当前位置:文档之家› 函数的平均变化率与导数

函数的平均变化率与导数

函数的平均变化率与导数
函数的平均变化率与导数

导数的概念及运算

知识梳理

1. 平均变化率与瞬时变化率

(1)函数()f x 从1x 到2x 的平均变化率x y

??= .

(2)函数()f x 在处0x x =的瞬时变化率为 2. 导数的概念

(1)函数()f x 在x x =处的导数:()f x 在点0x 处的导数就是函数()f x 在x x =处的瞬时变化率即()0'x f =

(2)函数()f x 的导函数:当x 变化时()x f '是x 的一个函数,称()x f '为()f x 的导函数(简称导数)即()x f '=

3. 导数的几何意义与物理意义 (1)几何意义

切线方程为: (2)物理意义

4.基本初等函数的导数

①;C '= ②();n

x

'=

③(sin )x '=; ④(cos )x '=;

⑤()x a '=

;⑥();x e '=

⑦()l g a o x '=

; ⑧()ln x '=

.

5.导数的运算法则

_______ ______

______ [](4)()'C f x ?=_______ ___________ 6.复合函数的导数

()()()()的导数的关系为:的导数与复合函数x g u u f y x g f y ===, 【题型分析】

一.导数的概念及其几何意义

例1:(1)若0'()2f x =,则当k 无限趋近于0时

00()()

2f x k f x k

--=________

(2)如图,函数

()f x 的图象是折线段ABC ,其中A B

C ,, 的坐标分别为()()()()()====k x f x x f y x f y x x f y 切线的斜率即:处的在点是曲线处的导数在函数000'0,P ()=

0'x f ()()时刻的

是物体运动在处的导数在函数00'0t t S S S ===t t t t ()()时刻的是物体运动在处的导数在函数00'0t t V V V ===t t t t ()()()'1f x g x ±=????()()()'2.f x g x =????()()'

15f x ??=????

()()()'

3f x g x ??=????

(04)(20)(64),,,,,,则((0))f f = ;

(1)(1)

lim

x f x f x

?→+?-=?

.(用数字作答)

二.导数的计算

例2:求下列函数的导数

(1)

2()(2)()f x x a x a =+- (2)22()cos sin cos f x x x x =?+ (3

()x x

f x =(4

)()f x = (5)

()()ln ln ln f x x =???? (6)()2()3lg 1cos2x

f x x =?-

三.与切线相关的问题

例3:(1)曲线32

242y x x x =--+在点(1,3)-处的切线方程是_________。

(2)若曲线4()f x x x =-在点P 处的切线平行于直线30x y -=,则点P 的坐标为__。

(3)曲线

1

y x

=

和2y x =在它们交点处的两条切线与x 轴所围成的三角形面积是__。 (4)设曲线1

1

x y x +=-在点(3,2)处的切线与直线10ax y ++=垂直,则a =____。

(5)在函数3

8y x x =-的图象上,其切线的倾斜角小于4

π的点中,坐标为整数的点

有____个。

(6)曲线12

x y e =在点()24,e 处的切线与坐标轴所围三角形的面积为______。 (7)点P

在曲线32

3

y x x =-+

上移动,设在点P 处的切线的倾斜角为α,则α的取值范围是________。

(8)已知曲线3:3S y x x =-及点(2,2)P ,

则过点P 可向S 引切线,其切线共有__条。 (9)点P

是曲线2ln y x x =-上任意一点,则P 到直线2y x =-的距离的最小值是

______。

例4:已知点P 在曲线4

1

x

y e =+上,α为曲线在点P 处的切线的倾斜角,求α的取值范围。

例5:偶函数432()f x ax bx cx dx e =++++的图象过点(0,1)P ,且在1x =处的切线方

程为2y x =-,求()y f x =的解析式。

四.导数的综合应用

例6:对正整数n ,设曲线(1)n y x x =-在2x =处的切线与y 轴交点的纵坐标为n a ,

则数列1n a n ??

??+??

的前n 项和n S =__________。

例7:已知二次函数2()f x ax bx c =++的导数为'()f x ,已知'(0)0f >,且对于任意实数x 都有()0f x ≥,则

(1)

'(0)

f f 的最小值为( ) A .3 B .

52 C .2 D .32

例8:过点()0,4P -作抛物线24G x y =:的切线,求切线方程。

例9:已知过点()0,1P -的直线l 与抛物线24x y =交于两点()11,A x y 、()22,B x y 。1l 、

2l 分别是该抛物线在A 、B 两点处的切线。M 、N 分别是1l 、2l 与直线1y =-的交点。

(1)求直线l 的斜率的取值范围

(2)试比较

PM 与PN 的大小,说明理由。

例10:设抛物线方程为()220x py p =>,M 为直线2y p =-上任意一点。过M 引抛物线的切线,切点分别为A 、B ,求证:A 、M 、B 三点的横坐标成等差数列。

例11:已知抛物线24x y =的焦点为F ,A 、

B 是直线上的两动点,(0)AF FB λλ=>过A 、B 两点分别作抛物线的切线,设其交点为M 。

(1)证明FM AB ?为定值;

(2)设ABM

?的面积为S ,写出()S f λ=的表达式,并求S 的最小值。

例12:已知曲线22:20(1,2,)n C x nx y n -+==.从点(1,0)P -向曲线n C 引斜率为

(0)n n k k >的切线n l ,切点为(,)n n n P x y 。

(1)求数列

{}n x 与{}n y 的通项公式;

(2)

证明:13521n n n

x

x x x x y -???

?<

高中数学导数之变化率问题

冷世平之教案设计【高二下】 选修2-2第一章导数及其应用第1课时 1 课题:§1.1.1变化率及导数的概念 三维目标: 1、 知识与技能 ⑴理解平均变化率的概念; ⑵了解瞬时速度、瞬时变化率的概念; ⑶理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵; ⑷会求函数在某点的导数或瞬时变化率; ⑸理解导数的几何意义。 2、过程与方法 ⑴通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数; ⑵通过动手计算培养学生观察、分析、比较和归纳能力; ⑶通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法。 3、情态与价值观 ⑴通过学生的积极参与、学习变化率与导数的知识,培养学生思维的科学性、严密性,不断认识数形结合和等价转化的数学思想; ⑵通过运动的观点体会导数的内涵,使学生掌握导数的概念,从而激发学生学习数学的兴趣; ⑶通过对变化率与导数的学习,不断培养自主学习、合作交流、善于反思、勤于总结的科学态度和锲而不舍的钻研精神,提高参与意识和合作精神 教学重点:瞬时速度、瞬时变化率的概念及导数概念的形成,导数及几何意义的理解。 教学难点:在平均变化率的基础上去探求瞬时变化率,导数及几何意义的理解。 教学过程: 一、引入课题: 为了描述现实世界中运动、过程等变化的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度。 二、讲解新课: 【探究1】气球膨胀率 同学们,相信大家都玩过气球吧,我们回忆一下吹气球的过程,可以发现,随着气球内气体的容量的增加,气球的半径增加的越来越慢, 从数学角度,如何描述这种现象呢? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是34 ()3 V r r π=,如果将半径r 表示为体积V 的函数, 那么()r V 。 【分析】⑴当V 从0增加到1时,气球半径增加了(1)(0)0.62()r r dm -≈,气球的平均膨胀率为(1)(0)0.62(/)10 r r dm L -≈-;⑵当V 从1增加到2时,气球半径增加了(2)(1)0.16()r r dm -≈,气球的平均膨胀率为(2)(1)0.16(/)21 r r dm L -≈-。可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了。 【思考】当空气容量从1V 增加到2V 时,气球的平均膨胀率是多少? 【答案】2121 ()()r V r V V V -- 【探究2】高台跳水

变化率与导数教案

变化率与导数教案 Prepared on 24 November 2020

第三章 变化率和导数 3.1.1瞬时变化率—导数 教学目标: (1)理解并掌握曲线在某一点处的切线的概念 (2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度 (3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处的导数的定义及其几何意义,培养学生转化问题的能力及数形结合思想 教学过程:时速度我们是通过在一段时间内的平均速度的极限来定义的,只要知道了物体的运动方程,代入公式就可以求出瞬时速度了.运用数学工具来解决物理方面的问题,是不是方便多了.所以数学是用来解决其他一些学科,比如物理、化学等方面问题的一种工具,我们这一节课学的内容以及上一节课学的是我们学习导数的一些实际背景 一、复习引入 1、什么叫做平均变化率; 2、曲线上两点的连线(割线)的斜率与函数f(x)在区间[x A ,x B ]上的平均变化率 3、如何精确地刻画曲线上某一点处的变化趋势呢 下面我们来看一个动画。从这个动画可以看出,随着点P 沿曲线向点Q 运动,随着点P 无限逼近点Q 时,则割线的斜率就会无限逼近曲线在点Q 处的切线的斜率。 所以我们可以用Q 点处的切线的斜率来刻画曲线在点Q 处的变化趋势 二、新课讲解 1、曲线上一点处的切线斜率 不妨设P(x 1,f(x 1)),Q(x 0,f(x 0)),则割线PQ 的斜率为0 101) ()(x x x f x f k PQ --=, 设x 1-x 0=△x ,则x 1 =△x +x 0,

∴x x f x x f k PQ ?-?+= ) ()(00 当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,x x f x x f k PQ ?-?+= ) ()(00无限趋近点Q 处切线斜率。 2、曲线上任一点(x 0,f(x 0))切线斜率的求法: x x f x x f k ?-?+= ) ()(00,当△x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的 斜率。 3、瞬时速度与瞬时加速度 (1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度 (2) 位移的平均变化率: t t s t t s ?-?+) ()(00 (3)瞬时速度:当无限趋近于0 时,t t s t t s ?-?+) ()(00无限趋近于一个常数,这个常 数称为t=t 0时的瞬时速度 求瞬时速度的步骤: 1.先求时间改变量t ?和位置改变量)()(00t s t t s s -?+=? 2.再求平均速度t s v ??= 3.后求瞬时速度:当t ?无限趋近于0,t s ??无限趋近于常数v 为瞬时速度 (4)速度的平均变化率: t t v t t v ?-?+) ()(00 (5)瞬时加速度:当t ?无限趋近于0 时,t t v t t v ?-?+) ()(00无限趋近于一个常数,这 个常数称为t=t 0时的瞬时加速度 注:瞬时加速度是速度对于时间的瞬时变化率

函数的平均变化率与导数

导数的概念及运算 知识梳理 1. 平均变化率与瞬时变化率 (1)函数()f x 从1x 到2x 的平均变化率x y ??= . (2)函数()f x 在处0x x =的瞬时变化率为 2. 导数的概念 (1)函数()f x 在x x =处的导数:()f x 在点0x 处的导数就是函数()f x 在x x =处的瞬时变化率即()0'x f = (2)函数()f x 的导函数:当x 变化时()x f '是x 的一个函数,称()x f '为()f x 的导函数(简称导数)即()x f '= 3. 导数的几何意义与物理意义 (1)几何意义 切线方程为: (2)物理意义 4.基本初等函数的导数 ①;C '= ②() ;n x '= ③(sin )x '=; ④(cos )x '=; ⑤()x a '= ;⑥();x e '= ⑦()l g a o x '= ; ⑧()ln x '= . 5.导数的运算法则 _______ ______ ______ [](4)()'C f x ?=_______ ___________ 6.复合函数的导数 ()()()()的导数的关系为:的导数与复合函数x g u u f y x g f y ===, 【题型分析】 一.导数的概念及其几何意义 例1:(1)若0'()2f x =,则当k 无限趋近于0时 00()() 2f x k f x k --=________ (2)如图,函数 ()f x 的图象是折线段ABC ,其中A B C ,, 的坐标分别为 ()()()()()====k x f x x f y x f y x x f y 切线的斜率即:处的在点是曲线处的导数在函数000'0,P ()= 0'x f ()()时刻的是物体运动在处的导数在函数00'0t t S S S ===t t t t ()()时刻的是物体运动在处的导数在函数00'0t t V V V ===t t t t ()()()' 1f x g x ±=????()()()' 2.f x g x =????()()' 15f x ??=????()()()' 3f x g x ??=????

人教新课标版数学高二-2-2导学案 变化率问题 导数的概念

1.1.1 变化率问题 1.1.2 导数的概念 (结合配套课件、作业使用,效果更佳) 周;使用时间16 年 月 日 ;使用班级 ;姓名 【学习目标】 1.了解导数概念的实际背景. 2.会求函数在某一点附近的平均变化率. ` 3.会利用导数的定义求函数在某点处的导数. 重点:会利用导数的定义求函数在某点处的导数 难点:会求函数在某一点附近的平均变化率 【检查预习】预习课本,完成导学案“自主学习”部分,准备上课回答. 【自主学习】 知识点一 函数的平均变化率 假设如图是一座山的剖面示意图,并建立如图所示平面直角坐标系.A 是出发点,H 是山顶.爬山路线用函数y =f (x )表示. 自变量x 表示某旅游者的水平位置,函数值y =f (x )表示此时旅游者所在的高度.设点A 的坐标为(x 1,y 1),点B 的坐标为(x 2,y 2). 思考1 若旅游者从点A 爬到点B ,自变量x 和函数值y 的改变量分别是多少? 思考2 怎样用数量刻画弯曲山路的陡峭程度? 思考3 观察函数y =f (x )的图象,平均变化率Δy Δx =f (x 2)-f (x 1) x 2-x 1表示什么? (1)定义式:Δy Δx =f (x 2)-f (x 1) x 2-x 1 . (2)实质: 的增量与 增量之比. (3)作用:刻画函数值在区间[x 1,x 2]上变化的快慢. (4)几何意义:已知P 1(x 1,f (x 1)),P 2(x 2,f (x 2))是函数y =f (x )的图象上两点,则平均变化率Δy Δx =f (x 2)-f (x 1) x 2-x 1表示割线P 1P 2的 知识点二 瞬时速度 思考1 物体的路程s 与时间t 的关系是s (t )=5t 2.试求物体在[1,1+Δt ]这段时间内的平均速度.

变化率和导数(三个课时教案)

第一章导数及其应用 第一课时:变化率问题 教学目标: 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.

二.新课讲授 (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么343)(π V V r = 分析: 3 43)(π V V r =, ⑴当V 从0增加到1时,气球半径增加了 )(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵当V 从1增加到2时,气球半径增加了 )(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.01 2)1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 1 212) ()(V V V r V r --

《变化率问题与导数的概念》导学案

第1课时变化率问题与导数的概念 a 1.通过物理中的变化率问题和瞬时速度引入导数的概念. 2.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤. 3.通过构建导数概念,使学生体会极限思想,为将来学习极限概念积累学习经验. 4.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程. 借助多媒体播放2012年伦敦奥运会中国跳水运动员陈若琳夺得女子单人10米跳台冠军的视频.上节课我们已经学习了平均变化率的问题,我们知道运动员的平均速度不一定能够反映她在某一时刻的运动状态,而运动员在不同时刻的运动状态是不同的,我们需要借助于瞬时速度这样的量来刻画,那么我们如何才能求出运动员在某一时刻的瞬时速度呢? 问题1:根据以上情境,设陈若琳相对于水面的高度h (单位:m)与起跳后的时间t (单位:s) 存在函数关系h(t)=-4.9t2+6.5t+10,如果用她在某段时间内的平均速度描述其运动状态, 那么: (1)在0≤t≤0.5这段时间里,运动员的平均速度= . (2)在1≤t≤2这段时间里, 运动员的平均速度= . 问题2:函数y=f(x)从x1到x2的平均变化率公式是.如果用x1与增量Δx

表示,平均变化率的公式是. 问题3:函数f(x)在x=x0处的瞬时变化率的定义:一般地,函数y=f(x)在x=x0处的瞬时变化率是=,我们称它为函数y=f(x)在x=x 0处的导数,记作f'(x0)或y',即f'(x0)== . 问题4:在导数的定义中,对Δx→0的理解是:Δx>0,Δx<0,但. 1.已知函数y=f(x)=x2+1,当x=2,Δx=0.1时,Δy的值为(). A.0.40 B.0.41 C.0.43 D.0.44 2.设函数f(x)在点x0附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),则(). A.f'(x)=a B.f'(x)=b C.f'(x0)=a D.f'(x0)=b 3.一质点按规律s(t)=2t2运动,则在t=2时的瞬时速度为. 4.求y=2x2+4x在点x=3处的导数.

变化率与导数、导数的计算

第十一节变化率与导数、导数的计算 [备考方向要明了] 考什么怎么考 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义求函数y=c(c为常 数),y=x,y=x2,y=x3, y= 1 x的导数. 4.能利用基本初等函数的导数公式和 导数的四则运算法则求简单函数的导 数. 1.对于导数的几何意义,高考要求较高,主要以选择 题或填空题的形式考查曲线在某点处的切线问题, 如2012年广东T12,辽宁T12等. 2.导数的基本运算多涉及三次函数、指数函数与对数 函数、三角函数等,主要考查对基本初等函数的导 数及求导法则的正确利用. [归纳·知识整合] 1.导数的概念 (1)函数y=f(x)在x=x0处的导数: 称函数y=f(x)在x=x0处的瞬时变化率 lim Δx→0 f(x0+Δx)-f(x0) Δx=lim Δx→0 Δy Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即 f′(x0)=lim Δx→0 Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx. (2)导数的几何意义: 函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0). (3)函数f(x)的导函数:

称函数f ′(x )=lim Δx →0 f (x +Δx )-f (x ) Δx 为f (x )的导函数. [探究] 1.f ′(x )与f ′(x 0)有何区别与联系? 提示:f ′(x )是一个函数,f ′(x 0)是常数,f ′(x 0)是函数f ′(x )在x 0处的函数值. 2.曲线y =f (x )在点P 0(x 0,y 0)处的切线与过点P 0(x 0,y 0)的切线,两种说法有区别吗? 提示:(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 3.过圆上一点P 的切线与圆只有公共点P ,过函数y =f (x )图象上一点P 的切线与图象也只有公共点P 吗? 提示:不一定,它们可能有2个或3个或无数多个公共点. 2.几种常见函数的导数 3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.

导数第一节平均变化率

导数第一节----平均变化率 一、单选题 1.在平均变化率的定义中,自变量的改变量 的取值范围为( ) A . B . C . D . 2.已知函数 ,则在 , 时, 的值为( ) A .0.40 B .0.41 C .0.43 D .0.44 3.在 中, 不可能( ) A .大于0 B .小于0 C .等于0 D .大于0或小于0 4.一辆汽车按规律s =at 2+1做直线运动,若汽车在t =2时的瞬时速度为12,则a =( ) A . B . C .2 D .3 5.质点的运动方程是s= 4 1 t (其中s 的单位为m,t 的单位为s),则质点在t=3s 时的速度为 ( ) A .-4×3-4m/s B .-3×3-4m/s C .-5×3-5m/s D .-4×3-5m/s 6.如果函数f(x)=ax+b 在区间[1,2]上的平均变化率为3,则a= ( ) A .-3 B .2 C .3 D .-2 7.过曲线()1x y f x x ==-图象上一点(2, -2)及邻近一点(2 x +?, -2 y +?)作割线,则当0.5x ?=时割线的斜率为( ) A . 13 B .23 C .1 D .53 - 8.函数f (x )在x =x 0处的导数可表示为( ) A .f ′(x 0)= B .f ′(x 0)= C .f ′(x 0)=f (x 0+Δx )-f (x 0) D .f ′(x 0)= 9.函数y =- 在点x =4处的导数是( ) A . B .- C . D .- 10.已知物体的运动方程为s =t 2+ (t 是时间,s 是位移),则物体在时刻t =2时的速度为( ) A . B . C . D . 11.设函数 可导,则 等于( ) A . B . C . D . 12.一物体运动的方程是s =2t 2 ,则从2 s 到(2+d ) s 这段时间内位移的增量为( ).

高二数学选修1、3-1-1变化率问题与导数的概念

3.1.1变化率问题与导数的概念 一、选择题 1.在函数变化率的定义中,自变量的增量Δx满足() A.Δx<0B.Δx>0 C.Δx=0 D.Δx≠0 [答案] D [解析]自变量的增量Δx可正、可负,但不可为0. 2.函数在某一点的导数是() A.在该点的函数的增量与自变量的增量的比 B.一个函数 C.一个常数,不是变数 D.函数在这一点到它附近一点之间的平均变化率 [答案] C [解析]由导数定义可知,函数在某一点的导数,就是平均变化率的极限值. 3.在x=1附近,取Δx=0.3,在四个函数①y=x②y=x2③y=x3④y=1 x 中,平均变化率 最大的是() A.④B.③ C.②D.① [答案] B [解析]①的平均变化率为1,②的平均变化率为2.3,③的平均变化率为3.99,④的平均变化率为-0.77. 4.质点M的运动规律为s=4t+4t2,则质点M在t=t0时的速度为() A.4+4t0B.0 C.8t0+4 D.4t0+4t20 [答案] C [解析]Δs=s(t0+Δt)-s(t0)=4Δt2+4Δt+8t0Δt, Δs Δt =4Δt+4+8t0, lim Δt→0Δs Δt =lim Δt→0 (4Δt+4+8t0)=4+8t0. 5.函数y=x+1 x 在x=1处的导数是() A.2 B.5 2 C.1 D.0

[答案] D [解析] Δy =(Δx +1)+1Δx +1-1-1=Δx +-Δx Δx +1 , Δy Δx =1-1Δx +1 , lim Δx →0 Δy Δx =lim Δx →0 ??? ?1-1Δx +1=1-1=0, ∴函数y =x +1x 在x =1处的导数为0. 6.函数y =f (x ),当自变量x 由x 0改变到x 0+Δx 时,Δy =( ) A .f (x 0+Δx ) B .f (x 0)+Δx C .f (x 0)·Δx D .f (x 0+Δx )-f (x 0) [答案] D [解析] Δy 看作相对于f (x 0)的“增量”,可用f (x 0+Δx )-f (x 0)代替. 7.一个物体的运动方程是s =3+t 2,则物体在t =2时的瞬时速度为( ) A .3 B .4 C .5 D .7 [答案] B [解析] lim Δt →0 3+(2+Δt )2-3-22 Δt =lim Δt →0 Δt 2+4Δt Δt =lim Δt →0 (Δt +4)=4. 8.f (x )在x =x 0处可导,则lim Δx →0 f (x 0+Δx )-f (x 0)Δx ( ) A .与x 0,Δx 有关 B .仅与x 0有关,而与Δx 无关 C .仅与Δx 有关,而与x 0无关 D .与x 0,Δx 均无关 [答案] B [解析] 式子lim Δx →0 f (x 0+Δx )-f (x 0)Δx 表示的意义是求f ′(x 0),即求f (x )在x 0处的导数,它仅与x 0有关,与Δx 无关. 9.设函数f (x )在点x 0附近有定义,且有f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2(a ,b 为常数),则( ) A .f ′(x )=a B .f ′(x )=b C .f ′(x 0)=a D .f ′(x 0)=b [答案] C

(完整版)变化率与导数、导数的计算知识点与题型归纳

1 ●高考明方向 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义求函数 y =c (c 为常数),y =x ,y =x 2,y =x 3,y =1 x 的导数. 4.能利用基本初等函数的导数公式和导数的四则运算法则 求简单函数的导数. ★备考知考情 由近几年高考试题统计分析可知,单独考查导数运算的题目很少出现,主要是以导数运算为工具,考查导数的几何意义为主,最常见的问题就是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系,以平行或垂直直线斜率间的关系为载体求参数的值,以及与曲线的切线相关的计算题.考查题型以选择题、填空题为主,多为容易题和中等难度题,如2014广东理科10、文科11. 2014广东理科10 曲线52-=+x y e 在点()0,3处的切线方程为 ; 2014广东文科11 曲线53=-+x y e 在点()0,2-处的切线方程为 ;

一、知识梳理《名师一号》P39 知识点一导数的概念 (1)函数y=f(x)在x=x0处的导数 称函数y=f(x)在x=x0处的瞬时变化 率lim Δx→0Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx 为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x =x0 . (2)称函数f′(x)=lim Δx→0f(x+Δx)-f(x) Δx为f(x)的导函数. 注意:《名师一号》P40 问题探究问题1 f′(x)与f′(x0)有什么区别? f′(x)是一个函数,f′(x0)是常数, f′(x0)是函数f′(x)在点x0处的函数值. 例.《名师一号》P39 对点自测1 1.判一判 (1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.() (2)f′(x0)与[f(x0)]′表示的意义相同.() (3)f′(x0)是导函数f′(x)在x=x0处的函数值.() 答案(1)×(2)×(3)√ 2

变化率问题和导数的概念

第一章导数及其应用 1.1变化率与导数 1.1.1变化率问题 1.1.2导数的概念 双基达标(限时20分钟) 1.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+Δx,-2+Δy), 则Δy Δx等于 (). A.4 B.4x C.4+2Δx D.4+2(Δx)2 解析Δy Δx= f(1+Δx)-f(1) Δx= 2(1+Δx)2-2 Δx=4+2Δx. 答案 C 2.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是 ().A.4 B.4.1 C.0.41 D.3 解析v=(3+2.12)-(3+22) 0.1=4.1. 答案 B 3.如果某物体的运动方程为s=2(1-t2)(s的单位为m,t的单位为s),那么其在 1.2 s末的瞬时速度为 ().A.-4.8 m/s B.-0.88 m/s C.0.88 m/s D.4.8 m/s 解析物体运动在1.2 s末的瞬时速度即为s在1.2处的导数,利用导数的定义即可求得. 答案 A

4.已知函数y =2+1 x ,当x 由1变到2时,函数的增量Δy =________. 解析 Δy =? ? ???2+12-(2+1)=-12. 答案 -1 2 5.已知函数y =2 x ,当x 由2变到1.5时,函数的增量Δy =________. 解析 Δy =f (1.5)-f (2)=21.5-22=43-1=1 3. 答案 1 3 6.利用导数的定义,求函数y =1 x 2+2在点x =1处的导数. 解 ∵Δy =??????1(x +Δx )2+2-? ???? 1x 2+2=-2x Δx -(Δx )2(x +Δx )2·x 2, ∴Δy Δx =-2x -Δx (x +Δx )2·x 2 , ∴y ′=lim Δx →0 Δy Δx =lim Δx →0 -2x -Δx (x +Δx )2·x 2=-2 x 3, ∴y ′|x =1=-2. 综合提高 (限时25分钟) 7.已知函数y =f (x )=x 2+1,则在x =2,Δx =0.1时,Δy 的值为 ( ). A .0.40 B .0.41 C .0.43 D .0.44 解析 Δy =(2+0.1)2-22=0.41. 答案 B 8.设函数f (x )可导,则 lim Δx →0 f (1+Δx )-f (1) 3Δx 等于 ( ). A .f ′(1) B .3f ′(1) C.1 3f ′(1) D .f ′(3)

高中数学-变化率与导数_提高

变化率与导数 【学习目标】 (1)理解平均变化率的概念; (2)了解瞬时速度、瞬时变化率的概念; (3)理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵; (4)会求函数在某点的导数或瞬时变化率; 【要点梳理】 知识点一:平均变化率问题 1.变化率 事物的变化率是相关的两个量的“增量的比值”。如气球的平均膨胀率是半径的增量与体积增量的比值; 2.平均变化率 一般地,函数f(x)在区间[]21,x x 上的平均变化率为:2121 ()() f x f x x x -- 要点诠释: ① 本质:如果函数的自变量的“增量”为x ?,且21x x x ?=-,相应的函数值的“增量”为 y ?,21()()y f x f x ?=-,则函数()f x 从1x 到2x 的平均变化率为 2121 ()()f x f x y x x x -?=?- ② 函数的平均变化率可正可负,平均变化率近似地刻画了曲线在某一区间上的变化趋势. 即递增或递减幅度的大小。 对于不同的实际问题,平均变化率富于不同的实际意义。如位移运动中,位移S (m )从t 1秒到t 2秒的平均变化率即为t 1秒到t 2秒这段时间的平均速度。 高台跳水运动中平均速度只能粗略地描述物体在某段时间内的运动状态,要想更精确地刻画物体运动,就要研究某个时刻的速度即瞬时速度。 3.如何求函数的平均变化率 求函数的平均变化率通常用“两步”法: ①作差:求出21()()y f x f x ?=-和21x x x ?=- ②作商:对所求得的差作商,即2121 ()()f x f x y x x x -?=?-。 要点诠释: 1. x ?是1x 的一个“增量”,可用1x x +?代替2x ,同样21()()y f x f x ?=-。 2. x V 是一个整体符号,而不是V 与x 相乘。 3. 求函数平均变化率时注意,x y V V ,两者都可正、可负,但x V 的值不能为零,y V 的值可以为零。若

人教版数学高二学案变化率问题导数的概念

1.1.1 变化率问题 1.1.2 导数的概念 1.理解函数平均变化率、瞬时变化率的概念. 2.掌握函数平均变化率的求法. 3.掌握导数的概念,会用导数的定义求简单函数在某点处的导数. 知识点一 函数的平均变化率 1.平均变化率的概念 设函数y =f (x ),x 1,x 2是其定义域内不同的两个点,那么函数的变化率可用式子 f (x 2)-f (x 1) x 2-x 1 表 示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率,习惯上用Δx 表示x 2-x 1,即Δx =x 2-x 1,可把Δx 看作是相对于x 1的一个“增量”,可用x 1+Δx 代替x 2;类似地,Δy =f (x 2)-f (x 1).于是,平均变化率可以表示为Δy Δx . 2.求平均变化率 求函数y =f (x )在上平均变化率的步骤如下: (1)求自变量的增量Δx =x 2-x 1; (2)求函数值的增量Δy =f (x 2)-f (x 1); (3)求平均变化率Δy Δx =f (x 2)-f (x 1) x 2-x 1 =f (x 1+Δx )-f (x 1) Δx . 思考 (1)如何正确理解Δx ,Δy? (2)平均变化率的几何意义是什么? 答案 (1)Δx 是一个整体符号,而不是Δ与x 相乘,其值可取正值、负值,但Δx ≠0;Δy 也是一个整体符号,若Δx =x 1-x 2,则Δy =f (x 1)-f (x 2),而不是Δy =f (x 2)-f (x 1),Δy 可为正数、负数,亦可取零. (2)如图所示:

y =f (x )在区间上的平均变化率是曲线y =f (x )在区间上陡峭程度的“数量化”,曲线陡峭程度是平均变化率的“视觉化”,????Δy Δx 越大,曲线y =f (x )在区间上越“陡峭”,反之亦然. 平均变化率的几何意义是函数曲线上过两点的割线的斜率,若函数y =f (x )图象上有两点A (x 1,f (x 1)),B (x 2,f (x 2)),则f (x 2)-f (x 1)x 2-x 1=k AB . 知识点二 瞬时速度与瞬时变化率 把物体在某一时刻的速度称为瞬时速度.做直线运动的物体,它的运动规律可以用函数s =s (t )描述,设Δt 为时间改变量,在t 0+Δt 这段时间内,物体的位移(即位置)改变量是Δs =s (t 0+Δt )-s (t 0),那么位移改变量Δs 与时间改变量Δt 的比就是这段时间内物体的平均速度v ,即v =Δs Δt =s (t 0+Δt )-s (t 0)Δt . 物理学里,我们学习过非匀速直线运动的物体在某一时刻t 0的速度,即t 0时刻的瞬时速度,用v 表示,物体在t 0时刻的瞬时速度v 就是运动物体在t 0到t 0+Δt 这段时间内的平均变化率s (t 0+Δt )-s (t 0)Δt 在Δt →0时的极限,即v =lim Δt →0Δs Δt =lim Δt →0s (t 0+Δt )-s (t 0)Δt .瞬时速度就是位移函数对时间的瞬时变化率. 思考 (1)瞬时变化率的实质是什么? (2)平均速度与瞬时速度的区别与联系是什么? 答案 (1)其实质是当平均变化率中自变量的改变量趋于0时的值,它刻画函数值在某处变化的快慢. (2)①区别:平均变化率刻画函数值在区间上变化的快慢,瞬时变化率刻画函数值在x 0点处变化的快慢;②联系:当Δx 趋于0时,平均变化率Δy Δx 趋于一个常数,这个常数即为函数在 x 0处的瞬时变化率,它是一个固定值. 知识点三 导数的概念 函数y =f (x )在x =x 0处的导数 一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0 Δy Δx =lim Δx →0f (x 0+Δx )-f (x 0)Δx ,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|0x x =,即f ′(x 0)=lim Δx →0Δy Δx =lim Δx →0f (x 0+Δx )-f (x 0)Δx . 思考 (1)函数f (x )在x 0处的导数满足什么条件时存在? (2)求解函数f (x )在x 0处导数的步骤是什么? 答案 (1)函数f (x )在x 0处可导,是指Δx →0时,Δy Δx 有极限,如果Δy Δx 不存在极限,就说函数 在点x 0处无导数.

导数:平均变化率与瞬时变化率

【同步教育信息】 一. 本周教学内容: 导数——平均变化率与瞬时变化率w 二. 本周教学目标: 1、了解导数概念的广阔背景,体会导数的思想及其内涵. 2、通过函数图象直观理解导数的几何意义. 三. 本周知识要点: (一)平均变化率 1、情境:观察某市某天的气温变化图 t (d) 20 2、一般地,函数f (x )在区间[x 1,x 2]上的平均变化率2121 ()()f x f x x x -- 平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率“视觉化”. (二)瞬时变化率——导数 1、曲线的切线 如图,设曲线c 是函数()y f x =的图象,点00(,)P x y 是曲线 c 上一点作割线PQ ,当 点Q 沿着曲线c 无限地趋近于点P ,割线PQ 无限地趋近于某一极限位置PT 我们就把极限位置上的直线PT ,叫做曲线c 在点P 处的切线

割线PQ 的斜率为 PQ k =00()()f x x f x x +?-?,即当0→?x 时,00()()f x x f x x +?-?无 限趋近于点P 的斜率. 2、瞬时速度与瞬时加速度 1)瞬时速度定义:运动物体经过某一时刻(某一位置)的速度,叫做瞬时速度. 2)确定物体在某一点A 处的瞬时速度的方法: 要确定物体在某一点A 处的瞬时速度,从A 点起取一小段位移AA 1,求出物体在这段位移上的平均速度,这个平均速度可以近似地表示物体经过A 点的瞬时速度. 当位移足够小时,物体在这段时间内的运动可认为是匀速的,所得的平均速度就等于物体经过A 点的瞬时速度. 我们现在已经了解了一些关于瞬时速度的知识,现在已经知道物体做直线运动时,它的运动规律用函数表示为s =s (t ),也叫做物体的运动方程或位移公式,现在有两个时刻t 0,t 0+Δt ,现在问从t 0到t 0+Δt 这段时间内,物体的位移、平均速度各是: 位移为Δs =s (t 0+Δt )-s (t 0)(Δt 称时间增量) 平均速度 t t s t t s t s v ?-?+=??= )()(00 根据对瞬时速度的直观描述,当位移足够小,现在位移由时间t 来表示,也就是说时间 足够短时,平均速度就等于瞬时速度. 现在是从t 0到t 0+Δt ,这段时间是Δt . 时间Δt 足够短,就是Δt 无限趋近于0.当Δt →0时,位移的平均变化率00()() s t t s t t +?-?无限趋近于一个常数,那么称这个常数为物体 在t = t 0的瞬时速度 同样,计算运动物体速度的平均变化率00()() v t t v t t +?-?,当Δt →0时,平均速度00()() v t t v t t +?-?无限趋近于一个常数,那么这个常数为在t = t 0时的瞬时加速度. 3、导数 设函数)(x f y =在(a,b )上有定义,0(,)x a b ∈.若x ?无限趋近于0时,比值 x x f x x f x y ?-?+=??)()(00无限趋近于一个常数A ,则称f (x )在x =0x 处可导,并称该常

人教A版选修2-2(一) 变化率问题、导数的概念作业

课时跟踪检测(一) 变化率问题、导数的概念 一、题组对点训练 对点练一 函数的平均变化率 1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2 解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b ) 2-1 =a =3. 2.若函数f (x )=-x 2 +10的图象上一点? ????32,314及邻近一点? ????32+Δx ,314+Δy , 则Δy Δx =( ) A .3 B .-3 C .-3-(Δx )2 D .-Δx -3 解析:选D ∵Δy =f ? ????32+Δx -f ? ?? ??32=-3Δx -(Δx )2 , ∴Δy Δx =-3Δx -(Δx ) 2 Δx =-3-Δx . 3.求函数y =f (x )= 1 x 在区间[1,1+Δx ]内的平均变化率. 解:∵Δy =f (1+Δx )-f (1)= 1 1+Δx -1 =1-1+Δx 1+Δx =1-(1+Δx ) (1+1+Δx )1+Δx = -Δx (1+1+Δx )1+Δx , ∴ Δy Δx =-1(1+1+Δx )1+Δx . 对点练二 求瞬时速度 4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3 -2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( ) A .1 B .3 C .-1 D .0 答案:B 5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v = s (t 0+Δt )-s (t 0) Δt =(t 0+Δt )3 -2-(t 3 0-2)Δt =3t 2 0Δt +3t 0(Δt )2 +(Δt )3 Δt

1 变化率问题 导数的概念

变化率问题 导数的概念 1.了解导数概念的实际背景. 2.会求函数在某一点附近的平均变化率. 3.会利用导数的定义求函数在某点处的导数. 2.函数f (x )在x =x 0处的导数 函数y =f (x )在x =x 0处的瞬时变化率称为函数y =f (x )在x =x 0处的导数,记作f ′(x 0 ) 或 y ′|x =x 0, 即f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . [情境导学] 某市2013年5月30日最高气温是33.4℃,而此前的两天5月29日和5月28日最高气温分别是24.4℃和18.6℃,短短两天时间,气温“陡增”14.8℃,闷热中的人们无不感叹:“天气热得太快了!”但是,如果我们将该市2013年4月28日最高气温3.5℃和5月28日最高气温18.6℃进行比较,可以发现二者温差为15.1℃,甚至超过了14.8℃,而人们却不会发出上述感慨,这是什么原因呢?显然原因是前者变化得“太快”,而后者变化得“缓慢”,那么在数学中怎样来刻画变量变化得快与慢呢? 探究点一 平均变化率的概念 思考1 气球膨胀率 很多人都吹过气球.回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度,如何描述这种现象呢? 答 气球的半径r (单位:dm)与体积V (单位:L)之间的函数关系是r (V )=3 43π V ,

(1)当空气容量V 从0增加到1 L 时,气球半径增加了 r (1)-r (0)≈0.62 (dm),气球的平均膨胀率为r (1)-r (0) 1-0 ≈0.62(dm/L). (2)当空气容量V 从1 L 增加到2 L 时,气球半径增加了r (2)-r (1)≈0.16 (dm), 气球的平均膨胀率为r (2)-r (1) 2-1 ≈0.16(dm/L). 可以看出,随着气球体积逐渐变大,它的平均膨胀率逐渐变小了. 结论 当空气容量从V 1增加到V 2时,气球的平均膨胀率是r (V 2)-r (V 1) V 2-V 1 . 思考2 高台跳水 人们发现,在高台跳水运动中,运动员相对于水面的高度h (单位:m)与起跳后的时间t (单位:s)存在函数关系 h (t )=-4.9t 2+6.5t +10. 计算运动员在时间段①0≤t ≤0.5,②1≤t ≤2内的平均速度v ,并思考平均速度有什么作用? 答 ①在0≤t ≤0.5这段时间里, v =h (0.5)-h (0)0.5-0 =4.05(m/s); ②在1≤t ≤2这段时间里, v =h (2)-h (1)2-1 =-8.2(m/s). 由以上计算体会到平均速度可以描述运动员在某段时间内运动的快慢. 思考3 什么是平均变化率,平均变化率有何作用?思考1和思考2中的平均变化率分别表示什么? 答 如果上述两个思考中的函数关系用y =f (x )表示,那么思考中的变化率可用式子f (x 2)-f (x 1) x 2-x 1 表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率,平均变化率可以 描述一个函数在某个范围内变化的快慢.思考1中的平均变化率表示在空气容量从V 1增加到V 2时,气球半径的平均增长率.思考2中的平均变化率表示在时间从t 1增加到t 2时,高度h 的平均增长率. 思考4 平均变化率也可以用式子Δy Δx 表示,其中Δy 、Δx 的意义是什么?Δy Δx 有什么几何意义? 答 Δx 表示x 2-x 1是相对于x 1的一个“增量”;Δy 表示f (x 2)-f (x 1).Δx 、Δy 的值可正可负,Δy 也可以为零,但Δx 不能为零. 观察图象可看出,Δy Δx 表示曲线y =f (x )上两点(x 1,f (x 1))、(x 2,f (x 2))连线的斜率. 小结 平均变化率为Δy Δx =f (x 2)-f (x 1) x 2-x 1 ,其几何意义是:函数y =f (x )的图象上两点(x 1,f (x 1))、 (x 2,f (x 2))连线的斜率.

高中数学-变化率与导数、导数的计算

高中数学-变化率与导数、导数的计算 一、选择题(每小题5分,共35分) 1.f′(x)是函数f(x)=x3+2x+1的导函数,则f′(-1)的值为( ) A.0 B.3 C.4 D.- 【解析】选B.因为f(x)=x3+2x+1, 所以f′(x)=x2+2. 所以f′(-1)=3. 2.已知函数f(x)=cos x,则f(π)+f′= ( ) A.- B.- C.- D.- 【解析】选C.因为f′(x)=-cos x+(-sin x), 所以f(π)+f′=-+·(-1)=-. 3.(·吉林模拟)已知曲线y=ln x的切线过原点,则此切线的斜率 为( ) A.e B.-e C. D.- 【解析】选C.y=ln x的定义域为(0,+∞),且y′=,设切点为(x0,ln x0),则y′=,切线方程为 y-ln x0=(x-x0),因为切线过点(0,0),所以-ln x0=-1,解得x0=e,故此切线的斜率为. 【变式备选】曲线y=e x在点A(0,1)处的切线斜率为( )

A.1 B.2 C.e D. 【解析】选A.由题意知y′=e x,故所求切线斜率k=e x=e0=1. 4.(·沈阳模拟)若曲线y=x3+ax在坐标原点处的切线方程是2x-y=0,则实数a= ( ) A.1 B.-1 C.2 D.-1 【解析】选C.导数的几何意义即为切线的斜率,由y′=3x2+a得在x=0处的切线斜率为a,所以a=2. 【变式备选】直线y=x+b是曲线y=ln x(x>0)的一条切线,则实数b的值 为( ) A.2 B.ln 2+1 C.ln 2-1 D.ln 2 【解析】选C.y=ln x的导数为y′=,由=,解得x=2,所以切点为(2,ln 2).将其代入直线方程y=x+b,可得b=ln 2-1. 5.已知f(x)=2e x sin x,则曲线f(x)在点(0,f(0))处的切线方程为( ) A.y=0 B.y=2x C.y=x D.y=-2x 【解析】选B.因为f(x)=2e x sin x,所以f(0)=0,f′(x)=2e x·(sin x+cos x),所以f′(0)=2,所以曲线f(x)在点(0,f(0))处的切线方程为y=2x. 6.设曲线y=在点处的切线与直线x-ay+1=0平行,则实数a等 于( ) A.-1 B. C.-2 D.2 【解析】选A.因为y′=,所以y′=-1, 由条件知=-1,所以a=-1. 7.直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则2a+b的值等于 ( ) A.2 B.-1 C.1 D.-2 【解析】选C.依题意知,y′=3x2+a, 则由此解得 所以2a+b=1. 二、填空题(每小题5分,共15分) 8.若曲线y=2x2的一条切线l与直线x+4y-8=0垂直,则切线l的方程为________________.

相关主题
文本预览
相关文档 最新文档