当前位置:文档之家› 一株蜡状芽孢杆菌_淀粉酶产生菌株的分离鉴定及酶学性质研究

一株蜡状芽孢杆菌_淀粉酶产生菌株的分离鉴定及酶学性质研究

一株蜡状芽孢杆菌_淀粉酶产生菌株的分离鉴定及酶学性质研究
一株蜡状芽孢杆菌_淀粉酶产生菌株的分离鉴定及酶学性质研究

分离产淀粉酶的芽孢杆菌

从环境中分离产淀粉酶的芽孢杆菌 一、摘要 本文通过对土壤中细菌杀灭营养体芽孢萌发,并用由淀粉充当碳源的选择培养基培养分离,纯培养后通过镜检最后得到能产胞外淀粉酶的芽孢杆菌。 二、实验目的及要求 1、通过本实验的学习,使学生学习掌握从环境中分离产淀粉酶菌株以及菌株初步鉴定的方法; 2、巩固微生物分离纯化、细菌生理生化鉴定、染色观察等实验技能,对所学习过的微生物学实验方法进行综合技能训练; 3、培养学生综合利用微生物学、生物化学等相关知识,自行设计、实施并判断实验结果的能力。 4、要求学生根据所学知识自主设计实验方案,在实验方案通过审核后组织实施,最终要求获得产淀粉酶的菌株并对其进行初步的鉴定。 三、实验仪器设备 主要仪器:超净工作台、生化培养箱、电热干燥箱、高压蒸汽灭菌锅、水浴锅、显微镜、培养接种器具等 主要制剂:富集培养基、选择性培养基、5%的番红水溶液、卢戈氏碘液 四、实验方案设计 (一)实验原理 1、土壤中含有各种微生物,其中产胞外淀粉酶的芽孢杆菌含量在不同土壤中含量也不同,生物在适宜的的环境下生存得好,所以在淀粉厂附近的土壤中,能利用淀粉的微生物含量较高。 2、芽孢是菌体生长到一定阶段形成的一种抗逆性很强的休眠体结构,芽孢最主要的特点就是抗性强,对高温、紫外线、干燥、电离辐射和很多有毒的化学物质都有很强的抗性。它帮助菌体度过不良环境,在适宜的条件下可以重新转变成为营养态细胞。 3、在只用淀粉充当碳源的选择培养基中,只有能产保外淀粉酶利用淀粉的的菌体能成为优势菌种。在淀粉选择培养基中,产胞外淀粉酶的菌种可以得到富集及分离。 4、菌体可经简单染色后在显微镜下被判断出是否为杆菌 5、在含有淀粉鉴定培养基的平板上,具有产淀粉酶能力的芽孢杆菌,水解淀粉生成小分子糊精和葡萄糖,在淀粉平板上菌落周围出现水解圈,但肉眼不易分辨,滴加碘液,未水解的淀粉呈蓝色,水解圈无色

枯草芽孢杆菌产淀粉酶试验要点

枯草芽孢杆菌产α-淀粉酶发酵试验 化学与生命科学学院 摘要:以枯草芽孢杆菌(BacilusSubtilisBF—7658)为实验菌株,通过种子扩大培养,选出生长力旺盛的菌株进行液体摇瓶发酵。通过测定不同发酵时间生产的酶活,来初步估计发酵最佳时期和终点。 关键词:枯草芽孢杆菌,α-淀粉酶,液体摇瓶发酵,酶活 淀粉酶是能够分解淀粉糖苷键的一类酶的总称,包括α-淀粉酶、β-淀粉酶、糖化酶和异淀粉酶。芽孢杆菌主要用来产生α-淀粉酶和异淀粉酶,其中α-淀粉酶又称淀粉1,4-糊精酶,能够切开淀粉链内部的α-1,4-糖苷键,将淀粉水解为麦芽糖、含有6 个葡萄糖单位的寡糖和带有支链的寡糖;而异淀粉酶又称淀粉α-1,6-葡萄糖苷酶、分枝酶,此酶作用于支链淀粉分子分枝点处的α-1,6-糖苷键,将支链淀粉的整个侧链切下变成直链淀粉。通过发酵实验,我们可以以酶活为依据,初步估计发酵的最佳时期和发酵终点。 实验材料和方法 一、实验材料: (一)实验菌株:以枯草芽孢杆菌(BacilusSubtilisBF—7658) (二)培养基: 1、种子培养液 葡萄糖 1% Tryptone(胰蛋白胨):1%, Yeast Extract(酵母提取物):0.5%, NaCl(氯化钠):1% 调pH7.2 若配置固体培养基,则再加入1.5% 琼脂。 2、产淀粉酶发酵培养液 玉米粉 2 .0 % 黄豆饼粉1 .5% CaCl 2 0 .02 % MgSO4 0 .02% NaCl 0 .25% K2HPO4 0 .2% 柠檬酸钠0 .2% 硫酸铵0 .075% Na2HPO4 0 .2 % 调节pH 值7 .0

微生物综合试验——产淀粉酶细菌菌株的筛选和培育

产淀粉酶细菌菌株的筛选和选育 邢大鹏 (合肥工业大学生物与食品工程学院2008级食品科学与工程专业08-1班) 摘要:从合肥工业大学校园内的土壤中筛选到一株产淀粉酶的细菌菌株。形态及生理生化特征测定结果表明,菌株与芽孢杆菌属(Bacillaceae)中的枯草芽孢杆菌(BacillussubtilisCohn)种的特征基本一致。然后利用划线分离法和富集培养制备一定量的枯草芽孢杆菌,最后利用DNS法测定其产酶活力。 关键词:淀粉酶,产酶,细菌,枯草芽孢杆菌 Amylase production screening and selection of bacteria strains Xing Dapeng Abstract: From the Hefei University of Technology campus in the A strain of soil amylase producing bacteria strains. Morphological, physiological and biochemical characteristics of test showed that, strains and Bacillus (Bacillaceae) in Bacillus subtilis (BacillussubtilisCohn) basically the same kinds of characteristics. Then use the train crossed separation and enrichment of preparation of certain bacillus subtilis, finally, using the DNS method for determining the enzyme production vigor. Key words: amylase, enzyme production, bacteria,Bacillus,stubtilis. 芽孢杆菌是人类发现最早的细菌之一。早在1835年,Ehrenberg所描述的“Vibriosubtilis”即是现在大家熟悉的“枯草芽孢杆菌”,它是由Cohn于1872年正式命名的,现作为芽孢杆菌属(Bacillaceae)的模式菌株[1]。从生物学特性来讲,枯草芽孢杆菌具有典型的芽孢杆菌特征,其细胞呈直杆状,大小(0.8-1.2)μm×(1.5-4.0)μm,单个,革兰氏染色阳性,着色均匀,可产荚膜,运动(周生鞭毛);芽孢中生或近中生,小于或等于细胞宽,呈椭圆至圆柱状;菌落粗糙,不透明,扩张,污白色或微带黄色;能液化明胶,胨化牛奶,还原硝酸盐,水解淀粉,为典型好氧菌[2]。 1997年,Kunst F.等人首先完成了枯草芽孢杆菌的完整基因组序列测定,并将结果发表在《Nature》杂志上[3]。

实验六十淀粉酶产生菌株的筛选

实验六十淀粉酶产生菌株的筛选 实验项目性质:设计性 所涉及的知识点:无菌技术、富集培养、纯种分离、淀粉酶性质、酶活测定 计划学时:8学时 一、实验目的 1.掌握从环境中采集样品并从中分离纯化某种微生物的完整操作步骤。 2.巩固以前所学的微生物学实验技术。 3.掌握产酶微生物筛选的方法。 二、实验原理 α-淀粉酶是一种液化型淀粉酶,它的产生菌芽孢杆菌,广泛分布于自然界,尤其是在含有淀粉类物质的土壤等样品中。从自然界筛选菌种的具体做法,大致可以分成以下四个步骤:采样、增殖培养、纯种分离和性能测定。 1、采样:即采集含菌的样品 采集含菌样品前应调查研究一下自己打算筛选的微生物在哪些地方分布最多,然后才可着手做各项具体工作。在土壤中几乎各种微生物都可以找到,因而土壤可说是微生物的大本营。在土壤中,数量最多的当推细菌,其次是放线菌,第三霉菌,酵母菌最少。除土壤以外,其他各类物体上都有相应的占优势生长的微生物。例如枯枝、烂叶、腐土和朽木中纤维素分解菌较多,厨房土壤、面粉加工厂和菜园土壤中淀粉的分解菌较多,果实、蜜饯表面酵母菌较多;蔬菜牛奶中乳酸菌较多,油田、炼油厂附近的土壤中石油分解菌较多等。 2、增殖培养(又称丰富培养) 增殖培养就是在所采集的土壤等含菌样品中加入某些物质,并创造一些有利于待分离微生物生长的其他条件,使能分解利用这类物质的微生物大量繁殖,从而便于我们从其中分离到这类微生物。因此,增殖培养事实上是选择性培养基的一种实际应用。 3、纯种分离 在生产实践中,一般都应用纯种微生物进行生产。通过上述的增殖培养只能说我们要分离的微生物从数量上的劣势转变为优势,从而提高了筛选的效率,但是要得到纯种微生物就必须进行纯种分离。纯种分离的方法很多,主要有:平板划线分离法、稀释分离法、单孢子或单细胞分离法、菌丝尖端切割法等。 4、性能测定 分离得到纯种这只是选种工作的第一步。所分得的纯种是否具有生产上所要求的性能,还必须要进行性能测定后才能决定取舍。性能测定的方法分初筛和复筛两种。 初筛一般在培养皿上根据选择性培养基的原理进行。例如要测定淀粉酶的活力可以把斜面上各个菌株一一点种在含有淀粉的培养基表面,经过培养后测定透明圈与菌落直径的比值大小来衡量淀粉酶活力的高低。 复筛是在初筛的基础上做比较精细的测定。一般是将微生物培养在三角瓶中作摇瓶培养,然后对培养液进行分析测定。在摇瓶培养中,微生物得到充分的空气,在培养液中分布均匀,因此和发酵罐的条件比较接近,这样,测得的结果更具有实际的意义。 三、实验用品 1.器材 (1)小铁铲和无菌纸或袋。

酶学性质研究

1.6 酶学性质研究 (1)pH 的影响:分别测定粗酶液在pH3.0、4.0、5.0、6.0、7.0、8.0下的酶活力,确定其最适反应pH 值;将粗酶液用上述pH 缓冲液稀释后,45℃水浴保温4小时后,测定其剩余酶活力。 (2)温度的影响:分别在40~95℃下测定酶活力,确定其最适反应温度;将酶液在40~90℃范围内的不同温度下保温60 min 后,测定其剩余酶活力。 (3)金属离子的影响:在酶液中分别添加各种金属离子,使其浓度为4 mmol /L ,然后测定酶活力。 2.5 纤维素酶粗酶液酶学性质 2.5.1酶反应的最适pH 值和酶的pH 稳定性 粗酶液在不同pH 值下测得的酶活及在不同pH 值下处理4小时后测得的相对酶活示于图11。结果表明,CMCase 在pH 3.5~4.5有较高的酶活力,最适反应pH 值为4.0;β-Gluase 在pH 4.5~5.5酶活力较高,最适反应pH 值为5.0,同样方法测得FPA 最适反应pH 为5.0。可见,该菌株所产的各组分纤维素酶是酸性酶。 图11表明,该菌产CMCase 在pH3.0~6.0的范围内,β-Gluase 在pH3.5~5.5的范围内,酶活力均可保持在80%以上,说明该菌株所产酸性纤维素酶可在较宽的pH 值范围内保持其酶活力的稳定性。2.5.2 酶反应的最适温度和酶的热稳定性 在不同温度下直接进行酶促反应测得的酶活及在不同温度下热处理60 min 后于最适反应温度和最适pH 下测得的相对酶活(以4℃保存的酶液活力为100%)示于图12。结果表明,CMCase 、β-Gluase 及FPA 最适反应温度均为65℃。 c e l l u l a s e a c t i v i t y ( U .m l -1) pH r e l a t i v e y a c t i v i t y (%) c e l l u l a s e a c t i v i t y ( U .m l -1) temperature ( o C ) r e l a t i v e y a c t i v i t y (%) 图11 pH 值对酶活力及酶稳定性的影响 Fig.10 Effects of pH value on Cellulase activity and stability 图12 温度对酶活力及酶稳定性的影响 Fig.11 Effects of temperature on activity and stability of cellulase

耐高温_淀粉酶的酶学性质研究

3结 论 植物乳杆菌素L-1经硫酸铵沉淀,透析除盐后效价达1280AU/ml,作用方式为杀菌。在7、15、30、37℃下,添加植物乳杆菌素L-1对单增李斯特菌都有一定的抑制作用。7℃下该细菌素在144h内控制住初始菌数,温度较高的情况下则可以在短时间内迅速降低活菌数。在选用的六种pH下,pH7.0时植物乳杆菌素L-1的抑菌效果最好。不论在培养基中还是pH7.0,5mmol/L的磷酸缓冲液中,盐对该细菌素具有一定的拮抗作用,各盐分之间和同种盐不同浓度之间差异不显著。有关吸附作用的研究发现:低pH(5.0~5.5)下,植物乳杆菌素L-1不能吸附在单核细胞增生李斯特氏菌上,而pH6.0~7.5下有50%吸附在指示菌上。盐对该细菌素吸附单核细胞增生李斯特氏菌没有显著影响。 参考文献: [1] 吕燕妮, 李平兰, 江志杰. 乳酸菌31-1菌株产细菌素的初步研究[J]. 中国食品学报, 2003, 增刊: 130-133. [2]郁庆福, 蔡宏道, 何晓青, 等. 现代卫生微生物学[M]. 北京: 人民卫生出版社, 1995. 116-117. [3] Sophie M P, Emilia F, Richard J. Purification, Partial characterizationand mode of action of enterococcin EFS2, an antilisterial bacteriocinproduced by a strain of Enterococcus faecalis isolation from a cheese[J].International Journal of Food Microbiology, 1996, 30: 255-270. [4] Atrih A, Rekhif N, Moir A J G, et al. Detection and characterization of abacteriocin produced by Lactobacillus plantarum C19[J]. CanadanJournal of Microbiology, 1993, 39: 1173-1179. [5] Atrih A, Rekhif N, Moir A J G, et al. Mode of action,purification andamino acid sequence of plantaricin C19, an anti-Listera bacteriocin pro-duced by Lactobacillus plantarum C19[J]. International Journal of FoodMicrobiology, 2001, 68: 93-104. [6] Rongguang Y, Monty C J, Bibek R. Novel method to extract largeamounts of bacteriocins from lactic acid bacteria[J]. Applied and Envi-ronment Microbiology, 1992, 58: 3355-3359. [7]还连栋, 贾士芳, 庄增辉, 等. 乳链菌肽(NISIN)的杀菌作用机制[J].中国食品添加剂, 1997, (4): 20-23. [8] S Todorov, B Onno, O Sorokine, et al. Detection and characterization ofa novel antibacterial substance produced by Lactobacillus plantarumST 31 isolated from sourdough[J]. Int J Food Microbiol, 1999, 48: 167-177. 收稿日期:2005-01-21 作者简介:毕金峰(1970-),男,副教授,博士后,主要从事食品化学与生物技术研究。 耐高温α-淀粉酶的酶学性质研究 毕金峰1,董福奎2 (1.中国农业科学院农产品加工研究所 农业部农业核技术与农产品加工重点实验室,北京 100094; 2.内蒙古呼和浩特市赛罕区蔬菜技术推广站,内蒙古 呼和浩特 010020) 摘 要:耐高温α-淀粉酶是淀粉生产麦芽糖的关键酶。本文对两种耐高温α-淀粉酶的酶学性质进行了对比研究。结果表明:两种酶的耐高温能力差别较大,酶活差别明显;最适pH值均为7.0,耐酸性较差;当Ca2+浓度在7~9mmol/L时,酶活提高明显。关键词:耐高温α-淀粉酶;性质 Studies on Enzyme Properties of Heat-resisting α-amylase BI Jin-feng1,DONG Fu-kui2 (1.Institute of Agro-Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agricultural Nuclear Technology and Agro-Food Processing, MOA, Beijing 100094, China;2.Vegetable Technology Popularize Station of Saihan District in Huhehaote City, Huhehaote 010020, China) Abstract :Heat-resisting α-amylase is a critical enzyme for producing maltose. Enzyme properties of two species of heat-resistingα-amylases were studied. The results were as follows: the heat-resisting ability for two species of enzymes was different,and there was an evident difference in enzyme activity. The optimum pH was 7.0, and the acid-resisting ability was poor. The

枯草杆菌生产_淀粉酶的研究

10 科技创新导报 Science and Technology Innovation Herald 2010 NO.29 Science and Technology Innovation Herald 研 究 报 告 科技创新导报α-淀粉酶是在淀粉加工、食品工业、医药工业、发酵工业及酿造、制糖和纺织工业上应用广泛的酶种,也是目前国内外应用最广、产量最大的酶种之一。α-淀粉酶一般可由微生物发酵产生,也可由植物和动物提取。 目前,工业生产上都以微生物发酵法为主进行大规模生产α-淀粉酶。我国从1965年开始应用枯草芽孢杆菌(Bcaillussubtilis)BF-7658生产α-淀粉酶,当时仅无锡酶制厂独家生产,年产量为10.22吨。现在国内生产酶制剂的厂家己发展到上千个,其中约有40%~50%的工厂生产α-淀粉酶。总产量上万吨。 近年来,国外生产耐热α-淀粉酶发展较快,己从嗜热真菌、高温放线菌、特别是从嗜热细菌(嗜热脂肪芽孢杆菌B.stearothermophilust和地衣芽孢杆菌B.licheniformus等)中分离得到了耐高温的α-淀粉酶菌种。但就国内而言,虽己开展了耐高温α-淀粉酶的研究工作,目前仍以枯草杆菌菌株生产α-淀粉酶为主。 本文就枯草杆菌在淀粉培养基上产 α-淀粉酶做一下研究,其对在以玉米(淀粉含量为70%~75%)或大米(淀粉含量为80%~85%)主要原料的发酵酿酒过程,具有实际的指导意义。 1 材料和方法 1.1实验材料 1.1.1菌种 枯草芽孢杆菌(Bacillussubtilis)为实验室保藏菌种。 1.1.2种子培养基 马铃薯固体(及液体)培养基(简称PDA,马铃薯200g、蔗糖20g、琼脂15g、水1000ml、PH自然,马铃薯去皮,切成块煮沸30min,然后用纱布过滤,再加糖及琼脂,溶化后补足水至1000ml。121℃灭菌30min) 1.1.3发酵培养基 淀粉液体培养基(可溶性淀粉、蒸馏水、pH自然。121℃灭菌30min) 1.2实验方法 1.2.1菌种激活 枯草芽孢杆菌在马铃薯固体培养基(简称PDA)上37℃培养12h后使用 1.2.2液体种子的制备 100mL三角瓶装50mL马铃薯液体培养基(起始PH为自然PH),灭菌后接激活菌种悬液1.5mL,培养36h。 1.2.3发酵培养 在各淀粉液态培养基中加1.5mL液体种子,用电热恒温振荡培养箱培养枯草芽孢杆菌(Bacillus subtilis)。 1.2.4分析方法 酶活力测定,根据国家标准局发布的方法进行①。即1mL酶液于60℃,PH4.8条件下,1小时液化1g可溶性淀粉为1个活力单位。[①国家标准局颁布,GB8275-87,1988-02-01实施] 2 实验结果与讨论 (1)培养温度对菌体生长和产酶的影响在不同温度下用电热恒温振荡培养箱(天津产SH6000A型)在23℃至44℃范围内培养枯草芽孢杆菌(Bacillus subtilis),36h后测定α-淀粉酶活力。结果示于表1。菌体生长和产酶的最适温度均在37℃。温度高于44℃菌体生长和酶活力迅速下降。 (2)培养基对菌体生长和产酶的影响,同在最适温度37℃下,相同的接种量、相同的种龄的枯草杆菌,比较不同比例的淀粉液体培养基产α-淀粉酶,结果见表2测定产α-淀粉酶的最适培养基为:淀粉∶水=75∶100。 (3)培养时间对产酶的影响,在最适温度37℃下,相同的接种量,淀粉与水的比例为:75∶100时1(最适产α-淀粉酶的淀粉液体培养基),测定枯草杆菌产α-淀粉酶最适培养时间为36h。 3 结论 α-淀粉酶是产量在,用途广的酶制剂 品种之一,我国目前枯草杆菌α-淀粉酶是主要品种之一,在行业应用具有重要价值。本实验采用枯草杆菌在淀粉液态培养基上产α-淀粉酶,其研究结果对以玉米或大米为主要原料的发酵造酒具有指导意义。1)在23℃至44℃范围内,振荡培养,起始PH为自然PH,产α-淀粉酶最适培养条件:培养温度37℃。2)在温度37℃下,用淀粉液体培养基发酵,当淀粉与水的比例为75∶100时,产α-淀粉酶酶活力最高。3)在最适温度37℃,淀粉与水的比例为75∶100(即产酶最高的淀粉液体培养基)时,最佳培养时间为12h,此时α-淀粉酶活力最高。 参考文献 [1]沈萍,范秀容,李广武.微生物学实验. 北京:高等教育出版社,2000.[2]臧明玺,姜延程,李廷生.发酵助剂提高 枯草杆菌α-淀粉酶的活性研究.郑州粮食学院学报,1997. [3]钟穗生等.枯草杆菌α-淀粉酶的活性 研究.太原工业大学学报,1997. 枯草杆菌生产α-淀粉酶的研究 哈申吐力古尔 (内蒙古通辽职业学院 通辽 028045) 摘 要:以枯草杆菌(Bacillus subtilis BF7658)为实验菌株,以淀粉为主要原料,采用液态培养基摇瓶发酵,生产α-淀粉酶。结果表明:①在23℃至44℃内,培养基起始PH为自然PH,产酶最适培养温度为:37℃②枯草杆菌在淀粉液态培养基中37℃,振荡培养,其产酶最适淀粉水组成为:淀粉∶水=75∶100;③在最适温度37℃下,淀粉∶水=75∶100时,最适培养时间为36h。关键词:α-淀粉酶 枯草杆菌 淀粉液体培养基中图分类号:R313文献标识 码:A 文章编号:1674-098X(2010)10(b)-0010-01 表1 不同温度下所测糖度值 表2 不同培养基对枯草杆菌产α-淀粉酶的影响

实验一 淀粉酶产生菌的筛选

实验一淀粉酶产生菌的筛选 一、实验要求: 1、写出完整的分离纯化淀粉酶产生菌的实验步骤; 2、写出分离培养基及其相关试剂所需的量、仪器、器皿所需的量; 3、掌握从土壤分离酵母菌的方法和技术,从样品中分离出所需菌株; 4、学习并掌握平板倾注法和斜面接种技术,了解培养淀粉酶产生菌的培养 条件和培养时间。 二、实验原理:用梯度稀释法来分离淀粉酶产生菌 三、实验材料: 1.培养皿、移液管、刮铲、显微镜等, 2.可选取厨房土壤、面粉加工厂和菜园土壤 ; 3.培养基与试剂 :牛肉膏、蛋白胨、NaCl 、可溶性淀粉、蒸馏水、琼脂粉。 四、实验步骤: 1、选定采土点后,铲去表土层2-3cm,取3-10cm深层土壤5g,装入灭过 菌的牛皮纸袋内,封好袋口,并记录取样地点、环境及日期。土样采集后应及时分离,凡不能立即分离的样品,应保存在低温、干燥条件下,尽量减少其中菌相的变化。 2、培养基的配置,(1) 分离培养基采用牛肉膏蛋白胨固体培养基加0.2%可溶性淀 粉 即牛肉膏3g、蛋白胨10g、NaCl 5g、可溶性淀粉2g溶于1000mL蒸馏水中再加入15g琼脂粉 pH调至7.2 121℃灭菌15min 待冷却至50℃左右时 于超净工作台倒平板。注: 先将可溶性淀粉加少量蒸馏水调成糊状 再加到溶化好的培养基中 调匀; (2) 分离培养基液体培养基采用牛肉膏蛋白胨固体培养基加0.2%可溶性淀粉,即牛肉膏3g、蛋白胨10g、NaCl 5g、可溶性淀粉2g溶于1000mL蒸馏水中 pH调至7.2,121℃灭菌15min。 3、取所采的土样5g加入到三角瓶中,加入无菌水45mL,30℃摇床振荡30min制成土 壤悬液 ,此时的稀释度为10-1。另取7支试管 分别记作10-2、10-3、10-4、10-5、10-6、10-7、10-8共8个梯度 每支试管内加入9mL无菌水。用无菌移液管从三角瓶中吸取1mL土壤悬液加入到10-2试管中混匀, 再从此试管中吸取1mL加入到10-2试管中, 依此类推直至10-7试管。分别从10-6、10-7、10-8三个稀释度的试管中吸取100uL悬液, 均匀涂布于分离培养基平板上, 于27℃培养1-2天,等长出菌落后, 将检测试剂卢戈氏碘液加入到平板中, 菌落周围形成水解圈的菌株即是产淀粉酶的菌株, 因淀粉遇碘变蓝色 ,如菌落周围有无色圈说明该菌能分解淀粉。将水解圈直径与菌落直径之比较大菌株,即产酶能力较强的菌株的进行编号。 4、纯化; 将保存的菌株用接种环沾取少量培养物至平板上, 并进行2-3次划线分离, 挑取单菌落至平板上, 培养后观察菌苔生长情况并镜检验证为纯培养。将纯化后产酶能力较强菌株保存至斜面培养基中培养.

实验 酶学性质研究

实验四酶学性质研究 一、实验目的 1、了解pH、温度、金属离子对酶的活性的影响机理; 2、掌握如何选择酶催化反应的最适pH、温度和获得最适pH条件的确定、以及Km常数的测定。 二、实验原理 酶促反应速度受介质pH的影响,一种酶在几种pH介质中测其活力,可看到在某一pH时酶促效率最高,这个pH称为该酶的最适pH。pH影响酶分子的活性部位的解离,另外,也影响底物的解离状态,从而影响酶活性中心的结合与底物或催化。其次,有关基团解离状态的改变影响酶的空间构象,甚至会使酶变性。酶的最适pH不是酶的特征性常数,如缓冲液的种类与浓度,底物浓度等均可改变酶作用的最适pH。 在一定温度范围内,酶促反应速率随温度的升高而加快;但当温度高到一定限度时,酶促反应速率不仅不再加快反而随着温度的升高而下降,最终,酶因高温变性失去活性,失去了催化能力。在一定条件下,每一种酶在某一温度时活力最大,这个温度称为这种酶的最适温度 在进行酶学研究时一般都要制作一条pH与酶活性的关系曲线,即保持其他条件恒定,在不同pH条件下测定酶促反应速度,以pH值为横坐标,反应速度为纵坐标作图。由此曲线,不仅可以了解反应速度随pH值变化的情况,而且可以求得酶的最适pH。最适温度的实验方法和pH类似。 酶促动力学研究酶促反应的速度及影响速度的各种因素,而米氏常数K m值等于酶促反应速度为最大速度一般时所对应的底物浓度,其值大小与酶的浓度无关,是酶促反应的特征常数。不同酶的K m值不同,同一种酶与不同的底物反应

时,其Km值也不同,Km值反映了酶和底物亲和力的强弱程度,Km值越大,表明酶和底物的亲和力越弱;Km值越小,表明酶与底物的亲和力越强。 酶的活力就是酶所催活的反应速度,通常用单位时间内底物的减少或产物的增加来表示。酶反应过程中产物的生成和时间的关系可以用进程曲线来说明,曲线的斜率就是酶反应过程中的反应速度。从进程曲线来看,在一定时间内反应速度维持恒定,但随着时间的延长,反应速度逐渐降低,这是由多种因素造成的。所以,为了准确表示酶的反应速度必须采用初速度,即保持恒定时的速度。同样,不同酶浓度下的反应进程曲线也可以说明这个问题。V=Vmax[S]/Km+[S],Vmax 指该酶促反应的最大速度,[S]为底物浓度,Km是米氏常数,V是在某一底物浓度时相应的反应速度。双倒数作图(将米氏方程两边取倒数,可转化为下列形式:1/V=Km/Vmax.1/[S]+1/Vmax,可知,1/V对1/[S]的作图得一直线,其斜率是Km/V,在纵轴上的截距为1/Vmax,横轴上的截距为-1/Km。此作图除用来求Km和Vmax值外,在研究酶的抑制作用方面还有重要价值 三、实验器材与试剂 1、试剂:磷酸二氢钠、柠檬酸、ABTS、酸性靛蓝。 2、器材:可见分光光度计、恒温水浴锅、试管、酸度计 四、操作步骤 1、配置缓冲溶液 按下表配置缓冲溶液,其溶液pH值以酸度计测定值为准。

萌发小麦种子中淀粉酶酶学性质研究解析

萌发小麦种子中淀粉酶酶学性质研究(东北农业大学,生命科学学院,黑龙江省哈尔滨市 150030) 摘要: 酶是酶是一种生物催化剂,它具有催化剂属性,同是也具有一些无机催化剂所不具有的特性。催化特定化学反应的蛋白质、RNA或其复合体。是生物催化剂,能通过降低反应的活化能加快反应速度,但不改变反应的平衡点。本实验通过利用淀粉酶水解还原糖,还原糖能使3,5-二硝基水杨酸还原,生成棕色的3-氨基-5硝基水杨酸。淀粉酶活力与还原糖的量成正比,用比色法测定淀粉酶作用于淀粉后生成的还原糖的量,以单位质量样品在一定时间内生成还原糖的量表示酶活力。以淀粉在碘液中显蓝色性质,探究酶活性影响因素,常见的影响因素有:温度 pH 活性剂和抑制剂等。 Abstract:Enzyme is a biological catalyst is an enzyme, the catalyst having the property, the same also has some inorganic catalysts do not have the characteristics. Proteins catalyze specific chemical reactions,RNA or a composite thereof. Are biological catalysts,by reducing the activation energy of the reaction to accelerate the reaction rate, but does not change the equilibrium reaction. In this study, the use of enzymatic hydrolysis of starch sugar, sugar makes 3,5-dinitrosalicylic acid reduction ,a brown 3-amino-nitro-salicylic acid.Proportional to the amount of amylase activity and reducing sugars,measuring the amount of amylase in starch sugar produced by colorimetry ,a unit mass of the sample at the certain time. 关键词: 淀粉酶活性温度 PH 激活剂和抑制剂 引言: 新陈代谢是生命活动的基础,是生命活动最重要的特征。而构成新陈代谢的许多复杂而有规律的物质变化与能量变化,都是在酶催化下进行的。生物的生长发育、繁殖、遗传、运动、神经传导等生命活动都与酶的催化过程紧密相关,可以说,没有酶的参与,生命活动一刻也不能进行。酶是细胞产生的,受多种因素调节控制的具有催化能力的生物催化剂,与一般催化剂比较有以下不同点:酶易失活、酶具有很高的催化效率、酶具有高度专一性、酶活性受到调节和控制。而调节和控制又包括调节酶浓度、抑制剂和激活剂的调节等。[1] 按照淀粉酶水解淀粉的作用方式,可以分为α-淀粉酶、β-淀粉酶、异淀粉酶和麦芽糖酶四种类型。实验证明,当谷类种子萌发时,两类淀粉酶(α,β型)都存在,淀粉酶总酶活性随种子萌发将升高,有利于淀粉被降解为植物生长发育所需的葡萄糖。许多微生物包括

产淀粉酶芽孢杆菌分离与酶活力测定

产淀粉酶芽孢杆菌的分离、纯化并发酵测定淀粉酶活力杨敏仪,罗桂莲,关婷婷,黄真梅,肖维兴,梁妃法 注明:蓝色字体是已修改的 一、实验目的 1、掌握分离鉴定产淀粉酶微生物的方法; 2、掌握测定酶活力的方法; 3、培养自行设计、实施实验的能力。 二、实验原理 1、土壤中含有各种微生物,其中产淀粉酶的枯草芽孢杆菌含量在不同土壤中含量也不同,因此实验前进行预埋工作,能使土壤中产淀粉酶的细菌含量增加。待实验前取样即可。 2、在只用淀粉充当碳源的选择培养基中,只有能产生淀粉酶利用淀粉的菌体能成为优势菌种。在淀粉选择培养基中,产淀粉酶的菌种可以得到富集及分离。 3、菌体可经革兰氏染色后在显微镜下被判断出是否为枯草芽孢杆菌。 4、在含有淀粉的鉴别培养基上的平板上,具有产淀粉酶能力的枯草芽孢杆菌,水解淀粉生成小分子糊精和葡萄糖,在淀粉平板上菌落周围出现水解圈,但肉眼不易分辨,滴加碘液,未水解的淀粉呈蓝色,水解圈无色。 三、实验材料 1、土壤样品 湛师弘志苑后面的花圃,实验前一周在距土壤表层5—8厘米左右处填埋馒头,实验前一天用塑料袋在预埋处取样。 2、培养基 淀粉培养基:可溶性淀粉1%,蛋白胨1%,葡萄糖0.5%,氯化钠0.5%,牛肉膏0.5%,琼脂粉2.0%,pH7,配制300ml 种子培养基:牛肉膏0.5%,蛋白胨1%,氯化钠0.5%,可溶性淀粉0.5%,琼脂粉2.0%,pH7,配制300ml

发酵培养基:玉米粉 2% ,黄豆饼粉1.5 %, CaCl20.02% , MgSO40.02 %, NaCl 0.25 %, K2HPO4 0.2 %,柠檬酸钠0.5 % ,硫酸 氨0.075(溶解后),Na2HPO4 0.2% ,校正pH7.0,发酵培养 条件为:温度37℃,装液100ml/250ml,配制200 ml 3、试剂 草酸铵结晶紫染液,95%乙醇,番红水溶液、卢戈氏碘液 4、玻璃器皿 锥形瓶(250mL)3个,培养皿40个,涂布棒1根,移液管(1mL) 10根,试管15根,烧杯(250mL)5个,盖玻片、载玻片若干,5、其他仪器及设备: 天平,pH试纸,棉花,牛皮纸,玻璃珠,超净工作台,生化培 养箱,电热干燥箱,高压蒸汽灭菌锅,水浴锅,显微镜,接种 环等 四、实验步骤 1、样本采集 ①在预埋处采取土样用塑料袋装好,不要损坏土壤的内部结构。 ②取12.5g土壤加入250ml烧杯中,再加入112ml去离子水制成土壤混悬液,加入一小层玻璃珠。在锥形瓶中加入2g的可溶性淀粉,蛋白胨0.625g,NaCL0.625g,调节PH值为7.0—7.2。在37℃摇床培养箱中培养两天,使菌体富集且产生大量芽孢。 在85℃-90℃水浴锅中加热10分钟,杀灭菌体,使芽孢得到富集。 3、初筛 将富集得到的菌体液静置5分钟,然后进行浓度梯度稀释到10-6,分别在10-1 、10-2、10-3、10-4、10-5、10-6浓度下各取1mL均匀涂布在淀粉培养基上,培养皿放入37℃培养箱中培养24小时。取出培养好的平皿在长出的菌落上滴加碘液,菌落周围如有无色透明圈出现,说明淀粉被水解,即该菌株能产生淀粉酶。 4、划线分离 从初筛所得的菌落中选择菌落周围透明圈和菌落直径之比值较大的菌落,进行划线分离。将于种子培养基上划线后,再将培养皿放入37℃培养箱中培养24小时。 5、镜检 挑取一个较好的单个菌落,通过革兰氏染色制片观察,判别所选菌

从土壤中分离产淀粉酶的芽孢杆菌实验方案解析

土壤中产淀粉酶芽胞杆菌的筛选及其淀粉酶活力的测定设计性实验方案 一、综述: 淀粉酶是淀粉降解酶。它们广泛存在于微生物、植物和动物体中。它们将淀粉及相关的聚合物分解为带有具体淀粉分解酶特征的产品。淀粉酶广泛存在于动植物和微生物中,是最早用于工业生产并且迄今仍是用途最广、产量最大的酶制剂产品之一。淀粉酶种类繁多,特点各异,可应用于造纸、印染、酿造、果汁和食品加工、医药、洗涤剂、工业副产品及废料的处理、青贮饲料及微生态制剂]等多种领域。在酿造发酵工业如酒精生产、啤酒制造、发酵原料液化及糖化工艺过程中均有重要价值,如添加淀粉酶分布非常广泛,是人们经常研 【】究的一种酶。从纺织工业到废水处理,这些酶都有不同规模的应用1。 常见产淀粉酶的主要为芽孢杆菌属。其中的常见产淀粉酶的芽孢杆菌菌种有:地衣芽 【】【】孢杆菌、枯草芽孢杆菌、蜡样芽孢杆菌和纳豆芽孢杆菌2、凝结芽孢3。由于芽孢杆菌属 是一类好氧或兼性厌氧、产生抗逆性内生抱子的杆状细菌,许多为腐生菌,主要分布于土壤【】和植物体表面及水体中4。所以此次实验从土壤中分离产淀粉酶的芽孢杆菌。 二、实验目的要求 1.了解生物分离提纯的原理和方法技术 2.掌握从土壤中筛选产淀粉酶菌株的原理和方法 3.掌握微生物摇瓶培养方法及淀粉酶活力测定的原理和方法 4.培养学生的综合应用微生物实验方法的能力 5.培养学生自行设计实验流程、综合分析问题解决问题和判断实验结果的能力。 三、实验原理 自然界中,土壤是微生物生活最适宜的环境。土壤具有微生物进行生长繁殖和生命活动中所需的各种条件。 土壤中微生物的数量因土壤类型、季节、土层深度与层次等不同而异。一般地说,在土壤表面,由于日光照射及干燥等因素的影响,微生物不易生存,离地表10 cm~30 cm的 【】土层中菌数最多,随土层加深,菌的数量减少5。 从混杂微生物群体中获得只含有某一种或某一株微生物的过程称为微生物分离与纯化。平板分离法普遍用于微生物的分离与纯化。其基本原理是选择适合与待分离微生物的生长条件,如营养成分、酸碱度、温度和氧等要求,或加入某种抑制剂造成只利于该微生物生长,而抑制其他微生物生长的环境,从而淘汰一些不需要的微生物。

淀粉酶产生菌的筛选

实验一淀粉酶产生菌的筛选 及酶活力测定 指导老师:辛树权 生命科学学院08级生物技术(三)班豆豆 同组人:xx xxx 摘要:自然界是微生物的大本营,实验室微生物几乎都是从自然界中选育出来的。我们从学校的花坛中采集一些土壤样本,拿到实验室中,进行淀粉产生菌的筛选。利用土壤制成菌液,将其涂抹在牛肉膏蛋白胨培养基上进行纯化,再用淀粉培养基培养,最后通过淀粉透明圈的大小来判断淀粉产生菌产淀粉的能力。再使用分光光度计精确测量淀粉酶的酶活力。关键词:淀粉酶;分离;纯化;透明圈;酶活力;摇瓶;分光光度计 一、实验目的: 1、学习从土壤中分离微生物的方法; 2、学习淀粉酶产生菌的筛选方法 3、了解分光光度计法测定酶活力的原理及方法。 二、实验原理: 土壤中含有大量的微生物,将土壤稀释液涂在不同类型的培养基上,在适宜的环境中培养几天,细菌或者是其他的微生物便能在平板上生长繁殖,形成菌落。将初次筛选得到的微生物接到淀粉培养基上培养,因为只有能够产生淀粉酶的细菌才能够利用培养集中的淀粉成分来完成自身的生命活动,才能够生存。故在淀粉培养基上长出的菌便是淀粉产生菌。在培养基上滴碘液,淀粉被分解掉的部分不显现蓝色,出现透明圈,可以通过透明圈的大小来初步判断菌种产淀粉的能力。

淀粉酶是指一类能催化分解淀粉分子中糖苷键的酶的总称,主要包括α-淀粉酶和β-淀粉酶等,α-淀粉酶可从淀粉分子内部切断淀粉的α-1,4糖苷键,形成麦芽糖、含有6个葡萄糖单位的寡糖和带有支链的寡糖,是淀粉的粘度下降,因此又称为液化型淀粉酶。淀粉遇碘呈蓝色。这种淀粉-碘复合物在660nm处有较大的吸收峰,可用分光光度计测定。随着酶的不断分作用,淀粉长链被切断,生成小分子的糊精,使其对碘的蓝色反应逐渐消失,因此可以根据一定时间内蓝色消失的程度为指标来测定α-淀粉酶的活力。 三、实验器材及试剂: 1.、材料:长春师范学院家属楼前小菜园 2培养基: (1)分离培养基:牛肉膏蛋白胨固体培养基(牛肉膏3g、蛋白胨10g、NaCl 5g、溶于1000mL蒸馏水中,再加入15g琼脂粉,pH调至7.2,121℃灭菌15min,待冷却至50℃左右时,于超净工作台倒平板) (2)筛选培养基:淀粉培养基(可溶性淀粉 20g, 硝酸钾 1g, 磷酸氢二钾 0.5g, 氯化钠 0.5g, 硫酸镁 0.5g, 硫酸亚铁 0.01g, 琼脂 20g, 水 1000毫升,调整pH值到7.2~7.4。) (3)摇瓶培养:淀粉培养液。 3、试剂: 碘液、2%可溶性淀粉、pH6.0磷酸氢二钠-柠檬酸缓冲液、标准糊精溶液、 0.5mol/L乙酸、0.85%生理盐水。 4、器材: 培养皿、锥形瓶、高压灭菌锅、超净工作台、恒温水浴锅、分光光度计。

萌发小麦种子中淀粉酶酶学性质

萌发小麦种子中淀粉酶酶学性质 XXX A091100XX 生学1101 Enzymatic properties of amylases from germinant wheat 摘要:在小麦种子中提取淀粉酶,研究相关酶学性质,了解温度、PH值以及激活剂和抑制剂对淀粉酶活性的影响,并且对酶的活力进行测定。不同的温度、PH条件下和加激活剂或抑制剂情况下淀粉酶将淀粉水解的程度不同,产物遇碘呈现不同的颜色,由此可知道酶活性的最适温度和最适PH,也可知道激活剂能使酶的性增加,抑制剂能使酶的活性降低。对酶的活力进行测定时,是测定产物麦芽糖的量,来表示酶的活力。麦芽糖能将3、5—二硝基水杨酸还原成棕红色的氨基化合物(520nm处有最大吸收峰),其颜色深浅与麦芽糖浓度成正比,利用分光光度法测定棕红色的氨基化合物吸光值,从而得到产物麦芽糖的量,来表示酶的活力[1]。 关键词:淀粉酶、温度、PH值、激活剂、抑制剂、分光度计 研究背景:二十一世纪是生物信息时代,各种生物学领域研究层出不穷 ,对酶的研究是其中一个重要方面,目前对酶的研究已转入了后期,各种酶的生化性质也相继被研究出,酶是一种具有催化活性的蛋白质,由氨基酸通过肽链连接而成,只有在适当的温度、pH和离子强度下才具有生物活性,有些酶还需要辅酶或者辅因子[2]。通过此次实验研究,让我们进一步加深对淀粉酶的认识和学习,同时培养我们设计实验的基本思路,学会科学的实验组合,提出合理的实验方案,为以后研究其他种类的酶提供了研究方法和实验依据,也为我们以后更多的设计型实验作好铺垫。 原理:淀粉是植物最主要的储藏多糖,也是人和动物的重要食物和发酵工业的基本

产淀粉酶菌株筛选综述

微生物与转基因技术 摘要微生物目前已是生物技术领域主要的模式生物之一,微生物可以为转基因技术提供工具酶、基因载体;微生物本身也常作为目的基因的受体细胞。通过转基因的方式,可以将人类所需要的基因转移到特定物种上,从而表达出人类想要的性状。本文综述了转基因微生物在食品、农业、医药以及环境保护、传统工业改造等领域研究与应用的国内外现状。在食品生产领域,转基目微生物主要用于食品用群制剂的生产,如凝乳酶.淀粉酶,蛋白酶等,转基因酵母也应用于啤酒的生产.在农业生产领域,转基因微生物主要用于微生物农药、微生物肥料和饲料酶制剂的生产.在医药生产领域,转基因微生物主要用于兽用和人用疫苗的生产,以及利用转基因镟生物生产某些药物。此外,转基因微生物在环境保护,传统工业的改造、印染业,以及新能薄开发等方面也有应用,本文也同样大致介绍了一些目前国内外关于微生物转基因方面的前沿研究。 关键词微生物转基因,DNA重组技术,目的基因,基因载体 1引言 转基因技术的理论基础来源于进化论衍生来的分子生物学。基因片段[1]的来源可以是提取 特定生物体基因组中所需要的目的基因,也可以是人工合成指定序列的基因片段。基因片段被转入特定生物中,与其本身的基因组进行重组,再从重组体中进行数代的人工选育,从而获得具有稳定表现特定的遗传性状的个体。该技术可以使重组生物增加人们所期望的新性状,培育出新品种。1980年代以来,现代生物技术迅速发展,在医药、农业、食品、化工、环境和能源等领域发挥了巨大的经济效益和社会效益。自1982年美国FDA批准了世界上第一例基因工程药物重组人胰岛素的正式生产以来,以基因工程药物为主的各种基因工程产品陆续实现商品化生产。其中,转基因微生物是基因工程产品的重要组成部分,在农业生产、食品加工、医药生产以及环境保护等领域得到了广泛的应用。 2微生物与转基因技术 1.微生物与转基因工具酶 转基因技术中,需要一些基本的工具酶,如对供体生物的DNA进行切割以获得目的基因的限制性核酸内切酶、DNA聚合酶类、DNA连接酶、核酸外切酶、反转录酶等。 DNA聚合酶类包括DNA聚合酶Ⅰ、KlenowDNA聚合酶、T4DNA聚合酶、T7DNA聚合酶、耐热DNA聚合酶等。耐热DNA聚合酶是一类在高温下具有聚合活性的DNA聚合的,来自于嗜高温的细菌,方要应用于PCR反应中,具体种类有产自嗜热水生菌的TaqDNA聚合酶、VentDNA聚合酶、PwoDNA聚合酶、TthDNA聚合酶和PfuDNA聚合酶,其中Taq DNA聚合酶,使DNA的体外复制变得异常简便和常规化,大大加快了生物工程、基因组等分子生物学研究的进程,年销售利润达到上亿美元。 依赖于DNA的RNA聚合酶包括SP6噬菌体RNA聚合酶、T4噬菌体RNA聚合酶或T7噬菌体RNA聚合酶,这类酶无需引物,但识别DNA上特异性位点(启动列),合成RNA。 核酸酶S1,来源于米曲霉,具有3’->5’外切核酸酶活性,能特异性降解单链DNA或RNA 的核酸酶,基因工程中用于黏性末端的平切。 核酸酶BAL31,来源于交替单胞菌BAL31,对单链DNA和RNA具有类似核酸酶S1的催化活性,能同时从3’-端和5’-端降解双链DNA并使其缩短大约25%长度,催化反应需要Ca2+。基因工程中用于缩短DNA和构建嵌套缺失体也应用于限制酶图谱制作等。 2.微生物与转基因载体

相关主题
文本预览
相关文档 最新文档