当前位置:文档之家› 储层五敏

储层五敏

储层五敏
储层五敏

储层敏感性(“五敏”)

几乎所有井的油层都会受到不同程度的损害,油层损害必然导致产能损失及产量下降。储层对于各种类型地层损害的敏感性程度,即为储层敏感性。

1、速敏性是指因流体流动速度变化引起地层微粒运移、堵塞喉道,导致渗透率下降的现象。速敏性研究的目的是在于了解储层的临界流速及渗透率的变化与储层中液体流动速度的关系。

地层微粒是指地层中包括粘土微粒和其它矿物的碎屑微粒在内的所有可移动微粒,它的存在是引起速敏性的内因。

2、水敏性储层中粘土矿物及其它自生矿物在原始地层条件下处于一种含有一定矿化度的盐水环境中,当淡水或低矿化度的水进入地层后,由于环境条件的改变,这些矿物就会发生膨胀、分散、脱落和运移,减小或堵塞储层喉道,造成储层渗透率降低,地层这种遇淡水降低渗透率的现象称水敏性。

3、酸敏性:用各种酸液处理地层,已成为油气田开发改造过程中的常用措施,它可以清除井筒附近地层的酸溶性堵塞,溶蚀岩石矿物,扩大油气流通通道,改善油气层渗流能力。在酸处理过程中,如果酸液选择或施工程序不合理,也会对地层造成损害。酸液进入地层后,与地层中的酸敏性矿物发生反应,产生沉淀或释放出微粒,使地层渗透率下降的现象称为酸敏性。

4、碱敏性是指碱性工作液进入储层后,与储层岩石或储层液体接触,并使储层渗流能力下降的现象。

5、压敏性:应力敏感性是指岩石渗透率随有效应力(或称净围压)的增加而下降的现象。

某盆地储层敏感性特征研究

哈尔滨工程大学 硕士学位论文 某盆地储层敏感性特征研究 姓名:彭柏群 申请学位级别:硕士 专业:应用化学 指导教师:张密林 20030301

摘要 本文根据某盆地大量现场施工资料,选取20口井的岩心,进行了其粘十矿物组成分析、岩心薄片形貌及结构分析,以及敏感性特征分析。 通过对储层岩矿特征、孔隙结构特征和物性特征分析,证明盆地的多数井段储集层含油、气性较差,仅少数井段较好。 根据粘十矿物的基本结构,结合粘土的水化膨胀、絮凝、分散情况,从理论上分析了粘士矿物对油层潜在的损害方式。通过大量的粘土矿物分析数据,表明盆地粘十矿物在纵向上由浅到深的变化规律是:蒙皂石一高岭石组合(以蒙皂石为主)、高岭石一蒙皂石组合(以高岭石为主)、高岭石一伊利石组合(以高岭石为主)、伊利石一高岭石组合(以伊利石为主)、伊利石一绿泥石组合。根据这些结果得出粘土矿物在盆地的浅层主要以膨胀的形式损害储层:在中层,主要以微粒运移的形式损害储层;在深层,主要以微粒运移和酸敏的形式损害储层。 储层敏感性实验研究证明,盆地的速敏性为弱到中速敏,水敏性第。和第三凹陷较强,而第二凹陷的水敏性相对较弱;酸化研究表明,现场目前使用的几种酸型配比不适合对该盆地进行酸化改造,必须探索新的酸化途径和配方。 由敏感性实验证明,整个盆地的敏感性主要以水敏和速敏为主,因此

本文的储层敏感性研究为油层保护提出如下解决方案:第一凹陷水敏性较强,要特别注意防止粘上矿物的水化膨胀:第二凹陷速敏性较强,要注意防止微粒迁移:第三凹陷渗透性较差,应以压裂改造为主。 关键词:粘土矿物储层敏感性油层保护速敏水敏

ABSTRACT Thispaperisbasedonagreatdealofon-the—spotdatainsomebasins.Logcoresfromtwentywellsareselectedtoperformclaymineralcompositionanalysis,shapeandstructureofslicecoreanalysis,andsensitivityanalysis. ThroeIghanalyzingrockfeature,porestructurefeatureandphysicalfeatureofreservoiLitturnsoutthattheoilandgaspotentialinmostwellintervalsisbadandonlyafewwellintervalsaregood. Basedonbasicstructure,connectedwithhydrousexpansion,flocculateanddisintegration,thepotentialmethodbywhichclaymineraldoesdamagetoreservoirisanalyzedtheoretically.Throughmuchclaymineralanalysis,itschangingregularityisshownfromshallowtodeepverticallNi.e.:smectite--kaolinitecombination(mainlysmectite),kaolinite--smectitecombination(mainlykaolinite),kaolinite—illitecombination(mainlykaolinite),illite—kaolinitecombination(mainlyillite),itlite—chloritecombination.Soitisconcludedthatintheshallowlayer,claymineraldoesdamagetoreservoirbymeansofexpansion,inthemiddlelayerbymeansofparticulatetransmit,inthedeeplayerbymeansofparticulatetransmitandacidsensitivitN Thereservoirsensitivitytestturnsoutthatthevelocitysensitivityofthebasinisweaktomedium,watersensitivityisstronginfirstsagandthirdsagandweakinthesecondsag.Acidtreatmentindicatesthatseveraltypesofacidonthespotareunfitforacidstimulationinthebasinanditisnecessarytodiscovernewacidtreatmentmethodandprescription. Thereservoirsensitivitytestturnsoutthatthewholebasinismainlywater

地层水配伍性研究

注入水与地层水及储层配伍性研究 在注入开发油田中,当注入水和不配伍的地层水相遇时,使原有的地层水和储层矿石之间的离子化学平衡被破坏,岩石和混合水之间,注入水和地层水之间随注入水不断介入将逐渐建立一个新的化学平衡。在打破旧的平衡建立新的平衡过程中,只要流体中遇到两种以上不配伍的水存在或在流动过程中随压力和温度或流体的化学组分不平衡,都存在结垢的可能,不可避免的造成对储层的一定损害。在导致严重水敏的同时,在注水速度过快时,还将产生严重的速敏伤害,低渗、特低渗的水敏更为严重。本文下面主要从两方面进行配伍性实验研究:注入水与地层水的配伍性以及注入水与储层的配伍性。 【吉林油田低渗透油藏注入水水质实验研究】 1 注入水与地层水的配伍性 【油田注入水源与储层的化学配伍性研究】 油气田进入中后期开发后,普遍采用注水采油、排水采气、排水找气等新工艺,由于压力、温度等条件的变化以及水的热力学不稳定性和化学不相容性,往往造成注水地层、油套管、井下、地面设备以及集输管线出现结垢,造成油气田产量下降,注水压力上升,井下以及地面设备甚至油气井停产。 1.1油田水质分析 对该油田地层水及注入水的离子浓度进行分析,统计得到下表:(下表)

1.2注入水的自身稳定性 常温及地层温度下注入水的自身稳定性反映了注入水在注水管柱、采油管柱及储层中结垢状况。在常温(20℃)和地层温度(70℃)的条件下,通过测定在密闭容器里分别放置不同时间的水中主要成垢离子Ca2+、Ba2+、Mg2+等的浓度变化研究水源水自身的稳定性以及结垢趋势。在常温和地层温度下分别检测放置20天、30天时水源水中成垢离子浓度。统计数据如下表所示:【商河油田注水配伍性及增注措施实验研究】 1.3 配伍性研究方法 1.3.1静态配伍性实验研究 【大港北部油田回注污水结垢性与配伍性研究】 注入水与地层流体不配伍主要表现在两者按不同比例混合后是否产生沉淀。将地层水与注入水过滤后分别按不同体积比例混合(1: 9、2: 8、3: 7、4: 6、5:5、6:4、7:3、8:2、及9:1),并在85C下密闭加热恒温不同时间,测其浊度。实验结果见图2。 浊度的测量方法:本方法参照采用国家标准ISO 7027—1984《水质—浊度的测定》主要方法有两种:分光光度法和目视比色法。

风扇特性曲线实验

实验七扇风机特性曲线 7.1扇风机特性曲线 7.1.1目的 通过对扇风机特性曲线的实测,初步学会扇风机特性曲线实测方法,并进一步理解扇风机的性能。 7.1.2使用仪器 扇风机、风筒、皮托管、压差计、三用钳形表、气压计、湿度计。 7.1.3原理 扇风机特性曲线是在扇风机转速一定时,以风量为横坐标,分别以压差h,功率N以及效率η为纵坐标,而做出的h-Q、N-Q及η-Q三条曲线。 压差的温家宝方法应根据扇风机的工作方式而不同。 如图7-1所示的布置方式,h即为扇风机的全压差。根据h动即可示出风量。不断改变风向的风阻,分别测出各工作的点的压差、风量、电流、电压功率因数值,即可作图。 图7-1 扇风机特性曲线实测 当压入式通风时,其布置形式如图7-2

式中: 静h ——风筒内外的静压差; 22 2 2γg v ——风筒内的风流动压; 自h ——自然压差,对扇风机作特性曲线试验时取自h =0; h ——风筒阻力。 实际上扇风机的h-Q 曲线是扇风机在转速一定时,对风筒的不同风阻的工作点的连线,从上式可以看出,对风筒的工作风压是2 2 2 2γg v h - 静这一部分,即 h g v h =- 22 2 2γ静 这一部分称为有效静压,图18的布置方式,所示的h 即为有效静压,所以抽出式通风是以有效静压为纵坐标做出扇风机的h-Q 曲线

图。 7.1.4实验步骤、 根据扇风机的工作方式布置皮托管及压差计,在没有改变风机转速的条件下,用档板改变风筒风阻,分别测出无档板及每块档板使用 时的压差h,动压h动,电流A,电压V及功率因数? cos,并同时记录气温、气压,根据这些数据计算出各个工作点时的压差h,风量Q、实际功率N,效率η,并作图。 图7-3 扇风机特性曲线图η (毫米水柱)

跃进二号东高点储层敏感性分析

跃进二号东高点储层敏感性分析 【摘要】跃进二号油田造成油层伤害的主要因素有水敏伤害、附加毛管阻力和速敏伤害,酸敏性相对较弱。浅层可膨胀性粘土矿物占较高比例,胶结程度弱,因而对各种类型的伤害都很敏感。深层比浅层的敏感性要弱一些,主要原因在于可膨胀性粘土矿物相对含量少,而且岩石的胶结程度相对较好。孔隙结构好的储层,敏感性较弱,而孔隙结构差的储层,由于其孔隙小、喉道细,粘土矿物含量高,工作制度不当时最易受到伤害。在注水开发中,要做好储层保护,提高水驱开发效果。 【关键词】储层敏感性;水敏;速敏;附加毛管阻力;酸敏; 油层自身的敏感性程度是油层伤害的一个重要因素。岩性、物性研究以及敏感性流动实验是进行油层敏感性分析的主要手段。其敏感性程度随敏感矿物含量增多、孔隙结构变异而升高。敏感矿物主要有水敏感矿物、速敏矿物、酸敏矿物、碱敏矿物等。 1.储层物性特征 跃进二号东高点构造是青海省柴达木盆地西部坳陷区昆北断阶亚区铁木里克凸起内的一个三级构造。 通过岩心薄片分析,本区的储层具有砂岩近源、低成熟的岩石学特征。从岩心样品分析得出,全油田的平均孔隙度为16.76%,样品分布主峰在15-25%之间,平均渗透率为18.7×10-3um2,残余油饱和度平均为30.83%,物性特征呈中低孔隙度和中低渗透率。 本区油层的润湿性具非均质特点,高渗透层多表现为中性或偏亲油,而低渗透层则多表现为偏亲水。在偏亲油的砂岩模型中,残余油主要分布于颗粒表面、小孔隙、孔隙角隅和死孔隙之中;而在偏亲水的砂岩模型中,残余油则主要以孤立的油滴分布于孔隙之间。 2.储层敏感性分析 2.1水敏伤害 跃进二号油田粘土矿物X衍射分析结果表明。伊利石是该地区的主要粘土矿物,其相对含量达40-90%;蒙脱石分布于浅层,其相对含量达10-50%;伊蒙混成矿物作为蒙脱石向伊利石转化的中间产物,则普遍分布于浅层和深层,相对含量在1-25%之间。 YⅡ264井E31地层的水敏实验和盐敏实验数显示,这些样品用标准盐水测得的渗透率远低于样品的克氏渗透率,下降幅度大于50%。美国岩心公司通过对

裂缝型火山岩储层类型划分方法研究_李彬

·综述· 裂缝型火山岩储层类型划分方法研究 李彬1张伟杰2刘宏明2陈辉强2 1.中国石油集团长城钻探工程有限公司测井公司 2.中国石油测井有限公司长庆事业部摘要:准确地对火山岩储层进行综合评价分类是产能建设的必要条件。火山岩储层产能受孔隙、裂缝类型等诸多因素影响,利用常用的按储集空间和物性分类标准难以反映其真正的储层类型。鉴于此,本文在对工区内火山岩储层按空隙空间、物性等进行了分类之后,根据孔隙、裂缝类型等与经济极限产能的关系,确定了划分火山岩储层分类的综合评价系数,并通过此综合评价系数与产量的关系确定了储层综合评价分类标准,进而实现了对工区内储层类型的划分。关键词:裂缝型;火山岩;储层类型;划分 作者简介:李彬(1978-),男,2001年毕业于西南石油大学,工程师,从事测井新技术研究工作。 0引言 火山岩油气藏目前已成为世界油气田勘探开发的一个新领域。在美国、前苏联、古巴和墨西哥等很多国家都有这类油气藏被发现[1]。我国大多数油田也相继发现有这类储层,例如在准噶尔盆地西北缘的石炭系中发现了一批火山岩油藏,而且探明的地质储量相当可观。目前对这类特殊的储层进行综合评价分类研究时,常采用的方法是根据其物性进行分类[2~4]。由于火山岩油藏受孔隙、裂缝等诸多因素的影响,使得采用简单的储层分类方法不能满足产能建设的需要。本文针对此,根据孔隙度、裂缝强度指数等参数建立了综合评价系数,进而对储层类型进行综合评价分类。 1火山岩储层分类 1.1储集空间 火山岩的储集空间分孔隙和裂缝两种类型。孔隙包括气孔、杏仁体内孔、斑晶晶间孔、收缩孔、微晶间孔、晶内孔、溶蚀孔、胀裂孔、塑流孔等。这些孔隙空间大多呈封闭状态,有裂缝使其连通,将明显改善储集性能。裂缝包括构造裂隙、隐爆裂隙、成岩裂隙、风化裂隙、竖直节理、柱状节理等。各种储集空间多呈某种组合形式出现,如原生孔隙中的气孔往往和溶缝、洞相连,而次生的构造缝常形成溶蚀—构 造复合缝。 1.2储集空间的演化 储集空间的演化可分为下述几个阶段:(1)岩浆作用阶段:形成各种原生孔隙和裂缝。(2)岩浆期后热液阶段:对原生孔进行填充。(3)次生裂缝与蚀变交代阶段:由于构造作用影响,岩石破碎或产生裂隙,次生裂隙本身就是储集空间,并把不连通的孔(如气孔)缝(如原生裂隙)给以一定程度的连通和改造,同时热液沿裂缝通道改造两侧的外貌,对岩石进行交代,并形成熔孔。交代溶蚀与充填同时发生,形成各种熔孔、充填残留孔、缝等。 (4)风化淋滤作用阶段:地质体裸露地表,经机械风化作用产生大量裂隙,加上化学风化作用的淋滤作用,一般有利于储存空间的形成与改善,但极细的风化物也能起到充填作用。 (5)深埋改造作用阶段:地壳下降,接受沉积,火山岩受上覆地层的覆盖和地下水的改造作用,携带油气的有机酸对孔、缝也有强烈的改造作用,改造后的空间被油气或水充填。1.3熔岩储集体物性分类 克拉玛依油田石炭系火山岩是一典型的溢流相玄武岩油气藏,断层活动引起的破裂作用是改善火山岩储层物性的主要因素,断层角砾岩物性最好。前人对克拉玛依油田石炭系火山岩油藏研究,制定了火山岩储层评价标准(见表1),对研究区引用了该 国外测井技术 WORLD WELL LOGGING TECHNOLOGY 2012年第4期总第190期 Aug.2012Total 190 17

风扇(单个)研究报告

研究总结报告 —— 风扇(单个)总结 一、 研究内容 风扇是风冷散热器中必不可少的组成部分,对散热效果起着至关重要的作用,是散热器中唯一的主动部件;同时,更对散热器的工作噪音有着决定性的影响。风扇在风冷散热器中的职责为:凭借自身的导流作用,令空气以一定的速度、一定的方式通过散热片,利用空气与散热片之间的热交换带走其上堆积的热量,从而实现“强制对流”的散热方式。 本文针对风扇的散热研究变量为:功率,特性曲线(风压、风量),尺寸(轮毂直径、总直径、长度)。 二、 研究过程 1、仿真模型建立 本文分两种建模级别来仿真风扇与散热器的散热过程,分别是系统级与板级,经仿真计算后,将两种建模级别的仿真结果进行对比,分析得出风扇工作的相关规律。 系统级的建模如图 1所示,这是一个机顶盒的模型,在模型中有两块PCB 板,其上面的元件以及电源是系统中主要的热量来源,在位于下方的PCB 板上的主要发热元件Comp 上添加了铝材料的平行直肋散热器,并且配套地添加了轴流风扇,将气流从机箱内部源源不断地抽到机箱外部,在研究中主要研究的变量

集中在风扇与散热器之上。 整个机箱模型在分网后网格数量控制在70000左右,展弦比控制在20以内,能够得到较好的具有网格独立性的仿真结果。图2是分网之后机顶盒模型的俯视图。 图 2 分网后的系统级模型俯视图 图 3 精简的风扇与散热器模型 精简模型如图3所示,板级的建模非常简单,用于更加针对地得到风扇与散热器的散热仿真结果。得到的仿真结果可以与系统级中的仿真结果参照对比。模型表征的是一个轴流风扇与平行直肋散热器配合通过强迫风冷降低板上发热芯 散热器添加了局部网格约束 风扇添加了局部网格约束 箱体添加了局 部网格约束

储层的敏感性特征及开发过程中的变化

储层的敏感性特征及开发过程中的变化 摘要:由于储层岩石和流体的性质,储层往往存在多种敏感性,即速敏、水敏、盐敏、 酸敏、碱敏、应力敏感性和温度敏感性等七种敏感性。不同的敏感性产生的条件和产生的影响都有各自的特点。本文主要从三个部分研究分析了储层的敏感性特征。即:粘土矿物的敏感性;储层敏感性特征;储层敏感性在开发过程中的变化。通过这三个方面的研究,希望能给生产实际提供理论依据,进而指导合理的生产。 关键词:粘土矿物;储层;敏感性 1.粘土矿物的敏感性特征 随着对储层研究进一步加深,除了进行常规的空隙结构和空隙度、渗透率、饱和度等的研究外,还必须对储层岩心进行敏感性分析,以确定储层与入井工作液接触时,可能产生的潜在危险和对储层可能造成伤害的程度。 由于各种敏感性多来至于砂岩中粘土矿物,因此它们的矿物组成、含量、分布以及在空隙中的产出状态等将直接影响储层的各种敏感性。 1.1 粘土含量 在粒度分析中粒径小于5um 者皆称为粘土,其含量即为粘土总含量。当粘土矿物含量在1%~5%时,则是较好的油气层,粘土矿物超过10%的一般为较差的油气层[1]。 1.2 粘土矿物类型 粘土矿物的类型较多,常见的有蒙皂石、高岭石、绿泥石、伊利石以及它们的混层粘土[2]。粘土矿物的类型和含量与物源、沉积环境和成岩作用阶段有关。不同类型的粘土矿物对流体的敏感性不同,因此要分别测定不同储集层出现的粘土矿物类型,以及各类粘土矿物的相对含量。目前多彩采用X 射线衍射法分析粘土矿物。常见粘土矿物及其敏感性如表 1 所示。 1.3 粘土矿物的产状 粘土矿物的产状对储层内油气运动影响较大,其产状一般分为散状(充填式)、薄层状(衬底状)和搭桥状[1]。在三种粘土矿物类型中,以分散式储渗条

实验十一 LM35温度传感器特性实验

实验十一 LM35温度传感器特性实验 【实验目的】 1、了解LM35温度传感器的基本原理和温度特性的测量方法; 2、测量LM35温度传感器输出电压与温度的特性曲线; 【实验仪器】 电磁学综合实验平台、LM35温度传感器、加热井、温度传感器特性实验模板 【实验原理】 1.电压型集成温度传感器(LM35) LM35温度传感器,标准T0-92工业封装,其准确度一般为±0.5℃。(有几种级别)由于其输出为电压,且线性极好,故只要配上电压源,数字式电压表就可以构成一个精密数字测温系统。内部的激光校准保证了极高的准确度及一致性,且无须校准。输出电压的温度系数K V=10.0mV/℃,利用下式可计算出被测温度t(℃): U O=K V*t=(10mV/℃)*t 即: t(℃)= U O/10mV (11-1)LM35温度传感器的电路符号见图11-1,V o为输出端实验测量时只要直接测量其输出端电压U o,即可知待测量的温度。 图11-1

图11-2LM35传感器特性实验连接图 【实验步骤】 1、按图11-2,将实验平台加热输出与加热井(加热接口)连接,实验台风扇接口与加热井(风扇接口)连接。 2、调节PID控温表,设置SV:在表面板上按一下(SET)按键,SV表头的温度显示个位将会闪烁;按面板上的“▲”或“▼”键调整设置个位的温度;在按面板上按一下(SET)按键即可,SV表头的温度显示个位将会闪烁,再按“<”键使表头的温度显示十位闪烁,按面板上的“▲”或“▼”键调整设置十位的温度;用同样方法还可设置百位的温度。调好SV所需设定的温度后,再按一下(SET)按键即可完成设置。将加热开关选择(快)档加热,待30秒后,仪器开始加热,控温表即可自动控制温度。调节不同温度,设定参照步骤2进行调节。 3、根据不同的实验连接不同的连接线,可参照上图。 【实验数据】 1、LM35传感器(工作电压5V)(直流电压表2V档测量) 表11-1 t(℃) 30 40 50 60 70 80 90 100 U 2、描绘.LM35传感器曲线,求出.LM35随温度变化的灵敏度S(mV/℃), 【注意事项】 1、加热器温度不能加热到120℃以上,否则将可能损坏加热器。

风扇知识与应用(1)

风扇相关知识以及应用教材

一、 直流风扇运转的基本原则 根据安培右手定则,导体通过电流,周围会产生磁场,若将
此导体置于另一固定磁场中,则将产生吸力或斥力,造成物体移 动。在直流风扇的转子(扇叶)内部,附着一事先充有磁性之橡 胶永久磁铁环(橡胶磁环内依矽钢片的极数充入永久固定相对应 的磁极对数,即 N、S、N、S ~)。转子(扇叶)以轴心中心定位 并环绕着矽钢片,矽钢片上缠绕着两组线圈,采用霍尔感应组件 作为同步侦测装置,控制一组电路,该电路使缠绕矽钢片上的两 组线圈轮流切换工作,使矽钢片外表面产生不同磁极(即 N、S、N、 S~),此磁极与橡胶磁铁相互间产生吸斥力。当吸斥力大于风扇 的静摩擦力时,转子(扇叶)自然转动。由于霍尔感应组件提供 同步信号,扇叶因此得以持续运转,至于其运转方向,可依佛莱 明右手定则决定。
风扇的能源转换:电能→电磁能→机械能(动能)→热能
二、何谓直流无刷风扇 (以下简称直流风扇) 1﹞传统的直流马达必须有电刷和换向器(整流子)以提供不同方 向电流的切换,产生推力使马达持续运转。 2﹞目前我们所生产制造的风扇是使用电压为直流电压,则是以 固定的电子切换开关(例如霍尔感应组件 IC)代替电刷,执行 电流切换推动转子持续运转,所管它叫“直流无刷风扇” 3﹞直流无刷风扇的优点: 3-1﹞没有碳刷的磨耗,可以长时间持续运转,不需保养维修。 3-2﹞容易高速运转,效率高,低噪音。 3-3﹞切换电流时不会产生火花。

三、风扇开发过程
叶叶叶型型型设设设计计计
扇扇扇叶叶叶设设设计计计
扇扇扇叶叶叶成成成型型型 风风风压压压风风风量量量测测测试试试
噪噪噪音音音测测测试试试

什么叫做储层敏感性

1、什么叫做储层敏感性?储层敏感性包含哪些方面? 答:广义概念:油气储层与外来流体发生各种物理或化学作用而使储层孔隙结构和渗透性发生变化的性质,即称为储层的敏感性。 狭义概念:储层与不匹配的外来流体作用后,储层渗透性往往会变差,会不同程度地损害油层,从而导致产能损失或产量下降。因此,人们又将储层对于各种类型储层损害的敏感性程度,称为储层敏感性。 储层敏感性包含:速敏性、水敏性、盐敏性、酸敏性和碱敏性。 2、简略概述如何评价储层的敏感性? 答:储层敏感性评价包括两方面的内容:一是从岩相学分析的角度,评价储层的敏感性矿物特征,研究储层潜在的伤害因素;二是在岩相学分析的基础上,选择代表性的样品,进行敏感性实验,通过测定岩石与各种外来工作液接触前后渗透率的变化,来评价工作液对储层的伤害程度。 3、在注水开发过程中储层的性质会有哪些变化? 答:1)储层岩性参数的变化;2)储层物性参数的变化;3)储层孔隙结构参数的变化;4)储层含油性的变化;5)储层渗流参数的变化。 4、储层速敏的机理是什么?开发过程中应注意哪些问题? 答:在储层内部,总是不同程度地存在着非常细小的微粒,这些微粒或被牢固地胶结,或呈半固结甚至松散状分布于孔壁和大颗粒之间。当外来流体流经储层时,这些微粒可在孔隙中迁移,堵塞孔隙喉道,从而造成渗透率下降。 在开发过程中:1)确定油井不发生速敏伤害的临界产量;2)确定注水井不发生速敏伤害的临界注入速率,如果注入速率太小,不能满足配注要求,应考虑增注措施;3)确定各类工作液允许的最大密度。 5、储层水敏的机理是什么?开发过程中应注意哪些问题? 答:在储层中,粘土矿物通过阳离子交换作用可与任何天然储层流体达到平衡。但是,在钻井或注水开采过程中,外来液体会改变孔隙流体的性质并破坏平衡。当外来液体的矿化度低(如注淡水)时,可膨胀的粘土便发生水化、膨胀,并进一步分散、脱落并迁移,从而减小甚至堵塞孔隙喉道,使渗透率降低,造成储层损害。 开发中的应用:1)如无水敏,则进入地层的工作液的矿化度只要小于地层水矿化度即可,不做严格要求;2)如果有水敏,则必须控制工作液的矿化度大于Cc1;3)如果水敏性较强,在工作液中要考虑使用粘土稳定剂。 6、储层酸敏的机理是什么?开发过程中应注意哪些问题? 答:油层酸化处理是油井开采过程中的主要增产措施之一。酸化的主要目的通过溶解岩石中的某些物质以增加油井周围的渗透率。但在岩石矿物质溶解的同时,可能产生大量的沉淀物质,如果酸处理时的溶解量大于沉淀量,就会导致储层渗透率的增加,达到油井增产的效果,反之,则得到相反的结果,造成储层损害。

储层裂缝常规测井响应

双侧向—微球形聚焦测井系列 对高角度裂缝,深、浅側向曲线平缓,深側向电阻率> 浅側向电阻率,呈“正差异”。 在水平裂缝发育段,深、浅側向曲线尖锐,深側向电阻率< 浅側向电阻率,呈较小的“负差异”。 对于倾斜缝或网状裂缝,深、浅側向曲线起伏较大,为中等值,深、浅电阻率几乎“无差异”。 声波测井识别裂缝: 一般认为声波测井计算的孔隙度为岩石基质孔隙度,其理由是声波测井的首波沿着基质部分传播并绕过那些不均匀分布的孔洞、孔隙。但当地层中存在低角度裂缝(如水平裂缝)、网状裂缝时,声波的首波必须通过裂缝来传播。裂缝较发育时,声波穿过裂缝使其幅度受到很大的衰减,造成首波不被记录,而其后到达的波反而被记录下来,表现为声波时差增大,即周波跳跃。因此,可利用声波时差的增大来定性识别低角度缝或网状缝发育井段。 利用感应差别识别裂缝:钻井液侵入裂缝,使感应测井曲线有明显的降低。 密度测井识别裂缝 密度测井测量的是岩石的体积密度,主要反映地层的总孔隙度。由于密度测井为极板推靠式仪器,当极板接触到天然裂缝时,由于泥浆的侵入会对密度测井产生一定的影响,引起密度测井值减小。 井径测井的裂缝识别对于基质孔隙较小的致密砂岩,钻井使得裂缝带容易破碎,裂缝相交处的岩块塌落,可造成钻井井眼的不规则及井径的增大。另一方面,由于裂缝具有渗透性,如果井眼规则,泥浆的侵入可在井壁形成泥饼,井径缩小。因此,可以根据井眼的突然变化来预测裂缝的存在。 井径测井对于低角度缝与泥质条带以及薄层的响应很难区分;另外,其它原因(如岩石破碎、井壁垮塌)造成的井眼不规则,会影响到该方法识别裂缝的准确性。 自然伽玛能谱测井识别裂缝 测量地层中天然放射性铀(U238)、钍(Th282)、钾(K40)含量。 原理:正常沉积环境U元素含量低于或接近泥质体(钍+钾)的值,当有裂缝存在时,铀含量比泥质体大。 应用能谱的高铀值识别裂缝和地下流体的运移及活跃程度有关。当裂缝(孔洞)发育段的地下水活跃时,地下水中溶解的U元素才能被吸附及沉淀在裂缝(或孔洞)周围,造成U元素富集,使得自然伽玛能谱测井在裂缝带处显示出U含量增加,在地下水不活动地区,裂缝性储层的自然伽玛显示为低值。 (1)侧向、感应及微电阻率测井 裂缝在电阻率测井曲线上的响应取决于裂缝的产状(倾角与方位)、 裂缝的宽度与长度(纵向或径向)、裂缝中的充填物(胶结物、泥浆 滤液、地层流体等)以及泥浆侵入深度等因素。 1.电阻率测井响应特征 (2)侧向测井——高角度裂缝影响 电极型仪器将强烈地受垂直裂缝的影响,这是因为这样的裂缝实际上提供了低阻通道(并联)。所以在垂直裂缝的情况下,侧向测井的电阻率比感应测井的电阻率低。又因为垂直裂缝的有效导电截面在径向上不变,而孔隙的导电截面在径向上是逐渐增大的,所以在浅侧向探测范围内裂缝与孔隙的有效导电截面之比远比深侧向要小。 在Rmf≈Rw时,常观察到RLLD与RLLS的比值为1.5到2; 在Rmf Rw时,RLLS与RLLD的幅度差很小,有时甚至出现RLLS>RLLD。 (2)侧向测井——水平裂缝影响

燃料电池综合特性实验

燃料电池综合特性实验 一、实验目的: 1、了解燃料电池的工作原理。 2、观察仪器的能量转换过程: 光能→太阳能电池→电能→电解池→氢能(能量储存)→燃料电池→电能 3、测量燃料电池输出特性,做出所测燃料电池的伏安特性(极化)曲线,电池输出功率随输出电压的变化曲线。计算燃料电池的最大输出功率及效率。 4、测量质子交换膜电解池的特性,验证法拉第电解定律。 5、测量太阳能电池的特性,做出所测太阳能电池的伏安特性曲线,电池输出功率随输出电压的变化曲线。获取太阳能电池的开路电压,短路电流,最大输出功率,填充因子等特性参数。 二、实验原理: 1、燃料电池 质子交换膜(PEM,Proton Exchange Membrane)燃料电池在常温下工作,具有启动快速,结构紧凑的优点,最适宜作汽车或其它可移动设备的电源,近年来发展很快,其基本结构如图l所示。目前广泛采用的全氟璜酸质子交换膜为固体聚合物薄腆,厚度0.05~0.lmm,它提供氢离子(质子)从阳极到达阴极的通道,而电子或气体不能通过。催化层是将纳米量级的铂粒子用化学或物理的方法附着在质子交换膜表面,厚度约0.03mm,对阳极氢的氧化和阴极氧的还原起催化作用。膜两边的阳极和阴极由石墨化的碳纸或碳布做成,厚度0.2~0.5mm,导电性能良好,其上的微孔提供气体进入催化层的通道,又称为扩散层。教学用燃料电池采用有机玻璃做流场板。

进入阳极的氢气通过电极上的扩散层到达质子交换膜。氢分子在阳极催化剂的作用下解离为2个氢离子,即质子,并释放出2个电子,阳极反应为: H2=2H++2e (l) 氢离子以水合质子H+(nH2O)的形式,在质子交换膜中从一个璜酸基转移到另一个璜酸基,最后到达阴极,实现质子导电,质子的这种转移导致阳极带负电。 在电池的另一端,氧气或空气通过阴极扩散层到达阴极催化层,在阴极催化层的作用下,氧与氢离子和电子反应生成水,阴极反应为: O2+4H++4e=2H2O (2) 阴极反应使阴极缺少电子而带正电,结果在阴阳极间产生电压,在阴阳极间接通外电路,就可以向负载输出电能。总的化学反应如下: 2H2+O2=2H2O (3) (阴极与阳极:在电化学中,失去电子的反应叫氧化,得到电子的反应叫还原。产生氧化反应的电极是阳极,产生还原反应的电极是阴极。对电池而言,阴极是电的正极,阳极是

火山岩基质储层应力敏感性实验研究

火山岩基质储层应力敏感性实验研究

————————————————————————————————作者:————————————————————————————————日期:

火山岩基质储层应力敏感性实验研究-工程论文 火山岩基质储层应力敏感性实验研究 崔永CUI Yong;王丽影WANG Li-ying (延安大学石油学院,延安716000) 摘要:目前,储层应力敏感性评价主要建立在常规应力敏感性实验的基础上,也有部分学者开展了变孔隙压力的应力敏感性评价实验,所得结论和常规实验有较大的出入,但并没有给出合理的解释。为了深入研究这一问题,笔者设计了一组变围压的常规应力敏感性和变孔隙压力的高压应力敏感性评价对比实验,并对实验结果进行了详细的对比分析研究。结果表明,Terzaghi有效应力理论用于致密火山岩基质储层有一定的局限性,采用本体有效应力理论计算较为合适。如果采用本体有效应力分析该组对比实验,两种实验方法所得结果具有较高的一致性。实验结果表明,地层衰竭开发过程中,岩石骨架所受应力的变化范围很小,由于应力改变而引起的岩心渗透率变化很小,可以忽略不计。 关键词:火山岩基质储层;应力敏感性;Terzaghi有效应力;本体有效应力 中图分类号:P618 文献标识码:A 文章编号:1006-4311(2015)17-0187-03 作者简介:崔永(1990-),男,陕西榆林人,本科,学生,专业:石油工程、油气勘察方向,长期跟老师做《克拉玛依气田火山岩气藏储层评价及渗流机理研究》科研项目;王丽影(1982-),女,河南商丘人,博士,延安大学讲师,毕业于中国科学院渗流流体力学研究所,一直从事低渗油气田开发方向的研究。 0 引言

储层五敏性实验

储集层敏感性及五敏试验 1.基本概念 所谓储集层敏感性,是指储集层岩石的物性参数随环境条件(温度,压力)和流动条件(流速,酸,碱,盐,水等)而变化的性质。岩石的物性参数,我们主要研究孔隙度和渗透率。衡量储集层岩石的敏感程度我们常用敏感指数来,敏感指数被定义为在条件参数变化一定数值时,岩石物性减小的百分数,习惯上用SI 来表示。我们以渗透率这个物性参数为例,给出其一个基本公式: i i k p K K K SI -= (1-1) 上标表示岩石物性参数,用下标表示条件参数。 上式定义的是渗透率对地层压力的敏感指数。 敏感指数的物理含义是指条件参数变化一定数值以后,岩石物性参数损失的百分数(主要是孔隙度和渗透率)。所以我们要想了解油藏的敏感指数就必须了解条件参数的变化幅度,从而我们可以求出敏感指数。 在实际矿场中,渗透率比孔隙度更能影响储集层产能。因此渗透率的研究尤为重要。储集层渗透率因为地层压力的改变而呈现出的敏感性质,称作储集层的压力敏感,压力敏感指数用符号P SI 表示。 由以上可以知道下面的概念。 储集层渗透率因为地层温度的改变而呈现出的敏感性质,称作储集层的温度敏感,简称热敏,用T SI 表示。 储集层渗透率因为渗流速度的改变而呈现出的敏感性质,称作储集层的温度敏感,简称热敏,用v SI 表示。 储集层渗透率因为注入液体的盐度的改变而呈现出的敏感性质,称作储集层的盐度敏感,简称盐敏,用sal SI 表示。 储集层渗透率因为注入液体的酸度的改变而呈现出的敏感性质,称作储集层的酸度敏感,简称酸敏,用aci SI 表示。 储集层渗透率因为注入液体的碱度的改变而呈现出的敏感性质,称作储集层的碱度敏感,简称酸敏,用alk SI 表示。 储集层渗透率因为注入淡水而呈现出的敏感性质,称作储集层的水敏性质,简称水敏,用w SI 表示。

风扇选型计算资料

如何选择正确的风扇或鼓风扇 所有需要使用风扇散热的电机与电子产品的设计工程师,必须决定一个特定系统散热所需的风量,而所需的风量取决于了解系统的耗电量及是否能带走足够的热量,以预防系统过热的情形发生。事实显示,系统的使用年限会由于冷却系统的不足而降低,所以设计工程师也应该明白,系统的销售量与价格,可能因为系统的使用年限不符使用者的预期而下降。 欲选择正确的通风组件,必须考虑下列目标: 最好的空气流动效率 最小的适合尺寸 最小的噪音 最小的耗电量 最大的可靠度与使用寿命 合理的总成本 以下三个选择正确散热扇或鼓风扇的重要步骤,可帮你达成上述几个目标。 步骤一:总冷却需求 首先必须了解三个关键因素以得到总冷却需求: 必须转换的热量 (即温差DT) 抵消转换热量的瓦特数 (W) 移除热量所需的风量 (CFM) 总冷却需求对于有效地运作系统甚为重要。有效率的系统运作必须提供理想的运作条件,使所有系统内的组件均能发挥最大的功能与最长的使用年限。 下列几个方式,可用来选择一般用的风扇马达: 1.算出设备内部产生的热量。 2.决定设备内部所能允许的温度上升范围。 3.从方程式计算所需的风量。 4.估计设备用的系统阻抗。 5.根据目录的特性曲线或规格书来选择所需的风扇。 如果已知系统设备内部散热量与允许的总温度上升量,可得到冷却设备所需的风量。 以下为基本的热转换方程式: H = Cp×W×△T 其中 H = 热转换量 Cp = 空气比热 △T = 设备内上升的温度 W = 流动空气重量 我们已知W = CFM×D 其中 D = 空气密度 经由代换后,我们得到:

再由转换因子(conversion factors)与代入海平面空气的比热与密度,可得到以下的散热方程式: CFM = 3160×千瓦/△℉ 然后得到下列方程式: 其中 Q :冷却所需的风量 P :设备内部散热量 (即设备消耗的电功率) Tf :允许内部温升 (华氏) Tc :允许内部温升 (摄氏) DT = DT1与DT2之温差 温升与所需风量之换算表 例一:设备内部消耗电功率为500瓦,温差为华氏20度,下列为其计算结果: 或 例二:设备内部消耗电功率为500瓦,温差为摄氏10度:

储层水敏系统评价方法与水敏机理研究

Journal of Oil and Gas Technology 石油天然气学报, 2018, 40(4), 68-74 Published Online August 2018 in Hans. https://www.doczj.com/doc/bd18434525.html,/journal/jogt https://https://www.doczj.com/doc/bd18434525.html,/10.12677/jogt.2018.404096 Method for Water Sensitive System Evaluation and Study on Water Sensitivity Mechanism Guang Wu1, Haijian Zhao2, Bing Bai2, Bo Zhang1, Chunlin Wang1 1China Oilfield Services Ltd., Tianjin 2Tianjin Branch, CNOOC (China) Co. Ltd., Tianjin Received: Nov. 30th, 2017; accepted: Feb. 28th, 2018; published: Aug. 15th, 2018 Abstract Mineral crystal spacing measurement experiment could accurately analyze the water swelling of the water-sensitive mineral species and mineral layer spacing changes. Scanning electron micro-scope uncoated spotting observation experiment could not only observe the types of minerals, but also determine the location of various mineral distributions. The radius of the pore throat was measured before and after the water-sensitive injury, and the radius range and the clogging posi-tion of the water-sensitive moving particles were given. Three main methods of water-sensitive micro-test evaluation of the reservoir combined with the commonly used core flow and physical expansion of two kinds of macro-water sensitivity test evaluation method, could finely analyze the mechanism of water-sensitive damage, the main water-sensitive minerals, damage location and its time and degree, which overcame the shortcoming that the original method could not accurately study the reason of water sensitivity. Water Sensitive System Evaluation was used for studying the rock samples from S Oilfield. The result shows that the main reason for the mechanism of water sensitivity is that the pore throat is blocked by the migration of the particles. The secondary rea-son is that the swelling of the clay minerals increases due to the expansion of clay mineral. Keywords X-Ray Diffraction, Electron Microscopy Scanning, Core Flow Evaluation, Clay Expansion, Particle Migration, Water Sensitivity

直流风扇规格和特性

直流风扇规格和特性 当您在选择风扇的时候, 以下的相关知识将给您提供有利的参考, 真正让您选择到符合自已使用风扇产品. 一、风扇规格的选择: 1,扇框外型尺寸的选择: 1-1﹞【长25×宽25×厚10mm】:行业简称2510 1-2﹞【长40×宽40×厚20mm】:行业简称4020 1-3﹞【长60×宽60×厚15mm】:行业简称6015 1-4﹞【长80×宽80×厚25mm】:行业简称8025 1-5﹞【长120×宽120×厚25mm】:行业简称12025 1-6﹞12032【长120×宽120×厚32mm】:行业简称12032 等 1-7) 以上风扇外型尺寸都有不同的螺丝孔距和螺丝孔径之分 如上图所示说明: 风扇外型尺寸为此60×60×15mm(简称谓6015 风扇),螺丝径为Ф4.4mm,孔距为50.0mm。 2,扇框和扇叶塑胶材料及颜色选择: 2-1)扇框+扇叶: 为PBT 原料白色(塑胶热变形温度230℃) 2-2)扇框+扇叶: 为PBT 原料黑色(塑胶热变形温度230℃) 2-3)扇框+扇叶: 为PC 原料透明(塑胶热变形温度120℃) 2 -4)扇框+扇叶: 为PC 原料加不同色粉形成外观颜色等(塑胶热变形温度120℃) 3,风扇机械轴承系统的选择: 3-1﹞双滚珠防尘结构【2 个滚珠轴承(Bearing)+S420 铁轴心+防尘结构设计】 防尘结构设计 ◆优点: a) 风扇运转转速较稳定,风扇安装不同的位置方面不会改变风扇的转速 b) 相对使用寿命较长 C) 生产加工装配容易 ◆ 缺点 a) 成本较高 3-2﹞单滚珠防尘结构【一个滚珠轴承(Bearing)+含油轴承(Sleeve)+S420 铁轴心+防尘结构设计】 ◆ 优点: a) 风扇运转转速较稳定,风扇安装不同的位置方面不会改变风扇的转速 b) 相对使用寿命适中 ◆ 缺点 a) 成本高 b) 加工难度要求高,制程及使用过程中易产生异音 3-3﹞防尘液压顶心定磁风扇【回油槽含油轴承(Sleeve)+S420 铁轴心+防尘结构设计】 含油轴承顶心设计 回油系统设计防尘结构设计固态磁体 ◆ 优点: a) 成本偏高

相关主题
文本预览
相关文档 最新文档