当前位置:文档之家› 初中数学竞赛不等式(含答案)

初中数学竞赛不等式(含答案)

初中数学竞赛不等式(含答案)
初中数学竞赛不等式(含答案)

12.不等式

A 卷

1.不等式2(x + 1) -

12

732-≤-x x 的解集为_____________。 2.同时满足不等式7x + 4≥5x – 8和5

23x x -<的整解为______________。 3.如果不等式33131++>+x mx 的解集为x >5,则m 值为___________。 4.不等式22)(7)1(3)12(k x x x x ++<--+的解集为_____________。

5.关于x 的不等式(5 – 2m)x > -3的解是正数,那么m 所能取的最小整数是__________。

6.关于x 的不等式组???<->+2

5332b x x 的解集为-1

7.能够使不等式(|x| - x )(1 + x ) <0成立的x 的取值范围是_________。

8.不等式2<|x - 4| <3的解集为_____________。

9.已知a,b 和c 满足a ≤2,b ≤2,c ≤2,且a + b + c = 6,则abc=______________。

10.已知a,b 是实数,若不等式(2a - b)x + 3a – 4b <0的解是9

4>

x ,则不等式(a – 4b)x + 2a – 3b >0的解是__________。

C 卷

一、填空题

1.不等式2|43|2+>--x x x 的解集是_____________。

2.不等式|x| + |y| < 100有_________组整数解。 3.若x,y,z 为正整数,且满足不等式?????≥+≥≥1997

213z y y z x 则x 的最小值为_______________。

4.已知M=1

212,12122000199919991998++=++N ,那么M ,N 的大小关系是__________。(填“>”或“<”) 5.设a, a + 1, a + 2为钝角三角形的三边,那么a 的取值范围是______________。

二、选择题

1.满足不等式43

14||3<--x x 的x 的取值范围是( ) A .x>3 B .x<72- C .x>3或x<7

2- D .无法确定 2.不等式x – 1 < (x - 1) 2< 3x + 7的整数解的个数( )

A .等于4;

B .小于4;

C .大于5;

D .等于5

3.?????????=++=++=++=++=++)

5()4()3()2()1(52154154

354324321321a x x x a x x x a x x x a x x x a x x x

其中54321,,,,a a a a a 是常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是( )

A .54321x x x x x >>>>;

B .53124x x x x x >>>>

C .52413x x x x x >>>>;

D .24135x x x x x >>>>

4.已知关于x 的不等式mx x >-2

3的解是4

1, n = 34 C .m = 10

1, n = 38 D .m = 81, n = 36 三、解答题 1.求满足下列条件的最小的正确整数,n :对于n ,存在正整数k ,使

137158<+

2.已知a,b,c 是三角形的三边,求证:

.2<+++++b

a c a c

b

c b a

3.若不等式组?????<+++>--0

5)25(20222k x k x x x 的整数解只有x = -2,求实数k 的取值范围。

答案

A 卷

1.x ≥2

2.不等式组?????-<-≥+523

8547x x x x 的解集是-6≤x <433, 其中整数解为-6,-5,-4,-3,-2,-1,0,1,2,

3.由不等式3

3131++>+x mx 可得(1 – m )·x < -5, 因已知原不等式的解集为x >5,则有(1-m)·5 = -5, ∴m = 2.

4.由原不等式得:(7 – 2k)x <2

k +6,当k < 27时,解集为 k k x 2762-+<; 当k >27时,解集为k

k x 2762-+>; 当k =2

7时,解集为一切实数。 5.要使关于x 的不等式的解是正数,必须5 – 2m<0,即m>

25, 故所取的最小整数是3。

6.2x + a >3的解集为 x >23a -; 5x – b < 2 的解集为 x <5

2b + 所以原不等式组的解集为23a - < 52b +。且23a - < 5

2b +。

又题设原不等式的解集为 –1 < x <1, 所以23a -=-1, 52b +=1,再结合23a - < 5

2b +, 解得:a = 5, b = 3,所以ab = 15

7.当x ≥0时,|x| - x = x –x = 0,于是(|x| - x )(1 + x ) = 0,不满足原式, 故舍去x ≥0

当x < 0时,|x| - x = - 2x >0,x 应当要使(|x| - x )(1 + x )<0,

满足1 + x < 0,即x < -1,所以x 的取值范围是x < - 1。

8.原不等式化为???<->-)

3(3|4|)1(2|4|x x 由(1)解得或x <2 或x > 6,由(2)解得 1 < x < 7,

原不等式的解集为1 < x < 2或6 < x < 7.

9.若a,b,c ,中某个值小于2,比如a < 2,但b ≤2, c ≤2,

所以a + b + c <6 ,与题设条件a + b + c = 6矛盾,

所以只能a = 2,同理b = 2, c = 2,所以abc=8。

10.因为解为x >

9

4的一元一次不等式为 – 9 x + 4 < 0与(2a – b )x + 3a – 4b <0比较系数,得 ???=--=-44392b a b a ?

??-=-=78b a 所以第二个不等式为20x + 5 > 0,所以x > 4

1- C 卷

1. 原不等式化为|(x + 1) (x - 4) | > x + 2,

若(x + 1) (x - 4) ≥0,即x ≤-1或x ≥4时,有

064,24322>--+>--x x x x x ∴3131102102+<<-+>-

2.∵|x| + |y| < 100,∴0≤|x|≤99, 0≤|y|≤99,于是x,y 分别可取-99到99之间的199个整数,且x

所以满足不等式的整数解的组数为:

198 + 2 (1 + 3 + … + 99) + 2(100 + 102 + … + 196)

197022

49)196100(2250)991(2198=?+?+?+?+=

3.?????≥+≥≥)

2(1997)1(213z y y z x 由(1)得y ≤2z (3)

由(3)(2)得3z ≥ 1997 (4)

因为z 是正整数,所以z ≥6661]3

1997[=+ 由(1)知x ≥3z ,∴z ≥1998,取x = 1998, z = 666, y = 1332满足条件

所以x 的最小值是1998。

4.令n =19982,则1

412121,42,2222200019981999++÷++=∴==?=n n n n N M n n 11

441144154)12()14)(1(2222>+++=++++=+++=n n n n n n n n n n ∴M>N

5.钝角三角形的三边a, a + 1, a + 2满足:

???>-->?

??+<+++>++03221)2()1(2)1(222a a a a a a a a a 即 ∴313

11<a a a 故

二、选择题 1.当x ≥0且x ≠3时,

,43533143314||3<--=--=--x x x x x ∴)1(135->-x 若x>3,则(1)式成立

若0≤x < 3,则5 < 3-x ,解得x < -2与0≤x < 3矛盾。

当x < 0时,

,43143314||3<--=--x x x x 解得x < 7

2-(2) 由(1),(2)知x 的取值范围是x >3或x < 72-,故选C 2.由,12)1(2

2+-=-x x x 原不等式等价于,0)6()1(,0)1()2(<-?+>-?-x x x x 分别解得x < 1或x >2,-1< x < 6,原不等式的整数解为0,3,4,5,故应选A

3.方程组中的方程按顺序两两分别相减得 5

42443133

2522141,,a a x x a a x x a a x x a a x x -=--=--=--=-

因为54321a a a a a >>>> 所以24135241,,,x x x x x x x x >>>>,于是有52413x x x x x >>>>故应选C

4.令x =a (a ≥0)则原不等式等价于02

32<+-a ma 由已知条件知(1)的解为2< a < n 因为2和n 是方程02

32=+-a ma 的两个根, 所以???

????==+m n m n 23

212解得m = 36,81=n 故应选D

三、解答题

1.由已知得8

776,7131815,713815<<∴>+>>+>n k n k n k n 即 n , k 为正整数 显然n>8,取n = 9则8

63754<

870760<

77766<

91778<

98784<

105790<

2. 由“三角形两边之和大于第三边”可知,b

a c c a

b

c b a +++,,,是正分数, 再利用分数不等式:c

b a a a

c b a a c b a ++=+++<+2, 同理c

b a

c b a c c b a b c a b ++<+++<+2,2 ∴2)(2222=++++=++++++++<+++++c

b a

c b a c b a c c b a b c b a a b a c c a b c b a 3.因为x = -2是不等式组的解,把x = - 2代入第2个不等式得

(2x + 5) (x + k) = [2·(-2) + 5]·(-2 + k ) < 0,解得k < 2, 所以 – k > -2 > 25-,即第2个不等式的解为2

5- < x < k , 而第1个不等式的解为x < -1或x > 2,

这两个不等式仅有整数解x = -2,

应满足???????-<<->???????-<<--<.

2

52)2(251)1(为整数或为整数x k x x x k x x

对于(1)因为x < 2,

所以仅有整数解为 x = -2此时为满足题目要求不等式组(2)应无整数解, 这时应有-2 < -k ≤3, -3≤k < 2

综合(1)(2)有-3≤k < 2

初中数学竞赛:不等式的应用

初中数学竞赛:不等式的应用 不等式与各个数学分支都有密切的联系,利用“大于”、“小于”关系,以及不等式一系列的基本性质能够解决许多有趣的问题,本讲主要结合例题介绍一下这方面的应用.例1已知x<0,-1<y<0,将x,xy,xy2按由小到大的顺序排列. 分析用作差法比较大小,即若a-b>0,则a>b;若a-b<0,则a<b. 解因为x-xy=x(1-y),并且x<0,-1<y<0,所以x(1-y)<0,则x<xy. 因为xy2-xy=xy(y-1)<0,所以xy2<xy. 因为x-xy2=x(1+y)(1-y)<0,所以x<xy2. 综上有x<xy2<xy. 例2若 试比较A,B的大小. 显然,2x>y,y>0,所以2x-y>0,所以A-B>0,A>B. 例3若正数a,b,c满足不等式组 试确定a,b,c的大小关系. 解①+c得 ②+a得

③+b得 由④,⑤得 所以 c<a. 同理,由④,⑥得b<C. 所以a,b,c的大小关系为b<c<a. 例4当k取何值时,关于x的方程 3(x+1)=5-kx 分别有(1)正数解;(2)负数解;(3)不大于1的解. 解将原方程变形为(3+k)x=2. (1)当 3+k>0,即 k>-3时,方程有正数解. (2)当3+k<0,即k<-3时,方程有负数解. (3)当方程解不大于1时,有 所以1+k,3+k应同号,即 得解为k≥-1或k<-3. 注意由于不等式是大于或等于零,所以分子1+k可以等于零,而分母是不能等于零的。例5已知

求|x-1|-|x+3|的最大值和最小值. |x-1|-|x+3| 达到最大值4.结合x<-3时的情形,得到:在已 说明对含有绝对值符号的问题,无法统一处理.一般情况下,是将实数轴分成几个区间,分别进行讨论,即可脱去绝对值符号. 例6已知x,y,z为非负实数,且满足 x+y+z=30,3x+y-z=50. 求u=5x+4y+2z的最大值和最小值. 解将已知的两个等式联立成方程组 所以①+②得 4x+2y=80,y=40-2x. 将y=40-2x代入①可解得 z=x-10. 因为y,z均为非负实数,所以 解得 10≤x≤20. 于是 u=5x+4y+2z=5x+4(40-2x)+2(x-10) =-x+140.

高中数学奥赛讲义:竞赛中常用的重要不等式

不等式是数学竞赛的热点之一。由于不等式的证明难度大,灵活性强,要求很高的技巧,常常使它成为各类数学竞赛中的“高档”试题。而且,不论是几何、数论、函数或组合数学中的许多问题,都可能与不等式有关,这就使得不等式的问题(特别是有关不等式的证明)在数学竞赛中显得尤为重要。证明不等式同大多数高难度的数学竞赛问题一样,没有固定的模式,证法因题而异,灵活多变,技巧性强。但它也有一些基本的常用方法,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。 竞赛中常用的重要不等式 【内容综述】 本讲重点介绍柯西不等式、排序不等式、切比雪夫不等式的证明与应用 【要点讲解】 目录§1 柯西不等式 §2 排序不等式 §3 切比雪夫不等式 ★ ★ ★ §1。柯西不等式 定理1 对任意实数组恒有不等式“积和方不大于方和积”,即 等式当且仅当时成立。 本不等式称为柯西不等式。 思路一证不等式最基本的方法是作差比较法,柯西不等式的证明也可首选此法。 证明1 ∴右-左= 当且仅当定值时,等式成立。 思路2 注意到时不等式显然成立,当时,不等式左、右皆正,因此可考虑作商比较法。

证明2 当时等式成立;当时,注意到 =1 故 当且仅当 且 (两次放缩等式成立条件要一致)

即同号且常数, 亦即 思路3 根据柯西不等式结构,也可利用构造二次函数来证明。 证明3 构造函数 。 由于恒非负,故其判别式 即有 等式当且仅当常数时成立。 若柯西不等式显然成立。 例1 证明均值不等式链: 调和平均数≤算术平均数≤均方平均数。 证设本题即是欲证: 本题证法很多,现在我们介绍一种主要利用柯西不等式平证明的方法 (1)先证① 注意到欲证①,即需证 ② 此即 由柯西不等式,易知②成立,从而①真

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案 奥数题一 一、选择题(每题1分,共10分) 1.如果a,b都代表有理数,并且a+b=0,那么 ( ) A.a,b都是0 B.a,b之一是0 C.a,b互为相反数 D.a,b互为倒数 答案:C 解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。 2.下面的说法中正确的是 ( ) A.单项式与单项式的和是单项式 B.单项式与单项式的和是多项式 C.多项式与多项式的和是多项式 D.整式与整式的和是整式 答案:D 解析:x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A。两个单项式x2,2x2之和为3x2是单项式,排除B。两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。 3.下面说法中不正确的是 ( ) A. 有最小的自然数 B.没有最小的正有理数 C.没有最大的负整数 D.没有最大的非负数 答案:C 解析:最大的负整数是-1,故C错误。 4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号 B.a,b异号 C.a>0 D.b>0 答案:D 5.大于-π并且不是自然数的整数有 ( ) A.2个 B.3个 C.4个 D.无数个 答案:C 解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,

-1,0共4个.选C。 6.有四种说法: 甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 丁.负数的立方不一定大于它本身。 这四种说法中,不正确的说法的个数是 ( ) A.0个 B.1个 C.2个 D.3个 答案:B 解析:负数的平方是正数,所以一定大于它本身,故C错误。 7.a代表有理数,那么,a和-a的大小关系是 ( ) A.a大于-a B.a小于-a C.a大于-a或a小于-a D.a不一定大于-a 答案:D 解析:令a=0,马上可以排除A、B、C,应选D。 8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数 B.乘以同一个整式 C.加上同一个代数式 D.都加上1 答案:D 解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B。同理应排除C.事实上方程两边同时加上一 个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D. 9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( ) A.一样多 B.多了 C.少了 D.多少都可能 答案:C 解析:设杯中原有水量为a,依题意可得, 第二天杯中水量为a×(1-10%)=0.9a; 第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a; 第三天杯中水量与第一天杯中水量之比为0.99∶1, 所以第三天杯中水量比第一天杯中水量少了,选C。

初中数学竞赛专题:不等式(2)

初中数学竞赛专题:不等式(2) §5.4 不等式的证明和应用 5.4.1★设a 、b 、c 的平均数为M ,a 、b 的平均数为N ,N 、c 的平均数为P .若a b c >>,则M 与P 的大小关系是( ) A.M P = B.M P > C.M P < D.不确定 解析 因为3a b c M ++= ,2a b N +=,224N c a b c P +++==,212 a b c M P +--=,因为a b c >>,所以2201212 a b c c c c +-+->=,即0M P ->,所以M P >.故选B. 5.4.2★若a 、b 是正数,且满足12345(111)(111)a b =+-,则a 与b 之间的大小关系是( ) A.a b > B.a b = C.a b < D.不能确定 解析 因为 12345(111)(111)a b =+- 2111111()a b ab =+--, 所以 2111()1234511124a b ab ab -=-+=+. 由于0a >,0b >,所以0ab >. 所以240ab +>,即0a b ->,a b >.故选A. 5.4.3★若223894613M x xy y x y =-+-++(x 、y 是实数),则M 的值一定是( ). A.正数 B.负数 C.零 D.整数 解析 因为223894613M x xy y x y =-+-++ 2222(2)(2)(3)0x y x y =-+-++≥, 且3x y -,2x -,3y +这三个数不能同时为0,所以0M >. 故选A. 5.4.4★设a 、b 是正整数,且满足5659a b +≤≤,0.90.91a b <<,则22b a -等于( ). A.171 B.177 C.180 D.182

2019年全国初中数学竞赛试题及答案

1 全国初中数学竞赛试题及答案 考试时间:2018年4月1日上午9:30—11:30 一、选择题:(共5小题,每小题6分,满分30分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后括号里.不填、多填或错填都得0分) 1.方程组?????=+=+6 12y x y x 的实数解的个数为( ) (A )1 (B )2 (C )3 (D )4 解:选(A )。当x ≥0时,则有y -|y|=6,无解;当x<0时,则y +|y|=18,解得:y=9,此时x=-3. 2.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ) (A )14 (B )16 (C )18 (D )20 解:选(B )。只用考虑红球与黑球各有4种选择:红球(2,3,4,5),黑球(0,1,2,3)共4×4=16种 3.已知a 、b 、c 是三个互不相等的实数,且三个关于x 的一元二次方程02 =++c bx ax , 02 =++a cx bx ,02 =++b ax cx 恰有一个公共实数根,则ab c ca b bc a 2 22++的值为( ) (A )0 (B )1 (C )2 (D )3 解:选(D )。设这三条方程唯一公共实数根为t ,则20at bt c ++=,20bt ct a ++=,2 0ct at b ++= 三式相加得:2 ()(1)0a b c t t ++++=,因为210t t ++≠,所以有a+b+c=0,从而有3333a b c abc ++=, 所以 ab c ca b bc a 222++=333 a b c abc ++=33abc abc = 4.已知△ABC 为锐角三角形,⊙O 经过点B ,C ,且与边AB ,AC 分别相 交于点D ,E .若⊙O 的半径与△ADE 的外接圆的半径相等,则⊙O 一定经 过△ABC 的( ) (A )内心 (B )外心 (C )重心 (D )垂心 解:选(B )。如图△ADE 外接圆的圆心为点F ,由题意知:⊙O 与⊙F 且弧DmE =弧DnE ,所以∠EAB =∠ABE ,∠DAC =∠ACD , 即△ABE 与△ACD 都是等腰三角形。分别过点E ,F 作AB ,AC 相交于点H ,则点H 是△ABC 的外心。又因为∠KHD =∠ACD , 所以∠DHE+∠ACD =∠DHE+∠KHD =180°,即点H ,D ,C ,E 在同一个圆上, 也即点H 在⊙O 上,因而⊙O 经过△ABC 的外心。 5.方程2563 2 3 +-=++y y x x x 的整数解x (,)y 的个数是( ) (A )0 (B )1 (C )3 (D )无穷多 解:选(A )。原方程可变形为:x(x+1)(x+2)+3x(x+1)=y(y-1)(y+1)+2,左边是6的倍数,而右边不是6的倍数。

高中数学竞赛均值不等式讲义

均值不等式 1.均值不等式 知识点1: 二元均值不等式可以推广到n 元,即: 设,,, 123 a a a a n 为n 个非负实数,则 12n a a a n ++ + ≥1 23 a a a a n === =). 如何证明? 知识点2: 设,,, 123 a a a a n 为n 个非负实数 ,n Q , 12n n a a a A n ++ += , n G =, 12 111n n n H a a a = ++,则n n n n Q A G H ≥≥≥(等号成立当且仅当 123a a a a n ====) 更一般的平均值的定义: 设正数(1,2,3...)i a i n =,则α的幂平均值=1 1 ( )n i i a n α α =∑,特 别的,我们有: lim ()n f G αα→=,1 1 ()( )n i i a f n α α α==∑为关于α的增函数. 知识点3:重要结论 (1)2 22,,,.a b c R a b c ab bc ac ∈++≥++ (2) ()2 ,,,3().a b c R a b c ab bc ac ∈++≥++ (3) 2222,,,3()().a b c R a b c a b c ∈++≥++ (4) 2,,,()3().a b c R ab bc ca abc a b c ∈++≥++ (5) ,,,()()()()().a b c R a b b c a c abc a b c ab cb ac ∈++++=++++ (6) 222;2a a a b b a b b -≥-+≥(a,b,c>0) (7) 2222221 ()()3 a b b c c a a b c a b c ++≤++++(a,b,c>0) (8)正实数(1,2,3...)i a i n =,则 21 1 1 n n i i i i a n a ==?≥∑∑ (当且仅当12...n a a a ===); (9) 222222222222()()()()()a b b c c a ab bc ca a b c a bc b ca c ab ++++=++++ 知识点4:加权平均值不等式 已知 12+...1(0,1,2.,,,) n i w w w w i n +=>=,则对任意正实数 12112212........n w w w n n n w a w a w a a a a +++≥.

初中数学竞赛专题:不等式

初中数学竞赛专题:不等式 §5.1 一元一次不等式(组) 5.1.1★已知2(2)3(41)9(1)x x x ---=-,且9y x <+,试比较1π y 与 10 31 y 的大小. 解析 首先解关于x 的方程得10x =-.将10x =-代入不等式得109y <-+,即1y <-.又因为110π 31 <,所以110π 31 y y > 5.1.2★解关于x 的不等式 233122x x a a +--> . 解析 由题设知0a ≠,去分母并整理得 (23)(23)(1)a x a a +>+-. 当230a +>,即3 (0)2 a a >-≠时,1x a >-; 当230a +=,即32 a =-时,无解; 当230a +<,即32 a <-时,1x a <-. 评注 对含有字母系数的不等式的解,也要分情况讨论. 5.1.3★★已知不等式(2)340a b x a b -+-<的解为49 x >,求不等式(4)230a b x a b -+->的解. 解析 已知不等式为(3)43a b x b a -<-.由题设知 20, 434.29a b b a a b -等价于 721 ()2028 a a x a a -+->, 即5528ax a ->,解得14 x >-. 所求的不等式解为14 x >-.

5.1.4★★如果关于x 的不等式 (2)50a b x a b -+-> 的解集为10 7 x < ,求关于x 的不等式ax b >的解集. 解析 由已知得 (2)5a b x b a ->-,① 710x ->-.② 由已知①和②的解集相同,所以 27, 510, a b b a -=-?? -=-? 解得 5, 3. a b =-?? =-? 从而ax b >的解集是3 5 x <. 5.1.5★求不等式 111 (1)(1)(2)326 x x x +---≥ 的正整数解. 解析 由原不等式可得1736x ≤,所以72 x ≤是原不等式的解.因为要求正整数解,所以原不等式的正整数解为1x =,2,3. 5.1.6★★如果不等式组90, 80x a x b -?? -

历年初中数学竞赛真题库(含答案)

1991年全国初中数学联合竞赛决赛试题 第一试 一、选择题 本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内. 1. 设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是 两两不同的实数,则2 22 23y xy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )3 5 . 答( ) 2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是 (A ) 10; (B )12; (C ) 16; (D )18. 答( ) 3. 方程012=--x x 的解是 (A ) 251±; (B )25 1±-; (C ) 251±或251±-; (D )2 5 1±-±. 答( ) 4. 已知:)19911991(2 11 1 n n x --=(n 是自然数).那么n x x )1(2+-,的值是 (A)11991-; (B)11991--; (C)1991)1(n -; (D)11991)1(--n . 答( ) 5. 若M n 1210099321=?????Λ,其中M为自然数,n 为使得等式成立的最大的自然数,则M (A)能被2整除,但不能被3整除; (B)能被3整除,但不能被2整除; (C)能被4整除,但不能被3整除; (D)不能被3整除,也不能被2整除.

答( ) 6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是 (A)1-;(B)5-;(C)0;(D)1. 答( ) 7. 如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S , 32=S 和13=S ,那么,正方形OPQR 的边长是 (A)2;(B)3;(C)2 ;(D)3. 答( ) 8. 在锐角ΔABC 中, 1= AC ,c AB =,ο60=∠A ,ΔABC 的外接圆半径R ≤1,则 (A)21< c < 2 ; (B)0< c ≤2 1 ; 答( ) (C )c > 2; (D )c = 2. 答( ) 二、填空题 1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 . 2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+a c b 32 . 3.设m ,n ,p ,q 为非负数,且对一切x >0,q p n m x x x x )1(1)1(+=-+恒成立,则 =++q p n m 22)2( . 4.四边形ABCD 中,∠ ABC ο135=,∠BCD ο120=,AB 6=,BC 35-=, CD = 6,则AD = . 第二试 1 1=S 3S =1 32=S

竞赛均值不等式专题讲解

均值不等式专题讲解 一、几个重要的均值不等式 ①,、)(2 22 22 2 R b a b a ab ab b a ∈+≤?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 112 +2 a b +≤≤≤2 2 2b a +。. 二、用均值不等式求最值 利用均值不等式求最值的记忆口诀为:“一正二定三相等”,三者缺一不可: 一 正:利用均值不等式解题要先保证各式都是正数; 二 定:求和的 积要固定,求积的 和要固定; 三相等:只有在各式都相等的前提下,和与积才能取到最值。 例1:下列命题中正确的是【 】 A 、x x 1 + 的最小值为2; B 、x x -+2 2的最小值为2; C 、b a a b +的最小值为2; D 、θθcot tan +的最小值为2。 点评:各式都是正数是利用均值不等式解题的前提,缺少这个条件足以致命。 例2:你能指出下列推导过程错在哪里吗? ⑴若0>x ,则221213x x x x x ++=+≥332 23123?=???x x x ; ⑵若?? ? ??∈2,0πx ,则x x x x sin 2sin sin 2sin 2+=+≥22sin 2sin 2=?x x ; ⑶若R x ∈,则 ( ) 4 144 144 1)4(4 52 22 2 2 2 2 2 2 ++ += +++= +++= ++x x x x x x x x ≥2。

初中数学竞赛专项训练不等式

初中数学竞赛专项训练 (不等式与不等式组)及参考答案 1、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。 A. 111 B. 1000 C. 1001 D. 1111 2、若2001 119811198011 ??++= S ,则S 的整数部分是____________________ 3、设有编号为1、2、3……100的100盏电灯,各有接线开关控制着,开始时,它们都是关闭状态,现有100个学生,第1个学生进来时,凡号码是1的倍数的开关拉了一下,接着第二个学生进来,由号码是2的倍数的开关拉一下,第n 个(n ≤100)学生进来,凡号码是n 的倍数的开关拉一下,如此下去,最后一个学生进来,把编号能被100整除的电灯上的开关拉了一下,这样做过之后,请问哪些灯还亮着。 4、某商店经销一批衬衣,进价为每件m 元,零售价比进价高a%,后因市场的变化,该店把 零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是 ( ) A. m(1+a%)(1-b%)元 B. m·a%(1-b%)元 C. m(1+a%)b%元 D. m(1+a%b%)元 5、如果a 、b 、c 是非零实数,且a+b+c=0,那么||||||||abc abc c c b b a a +++的所有可能的值 为 ( ) A. 0 B. 1或-1 C. 2或-2 D. 0或-2 6、在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若∠B =60°,则b c a b a c ++ +的值为 ( ) A. 2 1 B. 2 2 C. 1 D. 2 7、设a <b <0,a 2+b 2=4ab ,则b a b a -+的值为 ( ) A. 3 B. 6 C. 2 D. 3 8.已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab-bc-ca 的值为 ( ) A. 0 B. 1 C. 2 D. 3

数学竞赛选讲不等式证明

§14不等式的证明 不等式在数学中占有重要地位,由于其证明的困难性和方法的多样性,而成为竞赛和高考的热门题型. 证明不等式就是对不等式的左右两边或条件与结论进行代数变形和化归,而变形的依据是不等式的性质,不等式的性分类罗列如下: 不等式的性质:.0,0<-?<>-?≥b a b a b a b a 这是不等式的定义,也是比较法的依据. 对一个不等式进行变形的性质: (1)a b b a (对称性) (2)c b c a b a +>+?>(加法保序性) (3).0,;0,bc ac c b a bc ac c b a >?>> (4)*).(,0N n b a b a b a n n n n ∈> >?>> 对两个以上不等式进行运算的性质. (1)c a c b b a >?>>,(传递性).这是放缩法的依据. (2).,d b c a d c b a +>+?>> (3).,d b c a d c b a ->-?<> (4).,,0,0bc ad d b c a c d b a >>?>>>> 含绝对值不等式的性质: (1).)0(||2 2 a x a a x a a x ≤≤-?≤?>≤ (2).)0(||2 2 a x a x a x a a x -≤≥?≥?>≥或 (3)|||||||||||| b a b a b a +≤±≤-(三角不等式). (4).||||||||2121n n a a a a a a +++≤+++ΛΛ 证明不等式的常用方法有:比较法、放缩法、变量代换法、反证法、数学归纳法、构造函 数方法等.当然在证题过程中,常可“由因导果”或“执果索因”.前者我们称之为综合法;后者称为分析法.综合法和分析法是解决一切数学问题的常用策略,分析问题时,我们往往用分析法,而整理结果时多用综合法,这两者并非证明不等式的特有方法,只是在不等式证明中使用得更 为突出而已.此外,具体地证明一个不等式时,可能交替使用多种方法. 例题讲解 1.,0,,>c b a 求证:.6)()()(abc a c ca c b bc b a ab ≥+++++ 2.0,,>c b a ,求证:.) (3 c b a c b a ab c c b a ++≥ 3.:.222,,,3 33222222ab c ca b bc a b a c a c b c b a c b a R c b a ++≤+++++≤ ++∈+ 求证 4.设* 21,,,N a a a n ∈Λ,且各不相同, 求证:.321312112 23221n a a a a n n ++++≤+ +++ΛΛ.

最新全国初中数学竞赛试题及答案

全国初中数学竞赛试题及参考答案 一.选择题(5×7'=35') 1.对正整数n ,记n !=1×2×...×n,则1!+2!+3!+...+10!的末位数是( ). A .0 B .1 C .3 D .5 【分析】5≥n 时,n !的个位数均为0,只考虑前4个数的个位数之和即可,1+2+6+4=13,故式子的个位数是3. 本题选C . 2.已知关于x 的不等式组??????? <-+->-+x t x x x 2 353 52恰好有5个整数解,则t 的取值范围是( ). 2116.-<<-t A 2116.-<≤-t B 2116.-≤<-t C 2 116.-≤≤-t D 【分析】20232 35352<<-????????<-+->-+x t x t x x x ,则5个整数解是15,16,17,18,19=x . 注意到15=x 时,只有4个整数解.所以 2116152314-≤<-?<-≤t t ,本题选C 3.已知关于x 的方程x x x a x x x x 22222--=-+-恰好有一个实根,则实数a 的值有( )个. A .1 B .2 C .3 D .4 【分析】422222222+-=?--=-+-x x a x x x a x x x x ,下面先考虑增根: ⅰ)令0=x ,则4=a ,当4=a 时,0,1,022212===-x x x x (舍); ⅱ)令2=x ,则8=a ,当8=a 时,2,1,0422212=-==--x x x x (舍); 再考虑等根: ⅲ)对04222=-+-a x x ,270)4(84= →=--=?a a ,当21,272,1==x a . 故27, 8,4=a ,2 1,1,1-=x 共3个.本题选C .

人教版七年级下册数学期末专项复习题:不等式(组)【含答案】

人教版七年级下册数学期末专项复习题:不等式(组)【含答案】 阅读与思考 客观世界与实际生活既存在许多相等关系,又包含大量的不等关系,方程(组)是研究相等关系的重要手段,不等式(组)是探求不等关系的基本工具,方程与不等式既有相似点,又有不同之处,主要体现在: 1. 解一元一次不等式与解一元一次方程类似,但解题时要注意两者之间的重要区别;等式两边都乘(或除)以同一个数时,只要考虑这个数是否为零,而不等式两边都乘以(或除以)同一个数时,不但要考虑这个数是否为零,而且还要考虑这个数的正负性. 2. 解不等式组与解方程组的主要区别是:解方程组时,我们可以对几个方程进行“代入”或“加减”式的加工,但在解不等组时,我们只能对某个不等式进行变形,分别求出每个不等式的解集,然后再求公共部分.通俗地说,解方程组时,可以“统一思想”,而解不等式组时只能“分而治之”. 例题与求解 【例1】已知关于x 的不等式组?????<-+->-+x t x x x 2 35 35 2恰好有5个整数解,则t 的取值范围是( ) A 、2116-<<-t B 、2116-<≤-t C 、2116-≤<-t D 、2 116-≤≤-t (2013 年全国初中数学竞赛广东省试题) 解题思路:把x 的解集用含t 的式子表示,根据题意,结合数轴分析t 的取值范围. 【例2】如果关于x 的不等式7 10 05)2(< >---x n m x n m 的解集为那么关于x 的不等式)0(≠>m n mx 的解集为 . (黑龙江省哈尔滨市竞赛试题) 解题思路:从已知条件出发,解关于x 的不等式,求出m ,n 的值或m ,n 的关系. 【例3】已知方程组?? ?=+=-6 2y mx y x 若方程组有非负整数解,求正整数m 的值. (天津市竞赛试题) 解题思路:解关于x ,y 的方程组,建立关于m 的不等式组,求出m 的取值范围. 【例4】已知三个非负数a ,b ,c 满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,求m 的

高中数学竞赛之路

金牌学生推荐(可参照选择) 一、第零阶段:知识拓展 《数学选修4-1:几何证明选讲》《数学选修4-5:不等式选讲》《数学选修4-6:初等数论初步》 二、全国高中数学联赛各省赛区预赛(即省选初赛) 1、《五年高考三年模拟》B版或《3年高考2年模拟》第二轮复习用 2、《高中数学联赛备考手册》华东师范大学出版社(推荐指数五颗星) 3、《奥赛经典:超级训练系列》高中数学沈文选主编湖南师范大学出版社(推荐指数五颗星) 4、单樽《解题研究》(推荐指数五颗星) 5、单樽《平面几何中的小花》(个别地区竞赛会考到平几) 6、《平面几何》浙江大学出版社 7、奥林匹克小丛书第二版《不等式的解题方法与技巧》苏勇熊斌著 三、第二阶段:全国高中数学联赛 一试 0、《奥林匹克数学中的真题分析》沈文选湖南师范大学出版社(推荐指数五颗星)1、《高中数学联赛考前辅导》熊斌冯志刚华东师范大学出版社2、《数学竞赛培优教程(一试)》浙江大学出版社3、命题人讲座《数列与数学归纳法》单樽4、《数列与数学归纳法》(小丛书第二版,冯志刚)5、《数列与归纳法》浙江大学出版社韦吉珠6、《解析几何的技巧》单樽(建议买华东师大出版的版本)7、《概率与期望》单樽8、《同中学生谈排列组合》苏淳9、《函数与函数方程》奥林匹克小丛书第二版10、《三角函数》奥林匹克小丛书第二版11、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星)12、《圆锥曲线的几何性质》13、《解析几何》浙江大学出版社 二试 平几1、高中数学竞赛解题策略(几何分册)沈文选(推荐指数五颗星) 2、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 3、奥林匹克小丛书第二版《平面几何》 4、浙大小红皮《平面几何》 5、沈文选《三角形的五心》 6、田廷彦《三角与几何》 7、田廷彦《面积与面积方法》不等式 8、《初等不等式的证明方法》韩神 9、命题人讲座《代数不等式》计神10、《重要不等式》中科大出版社11、奥林匹克小丛书《柯西不等式与平均值不等式》数论(9,10,11选一本即可,某位大神说二试改为四道题以来没出过难题)12、奥林匹克小丛书初中版《整除,同余与不定方程》13、奥林匹克小丛书《数论》14、命题人讲座《初等数论》冯志刚组合15、奥林匹克小丛书第二版《组合数学》16、奥林匹克小丛书第二版《组合几何》17、命题人讲座刘培杰《组合问题》18、《构造法解题》余红兵19、《从特殊性看问题》中科大出版社20、《抽屉原则》常庚哲 四、中国数学奥林匹克(Chinese Mathematical Olympiad)及以上 命题人讲座《圆》田廷彦《近代欧式几何学》《近代的三角形的几何学》《不等式的秘密》范建熊、隋振林《奥赛经典:奥林匹克数学中的数论问题》沈文选《奥赛经典:数学奥林匹克高级教程》叶军《初等数论难题集》命题人讲座《图论》奥林匹克小丛书第二版《图论》《走向IMO》

初一数学竞赛题含答案

一、选择题(每小题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将 正确答案的英文字母填在题后的圆括号内) 1.在-|-3|3,-(-3)3,(-3)3,-33中,最大的是( ). (A)-|-3|3 (B)-(-3)3 (C)(-3)3 (D)-33 2. “a 的2倍与b 的一半之和的平方,减去a 、b 两数平方和的4倍”用代数式表示应为( ) (A)2a+(21b 2)-4(a+b)2 (B)(2a+2 1b)2-a+4b 2 (c)(2a+21b)2-4(a 2+b 2) (D)(2a+2 1b)2-4(a 2+b 2)2 3.若a 是负数,则a+|-a|( ), (A)是负数 (B)是正数 (C)是零 (D)可能是正数,也可能是负数 4.如果n 是正整数,那么表示“任意负奇数”的代数式是( ). (A)2n+l (B)2n-l (C)-2n+l (D)-2n-l 5.已知数轴上的三点A 、B 、C 分别表示有理数a 、1、-l ,那么|a+1|表示( ). (A)A 、B 两点的距离 (B)A 、C 两点的距离 (C)A 、B 两点到原点的距离之和 (D)A 、C 两点到原点的距离之和 6.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别 是整数a 、b 、c 、d ,且d-2a =10,那么数轴的原点应是( ). (A)A 点 (B)B 点 (C)C 点 (D)D 点 7.已知a+b =0,a≠b ,则化简a b (a+1)+b a (b+1)得( ). (A)2a (B)2 b (C)+2 (D)-2 8.已知m<0,-l20)人,女生20人,a-20表示的实际意义是 12.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是 13.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重量,则表中问号“?”表示的数是 梨 梨 苹果 苹果 30 梨 型 梨 梨 28 荔枝 香蕉 苹果 梨 20 香蕉 香蕉 荔枝 苹果 ? 19 20 25 30 14.某学生将某数乘以-1.25时漏了一个负号,所得结果比正确结果小0.25,则正确结果 应是 . 15.在数轴上,点A 、B 分别表示-31和5 1,则线段AB 的中点所表示的数是 . 16.已知2a x b n-1与-3a 2b 2m (m 是正整数)是同类项,那么(2m-n)x = 17.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后 加上出生年份,再减去250,最后得到2 088,则王恒出生在 年 月.

初中数学竞赛专题训练之不等式含答案

初中数学竞赛专项训练(4) (不等式) 一、选择题: 1、若不等式|x+1|+|x-3|≤a 有解,则a 的取值范围是 ( ) A. 0<a ≤4 B. a ≥4 C. 0<a ≤2 D. a ≥2 2、已知a 、b 、c 、d 都是正实数,且 d c b a <,给出下列四个不等式:①d c c b a a +>+ ②d c c b a a +<+ ③d c c b a b +>+ ④d c d b a b +<+其中正确的是 ( ) A. ①③ B. ①④ C. ②④ D. ②③ 3、已知a 、b 、 c 满足a <b <c ,ab+bc+ac =0,abc =1,则 ( ) A. |a+b |>|c| B. |a+b|<|c| C. |a+b|=|c| D. |a+b|与|c|的大小关系不能确定 4、关于x 的不等式组???????+<+->+a x x x x 2 3535 2只有5个整数解,则a 的取值范围是 ( ) A. -6 a C. 7 2- 无解 ③若a ≠0,则方程b ax =有惟一解 ④若a ≠0,则不等式b ax >的解为a b x >,其中 ( ) A. ①②③④都正确 B. ①③正确,②④不正确 C. ①③不正确,②④正确 D. ①②③④都不正确 7、已知不等式①|x-2|≤1 ②1)2(2≤-x ③0)3)(1(≤--x x ④03 1≤--x x 其中解集是31≤≤x 的不等式为 ( ) A. ① B. ①② C. ①②③ D. ①②③④ 8、设a 、b 是正整数,且满足56≤a+b ≤59,0.9<b a <0.91,则b 2-a 2等于 ( ) A. 171 B. 177 C. 180 D. 182 二、填空题: 1、若方程 12 2-=-+x a x 的解是正数,则a 的取值范围是_________ 2、乒乓球队开会,每名队员坐一个凳子,凳子有两种:方凳(四脚)或圆凳(三脚),一个小孩走进会场,他数得人脚和凳脚共有33条(不包括小孩本身),那么开会的队员共有____名。

数学竞赛历年的不等式题

(2006年全国)2. 设2log (21)log 2 1x x x x +->-,则x 的取值范围为 A . 112x << B .1 , 12 x x >≠且 C . 1x > D . 01x << 【答】( B ) 【解】因为2 0,1210 x x x x >≠?? +->?,解得 1 ,12x x >≠. 由2log (21)log 2 1x x x x +->- 32log (2)log 2x x x x x ?+-> 32 01 22 x x x x <? ? +->? 解得 1x >,所以x 的取值范围为 1 , 12x x >≠且. 1.(05)使关于x k ≥有解的实数k 的最大值是( ) A 解 : 令 6, y x =≤≤ 则 2(3)(6)2[(3)y x x x =-+-+≤- (6)] 6.x +- =0y k ∴<≤实数 D 。 (2004年全国)3.不等式2log 21 1log 32 12++ -x x >0的解集是( C ) A .[2,3] B .(2,3) C .[2,4] D .(2,4) 解:原不等式等价于2 2331log 0222 log 10 x x ++>?-≥? 解得20log 11,24x x ≤-<∴≤<.故选C . (2003年全国)5已知x ,y 都在区间(-2,2)内,且xy =-1,则函数 u =244 x -+2 99y -的最小值是D (A) 58 (B)11 24 (C)712 (D)512 (2003年全国)7不等式|x |3-2x 2-4|x |+3<0的解集是__________.7、}2 5 133215| {-<<-<<-x x x 或; (2003年全国)13已知 52 3 ≤≤x ,证1923153212<-+-++x x x

均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇) 第一篇:常用均值不等式及证明证明 常用均值不等式及证明证明 这四种平均数满足hn?gn? an?qn ?、ana1、a2、 ?r?,当且仅当a1?a2?? ?an时取“=”号 仅是上述不等式的特殊情形,即d(-1)≤d(0)≤d(1)≤d(2)由以上简化,有一个简单结论,中学常用 均值不等式的变形: (1)对实数a,b,有a 2 22 ?b2?2ab (当且仅当a=b时取“=”号),a,b?0?2ab (4)对实数a,b,有 a?a-b??b?a-b? a2?b2? 2ab?0 (5)对非负实数a,b,有 (8)对实数a,b,c,有

a2? b2?c2?ab?bc?ac a?b?c?abc(10)对实数a,b,c,有 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设a≥0,b≥0,则?a?b??an?na?n-1?b n 注:引理的正确性较明显,条件a≥0,b≥0可以弱化为a≥0 ,a+b≥0 (用数学归纳法)。 当n=2时易证; 假设当n=k时命题成立,即 那么当n=k+1时,不妨设ak?1是则设 a1,a2,?,ak?1中最大者, kak?1?a1?a2???ak?1 s?a1?a2???ak 用归纳假设 下面介绍个好理解的方法琴生不等式法 琴生不等式:上凸函数f?x?,x1,x2,?,xn是函数f?x?在区间(a,b)内的任意n个点, 设f?x??lnx,f

?x?为上凸增函数所以, 在圆中用射影定理证明(半径不小于半弦) 第二篇:均值不等式证明 均值不等式证明一、 已知x,y为正实数,且x+y=1求证 xy+1/xy≥17/4 1=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥2 当且仅当xy=1/xy时取等 也就是xy=1时 画出xy+1/xy图像得 01时,单调增 而xy≤1/4 ∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4 得证 继续追问: 拜托,用单调性谁不会,让你用均值定理来证 补充回答: 我真不明白我上面的方法为什么不是用均值不等式证的法二: 证xy+1/xy≥17/4

相关主题
文本预览
相关文档 最新文档