当前位置:文档之家› 土壤碳氮与土壤酶相关性研究进展

土壤碳氮与土壤酶相关性研究进展

土壤碳氮与土壤酶相关性研究进展
土壤碳氮与土壤酶相关性研究进展

收稿日期:2005-04-06;修订日期:2005-04-22

土壤碳氮与土壤酶相关性研究进展

吕国红1 周广胜1 赵先丽1 周莉1,2

(11中国气象局沈阳大气环境研究所沈阳110016;21中国科学院植物研究所植被数量生态学重点实验室北京100093) 摘 要 土壤酶在生态系统中起着重要的作用,是土壤有机体的代谢动力,参与包括土壤生物化学过程在内的自然界物质循环。土壤碳氮作为土壤生物化学研究的重要内容,与土壤酶具有密切的关系。综述土壤碳氮与土壤酶的相关性,对研究其全球的变化很有必要。

关键词 土壤有机质 土壤氮 土壤酶 相关性研究

土壤酶是由微生物、动植物活体分泌及由动植物残体、遗骸分解释放于土壤中的一类具有催化能力的生物活性物质。国内外近20多年的大量研究资料表明,尽管积累在土壤中的酶以质量计的数量很小,但是作用颇大。土壤酶参与元素的生物循环、腐殖质的合成与分解以及有机化合物的分解,并在不利于微生物增殖的条件下,起着重要的作用

[1]

,其活性反映

了土壤生物化学过程的方向和强度。碳和氮是重要的生命物质,也是地球非生物组成部分的重要元素。碳和氮在地球各个圈层之间不断地流动、往返,构成碳和氮的生物地球化学循环。土壤有机质存在的状况及氮的形态和含量,都与土壤酶活性变化相关。在各土壤理化性质中,土壤有机质含量和土壤全氮量对土壤脲酶、过氧化氢酶、多酚氧化酶活性的影响最强烈[2]。各种土壤酶积极参与土壤碳氮的转化,对提高土壤肥力有重要作用;另一方面说明土壤碳氮状况又是土壤酶活性的基础,对土壤酶活性有着不可忽视的影响,因此,土壤酶活性的变化可以判断土壤有机质、全氮存在的状况。综述土壤碳氮与土壤酶的相关性,对研究其全球变化具有重要的指导意义。

1 土壤酶是土壤质量的生物活性指标

由于土壤酶活性与土壤理化性质和土壤生物数量及生物多样性等密切相关,所以土壤酶活性常常被作为土壤质量的整合生物活性指标。在19世纪80年代末以来,土壤酶作为土壤质量的生物活性指标一直是土壤酶学的研究重点[3]。

土壤酶活性作为土壤质量的生物活性指标已被广泛接受。土壤酶活性作为农业土壤质量和生态系统功能的生物活性指标已被系统研究。土壤酶在土壤肥力的表征及土壤肥力的改善过程中,能积极参与土壤中营养物质的循环,且各种酶活性与土壤肥力的重要因素呈显著的相关,从而反映了土壤酶在土壤养分的循环代谢过程中起着重要的作用。土壤酶参与了土壤中腐殖质的合成与分解,有机物、动植物和微生物残体的水解与转化以及土壤有机、无机化合物的各种氧化还原反应等土壤中一切复杂的生物化学过程。杉木被线虫侵染后,林地土壤各土层的土壤酶活性发生明显的变化。蛋白酶、脲酶、转化酶、酸性磷酸酶、中性磷酸酶强度明显减弱,预示土壤的有机质分解、氮、碳、磷的转化强度有减弱的趋势[4]。在土壤改良过程中,应保护好各类凋落物,这对增加土壤有机质,增强土壤微生物活性,增强土壤酶活性,提高土壤肥力,促进土壤中营养物质的循环、代谢,使得土壤中的速效氮、磷、钾、有效养分得到提高有着重要的意义。酶活性升高有利于凋落物和土壤有机物质的分解、转换和养分元素的释放,对于提高森林土壤肥力和维持生态系统的物质循环和能量流动具有重要意义[5]。

2 土壤碳元素与土壤酶

211 土壤有机碳与土壤酶

土壤有机质含量显著影响着土壤酶的活性。土壤有机质的含量并不高,但它能增强土壤孔隙度、通气性和结构性,有显著的缓冲作用和持水力,是微生物、土壤酶和矿物质的有机载体。土壤有机质是土壤中酶促底物的主要供源,是土壤固相中最复杂的系统,也是土壤肥力的主要物质基础。Debosz 等人[6]研究了有机物输入对纤维素酶变化的影响,长达8a 的研究表明,无论是低量输入还是高量输入,时间变化模式通常是一样的,变化的驱动因子是温度和湿度等环境因子。在作物生长期间,土壤酶活性增强,其中,β2葡萄糖苷酶和纤维酶增加30%。Albiach 等人[7]通过4~5a 的对比研究发现,城市垃圾的堆积肥可极大地加强土壤酶活性,绿肥和淤泥产生的效果次之,施用有机残体后土壤酶活性平衡能力加强。

Taylor 等人[8]研究也表明,土壤酶与土壤有机质之间存在显

著正相关。Moreno 等人[9]的研究发现,Cd 在有机质含量高的土壤中对土壤酶的影响要低于有机质含量低的土壤。土壤有机质中不易氧化部分和易氧化部分对酶活性的影响有差异。相比之下,易氧化有机质与蔗糖酶、碱性和中性磷酸酶活性之间的关联度相对偏小[10]。

脲酶来自于微生物,而土壤中脲酶的稳定形式是与无机及有机化合物结合在一起的[11]。连续施加有机肥,提高了土壤有机质的含量,而有机质含量的提高有助于与游离酶结合形成稳定性酶,从而提高土壤酶的活性,但施加大量的有机肥如每年施加80t ha -1时,土壤酶并不能达到最大活性,可能是土壤中大量的重金属积累影响了土壤微生物的生物活性[12]。不同林型下土壤中的有机质与脲酶、酸性磷酸酶、中性磷酸酶、过氧化氢酶、转化酶呈显著相关[13]。杨式雄等人[13]研究发现,转化酶活性与有机质的关系最为密切,转化酶促进有机物分解,为微生物提供养料,从而促进微生物的繁殖,反过来,微生物又刺激酶活性的增强。

在土壤有机质的分解过程中,土壤中各种酶的活性变化不同,脲酶和蔗糖酶的活性随着分解过程的进行而显著下降[14]。土壤脲酶是一种酰胺酶,能促进土壤有机质分子中酰

—6—L IAON IN G Q IXIAN G

辽宁气象 2005年第2期

胺键的水解,因此,在富含有机质的土壤中,脲酶的活性一定高[15]。蔗糖酶是一种可以把土壤中高分子量蔗糖分子分解成能够被植物和土壤微生物吸收利用的葡萄糖和果糖的水解酶,为土壤生物体提供充分能源,其活性反映了土壤有机碳累积与分解转化的规律。陆梅等人[16]对滇西北纳帕海退化湿地土壤养分与酶活性的系统研究表明,土壤有机质从原生沼泽向沼泽草地、草地、耕地逐渐减少,土壤脲酶及蔗糖酶的活性也呈现出相同的趋势。土壤蛋白酶也是一类作用于肽键的水解酶,与土壤脲酶和蔗糖酶呈现相同的变化趋势。土壤酶活性和土壤养分退化密切相关,较好地放映了土壤退化程度,可作为评价该地区高原湿地土壤肥力的敏感指标。何斌等人[17]对广西英罗港自然保护区不同红树植物群落土壤主要性质进行了较系统的研究,结果表明,英罗港红树植物群落土壤酶活性与土壤肥力因素密切相关,各土壤酶活性之间也存在不同程度的相关性。在肥力因素中,土壤酶活性与土壤有机质的相关性最为显著,充分说明土壤有机质不但是养分的储藏所和重要来源,同时也是土壤中某些酶活性的重要来源和储藏基地[17]。

212 土壤微生物量碳与土壤酶

土壤微生物量碳是土壤有机碳的灵敏指示因子。尽管微生物量碳只占土壤总碳的1%~4%,但它却是活的土壤有机质部分[18]。沈宏等人[19]研究了玉米生长期间土壤微生物量碳、氮与土壤过氧化氢酶、蔗糖酶、脲酶、蛋白酶活性变化及其相关性。结果表明,玉米生长前期和中期,土壤微生物量碳及酶活性迅速上升,并逐渐达到最大值;玉米生长后期,微生物量碳、酶活性下降至某一值后逐渐趋于平稳。在玉米的整个生长期间土壤微生物量碳与土壤过氧化氢酶、蔗糖酶、脲酶、蛋白酶活性及速效养分均相关或极相关。宋日等人[20]在研究玉米根茬留田对土壤生物活性动态变化的影响时发现,在玉米生长期间微生物量碳、土壤酶、磷酸酶、纤维素酶以及转化酶活性的变化趋势为先升后降。这与沈宏等人[19]的研究结果一致,可见,微生物量碳及土壤酶活性在作物生育旺盛时期出现高峰,有利于作物生长发育。玉米根茬作为一种有机物料随作物不同生育期而发生变化,释放大量的能源,这些能源(碳和氮)是构成微生物体的重要结构和能源物质,因此,微生物生长、繁殖也随之不断加强,而主要来源于微生物的土壤酶,其活性也必然随之增强。Holt[21]研究了放牧对土壤全碳、微生物量碳和土壤酶活性的影响,结果发现,6或8a过度放牧对土壤有机碳没有变化,但土壤微生物量碳分别降低24%和51%,肽酶和酰胺酶活性也明显降低。土壤微生物是土壤酶的重要来源,因此土壤微生物碳的降低,会导致酶活性的降低。Plaza等人[22]在4a的研究中发现,微生物量碳与脱氢酶、过氧化氢酶、BAA2蛋白酶及β2葡萄糖苷酶之间呈正相关,但与磷酸酶呈负相关。微生物量碳与土壤总有机碳相比,活性强,反应迅速,对土壤变化的敏感性强,更能有效地指示土壤养分的变化。

3 土壤氮元素与土壤酶

311 土壤全氮与土壤酶

氮是作物生长所必需的主要营养元素,是植物蛋白质、核酸、叶绿素等物质的组成成分。含氮化合物在土壤中的转化,是土壤代谢的中心环节之一。进入土壤和累积在土壤中的含氮有机化合物经复杂的生物化学转化,最后转变为植物可以利用的形式。在氮素转化的每一阶段,均有专性的土壤酶类参与。氮素不仅是土壤酶的组成部分,而且累积在土壤有机质中的氮还决定了酶进入土壤中的数量。在土壤各组分中,土壤全氮量对土壤过氧化氢酶活度及其动力学特征影响最大[23]。全氮与蛋白酶、中性磷酸酶、脲酶呈显著相关,而与蛋白酶关系最为密切。在蛋白酶的催化下,土壤中各种含蛋白质物质(如几丁质、叶绿素、尿素等)转化为无机态氮,供植物吸收利用,这个过程蛋白酶具有很强的专一性。廖铁军与黄云[24]对中性紫色土脲酶活性与土壤营养因子进行了相关性研究,通过通径分析表明,全氮、速效氮、全钾和速效钾4个因子对脲酶活性的作用占主要地位,对酶的直接效应以全氮最高,通径系数高达017203,其次是速效氮,通径系数为015371。土壤全氮及速效氮的直接和间接效应均较大,占所有因子效应的60%以上,其间接效应又大于直接效应。全氮中的有机氮是酶促反应的底物,而速效氮则是作用的结果,它们通过互作效应对脲酶活性发生影响。

程东娟等人[25]通过田间有机无机肥料长期定位培肥试验发现,在小麦的整个生育期,土壤速氮含量与土壤脲酶活性有较强的相关性,土壤速氮含量高时,土壤脲酶活性也高。有机无机肥料配施可明显增加土壤脲酶活性,其土壤脲酶活性明显高于单施有机肥和化肥。在冬小麦整个生长期内,土壤养分状况与土壤多酚氧化酶活性相关性较差,说明土壤氮不是土壤多酚氧化酶活性高低的主要影响因素。熊明彪等人[26]研究了小麦生长期内土壤氮、钾与土壤过氧化氢酶、脲酶、多酚氧化酶活性变化及其相关性,结果表明,在小麦生育期的不同生长阶段,土壤养分含量的高低对土壤脲酶、过氧化氢酶活性高低影响效应的大小是不同的,小麦生育后期土壤氮、钾养分有效性的高低对土壤脲酶、过氧化氢酶活性的影响效应较小麦生育前期、中期大,说明保持冬小麦生长后期土壤氮、钾养分较高的有效性,有利于保证土壤新陈代谢活性,为冬小麦后期正常的灌浆、结实提供良好的养分供应。梁万福等人[27]在小麦生长的各生育期,在田间施用不同量的氮肥(NH4NO3),在室内以不同浓度的培养处理,结果表明,高、中、低3个氮素水平作种肥处理,田间植株拔节以前未引起硝酸还原酶活性的明显变化,酶活性表现较低。但3个处理的硝酸还原酶活性均比对照高,3种处理的植株均比对照浓绿,长势较对照好。

312 土壤微生物量氮与土壤酶

土壤氮的微生物固定和矿化是同时发生在土壤氮素循环中的2个重要过程,土壤微生物量氮是土壤氮素转化的重要环节,也是土壤有效氮活性库的主要部分。土壤微生物量氮的基础含量能够反映土壤肥力状况及土壤的供氮能力。随着土壤氮素水平的提高,土壤中微生物量氮也会有所增加。在高氮土壤中,微生物总量随作物生长时间的延长而增加,氮在低氮土壤上,微生物总量在作物长到一定时间后,后有所下降[28]。根际微生物通过吸收土壤中的大量养分,形成近根缓

7

L IAON IN G Q IXIAN G 辽宁气象 2005年第2期

效供应的养分库,而且根际微生物固持氮导致根际土壤蛋白酶和酰胺酶活性高于非根际土壤;土壤酶活性的提高,进一步促进了根际微生物量的转化速度,使根际微生物氮的富集更加明显[29]。微生物氮与脱氢酶的关联度明显强于土壤有机碳,可见,微生物是直接影响酶活性的主要因子。焦晓光等人[30]研究了脲酶抑制剂(NBPT)、硝化抑制剂(DCD)及二者组合在草甸棕壤上施用对尿素态N转化及土壤总有效态N、微生物量N的影响,结果表明,尿素配施NBPT,DCD及抑制剂组合能够增加尿素水解后土壤NH+4含量2%~53%,显著降低了氧化态N的浓度,抑制了土壤中铵态N的氧化,增加土壤总有效N34%~44%,小麦吸N量增加0126%~6179%,其中以脲酶抑制剂与硝化抑制剂组合的效果最明显。抑制剂施用增加了微生物在小麦生长初期对有效态N固持,有利于后期土壤有效态N的矿化。孙国荣等人[31]采用不同的改良方法对盐碱土壤氮素营养影响的研究发现,不同处理对各氮素指标的影响不同,只有浅耕有机肥星星草羊草处理后,土壤各氮素指标及酶活性都提高,可见,只有在施肥与种草即生物改良结合的情况下才能促进氮素营养的提高及其转化,能够在短期内较全面改善盐碱土壤的氮素营养状况,增强土壤中氮素的矿化过程。沈宏等人研究了玉米生长期间土壤微生物量氮与土壤过氧化氢酶、蔗糖酶、脲酶、蛋白酶活性变化及其相关性,结果表明,玉米生长前期和中期,土壤微生物量氮及酶活性迅速上升,并逐渐达到最大值;玉米生长后期,微生物量氮、酶活性下降至某一值后逐渐趋于平稳。在玉米的整个生长期间土壤微生物量氮与土壤过氧化氢酶、蔗糖酶、脲酶、蛋白酶活性及速效养分均相关或极相关。

4 结语

在土壤生态体系中,各种酶并不是孤立存在,而是密切配合,相互作用,对土壤肥力的形成和转化起着十分重要的作用。土壤酶积极参与土壤中各种物质的形成和转化,同时,土壤肥力状况又是土壤酶活性的基础。土壤酶和土壤养分作为土壤肥力和土壤环境质量的重要指标,它们之间的关系,对揭示土壤生产力状况,建立良性的生态系统,改善土壤环境质量均具有重要意义。

参考文献

1 周礼恺.土壤酶活性的总体在评价土壤肥力水平中作用.土壤学报,1983,20(4).

2 戴伟,陈晓东.北京低山地区土壤酶活性与土壤理化性质的关系.

河北林学院学报,1995,10(1).

3 Doran J W,Parkin T B.Defining Soil Quality for Sustainable Envi2 ronment.Soil Science Society of America Special Publication.Madi2 son,Wisconsin,1994,35.

4 宋漳,陈兴族.杉木感染根线虫病后林地土壤微生物及生化活性的研究Ⅱ土壤酶活性及土壤化学性质.福建林学院学报,1994,14

(1).

5 杨万勤,王开运.森林土壤酶的研究进展.林业科学,2004,40(2). 6 Debosz K,Rasmussen P H,Pedersen A R.Temporal variations in mi2 crobial biomass C and cellulolytic enzyme activity in arable soils:ef2 fects of organic matter input.Appl Soil Ecol,1999,13.

7 Albiach R,Canet R,Pomanes F,et al.Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil.Biore Technol,2000,75.

8 Taylor J P,Wilson B,Mills M S,et https://www.doczj.com/doc/be10495337.html,parison of microbial num2 bers and enzymatic activities in surface and subsoils using various techniques.Soil Biol Biochem,2002,34.

9 Moreno J L,G arcia C,Landi L,et al.The ecological dose value (ED50)for assessing Cd toxicity on ATP content and dehydrogenase and urease activities of soil.Soil Biol Biochem,2001,33.

10 许 ,杜孟庸,周健学,等.有机物料对土壤酶活性影响的关连度分析.土壤通报,1994,25(2).

11 Bremner,J.M.,Mulvancy,R.L.,Urease activit y in soils.In:Buns, R.G.(Ed),Soil Enzymes.Academic Press,New Y ork,1978.

12 Marcote I.,Hernández T.,G arcía C.,Polo A.Influence of one or two successive annual applications of organic fertilizers on the enzyme activity of a soil under barley cultivation.Bioresoure Technology 2001,79.

13 杨式雄,戴教藩,陈宗献,等.武夷山不同林型土壤酶活性与林木生长关系的研究.福建林业科技,1994,21(4).

14 北京林业大学.土壤学(上册).北京:中国林业出版社,1981.

15 中国科学院南京土壤研究所.土壤微生物研究法.北京:科学出版社,1985.

16 陆梅,田昆,陈玉惠,等.高原湿地纳帕海退化土壤养分与酶活性研究.西南林学院学报.2004,24(1).

17 何斌.广西英罗港不同红树植物群落土壤理化性质与酶活性的研究.林业科学,2002,38(2).

18 Brookes PC,Landman A,Pruden G,et al.chloroform fumigation and release of soil nitrogen:A rapid direct extraction method for measur2 ing microbial biomass nitrogen in soil.Soil Boil.Biochem,1985,17. 19 沈宏,曹志洪,徐本生.玉米生长期间土壤微生物量与土壤酶变化及其相关性研究.应用生态学报,1999,10(4).

20 宋日,吴春胜,牟金明,等.玉米根茬留田对土壤微生物量碳和酶活性动态变化特征的影响.应用生态学报,2002,13(3).

21 Holt J A.Grazing pressure and soil carbon,microbial biomass and en2 zyme activities in semi-arid northeastern Australia.Applied Soil E2 cology,1997,5.

22 Plaza C,Hernández D,G arcía-G il J.C,Polo A.Microbial activity in pig slurry-amended soils under semiarid conditions.Soil Biology& Biochemistry,2004,36.

23 戴伟,白红英.土壤过氧化氢酶活度及其动力学特征与土壤性质的关系.北京林业大学学报,1995,17(1).

24 廖铁军,黄云.紫色土脲酶活性与土壤营养的研究.西南农业大学学报,1995,17(1).

25 程东娟,刘树庆,王殿武,等.长期定位培肥对土壤酶活性及土壤养分动态变化影响.河北农业大学学报,2003,26(3).

26 熊明彪,田应兵,雷孝章,等.小麦生长期内土壤养分与土壤酶活性变化及其相关性研究.水土保持学报,2003,17(4).

27 梁万福,幸亨泰.土壤氮素对小麦生育期硝酸还原酶活性的影响.

西北示范大学学报(自然科学版),1996,32(1).

28 Breland T A,Bakken L R.Microbial growth and nitrogen immobi2 lization in the root zone of barley,Italian ryegrass and white clover.

Biol.Fert.Soils,1991,12.

29 XiangZhen Li,Pariente Sarah.Enzyme activities along a climatic transect in the J udean Desert.Catena,2003,53.

30 焦晓光,梁文举,陈利军,等.脲酶/硝化抑制剂对热有效态氮、微生物量氮和小麦氮吸收的影响.应用生态学报,2004,15(10).

31 孙国荣,彭永臻,岳中辉,等.不同改良方法对盐碱土壤氮素营养状况的影响.植物研究,2004,24(3).

8

—L IAON IN G Q IXIAN G 辽宁气象 2005年第2期

土壤有机碳分类及其研究进展1

土壤有机碳( SOC)是土壤学和环境科学研究的热点问题之一,土壤有机碳库的动态平衡直接影响着土壤肥力的保持与提高,进而影响土壤质量的优劣和作物产量的高低,因而土壤有机碳的变化最终会影响土壤乃至整个陆地生态系统的可持续性。土壤有机碳包括活性有机碳和非活性有机碳。土壤活性有机碳是指在一定的时空条件下,受环境条件影响强烈的、易氧化分解的、对植物和微生物活性影响比较高的那一部分土壤碳素。根据测定方法和有机碳组分不同,土壤活性有机碳又表述为溶解性有机碳(DOC:dissolved organic carbon)、水溶性有机碳(water-soluble organic carbon)、微生物生物量碳(MBC:Microbial biomass carbon)、轻组有机碳和易氧化有机碳,可在不同程度上反映土壤有机碳的有效性和土壤质量。 国外研究进展 国外对土壤有机碳的研究开始较早, 在20世纪60年代, 就有学者开始进行全球土壤有机碳总库存量研究。但早期对土壤有机碳库存量的估算大都是根据少数土壤剖面资料进行的。如1951年Rubey根据不同研究者发表的关于美国9个土壤剖面的有机碳含量, 推算出全球土壤有机碳库存量为710 Pg。1976年Bohn利用土壤分布图及相关土组( soil association)的有机碳含量, 估计出全球土壤有机碳库存量为2946Pg。这两个估计值成为当前对全球土壤有机碳库存量的上下限值。20世纪80年代,由于研究全球碳循环与气候、植被及人类活动等因素之间相互关系的需要,统计方法开始被应用于土壤有机碳库存量

的估算。如Post等在Holdridge生命带模型基础上,估算了全球土壤碳密度的地理分布与植被及气候因子之间的相互关系,提出全球1m 厚度土壤有机碳库存量为1 395 Pg。 20世纪90年代以来, 随着遥感(RS)、地理信息系统(GIS) 和全球定位系统(GPS) 技术的发展, 为土壤有机碳研究提供了新的方法和手段。3S技术被应用于区域或全球土壤有机碳库存量大小、有机碳密度的空间分布差异等方面的研究。发达国家已在区域尺度上开展了相关研究工作。如俄罗斯在1B250万土壤分布图上建立了土壤碳空间数据库,计算出俄罗斯0~ 20 cm、0~ 50 cm和0~100 cm等不同土层有机碳库存量,估计出俄罗斯土壤有机碳库存总量为34211 Pg,无机碳库存总量为11113 Pg,土壤总碳库存量为45314 Pg,并绘制了俄罗斯0~ 100 cm土层无机碳库存量分布图。加拿大建立了1B100万的数字化土壤分布图及土壤碳数据库,并计算出加拿大0 ~ 30 cm 土层和0 ~100 cm土层土壤有机碳库存量分别为7011 Pg和249 Pg。 世界各国不同研究者对全球土壤有机碳库存量的估算方法并无本质区别,但由于所用资料来源与土壤分类方式不同,土壤有机碳库存量的估计值有较大差异。全球土壤1 m内土壤有机碳库大约是植被碳库的115~ 3倍,如此巨大的土壤有机碳库,即使其发生很轻微变动,都会引起大气中CO2浓度变化,进而影响全球气候变化。因此,土壤有机碳库存量研究成为全球变化的研究热点之一。 国内研究进展 我国学者非常关注土壤碳循环研究,并在土壤有机碳库存量研究

土壤检测标准

土壤检测标准 NY/T 1121-2006 土壤检测系列标准: NY/T 1121.1-2006 土壤检测第1部分:土壤样品的采集、处理和贮存NY/T 1121.2-2006 土壤检测第2部分:土壤pH的测定 NY/T 1121.3-2006 土壤检测第3部分:土壤机械组成的测定 NY/T 1121.4-2006 土壤检测第4部分:土壤容重的测定 NY/T 1121.5-2006 土壤检测第5部分:石灰性土壤阳离子交换量的测定NY/T 1121.6-2006 土壤检测第6部分:土壤有机质的测定 NY/T1121.7-2006土壤检测第7部分:酸性土壤有效磷的测定 NY/T1121.8-2006土壤检测第8部分:土壤有效硼的测定 NY/T1121.9-2006土壤检测第9部分:土壤有效钼的测定 NY/T 1121.10-2006 土壤检测第10部分:土壤总汞的测定 NY/T 1121.11-2006 土壤检测第11部分:土壤总砷的测定 NY/T 1121.12-2006 土壤检测第12部分:土壤总铬的测定 NY/T 1121.13-2006 土壤检测第13部分:土壤交换性钙和镁的测定 NY/T 1121.14-2006 土壤检测第14部分:土壤有效硫的测定 NY/T 1121.15-2006 土壤检测第15部分:土壤有效硅的测定 NY/T 1121.16-2006 土壤检测第16部分:土壤水溶性盐总量的测定 NY/T 1121.17-2006 土壤检测第17部分:土壤氯离子含量的测定 NY/T 1121.18-2006 土壤检测第18部分:土壤硫酸根离子含量的测定 NY/T 1119-2006 土壤监测规程 NY/T 52-1987 土壤水分测定法 NY/T 53-1987 土壤全氮测定法(半微量开氏法) NY/T 88-1988 土壤全磷测定法 NY/T 87-1988 土壤全钾测定法 NY/T 86-1988 土壤碳酸盐测定法 NY/T 1104-2006 土壤中全硒的测定 NY/T 296-1995 土壤全量钙、镁、钠的测定 NY/T 295-1995 中性土壤阳离子交换量和交换性盐基的测定 NY/T 889-2004 土壤速效钾和缓效钾

土壤中酶

土壤酶的研究进展 摘要:土壤酶作为土壤组分中最活跃的有机成分之一不仅可以表征土壤物质能量代谢旺盛程度,而且可以作为评价土壤肥力高低、生态环境质量优劣的一个重要生物指标,并且,在土壤生态系统的物质循环和能量流动方面扮演重要的角色。本文通过分析、总结国内外土壤酶研究进展,研究土壤酶的来源、作用及其影响因素,展望土壤酶学的发展前景,将有助于该学科研究的纵深发展与广泛利用。 关键字:土壤酶作用影响因素进展 前言 土壤酶( soil enzyme)是指土壤中的聚积酶, 包括游离酶、胞内酶和胞外酶, 其活性变化规律及与生态因子的相互作用关系研究引起众多学者的重视, 它是评价土壤质量的重要手段之一[1], 同时也是评价土壤自净能力的一个重要指标[2]。对土壤酶的研究,让我们能更好地去了解土壤酶是土壤有机体的代谢动力, 在生态系统中起着重要的作用, 以及与土壤理化性质、土壤类型、施肥、耕作以及其它农业措施的密切关系。而土壤酶活性在土壤中的表现, 在一定程度上反映了土壤所处的状况, 且对环境等外界因素引起的变化较敏感, 成为土壤生态系统变化的预警和敏感指标。 关于土壤酶的研究历史可以追溯到19世纪末,自Woods( 1898) 首次从土壤中检测出过氧化氢酶活性以来, 土壤酶研究经历了一个较长的奠定和发展时期( 关松荫, 1986) 。一般认为, 20 世纪50 年代以前为土壤酶学的奠定时期, 许多土壤学者从各种土壤中共检测出了40 余种土壤酶的活性,并发展了土壤酶活性的研究方法和理论, 土壤酶研究逐渐发展成一门介于土壤生物学和生物化学之间的一门新兴边缘交叉学科( Burns, 1978)[3]。20 世纪50~ 80 年代中期为土壤酶学迅速发展的时期。由于生物化学和土壤生物学所取得的巨大成就, 土壤酶的检测技术和方法不断改进, 一些新的土壤酶活性逐渐被检测出来。到20 世纪80 年代中期, 大约有60 种土壤酶活性被检测出来, 土壤酶学的理论和体系逐渐完善。土壤酶活性与土壤理化性质的相互关系、土壤酶的来源和性质以及土壤酶检测手段的改进等成为这段时期的研究重点[4, 5]。土壤酶活性的研究作为土壤肥力指标而受到土壤学家的普遍重视( 周礼恺, 1987) 。20 世纪80 年代中期以后为土壤酶学与林学、生态学、农学和环境科学等学科相互渗透的时期, 土壤酶学的研究已经超越了经典土壤学的研究范畴, 在几乎所有的陆地生态系统研究中, 土壤酶活性的检测似乎成了必不可少的测定指标[7, 8]。由于土壤酶活性与土壤生物、土壤理化性质和环境条件密切相关( Dick, 1996) , 因而土壤酶活性

全球环境变化对土壤有机碳库影响的研究进展_1(精)

第29卷第1期2010年 2月 四川环境 S I CHUAN ENV I RONM ENT Vol 129,No 11February 2010 #综述# 收稿日期:2009-08-26 基金项目:国家科技部科技支撑重大项目(2006BAC 01A14;上海 市科委重点科技攻关项目(072312032。 作者简介:席雪飞(1987-,女,河北石家庄人,同济大学环境工程 专业2008级在读硕士研究生。主要从事环境生态学和环境污染防治研究。 全球环境变化对土壤有机碳库影响的研究进展 席雪飞,王磊,贾建伟,唐玉姝 (同济大学环境科学与工程学院污染控制与资源化研究国家重点实验室,上海200092 摘要:全球环境变化对土壤生态系统有机碳库的影响是当前研究的热点。本文综述了大气C O 2浓度升高、温度上升、 氮沉降等环境因素变化对土壤有机碳输入与土壤呼吸可能的影响,介绍了关于全球环境变化对土壤有机碳库影响的研究手段及其存在的问题,并就今后研究土壤有机碳对全球变化的响应提出了几点建议。关键词:全球环境变化;土壤有机碳库;CO 2浓度升高;全球变暖;氮沉降中图分类号:X 53 文献标识码:A 文章编号:1001-3644(201001-0115-06

Research Progress on Effect of G lobal Environ m entalChange on SoilO rganic Carbon Pool X I Xue -fe,i WANG Le,i JI A Ji a n-w e,i TANG Yu-shu (S t ate K ey Laboratory of P ollution Control&Resource Reuse ,School of Environ m ental Science &Eng ineering,T ongj i Universit y,Shanghai 200092,China Abstract :T he eff ect o f g l oba l environ mental change on so il organic carbon poo l has became a research hot poi n. t In this paper ,the possi ble effects of env i ron m ental f actors such as e leva ted CO 2concentrati on i n at m osphere ,e l evated a ir temperature and nitrogen deposition on so il org an i c carbon i nput and soil resp i ration are rev i ewed .And t he m eans used f o r study i ng the effect o f g l oba l env i ron m enta l change on so il carbon poo,l as we ll as the i r ex i sti ng prob le m s are also i ntroduced .Sequenti a lly suggesti ons on furt her research on response of so il org an i c carbon to g loba l environmenta l change are propo sed . K eyw ords :G loba l env iron m enta l change ;so il org an i c carbon poo ; l e leva ted CO 2concentration ;g loba l w ar m i ng;nitrogen depos i tion 土壤有机碳是全球碳循环中重要的碳库。据统计土壤有机碳库是大气碳库的3倍,大约是植被的 215~3倍左右[1] ,成为地球表层最大的有机碳库,是全球生物化学循环中极其重要的生态因子,因而土壤有机碳库的变化日益成为全球有机碳研究的热点[2]

有关影响土壤酶活性因素的分析报告

关于影响土壤酶活性因素的研究 摘要:本文对国内外土壤酶活性影响因素的研究进行了综述,总结了土壤微生物、团聚体、农药、重金属和有机物料等对土壤酶活性的影响,并对土壤纳米粒子与土壤酶活性关系的研究发展前景进行了展望。 关键词:土壤酶活性;微生物;团聚体;重金属;有机物料 Study progress on factors affecting soil enzyme activity Abstracts:In this article,the study on factors affecting soil enzyme activity in recent years was reviewed. Several aspects such as microbial,aggregation,heavy metals,organic manure and so on were included.At the same time,the effects of the soil inorganic nanometer particle (SINP) on soil enzyme activity inthe future research was forecasted. Key words:soil enzyme activity;microbial;aggregation;heavy metals;organic manure 酶是土壤组分中最活跃的有机成分之一,土壤酶和土壤微生物一起共同推动土壤的代谢过程[1]。土壤酶来源于土壤中动物、植物和微生物细胞的分泌物及其残体的分解物,其中微生物细胞是其主要来源[1,2]。土壤中广泛存在的酶类是氧化还原酶类和水解酶类,其对土壤肥力起重要作用。土壤中各有机、无机营养物质的转化速度,主要取决于转化酶、蛋白酶磷酸酶、脲酶及其他水解酶类和多酚氧化酶、硫酸盐还原酶等氧化还原酶类的酶促作用[2]。土壤酶绝大多数为吸附态,极少数为游离态,主要以物理和化学的结合形式吸附在土壤有机质和矿质颗粒上,或与腐殖物质络合共存[3]。 土壤酶活性反映了土壤中各种生物化学过程的强度和方向[4],其活性是土壤肥力评价的重要指标之一,同时也是土壤自净能力[1]评价的一个重要指标。土壤酶的活性与土壤理化特性、肥力状况和农业措施有着显著的相关性[5]。因此,研究土壤酶活性的影响因素,提高土壤酶活性,对改善土壤生态环境,提高土壤肥力有重要意义。本文对土壤酶活性影响因子的研究

土壤活性有机碳的测定及其影响因素概述

Hans Journal of Soil Science 土壤科学, 2018, 6(4), 125-132 Published Online October 2018 in Hans. https://www.doczj.com/doc/be10495337.html,/journal/hjss https://https://www.doczj.com/doc/be10495337.html,/10.12677/hjss.2018.64016 Determination of Soil Active Organic Carbon Content and Its Influence Factors Xingkai Wang1, Xiaoli Wang1*, Jianjun Duan2, Shihua An1 1Agricultural College, Guizhou University, Guiyang Guizhou 2College of Tobacco, Guizhou University, Guiyang Guizhou Received: Sep. 29th, 2018; accepted: Oct. 16th, 2018; published: Oct. 23rd, 2018 Abstract Soil active organic carbon is an important component of terrestrial ecosystems and an active chemical component in soil. It is of great significance in the study of terrestrial carbon cycle. Many studies have shown that soil active organic carbon can reflect the existence of soil organic carbon and soil quality change sensitively, accurately and realistically. In recent years, soil ac-tive organic carbon has become the focus and hot spot of research on soil, environment and ecological science. Soil active organic carbon can be characterized by dissolved organic carbon (DOC), microbial biomass carbon (SMBC), mineralizable carbon (PMC), light organic carbon (LFC) and easily oxidized organic carbon (LOC). This paper reviews the determination methods and influencing factors of these five active organic carbons, and looks forward to the future research focus, laying the foundation for the scientific management of land and the effective use of soil nutrients. Keywords Soil Organic Carbon, Determination Methods, Influencing Factors 土壤活性有机碳的测定及其影响因素概述 王兴凯1,王小利1*,段建军2,安世花1 1贵州大学农学院,贵州贵阳 2贵州大学烟草学院,贵州贵阳 收稿日期:2018年9月29日;录用日期:2018年10月16日;发布日期:2018年10月23日 *通讯作者。

土壤微生物量碳氮测定方法

1.23.1 土壤微生物碳的测定——TOC-V CPH有机碳分析仪 一、方法原理 土壤有机碳的测量方法主要有两种,即氯仿熏蒸培养法和氯仿熏蒸—直接浸提法。 1.氯仿熏蒸培养法[1]:土壤经氯仿熏蒸后再进行培养,测定培养时间内熏蒸与未熏蒸处理所释放CO2之差来计算土壤生物量碳。 2.氯仿熏蒸直接浸提法[2]:土壤经氯仿熏蒸后直接浸提进行,测定浸提液中的碳含量,以熏蒸和不熏蒸土壤中总碳的差值为基础计算土壤微生物含碳量。 直接提取法与氯仿熏蒸培养法相比,直接提取法具有简单、快速、测定结果的重复性较好等优点。直接提取法测定土壤微生物量的碳的方法日趋成熟。现在氯仿熏蒸—K2SO4提取法已成为国内外最常用的测定土壤微生物碳的方法。本实验以氯仿熏蒸直接浸提法为例介绍土壤微生物量碳氮的浸提与测定。 二、主要仪器 振荡机、真空干燥器、真空泵、TOC-V CPH有机碳分析仪。 二、试剂 1.氯仿(去乙醇):普通氯仿一般含有乙醇作为稳定剂,使用前要去除乙醇。将氯仿按照1︰2(v/v)的比例与蒸馏水一起放入分液漏斗中,充分振动,慢慢放出底部氯仿,重复3次。得到的无乙醇氯仿加入无水CaCl2,以除去氯仿中的水分。 2.0.5 mol·L-1 K2SO4浸提液:43.57g分析纯K2SO4定溶至1L。 四、操作步骤 称取过2mm筛的新鲜土样12.5g六份,置于小烧杯中。将其中三份小烧杯放入真空干燥器中,干燥器底部放3个烧杯,其中一个放氯仿,烧杯内放少许玻璃珠(防爆),另一个放水(保持湿度),再放一杯稀NaOH。抽真空时,使氯仿剧烈沸腾3-5 min,关掉真空干燥器阀门,在暗室放置24 h。熏蒸结束后,打开干燥器阀门,取出氯仿,在通风厨中使氯仿全部散尽。另三份土壤放入另一干燥器中,但不放氯仿。 将熏蒸的土样全部转移至150 mL三角瓶中,加入50mL 0.5 mol·L-1 K2SO4 (土水比为1:4),振荡30min,过滤。未熏蒸土样操作相同,同时做空白。 五、结果计算 土壤微生物量碳 =(熏蒸土壤有机碳-未熏蒸土壤有机碳)/0.45 式中:0.45——将熏蒸提取法提取液的有机碳增量换算成土壤微生物生物量碳所采用的转换系数(kEc)。 一般量容法采用的kEc值为0.38,仪器分析法kEc 取值0.45。 六、注意事项 1.氯仿致癌,操作时应在通风厨中进行。 2.打开真空干燥器时,要听声音,如没空气进去的声音,试验需重做。 3.应注意试剂的厂家,有些厂家的K2SO4试剂不宜浸提土壤微生物量碳。 4.浸提液应立即用TOC-V CPH有机碳分析仪测定或在-18℃下保存。 1.23.2土壤微生物量氮的测定 一、方法原理 土壤微生物态氮是土样在CHCl3熏蒸后直接浸提氮含量,并进行测定,以熏蒸和不熏蒸

土壤肥力鉴定指标

精心整理 在农业生产中,通常用高产或低产来说明一块地的肥力,这是很不全面的。必需有一些主要的鉴定指标。在土壤学中,常用的土壤肥力鉴定指标有以下几项: 1、土壤酸碱度:用“p H”符号表示,适宜大多数作物的酸碱度(pH )值为6.5~7.5。 2、土壤有机质:以百分数(%)表示,有机质含量高的土壤供肥能力大。大田:有机质含量高于5 3%; 4的,的,属 5 6、土壤质地:土壤质地是指土壤大小土粒的搭配情况,以一定体积的土壤中,不同直径土壤颗粒的重量,所占土壤重量的百分数表示。粘土的直径小于0.001毫米土粒的含量大于30%;壤土的直径为0.01~0.05毫米土粒的含量大于40%;砂土的直径为0.05~1.0毫米土粒的含量大于50%。 土壤肥力指标体系 土壤营养(化学)指标 土壤物理性状指标 土壤生物学指标 土壤环境指标 1.全氮 2.全磷 3.全钾 4.碱解氮 5.有效磷 6.有效钾 1.质地 2.容重 3.水稳性团聚体 4.孔隙度(总孔隙度、毛管孔隙度、非毛管孔隙度) 5.土壤耕层温度变幅 1.有机质 2.腐殖酸(富里酸、胡敏酸) 3.微生物态碳 4.微生物态氮 5.土壤酶活性(脲酶、蛋白酶、过氧化氢酶、转化酶、磷酸酶等) 1.土壤pH 2.地下水深度 3.坡度 4.林网化水平

7.阳离子交换量 8.碳氮比6.土层厚度 7.土壤含水量 8.粘粒含量 一、华北平原 黄土地棕壤 冬小麦、棉花、花生 中、低产田,有机质含量不高,缺磷少氮 褐土 三、 北部 树种: 针叶林――红松、落叶松 落叶阔叶林――白桦、紫椴 四、四川盆地紫色土 丘陵地区 粮、棉、油菜、

农药对土壤酶活性影响的研究进展

农药对土壤酶活性影响的研究进展 闫 雷a,李晓亮a,秦智伟b,敖斯刚a (东北农业大学a.资源与环境学院;b.园艺学院,哈尔滨 150030) 摘 要:随着农药对土壤污染的日益严重,越来越多的研究者将土壤酶作为指示剂,检测农药对土壤环境条件的影响,并根据土壤酶活性的变化来判断污染物对土壤的毒害程度,这也是从土壤生物化学角度探索环境保护的一个新内容。为此,介绍了影响土壤酶活性的环境因素,综述了农药对土壤酶活性影响的研究进展,并对今后的研究方向进行了展望,以期为土壤农药污染的进一步治理和修复提供科学依据。 关键词:农药污染;土壤;酶活性;影响 中图分类号:S154.2 文献标识码:A文章编号:1003-188X(2009)11-0223-04 0 引言 土壤酶是土壤新陈代谢的重要因素[1],土壤中所进行的生物和化学过程在酶的催化下才能完成。土壤污染条件下酶活性变化很大,土壤酶活性的改变将影响土壤养分的释放,从而影响作物的生长,所以土壤酶活性常作为土壤质量演变的生物活性指标。近年来,随着农药对土壤污染的日益严重,越来越多的研究者将土壤酶作为指示剂,检测农药对土壤环境的影响,并根据土壤酶活性的变化来判断污染物对土壤的毒害程度,这也是从土壤生物化学角度探索环境保护的一个新内容。 1 土壤酶活性的影响因素 1.1 土壤微生物 早在20世纪60年代就有人研究酶活性与土壤微生物活性之间的相互关系,如Lenhard发现微生物活性与土壤脱氢酶活性密切相关[2]。郭继勋证实了脲酶、磷酸酶和纤维素酶的活性与微生物量有较密切的关系,3种酶的活性随着生物量的增强而不断增强,二者变化基本同步[3]。Naseby通过向根际接种遗传改性微生物,发现遗传改性微生物生成的酶,对土壤的碳、磷转化具有重要作用[4]。沈宏等发现玉米生长的中、前期,土壤微生物中碳、氮与土壤过氧化氢、蔗糖 收稿日期:2009-06-06 基金项目:国家自然科学基金项目(39870469);黑龙江省博士后基金项目(LBH-Z06162);东北农业大学创新团队发展计划项 目(CXT003-1-3) 作者简介:闫 雷(1974-),女,黑龙江牡丹江人,副教授,博士,硕士生导师,(E-m ail)yan l ei h ai peng@g m ai.l co m。 通讯作者:秦智伟(1957-),男,黑龙江阿城人,教授,博士生导师, (E-m ail)qz w303@126.co m。酶、脲酶、蛋白酶活性及速效养分的相关性均达到显著或极显著水平[5]。 1.2 土壤理化性质 土壤水分、空气、温度与机械组成,一方面与微生物的活性和类型有显著的相关性,另一方面也会直接影响土壤酶活性的存在状态与强弱。一般来说,土壤湿度大,土壤酶活性高;但土壤过湿可能会造成土壤缺氧,从而影响微生物的生长[1]。温度直接影响释放酶类的微生物种群及数量,冯贵颖研究发现[6],在20 ~60 时,各土壤粘粒的脲酶吸附量随温度升高而降低。土壤中二氧化碳、氧气含量与土壤微生物的活性相关,因此对土壤酶活性有直接影响。土壤的机械组成及结构状况也能影响土壤酶活性[7]。同一类土壤的黏质土壤比轻质土壤具有较高酶活性,其原因是酶主要分布在腐殖质含量较高和微生物数量较多的细小颗粒中。因此,向矿质土中加入黏质土,能较大地增强蛋白酶、脲酶和蔗糖酶的活性。 土壤化学性质可从多方面影响土壤酶活性。首先,能在很大程度上直接影响酶的主要生成者 微生物;其次,土壤中的某些化学物质可通过激活或抑制作用来调节胞外酶的功能。另外,土壤一系列化学性质,如土壤p H值、交换性阳离子的组成与比例、盐基饱和度、腐殖质的特性以及有机 矿物质复合体的组成等,在很大程度上决定酶在土壤中的固定情况。土壤pH值越低(低于蛋白酶的等电点),粘粒吸附的酶越多。土壤有机质与土壤酶之间存在显著正相关。土壤有机物质可吸附土壤中的酶,如脲酶、二酚氧化酶、蛋白酶及水解酶等,这些物质都曾以 酶 腐殖物质复合物 的形式从土壤中被提取出来。

森林生态系统土壤碳库与碳吸存对氮沉降的响应

森林生态系统土壤碳库与碳吸存对氮沉降的响应 1引言 近几十年来石化燃料燃烧、化肥使用及畜牧业发展等向大气中排放的含氮化合物激增并引起大气 N 沉降成比例增加。并且全球 N 沉降水平预计在未来 25 a 内会加倍,目前人类对全球 N 循环的干扰已经远远超过对地球上其它主要生物地球化学循环的影响。从 20 世纪 80 年代起,欧洲和北美的生态学家就开始在温带森林开展了 N 沉降对森林结构和功能影响的研究。目前,N 沉降研究已成为国际上生态和环境研究的热点内容之一。 土壤碳库是陆地生态系统碳库中最大的贮库,并且是其中非常活跃的部分[10]。全球约有 1.4×1018 ~ 1.5×1018g 碳是以有机质形态储存于地球土壤中,是陆地植被碳库(0.5×1018 ~ 0.6×1018 g)的 2 ~ 3 倍,是大气碳库(0.7×1018 g)的 2 倍[10]。土壤碳库在维持全球碳平衡中的巨大作用使土壤碳库对人类活动的响应已成为国内外研究的热点[11]。由于土壤碳库巨大,它的波动对大气 CO2 浓度产生重要的影响。同时,增加土壤有机碳存储可有效促进陆地生态系统对大气 CO2 固定和延缓温室效应。土壤碳周转速率慢,受各种干扰影响小,能维持较长时期的碳储藏。影响森林生态系统土壤碳库的因素很多,如森林的采伐、开垦、火烧以及在全球变化背景下的全球变暖、UVB 辐射增强、N 沉降等,在这些方面已相继展开了大量研究。目前国内外对土壤碳库的研究多是针对当前环境下某种生态系统的土壤碳含量、碳储量的估算,不能很好的预测全球环境变化对土壤碳库的影响。大气 N 沉降借助其对凋落物分解和土壤呼吸的直接或间接作用,极大地影响了生态系统土壤碳蓄积过程,并且大部分沉降到森林生态系统中的 N 都被固定在土壤中,直接与土壤碳库相互作用[17]。全球存在 116PgC/yr 的碳失汇,部分是由于大气中 N 沉降增加及其与碳循环相互作用的结果[18]。所以深入探讨大气 N 沉降对土壤碳库的影响具有重要的价值,已经成为 2006 年 IGBP 计划第二期中陆地生态系统与大气过程相互作用的研究重点。虽然国内已有了很多关于 N 沉降对凋落物分解和土壤呼吸、根系周转方面的论述,但全面反映N 沉降对土壤碳库影响的研究尚未见报道。本文对国内外在土壤碳库如凋落物分解、土壤呼吸、根系周转等方面对 N 沉降响应的研究进展进行了综述,为进一步开展相关研究作参考。

土壤贫瘠怎么改善和提高肥力.doc

土壤贫瘠怎么改善和提高肥力 补充土壤有机质 土壤有机质含量是衡量土壤肥力的一个重要指标,土壤有机质含量丰富,能够均衡长久地供给作物生长发育所必需的营养元素。农家肥、秸秆、菌肥或菌剂等都可以补充土壤有机质。 农家肥 目前自制发酵的有机肥,更受广大农户喜爱。鸡粪是很多农户的首选,因为鸡粪当中有机质含量很高,但鸡粪未充分腐熟而被使用,也会产生很大危害。 未充分发酵或腐熟的粪肥直接施用于作物,就会发生“二次发酵”。当发酵部位距根较近或作物植株较小时,发酵产生的热量、甲烷、氨等有害气体会影响作物生长,导致“烧根、烧苗”,严重时会造成植株死亡。 粪肥中含有大肠杆菌、线虫等病菌虫害,直接使用会导致病虫害侵染作物,影响作物健康。所以在自制有机肥时必须充分发酵、腐熟后再使用。 秸秆 秸秆的主要成分是碳,对于温室大棚可以使用秸秆补充有机质。尤其是7-10年的温室,使用秸秆的效果非常好。 由于连年使用大量元素,温室土壤中氮的含量超标,使用秸秆可以调节土壤碳氮比。

在使用秸秆时一定要做好病虫害防治,因为很多病原菌是在作物残体上存活的。 菌肥或者菌剂 粪肥分解慢,我们可以使用菌肥或菌剂,通过微生物来促进有机质的分解,为作物提供养分。 另外有益菌群还可以起到“以菌抑菌”的作用,抑制土壤中有害菌群的危害。 使用菌肥或菌剂调节土壤,是一个持续缓慢的过程,不要期待使用一次就能起到改良土壤的作用,只有坚持使用,才会给你意想不到的结果。 减少化肥的使用 连年种植、大量或过量使用化肥导致土壤板结、土质酸化,土壤问题越来越严重。化肥由于养分含量和浓度都比较高,所以在施用时应遵循少量多次原则。 建议施用水溶肥,水溶肥作为新型环保肥料,使用方便,可喷施、冲施并可和喷滴灌结合使用。在提高肥料利用率、节约农业用水、减少生态环境污染、改善作物品质以及减少劳动力等方面有明显优势。 土壤肥力不够,可以用以上方法进行补充,改善土壤,提高土壤有机质,种植作物才能获得丰产和稳产。

土壤酶研究进展

土壤酶研究进展 孙富强1 (1西北农林科技大学资源环境学院,陕西杨凌 712100) 摘要:土壤酶是土壤重要组成部分,在土壤生态系统的土壤物质转化和能量代谢方面扮演重要的角色。文章通过分析、总结国内外土壤酶研究进展,综述了土壤酶学研究简史和土壤酶的来源、分类、作用, 展望了土壤酶学的发展前景,对于加深理解土壤酶在土壤生态系统中的的重要性有重要作用。 关键词:土壤酶作用研究进展 土壤酶是土壤的重要组成部分[1],参与土壤物质转化和能量代谢,能降解土壤外来有机物质,在生态系统中起着重要的作用[2],是评价土壤肥力高低、生态环境质量优劣的一个重要生物指标[3]。土壤酶主要来源于土壤微生物和植物根系的分泌物及动植物残体分解释放的酶,包括氧化还原酶类、水解酶类、裂合酶类和转移酶类[4]。 1898年,Woods首次从土壤中检测出过氧化氢酶活性,土壤酶研究经历了一个较长的发展时期[5]。20世纪50年代以前为土壤酶学的萌发时期。土壤学者发展了土壤酶活性的研究方法和理论,土壤酶研究逐渐发展成一门介于土壤生物学和生物化学之间的一门新兴边缘交叉学科[6-7]。50-80 年代中期为土壤酶学迅速发展的时期。这段时间土壤酶的检测技术和方法不断改进,一些新的土壤酶活性逐渐被检测出来,土壤酶学的理论和体系逐渐完善[8]。 80 年代中期以后为土壤酶学与林学、生态学、农学和环境科学等学科相互渗透的时期,土壤酶学的研究已经超越了经典土壤学的研究范畴,在几乎所有的陆地生态系统研究中,土壤酶活性的检测似乎成了必不可少的测定指标[4,9]。 1 土壤酶的来源及分类 1.1 土壤酶的来源 土壤酶( Soil Enzyme)是指土壤中的聚积酶,包括游离酶、胞内酶和胞外酶,主要来源于土壤微生物的活动、植物根系分泌物和动植物残体腐解[4,8]。 (1)植物根系分泌释放土壤酶。一些研究表明,植物根系不仅能够分泌释放淀粉酶,还能分泌出核酸酶和磷酸酶[10]。1993年,Siegel 发现了小麦和西红柿等植物可以向土壤中释放出过氧化物酶[11]。植物残体的分解也能继续释放土壤酶,但要定量植物残体分解过程中释放的酶还是很困难[12]。 (2)微生物释放分泌土壤酶。微生物释放酶的大体过程是:细胞死亡,胞壁崩溃,胞膜破裂,原生质成分进入土壤,酶类必然释放进入土壤。植物根际酶活性的优势问题,除了根系本身的作用外,与根际微生物是分不开的[13]。植物根系是微生物的特殊生境,根际内微生物的数量总比根际外高,当微生物受到环境因素刺激时,便不断向周围介质分泌酶,致使根际内外酶活性存在很大差异。 (3)土壤动物区系释放土壤酶。土壤是为数极多的动物居住的环境,土壤动物区系提供的土壤酶数量较少。1957年,Kiss研究了蚯蚓对转化酶的影响指出,在草地和耕地的土壤表层,蚯蚓的排泄物对土壤转化酶活性的提高有最为明显的作用[14]。 (4)动物、植物残体释放酶。半分解和分解的根茬、茎秆、落叶、腐朽的树枝、藻类和死亡的土壤动物都不断向土壤释放各种酶类[15]。 1.2土壤酶的分类

土壤有机碳损失及影响因子研究进展

土壤有机碳损失及影响因子研究进展 摘要:综述了国内外关于土壤有机碳储量及分布、土壤有机碳组成及分组、 土壤有机碳的迁移和流失产生的机理及其后果、土壤有机碳矿化及其影响因素、外源物质对土壤有机碳矿化的激发效应及其机理等方面的研究进展。 关键词:土壤有机碳;迁移;流失;矿化;激发效应

1.全球土壤有机碳储量及分布概况 土壤有机质(SOM)是由一系列存在于土壤中组成和结构不均一、主要成分为C和N的有机化合物组成。土壤有机质中所含碳为土壤有机碳。现有土壤有 机碳的含量是土壤有机碳分解速率、作物残余物数量、组成植物根系及其他返还至土壤中有机物的函数。 1977年, Bolin根据不同研究者发表的美国9个土壤剖面的碳含量,推算全球土壤有机碳库存量为710Gt( 1Gt=109t=10 15g=1Pg);1976年,Bohn 利用土壤分布图及相关土组的有机碳含量,估计出全球土壤有机碳库储量2 946Gt,1982 年, Bohn和Schleisinger分别重新估计全球SOC库储量为2200Gt和1500Gt(土层深度为1m);1996年,Batjes将世界土壤图按经度、纬度划分为基本网格单元,计算出全球1m土层的有机碳贮量为1462~1 548Gt。目前,普遍认可和引用的全球土壤有机碳储量为1400~1500Gt。其他学者研究还表明,在2~3m深度范围的土层中还贮存着约842Gt的有机碳。 土壤有机碳储量在不同类型、不同植被覆盖土壤中差异较大。Houghton研究表明,全球热带森林土壤中有机碳储量为187Gt,温带森林为117Gt,极地森林为241Gt,热带疏林及稀树草原为88Gt,温带疏林草原为251Gt,沙漠为108Gt 冻土苔原为163Gt,耕地为131Gt,湿地为145Gt。Trumbor研究表明,热带土壤0~23cm土层的碳储量与温带土壤相似,但热带土壤在深层存有更多的碳。森林植被下,表土层( 2~7cm)的有机碳含量可达到368mg/kg,其下深厚的腐殖质层(约40~70 cm)的有机碳含量已较上层急剧减少;草本植被下,土壤有机碳的剖面变化较平缓;灰钙土、漠钙土因植物生物量很少,分解又很强烈,因而全剖面 各土层的碳含量均极低[1]。 2.土壤有机碳组成 土壤有机质包括土壤腐殖质、动植物残体和活的有机体(包括土壤动物、作物根系和微生物体)。土壤腐殖质按化学分组可分为2类:①碳水化合物、碳氢化合物如石蜡、脂肪族有机酸、酯类、醇类、醛类、树脂类和含氮化合物等非腐殖质类物质;②土壤特有的腐殖质类物质,根据颜色和溶解性一般被分为富非酸、胡敏酸、胡敏素。土壤中未分解的动植物残体和活的有机体被称作有机残体或土壤有机物,其中一部分是土壤动物和作物根系,另一部分是土壤微生物体[1]。3.土壤有机碳储量的变化 土壤中的碳包括有机碳(Organic Carbon)和无机碳(Inorganic Carbon),其中以

LYT 1237-1999 土壤有机质的测定及碳氮比 方法证实

1 方法依据 本方法依据L Y/T 1237-1999土壤有机质的测定及碳氮比的计算 2 仪器和设备 电子分析天平,油浴锅 3 分析步骤 详见LY/T 1237-1999 土壤有机质的测定及碳氮比的计算5分析步骤 4试验结果报告 4.1方法检出限 按HJ 168-2010规定检出限公式,并结合LY/T 1237-1999中的计算公式,得出 kg g M M V k MDL /300.010001.1724.1m 1 01 0=???=ρλ , 其中 2=k ;1=λ;滴定管的最小液滴体积为=0V 0.05ml ;21056.5-?=ρg/ml ;2780=M g/mol ;=1M 3g/mol ; g m 5.01=。 4.2精密度 取5个不同浓度的样品,按照L Y/T 1237-1999测定步骤分别做6次平行实验,计算结果、平均值、标准偏差并求出相对标准偏差和最大绝对差值,结果如表1: 表1精密度测试数据

4.3准确度 取2个有证标准物质,分别做6次平行实验,计算平均值,相对标准偏差,最大相对误差,检测结果见表2。 表2 有证标准物质测试数据

5结论 5.1检出限 实验室检出限0.300g/kg。 5.2精密度 样品1六次平行测定测得平均值为5.65g/kg,最大绝对偏差为0.15g/kg,标准中要求测定值<10g/kg 时,绝对偏差≤0.5g/kg; 样品2六次平行测定测得平均值为23.5 g/kg,最大绝对偏差为0.3 g/kg,标准中要求测定值为10~40g/kg 时,绝对偏差为≤2.0g/kg; 样品3六次平行测定测得平均值为58.5g/kg,最大绝对偏差为0.8g/kg,标准中要求测定值为40~70g/kg 时,绝对偏差为≤3.5g/kg; 样品4六次平行测定测得平均值为92.3g/kg,最大绝对偏差为1.5 g/kg,标准中要求测定值70~100g/kg时,绝对偏差为≤5g/kg; 样品5六次平行测定测得平均值为126g/kg,最大绝对偏差为3 g/kg,标准中要求测定值>100g/kg时,绝对偏差为≤5g/kg; 5.3准确度 对有证标准物质GBW07458(ASA-7)、GBW07460(ASA-9)进行测定,单次测定结果均在标准值范围内。

土壤酶研究进展(1)

收稿日期:2005—07—11修订日期:2005—09—16土壤酶研究进展杜伟文,欧阳中万 (湖南农业大学,湖南长沙 410125) 摘 要:土壤酶在土壤生态系统的物质循环和能量流动方面扮演重要的角色。本文综述了土壤酶学研究简史,土壤酶的来源、分布、作用,植物—土壤界面的土壤酶,土壤生态条件与土壤酶,土壤微生物与土壤酶,土壤酶活性测定等方面。对于加深理解生态系统中的物质循环、土壤酶的生态重要性以及土壤生态系统退化机理有重要作用。 关键词:土壤酶;研究进展;土壤微生物 中图分类号:S718.51+9 文献标识码:A 文章编号:1003—5710(2005)05—0076—04 土壤酶是土壤有机体的代谢动力,在生态系统中起着重要的作用,与土壤理化性质、土壤类型、施肥、耕作以及其它农业措施等密切相关。其活性在土壤中的表现,在一定程度上反映了土壤所处的状况,且对环境等外界因素引起的变化较敏感,成为土壤生态系统变化的预警和敏感指标文章。 自W oods(1898)首次从土壤中检测出过氧化氢酶活性以来,土壤酶研究经历了一个较长的发展时期(关松荫,1986)。一般认为,20世纪50年代以前为土壤酶学的萌发时期,许多土壤学者从各种土壤中共检测出了40余种土壤酶的活性,同时发展了土壤酶活性的研究方法和理论,土壤酶研究逐渐发展成一门介于土壤生物学和生物化学之间的一门新兴边缘交叉学科[1~3]。20世纪50~80年代中期为土壤酶学迅速发展的时期。由于生物化学和土壤生物学所取得的巨大成就,土壤酶的检测技术和方法不断改进,一些新的土壤酶活性逐渐被检测出来。到20世纪80年代中期,大约有60种土壤酶活性被检测出来,土壤酶学的理论和体系逐渐完善。土壤酶活性与土壤理化性质的相互关系、土壤酶的来源和性质以及土壤酶检测手段的改进等成为这段时期的研究重点[4,5]。土壤酶活性的研究作为土壤肥力指标而受到土壤学家的普遍重视(周礼恺,1987)[6]。20世纪80年代中期以后为土壤酶学与林学、生态学、农学和环境科学等学科相互渗透的时期,土壤酶学的研究已经超越了经典土壤学的研究范畴,在几乎所有的陆地生态系统研究中,土壤酶活性的检测似乎成了必不可少的测定指标[7,8]。由于土壤酶活性与土壤生物、土壤理化性质和环境条件密切相关(Dick,1996),因而土壤酶活性对环境扰动的响应、根际土壤酶功能的重要性、土壤酶研究技术以及土壤酶作为土壤质量的指标等成为主攻方向[9~11]。 1 土壤酶的来源与分布 1.1 土壤酶的来源 土壤酶(s oil enzyme)是指土壤中的聚积酶,包括游离酶、胞内酶和胞外酶,主要来源于土壤微生物的活动、植物根系分泌物和动植物残体腐解过程中释放的酶(关松荫,1986; Burn,1978)。H ofmann与H offmann(1995)认为,微生物是脱离活体的酶的唯一来源。许多微生物能产生胞外酶。Crewther 与Lennox(1953)对米曲霉(Aspergillus oryzae)进行了研究,结果表明,酶是按一定的顺序释放出的,首先是糖酶和磷酸酶,随后是蛋白酶和醋酶,最后是过氧化酶。某些酶是微生物生长初期阶段释出,另一些酶是在生长的后期,,当菌丝丛逐渐减少时释出。Phaff(1959)曾详细的研究了微生物在合成和天然的培养基质中释放出各种胞外酶的情况[12,13]。结果表明,许多细菌和真菌能释放出淀粉酶、纤维素酶和果胶酶。 另有一些学者则倾向于认为土壤酶活性主要来源高等植物的根系,根系的纤细顶端在其整个生命过程中的不断地往土壤中分泌出酶,死后则将其酶器富集在土壤里。有关土壤胞外酶的第一篇报道(W oods,1899)曾指出,植物根系能分泌出氧化酶。随后,K nuds on与Smith(1919)指出植物根系能分泌出淀粉酶。R ogers等(1942)指出,玉米和番茄根能分泌出磷酸酶和核酸酶。许多植物生理学家累积的大量资料表明,植物根确实能将一些酶分泌至根际土壤,但是,由于技术手段等方面的原因,我们很难区别根际土壤中植物和微生物对于土壤酶活性的贡献。许多学者也持类似的看法。 另外,土壤动物区系释放土壤酶。关于土壤动物对土壤中脱离活体的酶含量的贡献研究的很少。K iss(1957年)指出,在草地和耕作土壤里,特别是在土壤表层,蛆蜕的排泄物对土壤的蔗糖酶活性有重要的作用,蚁类的作用则较小。1.2 土壤酶的分布 土壤的一切生物化学过程,都是在土壤酶的参与下进行[14]。所谓土壤酶是指土壤中的累积酶,即胞外酶,是在没有微生物繁殖发生情况下土壤里存在的具有活性的蛋白质[14,15]。林区生态系统的土壤酶系主要来源于动植物的分泌物及其残体的腐解、土壤微生物的分泌等[16]。随着科学研究的深入,越来越多的实验表明,土壤酶系统是土壤生理生化特性的重要组成部分,它积极参与森林生态系统中的物质循环与能量转化,是土壤的重要组成部分之一。研究表明,植物种类组成不同,其枯落物的质和量不同,适于微生物生长的营养源也不同,因而微生物的种类和组成不同,从而引 湖南林业科技 2005年第32卷第5期 专题探讨

相关主题
文本预览
相关文档 最新文档