x a x a a x -≤≥?≥?>≥或 (3)|||||||||||| b a b a b a +≤±≤-(三角不等式). (4). ||||||||2121n n a a a a a a +++≤+++ 证明不等式的常用方法有:比较法、放缩法、变量代换法、反证法、数学归纳法、构造函数方法等.当然在证题过程中,常可“由因导果”或“执果索因”.前者我们称之为综合法;后者称为分析法.综合法和分析法是解决一切数学问题的常用策略,分析问题时,我们往往用分析法,而整理结果时多用综合法,这两者并非证明不等式的特有方法,只是在不等式证明中使用得更为突出而已.此外,具体地证明一个不等式时,可能交替使用多种方法.因此,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。 1.比较法(比较法可分为差值比较法和商值比较法。) (1)差值比较法(原理:A - B >0 A > B .) 例1 设a, b, c ∈R +,

相关主题
文本预览
相关文档 最新文档