当前位置:文档之家› 反应烧结碳化硅具体是工艺过程是什么__造成反应烧结辊棒断裂原因

反应烧结碳化硅具体是工艺过程是什么__造成反应烧结辊棒断裂原因

反应烧结碳化硅具体是工艺过程是什么__造成反应烧结辊棒断裂原因
反应烧结碳化硅具体是工艺过程是什么__造成反应烧结辊棒断裂原因

反应烧结碳化硅具体是工艺过程是什么__造成反应烧结辊棒断裂原因

随着科技的发展,一切都在快速的更新变化着,反应烧结碳化硅制品也不例外。反应烧结碳化硅制品已应用于高温工业窑炉、电厂脱硫系统、采矿选矿、水泥制造、金属热处理、镀锌镀铝、垃圾焚烧、石油化工机械、表面处理、密封件、热交换及太阳能等行业。将来反应烧结碳化硅所制造的部件,会越来越多的应用在超高温、热震、磨损和高腐蚀的材料工业领域。今天小编主要来给大家说一说造成反应烧结辊棒断裂原因和反应烧结碳化硅具体是工艺过程是什么,敬请期待吧。

【造成反应烧结辊棒断裂原因】

(1)碳化硅辊棒质量与烧成转速及温度要求不符合;

(2)辊棒老化;

(3)辊棒不在同一水平面,个别辊棒负载过重;(4)窑板及产品重量过重;

(5)反应烧结辊棒之间有引起卡滞的异物;

(6)转速过快,扭力过大;

(7)前进方向受到阻力(电机转速不同步),如前方转速慢于后方转速,造成阻力及扭力过大;(8)碳化硅辊棒长期脱离卡位,不转动,受压变形;(9)停窑时传动电机关闭太早,窑板又未卸除,造成较高温度状况下瓷管已停止转动,受压弯曲变形;(10)辊棒长期被烧咀火焰喷射,局部高温变形;(11)瓷管与孔砖等长期接触磨损。

【烧结碳化硅特点】

无压烧结、热压烧结、热等静压烧结和反应烧结的SiC陶瓷具有各异的性能特点。

如就烧结密度和抗弯强度来说,热压烧结和热等静压烧结SiC陶瓷相对较多,反应烧结SiC相对较

低。

另一方面,SiC陶瓷的力学性能还随烧结添加剂的不同而不同。无压烧结、热压烧结和反应烧结SiC 陶瓷对强酸、强碱具有良好的抵抗力,但反应烧结SiC陶瓷对HF等酸的抗蚀性较差。就耐高温性能比较来看,当温度低于900℃时,几乎所有SiC陶瓷强度均有所提高;当温度超过1400℃时,

反应烧结SiC陶瓷抗弯强度急剧下降。(这是由于烧结体中含有一定量的游离Si,当超过一定温度抗弯强度急剧下降所致)对于无压烧结和热等静压烧结的SiC陶瓷,其耐高温性能主要受添加剂种类的影响。

总之,SiC陶瓷的性能因烧结方法不同而不同。一般说来,无压烧结SiC陶瓷的综合性能优于反应烧结SiC陶瓷,但次于热压烧结和热等静压烧结的SiC陶瓷。

【反应烧结碳化硅制品应用有哪些】

反应烧结碳化硅制品已应用于高温工业窑炉、电厂脱硫系统、采矿选矿、水泥制造、金属热处理、镀锌镀铝、垃圾焚烧、石油化工机械、表面处理、密封件、热交换及太阳能等行业。将来反应烧结碳化硅所制造的部件,会越来越多的应用在超高温、热震、磨损和高腐蚀的材料工业领域。

【反应烧结碳化硅具体是工艺过程是什么】

反应烧结的工艺过程为:先将α-SiC粉和石墨粉按比例混匀,经干压、挤压或注浆等方法制成多孔坯体。在高温下与液态Si接

触,坯体中的C与渗入的Si

反应,生成β-SiC,并与α

-SiC相结合,过量的Si填

充于气孔,从而得到无孔致

密的反应烧结体。反应烧结

SiC通常含有8的游离Si。

因此,为保证渗Si的完全,

素坯应具有足够的孔隙度。

一般通过调整初混合料中α

-SiC和C的含量,α-SiC

的粒度级配,C的形状和粒

度以及成型压力等手段来获

得适当的素坯密度。

实验表明,采用无压烧结、热压烧结、热等静压烧结和反应烧结的SiC陶瓷具有各异的性能特点。如就烧结密度和抗弯强度来说,热压烧结和热等静压烧结SiC陶瓷相对较多,反应烧结SiC相对较低。

烧结碳化硅方式对比__烧结碳化硅分类

烧结碳化硅方式对比__烧结碳化硅分类 烧结碳化硅烧结方式有哪三种呢?烧结碳化硅的三种烧结方式虽然各有千秋,但是在科技发展如此迅速的今天,迫切需要提高碳化硅陶瓷的性能,不断改进制造技术,降低生产成本,实现碳化硅陶瓷的低温烧结。以达到降低能耗,降低生产成本,推动碳化硅陶瓷产品产业化的目的。山东中鹏特种陶瓷有限公司生产的烧结碳化硅具有碳化硅材料耐强腐蚀性、耐磨性、高导电性、高温稳定性等性能,在新能源、化工、船舶及科研国防军事技术等领域应用。 【烧结碳化硅分类】 (1)无压烧结 无压烧结被认为是SiC烧结有前途的烧结方法,根据烧结机理的不同,无压烧结又可分为固相烧结和液相烧结。S.Proehazka通过在超细β-SiC粉体(含氧量小于2)中同时加入适量B和C的方法,在2020℃下常压烧结成密度高于98的SiC烧结体。A.Mulla等以Al2O3和Y2O3为添加剂在

1850-1950℃烧结0.5μm的β-SiC(颗粒表面含有少量SiO2),获得的SiC陶瓷相对密度大于理论密度的95,并且晶粒细小,平均尺寸为1.5μm。 (2)热压烧结 不添加任何烧结助剂,纯SiC只有在极高的温度下才能烧结致密,于是不少人对SiC实行热压烧结工艺。关于添加烧结助剂对SiC进行热压烧结的报道已有许多。Alliegro等研究了B、Al、Ni、Fe、Cr等金属添加物对SiC致密化的影响,发现Al和Fe是促进SiC热压烧结有效的添加剂。https://www.doczj.com/doc/bd14296801.html,nge 研究了添加不同量Al2O3对热压烧结SiC的性能影响,认为热压烧结致密是靠溶解--再沉淀机理。但是热压烧结工艺只能 制备形状简单的SiC部 件,而且一次热压烧结过 程中所制备的产品数量 很小,因此不利于工业化 生产。 (3)反应烧结 反应烧结SiC又称自结 合SiC,是由a-SiC粉和 石墨粉按一定比列混合压成坯体后,加热到1650℃左右,同时熔渗Si或通过气相Si渗入坯体,使之与石墨起反应生成β-SiC,把原来存在的a-SiC颗粒结合起来。 【烧结碳化硅方式对比】 1.热压烧结:只能制备简单形状的碳化硅部件,生产效率低,不利于大规模商业化生产。 2.无压烧结(常压烧结):能生产复杂形状和大尺寸碳化硅部件,是目前普遍认可的有优势的烧结方法。 3.反应烧结:能制备复杂形状的碳化硅部件,烧结温度低,但是产品高温性能不佳。 特点:如果允许完全渗Si,那么整个过程中可获得气孔率为零,无几何尺寸变化的材料。

一烧结基本原理

一烧结基本原理集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

一、烧结 (1)、烧结基本原理 烧结是粉末冶金生产过程中最基本的工序之一。烧结对最终产品的性能起着决定性作用,因为由烧结造成的废品是无法通过以后的工序挽救的;相反,烧结前的工序中的某些缺陷,在一定的范围内可以通过烧结工艺的调整, 例如适当改变温度,调节升降温时间与速度等而加以纠正。 烧结是粉末或粉末压坯,加热到低于其中基本成分的熔点温度,然后以一定的方法和速度冷却到室温的过程。烧结的结果是粉末颗粒之间发生粘结,烧结体的强度增加。在烧结过程中发生一系列物理和化学的变化,把粉末颗粒的聚集体变成为晶粒的聚结体,从而获得具有所需物理,机械性能的制品或材料。烧结时,除了粉末颗粒联结外,还可能发生致密化,合金化,热处理,联接等作用。人们一般还把金属粉末烧结过程分类为:1、单相粉末(纯金属、古熔体或金属化合物)烧结;2、多相粉末(金属—金属或金属—非金属)固相烧结;3、多相粉末液相烧结;4、熔浸。 通常在目前PORITE微小轴承所接触的和需要了解的为前三类烧结。通常在烧结过程中粉末颗粒常发生有以下几个阶段的变化:1、颗粒间开始联结;2、颗粒间粘结颈长大;3、孔隙通道的封闭;4、孔隙球化;5、孔隙收缩;6、孔隙粗化。 上述烧结过程中的种种变化都与物质的运动和迁移密切相关。理论上机理为:1、蒸发凝聚;2、体积扩散;3、表面扩散;4、晶间扩散;5、粘性流动;6、塑性流动。

(2)、烧结工艺 2-1、烧结的过程 粉末冶金的烧结过程大致可以分成四个温度阶段: 1、低温预烧阶段,在此阶段主要发生金属的回复及吸附气体和水分的挥发,压坯内成形剂的分解和排除等。在PORITE微小铜、铁系轴承中,用R、B、O(Rapid Burning Off)来代替低温预烧阶段,且铜、铁系产品经过R、B、O后会氧化,但在本体中可以被还原,同时还可以促进烧结。 2、中温升温烧结阶段,在此阶段开始出现再结晶,首先在颗粒内,变形的晶粒得以恢复,改组为新晶粒,同时颗粒表面氧化物被完全还原,颗粒界面形成烧结颈。 3、高温保温完成烧结阶段,此阶段是烧结得主要过程,如扩散和流动充分地进行和接近完成,形成大量闭孔,并继续缩小,使得孔隙尺寸和孔隙总数均有减少,烧结体密度明显增加

关于烧结碳化硅的分类_烧结碳化硅工艺说明

关于烧结碳化硅的分类_烧结碳化硅工艺说明特陶领域的多数专家认为国内特陶产品质量提升不上去,很大程度与特陶粉体的制备水平有关系。“巧妇难为无米之炊”,当然没有好“米”,也烧不出“好饭”出来。有关于烧结碳化硅的话题,小编今天想跟大家聊一聊。烧结碳化硅有哪些分类呢?看文章吧! 烧结碳化硅分类: (1)无压烧结 无压烧结被认为是SiC烧结有前途的烧结方法,根据烧结机理的不同,无压烧结又可分为固相烧结和液相烧结。S.Proehazka通过在超细β-SiC粉体(含氧量小于2)中同时加入适量B和C的方法,在2020℃下常压烧结成密度高于98

的SiC烧结体。A.Mulla等以Al2O3和Y2O3为添加剂在1850-1950℃烧结0.5μm的β-SiC(颗粒表面含有少量SiO2),获得的SiC陶瓷相对密度大于理论密度的95,并且晶粒细小,平均尺寸为1.5μm。 (2)热压烧结 不添加任何烧结助剂,纯SiC只有在极高的温度下才能烧结致密,于是不少人对SiC实行热压烧结工艺。关于添加烧结助剂对SiC进行热压烧结的报道已有许多。Alliegro等研究了B、Al、Ni、Fe、Cr等金属添加物对SiC致密化的影响,发现Al和Fe是促进SiC热压烧结有效的添加剂。https://www.doczj.com/doc/bd14296801.html,nge研究了添加不同量Al2O3对热压烧结SiC的性能影响,认为热压烧结致密是靠溶解--再沉淀机理。但是热压烧结工艺只能制备形状简单的SiC部件,而且一次热压烧结过程中所制备的产品数量很小,因此不利于工业化生产。 (3)反应烧结 反应烧结SiC又称自结合SiC, 是由a- SiC粉和石墨粉按一定比列混合压成坯体后,加热到1650℃左右,同时熔渗Si或通过气相Si渗入坯体,使之与石墨起反

化学反应与扩散过程

化学反应与扩散过程 姓名:史振鹏 学号;200902050201 班级:09物理 摘要:本文主要讲述了在化学反应与扩散过程中分子数密度的变化率、熵流密 度与局域熵出生率以及化学亲和势与反应速率的关系。文章先从分子数密度变化率讲述再推导出熵流密度与局域熵产生率,在这个过程中同时讲述化学亲和势与反应速率的关系。 Abstract: this paper focuses on the number of molecules in a chemical reaction and diffusion processes of density change local entropy , entropy flux density and birth rates and reaction rate of chemical affinity and relationship. Article from the molecular number density rate of change about then derive entropy flux density and local entropy production rate, during this process and about the relationship of chemical affinity and the reaction rate. 关键词:化学反应 分子数密度 局域熵 化学亲和势 引言:在一个系统中同时存在n 个化学反应,假设温度和压强恒定,在该系统中 由于存在化学反应和扩散过程,那么该系统中各组分的分子数密度和局域熵产生率将怎样变化?其化学反应与化学亲和势有什么关系?本文将详细讲述。 Introduction: in a system n of simultaneous chemical reaction, assuming constant temperature and pressure, due to chemical reaction and diffusion processes in the system, the molecular number density of the components in the system and the field entropy production rate will change how? what's the relationship between chemical reaction and chemical affinity? this will be covered in detail. 主要内容: 本节将在局域平衡假设下导出同时存在化学反应和扩散过程时的熵流密度和熵产生率。系统中某体积元内存在化学反应: 数可以是时间和坐标的函在非平衡系统中为比例系数。一般来说 成正比,即和的分子数密度和应物,因而与其反发生碰撞的频率成正比与分子显然与体积元内分子 反应速率i i A i i A i i i A i i k i n n k n n k n n X A X A B Y X A i ωωω,,:i =+?→?+()的变化率为的分子数密度体积元内两个反应同时发生时,为比例系数可表为的反应速率应同理,体积元内化学反i i i A k i n X k n n k C B Z X A 222222 2=++?→? +ωω

无压烧结碳化硅技术开发样本

铝工业用大型薄壁无压烧结碳化硅管状制品的研究开发 一、项目背景 随着世界经济的快速发展和材料制备技术的持续进步, 无压烧结SiC材料已经进入民用工业, 在汽车、冶金、轻工、化工等行业应用呈现扩大趋势, 对促进相关领域的技术进步、节能和环保的积极作用越来越明显。高性能无压烧结SiC材料已列入工信部发布的《装备制造业技术进步和技术改造投资方向( ) 》报告中, 是中国经济建设需要的高技术产品。 国际上, 铝、锌、镁等有色金属或合金熔体的加热更多的向能量可高效利用的内加热方式发展, 长管状内加热管采用大型薄壁无压烧结SiC材料的理念受到重视, 应用越来越普遍, 国外部分铝业公司在铝加工业过程中已经大量采用这种材料, 仅非州某一家铝业公司年需求长度 mm, 内径150-200mm, 壁厚8-10mm, 一端敞口、一端球形封闭的内加热管近支, 产值近 -3000万元人民币。中国原铝产量居世界第一, 铝加工业的技术进步受世界瞩目, 少数铝加工企业引进国外的整套加热设备中已经使用了这种大型无压烧结SiC内加热管, 该材料是国产化先进加热设备重要的关键部件, 但当前国内尚不能生产该类产品, 只能依赖进口, 国内企业对这种高技术材料的需求较为迫切。总之, 这种大型薄壁无压烧结SiC管状制品的国内外市场前景极好。 本项目拟经过与中国科学院上海硅酸盐研究所合作研究开发, 解决大型薄壁无压烧结SiC管状制品工业化制备的关键技术, 掌握并稳定该材料的生产技术, 实现批量生产。项目实施成功后, 研制的高性能产品将极大地丰富我院碳化硅产品种类, 优化我院碳化硅产品结构, 进一步提升我院在铝工业的服务水平。 二、国内外研究现状及我院研发基础 国内外对无压烧结SiC陶瓷材料进行了大量的研究开发, 已有大量的产品用于民用和军工工业。世界500强之一的圣戈班( SAINT-GOBAIN) 公司是当前先进SiC

用低纯碳化硅微粉烧结碳化硅陶瓷

第34卷第1期2O06年1月 硅酸盐学报 JOURNAL()FTHECHINFSECERAMICSoCIETY VoI.34,N()l January,2006用低纯碳化硅微粉烧结碳化硅陶瓷 武七德1,孙峰1,吉晓莉1,田庭燕2,郝慧1 1.武汉理工大学.畦酸盐材料工程教育部重点实验守,武汉430070;2山东大学 材料液态结构及其遗传性教育部重点实验室,济南25∞61) 摘要:用工业崖料坻纯w3.spmstc擞粉为原料,在№保护下娆结碳化硅(s,t、)陶瓷。研究了低纯slc徽粉中杂质对蜀c陶瓷力学性能的影响,对比了徽粉提纯后材料的性能‘』结构。通过扫描电镜、金相显馓镜分析材料的显微结构。结果表明:微粉杂质中st魄、金属氧化物在&c烧结温度下的放气反麻是影响陶瓷材料力学性能的主耍目素。由低纯s?c材制得的材料的烧结密度达到(3.15士o01)g/cm3,抗折强度达到(ddl±10)MPa。 关键词:碳化硅;反应烧结;显微结构 中圈分类号:T锄74文献标识码:A文章编号:04545648(2006)0】∞一05 SII.ICoNCARBIDECERAMICSPREPAREDWlTHL()WPURESILICoNCARBIDEMICRo—PoWDERSwuQ2dPl,su~凡n∥,JJxi40“1,1』ANTiwgy。n2,HA0¨“21 (1.KeyI,ab()raturyforS11LcateMatemIsscLcnceandEnglneeringofMmlstryofEducatlon,W1lhan UnlvcrsltyofTechn0109y WuI、an 430070;2.KeyLab。ratoryf01I.1quldStⅢLu rea11dHer列I‘y(】fMlnk【ryEduca¨on, ShandongUnjversl‘y?Jlnall2j0061,Chlna) Abstr{Ict:Reactlon—b(mdcdslJLc。ncarblde(RRS(:)ccranll刚erepreparedwlthindu“rLalscfapsIowpLlmySl(:叫ropowders.T11eaveragegralnslzcofL1】。powder】s3.5"ml、helnfluenceoflmpllⅢ1…)fpow山rsonthemate¨aI。smechanicalpropeftle8wasstudied,andacomparisonwasmade“)matcnakpr印ared州thpunfylngpowdtrbyhydrochlo¨ca虬dThIILIcro乱ructureofsI】£concarbldeccranIicswasInvesttgatedby黜Immg elecfro㈣c㈣ce)p㈨jdo阱lca】m£croscope.Thercsuhss}、owthatthekeyfactorstoL11enlaterlal’smechanlcaIpropertlesaretheexcludlngS102,andthe metalllc()xId㈣acLedwtthotherrawmatelr】alsandrelcasedgasathlghtemperaturesT}1esIntereddenslly()fthcmaLeflalmadeoflowpl】rltyS1Cls(315=001)g/cm。andtheflⅢralsIrenEth1s(d4】±10)MPaatroomtemDeraturc Keywo州s:slnconcarhId。;reacLl。11bonded;mlcr()structurc 反应烧结碳化硅(reaction_bondeds1Iiconca卜hide,RBsc)具有反应温度低且时间短,可近净尺寸烧结,可烧结复条形状制品等优点,自50年代发明以来就得到人们的广泛关注”。3]。但是,传统反应烧结T艺中所需两c原料的纯度较高,因而其制备能耗高,环境污染严重,生产成本大。目前,国内sic生产厂家每年都囤积大黾的收尘尾粉。网尾粉的牲度细,杂质含量高,成分波动大阻碍1r它的进一 收稿日期:200j—06—15。修改稿收到日期:z005—10一lo 第一作者:武已德(19t9~),男.教授。步利用。丈量尾粉既占用贮存用地又增加生产成本。凼此,允分利用尾粉已成为Sic生产厂家的当务之急。 实验中制备RBsc所需的sic微粉全部采用国内某两c磨料生产厂家提供的收尘器中的低纯Sjc尾粉,通过适当的工艺制备出最高密度为3.15g/cw,最大抗折强度为(441±10)MPa的RBsc陶瓷材料。 R戗eiveddate:2∞5—061j.Approveddate:20051010 Firsta砒hor;WUQ1小(1949).ⅢaI}+profe3soL E—mni-:Ⅵ1qIfk@nlall.whuteducn  万方数据

碳化硅烧结

1、无压烧结 1974年美国GE公司通过在高纯度β-SiC细粉中同时加入少量的B和C,采用无压烧结工艺,于2020℃成功地获得高密度SiC陶瓷。目前,该工艺已成为制备SiC陶瓷的主要方法。 最近,有研究者在亚微米SiC粉料中加入Al2O3和Y2O3,在1850℃~2000℃温度下实现SiC的致密烧结。由于烧结温度低而具有明显细化的微观结构,因而,其强度和韧性大大改善。 2、热压烧结 50年代中期,美国Norton公司就开始研究B、Ni、Cr、Fe、Al等金属添加物对SiC热压烧结的影响。实验表明:Al和Fe是促进SiC热压致密化的最有效的添加剂。有研究者以Al2O3为添加剂,通过热压烧结工艺,也实现了SiC的致密化,并认为其机理是液相烧结。此外,还有研究者分别以B4C、B或B与C,Al2O3和C、Al2O3和Y2O3、Be、B4C 与C作添加剂,采用热压烧结,也都获得了致密SiC陶瓷。 3、热等静压烧结: 近年来,为进一步提高SiC陶瓷的力学性能,研究人员进行了SiC陶瓷的热等静压工艺的研究工作。研究人员以B和C为添加剂,采用热等静压烧结工艺,在1900℃便获得高密度SiC烧结体。更进一步,通过该工艺,在2000℃和138MPa压力下,成功实现无添加剂SiC陶瓷的致密烧结。研究表明:当SiC粉末的粒径小于0.6μm时,即使不引入任何添加剂,通过热等静压烧结,在1950℃即可使其致密化。 4、反应烧结: SiC的反应烧结法最早在美国研究成功。反应烧结的工艺过程为:先将α-SiC粉和石墨粉按比例混匀,经干压、挤压或注浆等方法制成多孔坯体。在高温下与液态Si接触,坯体中的C与渗入的Si反应,生成β-SiC,并与α-SiC相结合,过量的Si填充于气孔,从而得到无孔致密的反应烧结体。反应烧结SiC通常含有8%的游离Si。因此,为保证渗Si的完全,素坯应具有足够的孔隙度。一般通过调整最初混合料中α-SiC和C的含量,α-SiC的粒度级配,C的形状和粒度以及成型压力等手段来获得适当的素坯密度。 综述:实验表明,采用无压烧结、热压烧结、热等静压烧结和反应烧结的SiC陶瓷具有各异的性能特点。假如就烧结密度和抗弯强度来说,热压烧结和热等静压烧结SiC陶瓷相对较高,反应烧结SiC相对较低。另一方面,SiC陶瓷的力学性能还随烧结添加剂的不同而不同。无压烧结、热压烧结和反应烧结SiC陶瓷对强酸、强碱具有良好的抵抗力,但反应烧结SiC陶瓷对HF等超强酸的抗蚀性较差。就耐高温性能比较来看,当温度低于900℃时,几乎所有SiC陶瓷强度均有所提高;当温度超过1400℃时,反应烧结SiC陶瓷抗弯强度急剧下降。(这是由于烧结体中含有一定量的游离Si,当超过一定温度抗弯强度急剧下降所致)对于无压烧结和热等静压烧结的SiC陶瓷,其耐高温性能主要受添加剂种类的影响。 碳化硅陶瓷的应用

碳化硅陶瓷的烧结工艺

碳化硅陶瓷的合成方法综述 碳化硅陶瓷具有机械强度高、耐高温、抗氧化性强、热稳定性能好、热导率大、耐磨损性能好、耐化学腐蚀性能好、硬度高、抗热震性能好等优良的特性。碳化硅是所有非氧化物陶瓷中抗氧化性能最好的一种。碳化硅陶瓷不仅在高新技术领域发挥着重要的作用,而且在冶金、机械、能源和建材化工等热门领域也拥有广阔的市场。随着高新技术的不断发展,对碳化硅陶瓷的要求也越来越高,需要不同层次和不同性能的各种产品。早在20 世纪50 年代,Popper[ 1] 首次提出反应烧结制备碳化硅。其基本原理是:具有反应活性的液硅或硅合金,在毛细管力的作用下渗入含碳的多孔陶瓷素坯,并与其中的碳反应生成碳化硅,新生成的碳化硅原位结合素坯中原有的碳化硅颗粒,浸渗剂填充素坯中的剩余气孔,完成致密化的过程。 1.1 常压烧结 1.1.1 固相烧结 单一陶瓷粉体烧结常常属于典型的固相烧结,即在烧结过程中没有液相形成。陶瓷坯体的致密化主要是通过蒸发和凝聚、扩散传质等方式来实现的。其烧结过程主要由颗粒重排、气孔填充和晶粒生长等阶段组成。同时,固相烧结可以通过合适的颗粒级配、适当的烧结温度和较短的保温时间等工艺参数来实现致密化烧结。自20世纪7O年代,Prochazkal6在高纯度的SiC中加人少量的B和C作为烧结助剂,在2050℃成功地固相烧结出致密度高于98 的SiC陶瓷以来,固相烧结就一直很受关注。虽然SiC-B-C体系固相烧结SiC需要较高的烧结温度,烧结晶粒粗大,均匀性差,而且SiC陶瓷具有较低的断裂韧性、较高的裂纹强度敏感性和典型的穿晶断裂模式,但是固相烧结的烧结助剂含量低,杂质少,晶界几乎不残留低熔点物质,烧结后的SiC陶瓷高温稳定性好、热导能力强l7剖。因此,固相烧结在SiC陶瓷烧结中具有潜在的应用价值。目前,采用SiC-B-C烧结体系来进行固相烧结SiC陶瓷的厂家主要有美国的GE公司。 1.1.2 液相烧结 由于陶瓷粉体中总有少量的杂质,大多数材料在烧结过程中都会或多或少地出现液相。另外,即使在没有杂质的纯固相系统中,高温下还会出现“接触”熔融现象,因而纯粹的固相烧结实际上不易实现,大多数的烧结实属液相烧结。液相烧结是以一定数量的多元低共熔点氧化物为烧结助剂,在高温下烧结助剂形成共溶液相的烧结过程,烧结晶粒细小均匀呈等轴晶状。其烧结体系的传质方式为流动传质,可降低致密化所需要的能量,容易实现低温下的烧结致密化,缩短烧结时问。同时,低共溶液相的引入和独特的界面结合弱化,使材料的断裂模式为沿晶断裂模式,材料的断裂韧性和强度显著提高。Nakano等利用BeO 的高热导能力以及SiC与BeO在烧结过程中形成液相的特点,最终制备出热导率高达270W /(m ·K)的SiC陶瓷。Takada等在2200℃烧结平均粉末粒径为0.5Fro的SiC陶瓷的过程中,加入烧结助剂2 BeO、0.2 ~O.4 BC和0.2 ~O.3 C(质量分数),无压烧结0.5h,获得材料的电阻率和热导率分别为5×l0^12Q ·cm和140w/(m ·K)。在烧结过程中,均匀分布在SiC表面的B原子和C原子与Si原子反应,生成GB-C、Si-B-C、Si- Si 和Si—DSi键,促进Si原子的扩散,提高SiC陶瓷的致密度。 1.2 热压烧结 热压烧结是指在SiC加热烧结的同时,施加一定的轴向压力而进行的烧结。热压烧结可增大SiC粒子间接触面积,降低烧结温度,缩短烧结时间,增加烧结体的致密化,促进SiC烧结。为了使SiC粒子更容易烧结,热压烧结通常需要在SiC粉体中加入B、C、Al、B4C、Y2O3、A12O3。等烧结助剂来促进烧结。B、Al或BC固溶于SiC中,降低SiC 的界面能,C主要与SiC粒子表面的SiO。反应形成低温液相,促进B、A1的扩散。Liu 等以Y2O3和A12O3。为烧结助剂,在2000℃、30MPa的烧结条件下进行烧结,烧结出

化学反应一般原理

第二章化学反应一般原理 化学热力学初步(热化学、化学反应的方向和限度) 一填空题: 1 反应NH4Cl(s)=HCl(g)+NH3(g)在300K时,Δr G m o=86.4kJ.mol-1,在500K时,Δr G m o=34.6kJ.mol-1,则Δr S m o为( ),Δr H m o为( )。 2 已知反应2HCl(g)=H2(g)+Cl2(g)的Δr H m o=184.6kJ.mol-1,则Δf H m o[HCl(g)]=( ) kJ.mol-1。 3 注明下列各符号的名称:H ( );Δr H m ( );Δr H m o( );Δf H m o( )。 4 影响化学反应Δr G 的主要因素有()和();利用自由能变判断过程自发性的前提条件是()。 二判断题 5 反应过程中,随着产物的生成,系统的熵值增大。 6 热等于系统的焓值。 7 等温等压且不做非体积功条件下的自发过程,一定是热力学能降低的过程。 8 标准状态下,任何温度下均不可自发进行的反应,必定是Δr H m o>0,Δr S m o<0。 9 稳定单质的Δr G m o、Δr H m o 和Δr S m o均为零。 10 热力学温度为零时,所有元素的熵为零。 11 因为ΔH=Q p,ΔU=Q V,所以Q p、Q V均是状态函数。 12 碳酸钙受热分解,是Δr S m o>0 的反应。 13 “非自发反应”就是指“不可能”实现的反应。 14 热力学能就是指储存一个物体或系统的原子或分子结构内的能量(如:动能、键能、晶格能、表面能等)。 15 Q p=ΔH,H是状态函数,所以Q p也是状态函数。 三选择题 16 下列物质中标准摩尔生成焓为零的是: A C(金刚石) B P4(白磷) C Br2(g) D O3(g) 17 某反应ΔH>0,ΔS>0,则该反应: A 高温自发,低温不自发 B 高温不自发,低温自发 C 任何温度均自发 D 任何温度均不自发 18 标准状态下,反应O3(g)=3/2O2(g),已知O3(g)的标准生成焓是142kJ.mol-1。上述反应的焓变Δr H m o应是()kJ.mol-1。 A 117 B 142 C -142 D 319 19 下列反应中Δr H m o等于AgBr(s) 的Δf H m o的是: A Ag+(aq) +Br-(aq) =AgBr(s) B 2Ag(s) +Br2(g) =2AgBr(s) C 2Ag(s) +1/2Br2(l) =AgBr(s) D Ag(s) +1/2Br2(l) =AgBr(s) 20 已知Cu2O(s) +1/2O2(g)=2CuO(s) ,Δr H m o=-146.02kJ.mol-1;CuO(s)+Cu(s)=Cu2O(s) ,Δr H m o=-11.3kJ.mol-1,则CuO(s)=Cu(s)+1/2O2(g) 的Δr H m o=( )kJ.mol-1。 A ―78.66 B ―157.32 C 314.64 D 157.32 21 下列反应在标准状态下: 反应Ⅰ:2NO2(g) =N2O4(g) ,Δr G1o=-5.8kJ.mol-1

反应烧结碳化硅陶瓷资料

碳化硅制品的全面概述 碳化硅制品是何物?如何使用碳化硅制品,我们首先要明确碳化硅的定义,然后知道碳化硅制品的组成部分,用哪些工艺?下面做些简单介绍 碳化硅是一种无机非金属材料,由于它具有高硬度、高耐磨性、高耐腐蚀性及较高的高温强度等特点,用于各种要求耐磨、耐蚀和耐高温的机械零部件中。由于材料工作者的不断努力,其性能有了很大的改进,已成为一种重要的工程材料,在机械、冶金、化工、电子等部门得到广泛的应用。 采用常压烧结方法生产碳化硅陶瓷制品,其特点是用较高的烧结温度烧结碳化硅的毛坯,使之达到较高的密度,碳化硅的含量达到98%以上。所得到的碳化硅陶瓷烧结体耐腐蚀性、抗氧化性能及高温强度均较高。在1600oC时强度不降低。因而其制品特别适合于耐磨、耐腐蚀和耐高温的场合使用,如密封环、磨介、喷砂嘴、防弹板等。 特种陶瓷主要运用到那些方面? 特种陶瓷包括各种材料制作的陶瓷制品,例如碳化硅材料生产的碳化硅制品,碳化硅密封环,氧化铝材料生产的99瓷,氧化锆材料生产的电解质等等。所以说,是应用相当广泛的,今天我讲解下应用到高端产品的特种陶瓷。 1 氧化锆材料生产的特种陶瓷 氧化锆陶瓷因其拥有较高的离子电导率,良好的化学稳定性和结构稳定性,成为研究最多、应用最为广泛的一类电解质材料。通过对氧化锆基电解质薄膜制备工艺的改进,降低此类材料的操作温度和制备成本,力争可以实现产业化也是未来研究的重要方向。 2 碳化硅材料生产的特种陶瓷 碳化硅材料是硬度高,成本低的材料,可以生产碳化硅制品,例如碳化硅密封件、碳化硅轴套、碳化硅防弹板、碳化硅异形件等,可以应用到机械密封件上和各种泵上。 在以后的发展中,特种陶瓷会应用得更加广泛,因为新型材料的不断出现,制作的特种陶瓷的功能越来越受到人们的欢迎! 当今市场上存在哪些碳化硅制品 在碳化硅制品行业中,仅仅因为其市场较大,所以涌现了很多的碳化硅制品种类,例如碳化硅密封环、碳化硅轴套、碳化硅轴、碳化硅防弹板等。 1 碳化硅密封环 碳化硅密封环主要运用到机械密封件上,动静环配套使用,外加上固定的配件就组成了机械密封件。它是密封件的核心部位,起到关键作用。 2 碳化硅轴套和轴 碳化硅轴套和轴可以用到磁力泵、高压釜上,它们相互配套使用,轴起到支撑作用,轴套密封在轴上,共同保证磁力泵等在高温下正常密封。 3 碳化硅防弹板 碳化硅防弹板是新型的产物,在国外已经很是流行。碳化硅防弹板硬度高、比重小、弹道性能好,广泛用于各种防弹车、装甲车,舰艇等防护防弹中 随着碳化硅制品的市场越来越大,客户的要求也越来越高,所以,出现的碳化硅制品种类越来越多。

反应烧结碳化硅表面改性的初步研究

第16卷 第9期 2008年9月 光学精密工程  Optics and Precision Engineering Vol.16 No.9  Sep.2008 收稿日期:2007211222;修订日期:2008201203. 基金项目:国家自然科学基金资助项目(No.60478035) 文章编号 10042924X (2008)0921603205 反应烧结碳化硅表面改性的初步研究 王彤彤1,2,高劲松1,王笑夷1,陈 红1,郑宣鸣1,范镝1,申振峰1,2 (1中国科学院长春光学精密机械与物理研究所光学技术研究中心,吉林长春130033; 2中国科学院研究生院,北京100039) 摘要:应用电子束蒸发硅,霍尔离子源电离甲烷,并辅助沉积的方法在反应烧结碳化硅(RB SiC )基底上沉积了碳化硅 (SiC ∶H )改性薄膜。X 射线衍射(XRD )测试表明制备的碳化硅改性薄膜为α相。通过控制沉积速率,制备了硬度为9.781~13.087GPa ,弹性模量为89.344~123.413GPa 的碳化硅改性薄膜。比较同样条件下镀制银膜的抛光良好微晶 玻璃和经过精细抛光的改性RB SiC ,结果表明两者反射率相近;附着力实验表明,制备的薄膜和基底结合良好;在温度冲击实验下,制备的薄膜无龟裂和脱落。 关 键 词:薄膜制备;碳化硅薄膜;表面改性;离子辅助电离;硬度和弹性模量中图分类号:O484.1;TN304.055 文献标识码:A Preliminary study of reaction bonded silicon carbide su rface modification WAN G Tong 2tong 1,2,GAO Jin 2song 1,WAN G Xiao 2yi 1,CH EN Hong 1, ZH EN G Xuan 2ming 1,FAN Di 1,SH EN Zhen 2feng 1,2 (1.O ptical Technolog y and Research Center ,Changchun I nstit ute of O ptics ,Fi ne Mechanics and Physics ,Chi nese A cadem y of S ciences ,Chan gchun 130033,Chi na; 2.Grad uate U ni versit y of Chi nese A cadem y of S ciences ,B ei j i n g 100039,Chi na ) Abstract :SiC :H surface 2modified coatings were fabricated on Reaction Bonded Silicon Carbide (RB SiC )subst rates.Silicon was evaporated by E 2beam and met hane was ionized as reactive gas by End 2Hall ion source.X 2ray Diff raction (XRD )result s show t he fabricated film is αp hase ,it s hardness and elastic modulus are in t he range of 9.781~13.087GPa and 89.344~123.413GPa ,respectively.Af 2ter surface 2modification polishing and coating silver ,t he reflectance of modified RB SiC film is close to t hat of fine polished Zerodur glass coating wit h silver.Moreover ,t he fabricated coatings to t he sub 2strate show very good adhesion and no fall 2off and cracks in t hermal impact test f rom liquid nit rogen temperat ure to boiling water temperat ure for 5cycles. K ey w ords :t hin film fabrication ;silicon carbide t hin film ;surface modification ;ion assisted ionizing ; hardness and elastic modulus

烧结过程地理论基础

烧结过程的理论基础 烧结就是将矿粉、熔剂和燃料,按一定比例进行配加,均匀的混合,借助燃料燃烧产生的高温,部分原料熔化或软化,发生一系列物理、化学反应,并形成一定量的液相,在冷却时相互粘结成块的过程。 一、烧结过程的基本原理 近代烧结生产是一种抽风烧结过程,将矿粉、燃料、熔剂等配以适量的水分,铺在烧结机的炉篦上,点火后用一定负压抽风,使烧结过程自上而下进行。通过大量的实验对正在烧结过程的台车进行断面分析,发现沿料层高度由上向下有五个带,分别为烧结矿带、燃烧带、预热带、干燥带和过湿带。 当前国外广泛采用带式抽风烧结,代表性的生产工艺流程如图3—1所示。 1、烧结五带的特征 (1)烧结矿带 在点燃后的烧结料中燃料燃烧放出大量热量的作用下,混合料熔融成液相,随着高负压抽风作用和燃烧层的下移,导致冷空气从烧结矿带通过,物料温度逐渐降低,熔融的液相被冷却凝固成网孔状的固体,这就是烧结矿带。 此带主要反应是液相凝结、矿物析晶、预热空气,此带表层强度较差,一般是返矿的主要来源。 (2)燃烧带 该带温度可达1350~1600度,此处混合料软化、熔融及液相生成,发生异常复杂的物理化学变化。该层厚度为15~50mm。此

高炉灰轧钢皮 (10~0mm ) 碎焦无烟煤 (25~0mm ) 石灰石白云石 (80~0mm ) 精矿富矿粉 (10~0mm )

图3—1 烧结生产一般工艺流程图 带对烧结产量及质量影响很大。该带过宽会影响料层透气性,导致产量低。该带过窄,烧结温度低,液相量不足,烧结矿粘结不好,导致烧结矿强度低。燃烧带宽窄主要受物料特性、燃料粒度及抽风量的影响。 (3)预热带 该带主要使下部料层加热到燃料的着火温度。一般温度为400~800度。 该带主要反应是烧结料中的结晶水及部分碳酸盐、硫酸盐分解,磁铁矿进行还原以及组分间的固相反应等。 (4)干燥带 烧结料的热废气从预热带进入下层,迅速将烧结料加热到100℃以上,因此该带主要是水分的激烈蒸发。 (5)过湿带 从烧结料点火开始,物料中的水分就开始转移到气流中去。含有水蒸气的废气经过料层冷却后,废气被冷却到露点温度,致使其中水蒸气冷凝,这部分烧结料中的水分含量超过了物料的原始水分,出现了过湿现象,这一区域成为过湿带。 该带严重影响了烧结料的透气性,破坏已造好混合料小球,最好的解决办法就是预热混合料。

化学反应过程与设备

甘肃联合大学 化学反应过程与设备复习总结 一选择题 1.阿伦尼乌斯公式:)exp(0RT E k A - = 2.气液传质基本理论是:费克定理 3.釜式反应釜上夹套的作用:加热或冷却 4.对于反应dS cR bB aA +=+,组分A 的膨胀因子δA 是:[(c+d)-(a+b)]/a 5.与平推流反应器比较进行同样的反应,全混流反应器所需要的体积大 6.某反应为放热反应,反应在时75℃才开始反应,最佳反应温度为115℃最适合的传热介质是:导热油 二.判断题 1.按反应器的结构形式,可把反应器分成釜式、管式、固定床和流化床。 ( √) 2.在间歇反应器中所有的物料反应时间相同、不存在返混。( √) 3.对于零级反应增加反应物浓度可提高反应速率 ( ×) 4.计算反应釜的理论传热面积时,应以反应开始阶段的速率为依据 ( √) 5.平推流反应器与全混流反应器均不存在返混。 ( ×) 6.反应级数应为整数。 ( ×) 7.若一化学反应为一级反应式,则λ-与c A 的一次方成正比( ×) 8.对于任一反应,其反应级数就是化学方程式中的计量数( ×) 9.就 10.管式反应器亦可进行间歇式连续操作。 ( √) 三.填空题 1.间歇反应器的生产周期包括反应时间和辅助时间 2.已知反应速率k=0.02h kmol cm ?3 ,该反应为 0 级反应 3.固定床反应器主要分为绝热式和换热式两大类。 4.搅拌釜式反应器的结构组成包括壳体,搅拌装置,轴封,换热装置。 5.搅拌的目的是加强反应器的溶液均匀混合,加强传质、传热。 6.鼓泡塔反应器的基本组成包括气体分布器、塔筒体部分、塔顶气液分离。 7.化学反应过程的技术的目标有速率、选择性、能量消耗。 8.流化床内装设内部构件的作用是破碎气体在床层中产生的大气泡、增大气固相之间的接触机会、减少返混而增加反应速率和提高转化率。 9.绝大部分催化剂的组成有哪三部分活性组分、助催化剂、载体。 三.简答题 1.什么是反应分子数?什么是反应级数,反应级数对反应速率有什么影响? 答:反应级数是指动力学方程式中浓度项的指数,它是由实验确定的常数。 反应级数的绝对值愈高,则该物料得浓度变化对反应速率的影响愈显著,如果反应级数等于零,在动力学方程式中该物料的浓度项就不出现,说明该物料浓度的变化对反应速率没有影响,如果反应级数是负值,说明该物料浓度的增加反而阻抑了反应,使反应速率下降。

碳化硅特性

碳化硅特性 碳化硅是一种人工合成的碳化物,分子式为SiC。通常是由二氧化硅和碳在通电后200 0℃以上的高温下形成的。碳化硅理论密度是3.18g/cm3,其莫氏硬度仅次于金刚石,在9.2 -9.8之间,显微硬度3300kg/mm3,由于它具有高硬度、高耐磨性、高耐腐蚀性及较高的高温强度等特点,被用于各种耐磨、耐蚀和耐高温的机械零部件,是一种新型的工程陶瓷新材料。纯碳化硅是无色透明的结晶,工业碳化硅有无色、淡黄色、浅绿色、深绿色、浅蓝色、深蓝色乃至黑色的,透明程度依次降低。磨料行业把碳化硅按色泽分为黑色碳化硅和绿色碳化硅2类。其中无色的至深绿色的都归入绿色碳化硅类,浅兰色的至黑色的则归入黑色碳化硅类。黑色和绿色这2种碳化硅的机械性能略有不同,绿色碳化硅较脆,制成的磨具富于自锐性;黑碳化硅较韧。 碳化硅结晶结构是一种典型的共价键结合的化合物,自然界几乎不存在。碳化硅晶格的基本结构单元是相互穿插的SiC4和CSi4四面体。四面体共边形成平面层,并以顶点与下一叠层四面体相连形成三维结构。SiC具有α和β两种晶型。β-SiC的晶体结构为立方晶系,Si和C分别组成面心立方晶格;α-SiC存在着4H、15R和6H等100余种多型体,其中,6H多型体为工业应用上最为普遍的一种。α-SiC是高温稳定型,β-SiC是低温稳定型。β-SiC在2100~2400℃可转变为α-SiC,β-SiC可在1450℃左右温度下由简单的硅和碳混合物制得。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β-SiC 缓慢转变成α-SiC的各种多型体。4H-SiC在2000℃左右容易生成;15R和6H多型体均需在2100℃以上的高温才易生成;对于6H-SiC,即使温度超过2200℃,也是非常稳定的。常见的SiC多形体列于下表:

反应烧结碳化硅陶瓷

反应烧结碳化硅陶瓷 碳化硅制品的全面概述 碳化硅制品是何物,如何使用碳化硅制品,我们首先要明确碳化硅的定义,然后知道碳化硅制品的组成部分,用哪些工艺,下面做些简单介绍 碳化硅是一种无机非金属材料,由于它具有高硬度、高耐磨性、高耐腐蚀性及较高的高温强度等特点,用于各种要求耐磨、耐蚀和耐高温的机械零部件中。由于材料工作者的不断努力,其性能有了很大的改进,已成为一种重要的工程材料,在机械、冶金、化工、电子等部门得到广泛的应用。 采用常压烧结方法生产碳化硅陶瓷制品,其特点是用较高的烧结温度烧结碳化硅的毛坯,使之达到较高的密度,碳化硅的含量达到,,,以上。所得到的碳化硅陶瓷烧结体耐腐蚀性、抗氧化性能及高温强度均较高。在1600oC时强度不降低。因而其制品特别适合于耐磨、耐腐蚀和耐高温的场合使用,如密封环、磨介、喷砂嘴、防弹板等。 特种陶瓷主要运用到那些方面, 特种陶瓷包括各种材料制作的陶瓷制品,例如碳化硅材料生产的碳化硅制品,碳化硅密封环,氧化铝材料生产的99瓷,氧化锆材料生产的电解质等等。所以说,是应用相当广泛的,今天我讲解下应用到高端产品的特种陶瓷。 1 氧化锆材料生产的特种陶瓷 氧化锆陶瓷因其拥有较高的离子电导率,良好的化学稳定性和结构稳定性,成为研究最多、应用最为广泛的一类电解质材料。通过对氧化锆基电解质薄膜制备工艺的改进,降低此类材料的操作温度和制备成本,力争可以实现产业化也是未来研究的重要方向。 2 碳化硅材料生产的特种陶瓷

碳化硅材料是硬度高,成本低的材料,可以生产碳化硅制品,例如碳化硅密封件、碳化硅轴套、碳化硅防弹板、碳化硅异形件等,可以应用到机械密封件上和各种泵上。 在以后的发展中,特种陶瓷会应用得更加广泛,因为新型材料的不断出现,制作的特种陶瓷的功能越来越受到人们的欢迎~ 当今市场上存在哪些碳化硅制品 在碳化硅制品行业中,仅仅因为其市场较大,所以涌现了很多的碳化硅制品种类,例如碳化硅密封环、碳化硅轴套、碳化硅轴、碳化硅防弹板等。 1 碳化硅密封环 碳化硅密封环主要运用到机械密封件上,动静环配套使用,外加上固定的配件就组成了机械密封件。它是密封件的核心部位,起到关键作用。 2 碳化硅轴套和轴 碳化硅轴套和轴可以用到磁力泵、高压釜上,它们相互配套使用,轴起到支撑作用,轴套密封在轴上,共同保证磁力泵等在高温下正常密封。 3 碳化硅防弹板 碳化硅防弹板是新型的产物,在国外已经很是流行。碳化硅防弹板硬度高、比重小、弹道性能好,广泛用于各种防弹车、装甲车,舰艇等防护防弹中随着碳化硅制品的市场越来越大,客户的要求也越来越高,所以,出现的碳化硅制品种类越来越多。 无压烧结和反应烧结的区别 无压烧结和反应烧结是碳化硅制品烧结的两种工艺,由于其烧制过程不同,因而其产品的性能也有所不同,主要突出在无压烧结碳化硅材料技术参数和反应烧结碳化硅材料技术参数。 1 烧制过程不同

相关主题
文本预览
相关文档 最新文档