当前位置:文档之家› 高二数学函数的最值

高二数学函数的最值

高中数学必修一教案-函数的单调性

课题:§1.3.1函数的单调性 教学目的:(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义; (2)学会运用函数图象理解和研究函数的性质; (3)能够熟练应用定义判断数在某区间上的的单调性. 教学重点:函数的单调性及其几何意义. 教学难点:利用函数的单调性定义判断、证明函数的单调性. 教学过程: 一、引入课题 1.观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:○1随x的增大,y的值有什么变化? ○2能否看出函数的最大、最小值? ○3函数图象是否具有某种对称性? 2.画出下列函数的图象,观察其变化规律:1.f(x) = x ○1从左至右图象上升还是下降 ______? ○2在区间 ____________ 上,随着x的增大,f(x)的值随着 ________ . 2.f(x) = -2x+1 ○1从左至右图象上升还是下降 ______? ○2在区间 ____________ 上,随着x的增大,f(x)的值随着 ________ . 3.f(x) = x2 ○1在区间 ____________ 上,f(x)的值随着x的增大而 ________ . ○2在区间 ____________ 上,f(x)的值随着x的增大而 ________ . 二、新课教学

(一)函数单调性定义 1.增函数 一般地,设函数y=f(x)的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1

高一数学函数练习题及答案

数学高一函数练习题(高一升高二衔接) 一、 求函数的定义域 1、求下列函数的定义域: ⑴33y x =+- ⑵y = ⑶01(21)111 y x x = +-+ - 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -= + ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = ⑹ 22 5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y =⑽ 4y = ⑾y x =6、已知函数22 2()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y = ⑶ 2 61y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236x y x -= +的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x ; ⑸21)52()(-=x x f , 52)(2-=x x f 。

人教版数学高二-新课标 《函数的概念》 教学设计

1.2.1 函数的概念(第一课时) 课 型:新授课 教学目标: (1)通过丰富实例,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用; (2)了解构成函数的三要素; (3)能够正确使用“区间”的符号表示某些集合。 教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数。 教学难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。 教学过程: 一、问题链接: 1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2.回顾初中函数的定义: 在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。 表示方法有:解析法、列表法、图象法. 二、合作探究展示: 探究一:函数的概念: 思考1:(课本P 15)给出三个实例: A .一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h (米) 与时间t (秒)的变化规律是21305h t t =-。 B .近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空 臭氧层空洞面积的变化情况。(见课本P 15图) C .国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的 高低。“八五”计划以来我们城镇居民的恩格尔系数如下表。(见课本P 16表) 讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着 怎样的对应关系? 三个实例有什么共同点? 归纳:三个实例变量之间的关系都可以描述为:对于数集A 中的每一个x ,按照某种对 应关系f ,在数集B 中都与唯一确定的y 和它对应,记作: :f A B → 函数的定义: 设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作: (),y f x x A =∈ 其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。显然,值域是集合B 的子集。 注意: ① “y =f (x )”是函数符号,可以用任意的字母表示,如“y =g (x )”; ②函数符号“y =f (x )”中的f (x )表示与x 对应的函数值,一个数,而不是f 乘x . 思考2:构成函数的三要素是什么? 答:定义域、对应关系和值域 小试牛刀.1下列四个图象中,不是函数图象的是( B ).

数学高二-选修2教案 函数的极值

第二课时 3.1.2函数的极值教学设计 教学目的 1.理解极大值、极小值的概念. 2.能够运用判别极大值、极小值的方法来求函数的极值. 3.掌握求可导函数的极值的步骤 教学重点 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 教学难点 对极大、极小值概念的理解及求可导函数的极值的步骤 授课类型 新授课 课时安排 1课时 教 具 多媒体、实物投影仪 内容分析 对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号 教学过程 一、复习引入 1. 常见函数的导数公式: 0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;;x x sin )'(cos -=; x x 1)'(ln = e x x a a log 1 )'(log = ;x x e e =)'(; a a a x x ln )'(= 2.法则1 )()()]()([' ' ' x v x u x v x u ±=± 法则2 [()()]'()()()'()u x v x u x v x u x v x '=+, [()]'()Cu x Cu x '= 法则3 ' 2 '' (0)u u v uv v v v -??=≠ ??? 3.复合函数的导数: x u x u y y '''?= (理科) 4. 函数的导数与函数的单调性的关系:设函数y=f(x) 在某个区间内有导数,如果在这个区间内/ y >0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内/ y <0,那

高中数学函数的单调性

一、选择题 1.若),(b a 是)(x f 的单调增区间,()b a x x ,,21∈,且21x x <,则有( ) A . ()()21x f x f < B . ()()21x f x f = C . ()()21x f x f > D . ()()021>x f x f 2.函数()2 2-=x y 的单调递减区间为( ) A .[)+∞,0 B .(]0,∞+ C .),2[+∞ D .]2,(-∞ 3.下列函数中,在区间)2,0(上递增的是( ) A .x y 1= B .x y -= C .1-=x y D .122++=x x y 4. 若函数1 2)(-= x a x f 在()0,∞-上单调递增,则a 的取值范围是( ) A .()0,∞- B .()+∞,0 C .()0,1- D .()+∞,1 5. 设函数x a y )12(-=在R 上是减函数,则有( ) A .2 1≥ a B .2 1≤ a C .2 1> a D .2 1< a 6. 如果函数2)1(2)(2+-+=x a x x f 在区间(]2,∞-上是减函数,那么实数a 的取值范围是( ) A .3≤a B .3≥a C .3-≥a D .3-≤a 二、填空题 7.函数1-=x y 的单调递增区间是____________. 8.已知函数)(x f 在()+∞,0是增函数,则)2(f a =,)2(π f b =,)2 3 (f c =的大小关系是__________________________. 9.函数32)(2 +--= x x x f 的单调递增区间是_______. 10.若二次函数45)(2 ++=mx x x f 在区间]1,(--∞是减函数,在区间),1(+∞- 上是增函数,则=)1(f ________. 三、解答题 11. 证明函数x x f 11)(-=在 )0,(-∞ 上是增函数. 12.判断函数x x y 1+ =在区间),1[+∞上的单调性,并给出证明.

高一数学(人教版必修一)教案:《函数的最大(小)值》

§1.3.1函数的最大(小)值 一.教学目标 1.知识与技能: 理解函数的最大(小)值及其几何意义. 学会运用函数图象理解和研究函数的性质. 2.过程与方法: 通过实例,使学生体会到函数的最大(小)值,实际上是函数图象的最高(低)点的纵坐标,因而借助函数图象的直观性可得出函数的最值,有利于培养以形识数的解题意识. 3.情态与价值 利用函数的单调性和图象求函数的最大(小)值,解决日常生活中的实际问题,激发学生学习的积极性. 二.教学重点和难点 教学重点:函数的最大(小)值及其几何意义 教学难点:利用函数的单调性求函数的最大(小)值. 三.学法与教学用具 1.学法:学生通过画图、观察、思考、讨论,从而归纳出求函数的最大(小)值的方法和步骤. 2.教学用具:多媒体手段 四.教学思路 (一)创设情景,揭示课题. 画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①()3f x x =-+ ②()3 [1,2]f x x x =-+∈- ③2 ()21f x x x =++ ④2 ()21[2,2]f x x x x =++∈- (二)研探新知 1.函数最大(小)值定义 最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =. 那么,称M 是函数()y f x =的最大值. 思考:依照函数最大值的定义,结出函数()y f x =的最小值的定义. 注意:

①函数最大(小)首先应该是某一个函数值,即存在0x I ∈,使得0()f x M =; ②函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x I ∈,都有 ()(())f x M f x m ≤≥. 2.利用函数单调性来判断函数最大(小)值的方法. ①配方法 ②换元法 ③数形结合法 (三)质疑答辩,排难解惑. 例1.(教材P 30例3)利用二次函数的性质确定函数的最大(小)值. 解(略) 例2.将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个涨价1元,其销售量减少10个,为了赚到最大利润,售价应定为多少? 解:设利润为y 元,每个售价为x 元,则每个涨(x -50)元,从而销售量减少 10(50),x -个共售出500-10(x-50)=100-10x(个) ∴y=(x-40)(1000-10x) 9000(50x +≤2=-10(x-70)<100) ∴max 709000x y ==时 答:为了赚取最大利润,售价应定为70元. 例3.求函数2 1 y x = -在区间 上的最大值和最小值. 解:(略) 例4.求函数y x =+ 解:令201t x t =≥=-+有则 2215 1()024 y t t t t =-++=--+ ≥Q 21()02t ∴--≤ 2155 ()244 t ∴--+≤ .∴5 原函数的最大值为4

高二数学三角函数知识点总结

高二数学三角函数知识点总结 锐角三角函数定义 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。 正弦(sin)等于对边比斜边;sinA=a/c 余弦(cos)等于邻边比斜边;cosA=b/c 正切(tan)等于对边比邻边;tanA=a/b 余切(cot)等于邻边比对边;cotA=b/a 正割(sec)等于斜边比邻边;secA=c/b 余割(csc)等于斜边比对边。cscA=c/a 互余角的三角函数间的关系 sin(90°-α)=cosα,cos(90°-α)=sinα, tan(90°-α)=cotα,cot(90°-α)=tanα. 平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) 积的关系: sinα=tanα·cosα cosα=cotα·sinα tanα=sinα·secα

cotα=cosα·cscα secα=tanα·cscα cscα=secα·cotα 倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 锐角三角函数公式 两角和与差的三角函数: sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cosAsinB? cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+co sα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

高中数学选修2-2精品教案 3.2 函数的极值与导数

§1.3.2函数的极值与导数(1课时) 【学情分析】: 在高一就学习了函数的最大(小)值,这与本小节所要研究的对象——函数极值有着本质区别的,学生容易产生混淆,易把极大值当做最大值,极小值当做最小值。在认识理解导数大小与函数单调性的关系后,结合函数图像直观地引入函数极值的概念,强化极值是描述函数局部特征的概念,使得学生对极值与最值的概念区分开来,也为下节“函数的最值与导数”做好铺垫。 【教学目标】: (1)理解极大值、极小值的概念. (2)能够运用判别极大值、极小值的方法来求函数的极值. (3)掌握求可导函数的极值的步骤 【教学重点】: 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】: 极大、极小值概念的理解,熟悉求可导函数的极值的步骤 教学 环节 教学活动设计意图 创设情景 观察图3.3-8,我们发现,t a =时,高台跳水运动员距水面高度最大.那么,函数() h t在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律? 放大t a =附近函数() h t的图像,如图3.3-9.可以看出() h a ';在t a =,当t a <时,函数() h t单调递增,()0 h t'>;当t a >时,函数() h t单调递减,()0 h t'<;这就说明,在t a =附近,函数值先增(t a <,()0 h t'>)后减(t a >,()0 h t'<).这样,当t在a的附近从小到大经过a时,() h t'先正后负,且() h t'连续变化,于是有()0 h a '=. 对于一般的函数() y f x =,是否也有这样的性质呢? 附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号

数学竞赛中的无理函数最值问题

数学竞赛中的无理函数最值问题 无理函数是一类特殊的函数,其最值(或值域)的求法大多涉及到化归思想,能较好的考查学生分析问题解决问题的能力,因此受到数学竞赛命题人的青睐,时常出现在数学竞赛中,本文结合近几年全国数学联赛中的一些试题,总结这类问题的解法,并给出相应练习供参考: 一、利用函数单调性求无理函数的最值 若无理函数函数的单调性比较容易确定,常借助其单调性求最值。 例1(2010全国高中数学联赛).函数x x x f 3245)(---=的值域是 . 解析:该题是一道基础题,易知)(x f 的定义域是[]8,5,且)(x f 在[]8,5上是增函数,x=5时)(x f 取到最小值-3,x=8时)(x f 取到最大值3,所以)(x f 的值域为]3,3[-. 练习1:函数12)(2+-+-=x x x x f 的最小值是 .(3) 二、利用代数换元求无理函数的最值 例2.(2011全国高中数学联赛山西预赛)函数25y x =-是 . 解析:t =,则612304(113)14y x x =-+=--+ 2 23656546142244t t t ? ?=-++=--+≤ ??? ,则6524y ≤,当34t =,即16748x =取得等号, 所以25y x =-24 65. 例 3.(2011全国高中数学联赛四川初赛)已知0>m ,若函数 mx x x f -+=100)(的最大值为)(m g ,求)(m g 的最小值. 解析:令mx t -=100,则m t x 2 100-=, ∴4 100)2(110022m m m t m t m t y ++--=+-= , ∴当2m t = 时,y 有最大值 4100m m +,即4 100)(m m m g +=. ∴104 10024100)(=?≥+= m m m m m g ,

人教版高中数学《函数的单调性与最值》教学设计全国一等奖

1.3.1函数的单调性与最大(小)值(第一课时) 教学设计 一、教学内容解析: (1)教学内容的内涵、数学思想方法、核心与教学重点; 本课教学内容出自人教版《普通高中课程标准实验教科书必修数学1》(以下简称“新教材”)第一章节。 函数的单调性是研究当自变量x不断增大时,它的函数y增大还是减小的性质.如增函数表现为“随着x增大,y也增大”这一特征.与函数的奇偶性不同,函数的奇偶性是研究x成为相反数时,y是否也成为相反数,即函数的对称性质. 函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质. 函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法:加强“数”与“形”的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画. 函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位. 教学的重点是:引导学生对函数定义域I的给定区间D上“随着x增大,y也增大(或减小)”这一特征进行抽象的符号描述:在区间D上任意取x1,x2,当x1<x2时,有f(x1)<f(x2)(或f(x1)>f(x2)),则称函数f(x)在区间D上是增函数(或减函数). (2)教学内容的知识类型; 在本课教学内容中,包含了四种知识类型。函数单调性的相关概念属于概念性知识,函数单调性的符号语言表述属于事实性知识,利用函数单调性的定义证明函数单调性的步骤属于程序性知识,发现问题----提出问题----解决问题的研究模式,以及从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明等研究问题的一般方法,属于元认知知识. (3)教学内容的上位知识与下位知识; 在本课教学内容中,函数的单调性,是文字语言、图形语言、符号语言的上位知识.图象法、作差法是判断证明函数单调性的下位知识. (4)思维教学资源与价值观教育资源; 生活常见数据曲线图例子,能引发观察发现思维;函数f(x)= +1和函数 1 y x x =+,能引发 提出问题---分析问题----解决问题的研究思维,不等关系等价转化为作差定号,是转化化归思维的好资源,是树立辩证唯物主义价值观的好契机;创设熟悉的二次函数探究背景,是引发从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明思维的好材料,树立了“事物是普遍联系的”价值观. 二、教学目标设置: 本课教学以《普通高中数学课程标准(实验)》(以下统称为“课标”)为基本依据,以“数学育人”作为根本目标设置。 “课标”数学1模块内容要求是:不仅把函数看成变量之间的依赖关系,还要用集合与对应的语言刻画函数,体会函数的思想方法与研究方法,结合实际问题,体会函数在数学和其他学科中的重要性。 “课标”对本课课堂教学内容要求是:通过已学过的函数特别是二次函数,理解函数的单调性.(第一课时) 为尽好达到以上要求,结合学生实际,本课课堂教学目标设置如下: (1)知识与技能: 理解函数单调性的概念,让学生能清晰表述函数单调性的定义与相关概念; 能利用图象法直观判断函数的单调性;

高二-数学-选修2-2函数的导数与单调性、极值

导数与单调区间、极值 重点:会利用导数解决函数的单调性,利用导数求函数的极值,以及已知单调性、极值求参数 难点:导函数与原函数性质的区分、恒成立问题。 一、f’(x)>0(<0)与f(x) 单调性的关系 判断 判断函数f(x)=sinx-x的单调区间,如何进行?用图像法,定义法去试试 思考函数的单调性与变化率有何关系? 变化率又与导数有什么关系? ① 一般的,函数的单调性与其导数的正负有如下关系:在某个区间(a,b)内 如果f’(x)>0,那么函数y=f(x)在(a,b)上单调递增; 如果f’(x)<0,那么函数y=f(x)在(a,b)上单调递减; : (1 (2 (3 (4 典型题一、 f’(x)的图像与f(x) 图像 例1.: A变式1已知函数y=f(x)的图象如图l所示,则其导函数y=f'(x)的图象可能是()

A.B.C.D. 考点:函数的单调性与导数的关系. 专题:导数的概念及应用. 分析:根据原函数图象的单调性及极值点的情况,得到导函数的零点个数及导函数的正负取值,由此即可得到导函数的图象的大致形状. 解答:解:由函数f(x)的图象看出,在y轴左侧,函数有两个极值点,且先增后减再增,在y轴右侧函数无极值点,且是减函数,根据函数的导函数的符号和原函数单调性间的关系可知,导函数在y轴右侧应有两个零点,且导函数值是先正后负再正,在y轴右侧无零点,且导函数值恒负,由此可以断定导函数的图象是A的形状. 故选A. A变式2.函数y=f(x)的图象如图所示,则y=f(x)的导函数y=f′(x)的图象可以是() A.B.C.D. 分析:排除法,由图象知x<0时,图象从左向右降低,是减函数,得y的导函数y,<0,排除A、B、C,即得. 解答:解:由图象知,当x<0时,y随x的增大而减小,是减函数,y=f(x)的导函数y,=f,(x)<0; 当x>0时,y也随x的增大而减小,是减函数,y=f(x)的导函数y,=f,(x)<0; 所以,y=f(x)的导函数y,=f,(x)的图象可以是满足条件的D答案. 故选:D.

二次函数的最值问题(典型例题)

二次函数的最值问题 【例题精讲】 题面:当1≤x ≤2时,函数y =2x 24ax +a 2+2a +2有最小值2, 求a 的所有可能取值. 【拓展练习】 如图,在平面直角坐标系xOy 中,二次函数23y x bx c = ++的图象与x 轴交于A (1,0)、B (3,0)两点, 顶点为C . (1)求此二次函数解析式; (2)点D 为点C 关于x 轴的对称点,过点A 作直线l :3333 y x =+交BD 于点E ,过点B 作直线BK AD l K :在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由; (3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.

练习一 【例题精讲】 若函数y=4x24ax+a2+1(0≤x≤2)的最小值为3,求a的值. 【拓展练习】 题面:已知:y关于x的函数y=(k1)x22kx+k+2的图象与x轴有交点. (1)求k的取值范围; (2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k1)x12+2kx2+k+2= 4x1x2. ①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值. 练习二 金题精讲 题面:已知函数y=x2+2ax+a21在0≤x≤3范围内有最大值24,最小值3,求实数a的值. 【拓展练习】 题面:当k分别取1,1,2时,函数y=(k1)x2 4x+5k都有最大值吗请写出你的判断,并说明理由;若有,请求出最大值.

高二数学函数的单调性与导数测试题

选修2-21.3.1函数的单调性与导数 一、选择题 1.设f(x)=ax3+bx2+cx+d(a>0),则f(x)为R上增函数的充要条件是() A.b2-4ac>0 ?B.b>0,c>0 C.b=0,c>0 ??D.b2-3ac<0 [答案] D [解析]∵a>0,f(x)为增函数, ∴f′(x)=3ax2+2bx+c>0恒成立, ∴Δ=(2b)2-4×3a×c=4b2-12ac<0,∴b2-3ac<0. 2.(2009·广东文,8)函数f(x)=(x-3)e x的单调递增区间是() A.(-∞,2) ?B.(0,3) C.(1,4)???D.(2,+∞) [答案]D [解析] 考查导数的简单应用. f′(x)=(x-3)′ex+(x-3)(ex)′=(x-2)e x, 令f′(x)>0,解得x>2,故选D. 3.已知函数y=f(x)(x∈R)上任一点(x0,f(x0))处的切线斜率k=(x 2)(x0+1)2,则该函数的单调递减区间为( ) 0- A.[-1,+∞)???B.(-∞,2] C.(-∞,-1)和(1,2)??D.[2,+∞) [答案] B [解析] 令k≤0得x0≤2,由导数的几何意义可知,函数的单调

减区间为(-∞,2]. 4.已知函数y=xf′(x)的图象如图(1)所示(其中f′(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是() [答案] C [解析]当01时xf′(x)>0,∴f′(x)>0,故y=f(x)在(1,+∞)上为增函数,因此否定A、B、D故选C. 5.函数y=xsin x+cos x,x∈(-π,π)的单调增区间是( ) A.错误!和错误! B.错误!和错误! C.错误!和错误!

高二数学三角函数公式总结

高二数学三角函数公式总结 三角函数内容在高二数学课程中占有重要的地位,下面是给大家带来的高二数学三角函数公式总结,希望对你有帮助。 高二数学三角函数公式锐角三角函数定义:锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A 的锐角三角函数。 正弦(sin)等于对边比斜边;sinA=a/c 余弦(cos)等于邻边比斜边;cosA=b/c 正切(tan)等于对边比邻边;tanA=a/b 余切(cot)等于邻边比对边;cotA=b/a 正割(sec)等于斜边比邻边;secA=c/b 余割(csc)等于斜边比对边。cscA=c/a 互余角的三角函数间的关系 sin(90°-α)=cosα, cos(90°-α)=sinα, tan(90°-α)=cotα, cot(90°-α)=tanα. 平方关系: sin(α)+cos(α)=1 tan(α)+1=sec(α)

cot(α)+1=csc(α) 积的关系: sinα=tanα;cosα cosα=cotα;sinα tanα=sinα;secα cotα=cosα;cscα secα=tanα;cscα cscα=secα;cotα 倒数关系: tanα;cotα=1 sinα;cscα=1 cosα;secα=1 锐角三角函数公式 两角和与差的三角函数: sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB ? cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

高中数学 函数的最大最小值素材

x 函数的最大与最小值 教学目标:1、使学生掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,) 处的函数中的最大(或最小)值; 2、使学生掌握用导数求函数的极值及最值的方法 教学重点:掌握用导数求函数的极值及最值的方法 教学难点:提高“用导数求函数的极值及最值”的应用能力 一、复习: 1、() ___________/ =n x ;2、[]_____________) ()(/ =±?x g x f C 3、求y=x 3 —27x 的 极值。 二、新课 在某些问题中,往往关心的是函数在一个定义区间上,哪个值最大,哪个值最小 观察下面一个定义在区间[]b a ,上的函数)(x f y = 发现图中____________是极小值,_________间[]b a ,上的函数)(x f y = 的最大值是______,最小值是_______ 在区间 []b a ,上求函数 )(x f y =的最大值与最小值 的步骤: 1、函数 )(x f y =在),(b a 内有导数... ;. 2、求函数 )(x f y =在),(b a 内的极值 3、将.函数)(x f y =在),(b a 内的极值与)(),(b f a f 比较,其中最大的一个为最大值 ,最小的一个为最小值 三、例1、求函数522 4 +-=x x y 在区间[]2,2-上的最大值与最小值。 解:先求导数,得x x y 443 /-= 令/y =0即0443 =-x x 解得1,0,1321==-=x x x 导数/ y 的正负以及)2(-f ,)2(f 如下表 从上表知,当2±=x 时,函数有最大值13,当1±=x 时,函数有最小值4 在日常生活中,常常会遇到什么条件下可以使材料最省,时间最少,效率最

高一数学函数的最值

第八课时 函数的最值 【学习导航】 知识网络 学习要求 1.了解函数的最大值与最小值概念; 2.理解函数的最大值和最小值的几何意义; 3.能求一些常见函数的最值和值域. 自学评价 1.函数最值的定义: 一般地,设函数()y f x =的定义域为A . 若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≤恒成立,则称0()f x 为()y f x =的最大值,记为max 0()y f x =; 若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≥恒成立,则称0()f x 为()y f x =的最小值,记为min 0()y f x =; 2.单调性与最值: 设函数()y f x =的定义域为[],a b , 若()y f x =是增函数,则max y = ()f a ,min y = ()f b ; 若()y f x =是减函数,则max y = ()f b ,min y = ()f a . 【精典范例】 一.根据函数图像写单调区间和最值: 例1:如图为函数()y f x =,[]4,7x ∈-的图象,指出它的最大值、最小值及单调区间.

【解】 由图可以知道: 当 1.5x =-时,该函数取得最小值2-; 当3x =时,函数取得最大值为3; 函数的单调递增区间有2个:( 1.5,3)-和(5,6); 该函数的单调递减区间有三个:(4, 1.5)--、(4,5)和(6,7) 二.求函数最值: 例2:求下列函数的最小值: (1)22y x x =-; (2)1()f x x = ,[]1,3x ∈. 【解】 (1)222(1)1y x x x =-=-- ∴当1x =时,min 1y =-; []1,3x ∈上是单调减函数,所以当3x =时函数1()f x x =取得1. 函数()4(0)f x x mx m =-+>在(,0]-∞上的最小值(A ) ()A 4 ()B 4- ()C 与m 的取值有关 ()D 不存在 2. 函数()f x =的最小值是 0 ,最大值是 32 . 3. 求下列函数的最值:

二次函数的最值问题(中考题)(含答案)

典型中考题(有关二次函数的最值) 屠园实验 周前猛 一、选择题 1. 已知二次函数y=a (x-1)2+b 有最小值 –1,则a 与b 之间的大小关( ) A. ab D 不能确定 答案:C 2.当-2≤x≤l 时,二次函数 y=-(x-m )2+m 2+1有最大值4,则实数m 的值为( ) A 、- 74 B 、 C 、 2或 D 2或或- 74 答案:C ∵当-2≤x≤l 时,二次函数 y=-(x-m )2+m 2+1有最大值4, ∴二次函数在-2≤x≤l 上可能的取值是x=-2或x=1或x=m. 当x=-2时,由 y=-(x-m )2+m 2+1解得m= - 74 ,2 765 y x 416??=-++ ??? 此时,它在- 2≤x≤l 的最大值是 65 16 ,与题意不符. 当x=1时,由y=-(x-m )2+m 2+1解得m=2,此时y=-(x-2)2+5,它在-2≤x≤l 的最大值是4,与题意相符. 当x= m 时,由 4=-(x-m )2+m 2+1解得m=当m=它在- 2≤x≤l 的最大值是4,与题意相符;当,2≤x≤l 在x=1处取得,最大值小于4,与题意不符. 综上所述,实数m 的值为2或. 故选C . 3. 已知0≤x≤ 1 2 ,那么函数y=-2x 2+8x-6的最大值是( ) A -10.5 B.2 C . -2.5 D. -6 答案:C

解:∵y=-2x2+8x-6=-2(x-2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而 增大.又∵0≤x≤1 2 ,∴当x= 1 2 时,y取最大值,y最大=-2( 1 2 -2)2+2=-2.5.故选:C. 4、已知关于x的函数. 下列结论: ①存在函数,其图像经过(1,0)点; ②函数图像与坐标轴总有三个不同的交点; ③当时,不是y随x的增大而增大就是y随x的增大而减小; ④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数。 真确的个数是() A,1个B、2个 C 3个D、4个 答案:B 分析:①将(1,0)点代入函数,解出k的值即可作出判断; ②首先考虑,函数为一次函数的情况,从而可判断为假; ③根据二次函数的增减性,即可作出判断; ④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求 出顶点的纵坐标表达式,即可作出判断. 解:①真,将(1,0)代入可得:2k-(4k+1)-k+1=0, 解得:k=0.运用方程思想; ②假,反例:k=0时,只有两个交点.运用举反例的方法; ③假,如k=1, b5 -= 2a4 ,当x>1时,先减后增;运用举反例的方法; ④真,当k=0时,函数无最大、最小值; k≠0时,y最= 22 4ac-b24k+1 =- 4a8k , ∴当k>0时,有最小值,最小值为负; 当k<0时,有最大值,最大值为正.运用分类讨论思想. 二、填空题: 1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB 上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是

高二数学函数试题

高二数学函数试题 一.选择题(每小题5分,12个小题共60分) 1.函数1) 1ln(-+= x x y 的定义域是( ) A .{} 1->x x B .{} 1>x x C .{}1-≥x x D .{} 1≥x x 2.已知全集,U R = 集合{ {,.M x R y N y R y =∈==∈= 则 =?M C N U ( ) A .? B. {}01x x ≤< C.{}01x x ≤≤ D. {}11x x -≤< 3.若函数f(x) = x + 2x + log2x 的值域是 {3, 3 2 2 -1, 5 + 2 , 20}, 则其定义域是( ) A. {0,1,2,4} B. {1 2 ,1,2,4} C. {12 ,2,4} D. {1 2 ,1,2,4,8} 4.函数()312f x kx k =+-在(-1,1)上存在0x ,使0)(0=x f ,则k 的取值范围 是( ) A .1(1,)5- B .(,1)-∞- C .1(,1)(,)5-∞-+∞ D .1 (,) 5+∞ 5.已知数集 {}{},,,,0,A B m m αβγ==-,f 是从A 到B 的映射, 则满足()()()0f f f αβγ++=的映射共有 ( ) A.6个 B.7个 C.9个 D.27个 6.过曲线331x y = 上点) 38,2(的切线方程是 ( ) A .016312=--y x B .016312=+-y x C .016312=--x y D .016312=+-x y 7.已知函数)2()2()0(|1|log )(2x f x f a ax x f --=+-≠-=满足,则实数a 值是( ) A .1 B . 21- C .41 D .-1 8.设函数f(x)是定义域为R 且以3为周期的奇函数,若f(1)>1,f(2)=a ,则( ) A.a>2 B.a>-1 C.a>1 D.a<-1 9. 函数()cos 1,(5,5)f x x x x =+∈-的最大值为M ,最小值为m ,则M m +等于 A .0 B .1 C .2 D .4 10. 函数()f x 、(2)f x +均为偶函数,且当x ∈[0,2]时,()f x 是减函数,设 ), 21 (log 8f a =(7.5)b f =,(5)c f =-,则a 、b 、c 的大小是 A .a b c >> B .a c b >> C .b a c >> D .c a b >> 11.3a >,则方程32 10x ax -+=在(0,2)上恰好有 ( ) A . 0 个根 B . 1个根 C .2个根 D . 3个根 12. 已知函数)R x ()x (f ∈ 的图象如图所示, 则函数 ) 1x 1 x ( f )x ( g -+= 的单调递减区间是 ( ) A. ),1(],0,(∞+-∞ B. ),3[],0,(∞+-∞ C. ),1(,)1,(∞+-∞ D. )1,1[ - 二.填空题(每小题5分,4个小题共20分) 13.函数3ln y x x =+的单调递增区间为 14. 函数y =x a (a>0,且a≠1)在[1,3]上的最大值比最小值大a 2 ,则a 的值是________ 15.已知(31)4,1()log ,1a a x a x f x x x -+

相关主题
文本预览
相关文档 最新文档