当前位置:文档之家› 导数与微分练习题及习题详细解答

导数与微分练习题及习题详细解答

导数与微分练习题及习题详细解答
导数与微分练习题及习题详细解答

关于导数的29个典型习题

关于导数的29个典型习题 习题1设函数在0=x 的某邻域内1 C 类(有一阶连续导数),且.0)0(,0)0(≠'≠f f 若)0()2()(f h f b h f a -+在 0→h 时是比h 高阶的无穷小,试确定b a ,的值。 解 由题设知 0)0()1()]0()2()([lim 0 =-+=-+→f b a f h f b h f a h . .01,0)0(=-+∴≠b a f 由洛比达法则知 ).0()2(1 ) 2(2)(lim )0()2()(lim 000f b a h f b h f a h f h bf h af h h '+='+'=-+=→→洛,0)0(≠'f 故.02=+b a 联立可 解出.1,2-==b a 习题2 设,0,00,)()(?????=≠-=-x x x e x g x f x 其中)(x g 有二阶连续导数,且1)0(,1)0(-='=g g .(1) 求);(x f '(2) 讨论 )(x f '在),(+∞-∞上的连续性. 解 (1) 当0≠x 时,用公式有 ,)1()()()(])([)(2 2x e x x g x g x x e x g e x g x x f x x x ---++-'=+-+'=' 当0=x 时,用定义求导数,有 .21)0()(lim )0(2 0-''=-='-→g x e x g f x x 二次洛 ???? ?=-''≠++-'='∴-.0,2 1)0(0,)1()()()(2x g x x e x x g x g x x f x (2) 因在0=x 处有 ).0(2 1)0(2)(lim 2)1()()()(lim )(lim 000f g e x g x e x e x g x g x x g x f x x x x x x '=-''=-''=+-+'-''+'='-→--→→洛 而)(x f '在0≠x 处连续,故).,()(+∞-∞∈'C x f 习题3 证明:若022=++++c y b x a y x (圆),其中c b a ,,为定数),04(22>-+c b a 则 =+x d y d dx dy 222 3 2])(1[定数。 证 求导,,022='++'+y b a y y x 即.22b y a x y ++-=' 再导一次,,02222 =''+'+''+y b y y y 即 .2)1(22b y y y +'--='' )(.42 1...1)2(21...)1(22 22 3 2定数c b a y b y y y -+-=='++-=='''+∴

高数第三章一元函数的导数和微分

第三章一元函数的导 数和微分【字体:大中小】【打印】 3.1 导数概念 一、问题的提出 1.切线问题 割线的极限位置——切线位置 如图,如果割线MN绕点M旋转而趋向极限位置MT,直线MT就称为曲线C在点M处的切线. 极限位置即 切线MT的斜率为 2.自由落体运动的瞬时速度问题

二、导数的定义 设函数y=f(x)在点的某个邻域内有定义,当自变量x在处取得增量Δx(点仍在该邻域内)时,相应地函数y取得增量;如果Δy与Δx之比当Δx→0时的极限存在,则称函数y=f(x)在点处可导,并称这个极限为函数 y=f(x)在点处的导数,记为 即 其它形式 关于导数的说明: 在点处的导数是因变量在点处的变化率,它反映了因变量随自变量的变化而变化的快慢程度。 如果函数y=f(x)在开区间I内的每点处都可导,就称函数f(x)在开区间I内可导。 对于任一,都对应着f(x)的一个确定的导数值,这个函数叫做原来函数f(x)

的导函数,记作 注意: 2.导函数(瞬时变化率)是函数平均变化率的逼近函数. 导数定义例题: 例1、115页8 设函数f(x)在点x=a可导,求: (1) 【答疑编号11030101:针对该题提问】 (2) 【答疑编号11030102:针对该题提问】

三、单侧导数 1.左导数: 2.右导数: 函数f(x)在点处可导左导数和右导数都存在且相等. 例2、讨论函数f(x)=|x|在x=0处的可导性。 【答疑编号11030103:针对该题提问】 解

闭区间上可导的定义:如果f(x)在开区间(a,b)内可导,且及都存在,就说f(x)在闭区间[a,b]上可导. 由定义求导数 步骤: 例3、求函数f(x)=C(C为常数)的导数。 【答疑编号11030104:针对该题提问】 解 例4、设函数 【答疑编号11030105:针对该题提问】 解

导数与微分测试题及答案(一)

导数与微分测试题(一) 一、选择题(每小题4分,共20分) 1、 设函数10 ()10 2 x x f x x ?≠??=??=?? 在0x =处( ) A 、不连续; B 、连续但不可导; C 、二阶可导; D 、仅一阶可导; 2、若抛物线2y ax =与曲线ln y x =相切,则a 等于( ) A 、1; B 、 12 ; C 、 12e ; D 、2e ; 3、设函数()ln 2f x x x =在0x 处可导,且0()2f x '=,则0()f x 等于( ) A 、1; B 、 2 e ; C 、 2e ; D 、e ; 4、设函数()f x 在点x a =处可导,则0 ()() lim x f a x f a x x →+--等于( ) A 、0; B 、()f a '; C 、2()f a '; D 、(2)f a '; 5、设函数()f x 可微,则当0x ?→时,y dy ?-与x ?相比是( ) A 、等价无穷小; B 、同阶非等价无穷小; C 、低阶无穷小; D 、高阶无穷小; 二、填空题(每小题4分,共20分) 1、设函数()f x x x =,则(0)f '=______; 2、 设函数()x f x xe =,则(0)f ''=______; 3、 设函数()f x 在0x 处可导,且0()f x =0,0()f x '=1,则 01lim ()n nf x n →∞ + =______; 4、 曲线2 28y x x =-+上点______处的切线平行于x 轴,点______处的 切线与x 轴正向的交角为 4 π 。

5、 d ______ = x e dx - 三、解答题 1、(7分)设函数()()() , ()f x x a x x ??=-在x a =处连续, 求()f a '; 2、(7分)设函数()a a x a x a f x x a a =++,求()f x '; 3、(8分)求曲线 sin cos 2x t y t =?? =? 在 6 t π = 处的切线方程和法线方程; 4、(7分)求由方程 1sin 02 x y y -+=所确定的隐函数y 的二阶导数 2 2 d y dx 5、(7分)设函数1212()()()n a a a n y x a x a x a =--- ,求 y ' 6、(10分)设函数2 12()12 x x f x ax b x ?≤?? =? ?+> ?? ,适当选择,a b 的值,使 得()f x 在12 x = 处可导 7(7分)若2 2 ()()y f x xf y x +=,其中 ()f x 为可微函数,求dy 8、(7分)设函数()f x 在[,]a b 上连续,且满足 ()()0,()()0f a f b f a f b +-''==?>,证明:()f x 在(,)a b 内至少存在一点c ,使得 ()0f c = 导数与微分测试题及答案(一) 一、1-5 CCBCD 二、1. 0; 2. 2; 3. 1; 4.(1,7)、329(, )24 ; 5. x e --; 三、1. 解:()() ()() ()lim lim ()x a x a f x f a x a x f a a x a x a ??→→--'===--;

第五章 微分方程

第五章 微分方程 第一节 微分方程的基本概念 一、基本概念 微分方程的定义: ①凡是含有未知函数的导数(或微分)的方程,称为微分方程. ②未知函数是一元函数的微分方程称为常微分方程,未知函数是多元函数的微分方程称为偏微分方程.本书只讨论常微分方程,简称微分方程. 微分方程的阶、解与通解: 微分方程中出现的未知函数最高阶导数的阶数,称为微分方程的阶.如果把函数 )(x f y =代入微分方程后,能使方程成为恒等式,则称该函数为该微分方程的解.若微分方 程的解中含有任意常数,且独立的任意常数的个数与方程的阶数相同,则称这样的解为微分方程的通解. 初始条件与特解: 用未知函数及其各阶导数在某个特定点的值作为确定通解中任意常数的条件,称为初始条件.满足初始条件的微分方程的解称为该微分方程的特解。 例1 课本294页 例1 二、独立的任意常数 线性相关与线性无关: 设)(),(21x y x y 是定义在区间),(b a 内的函数,若存在两个不全为零的数21,k k ,使得对于区间),(b a 内的任一x ,恒有 0)()(2211=+x y k x y k 成立,则称函数)(),(21x y x y 在区间),(b a 内线性相关,否则称为线性无关. 显然,函数)(),(21x y x y 线性相关的充分必要条件是 ) () (21x y x y 在区间),(b a 内恒为常数. 如果 ) () (21x y x y 不恒为常数,则)(),(21x y x y 在区间),(b a 内线性无关.

独立的任意常数: 在表达式)()(2211x y C x y C y += (1C ,2C 为任意常数) 中, 1C ,2C 为独立的任意常数的充分必要条件为)(1x y ,)(2x y 线性无关. 例2 课本297页 例4 第二节 可分离变量的微分方程 一、定义 形如 )()(d d y g x f x y = 的微分方程,称为可分离变量的方程.该微分方程的特点是等式右边可以分解成两个函数之积,其中一个仅是x 的函数,另一个仅是y 的函数,即)(),(y g x f 分别是变量y x ,的已知连续函数. 二、求解方法 可分离变量的微分方程 )()(d d y g x f x y =的求解方法,一般有如下两步: 第一步:分离变量 x x f y y g d )(d )(=, 第二步:两边积分 ??= x x f y y g d )(d )(. 【例1】求微分方程ydy dx y xydy dx +=+2 的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1 1 12 -=- 两端积分 ? ? -=-dx x dy y y 111 2得 ||ln |1|ln |1|ln 2 1 12C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 注:在用分离变量法解可分离变量的微分方程的过程中, 我们在假定0)(≠y g 的前提下, 用它除方程两边, 这样得到的通解, 不包含使0)(=y g 的特解. 但是, 有时如果我们扩大任意常数C 的取值范围, 则其失去的解仍包含在通解中. 如在例2中,我们得到的通解中应该0≠C ,但这样方程就失去特解1±=y ,而如果允许0=C ,则1±=y 仍包含在通解

导数与微分习题(基础题)

导数与微分习题(基础题) 1.设函数()x f y =,当自变量x 由0x 改变到x x ?+0时,相应函数的改变量=?y ( ) A .()x x f ?+0 B .()x x f ?+0 C .()()00x f x x f -?+ D .()x x f ?0 2.设()x f 在0x 处可导,则()()=?-?-→?x x f x x f x 000lim ( ) A .()0x f '- B .()0x f -' C .()0x f ' D .()02x f ' 3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 4.设函数()u f y =是可导的,且2x u =,则=dx dy ( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x 5.若函数()x f 在点a 连续,则()x f 在点a ( ) A .左导数存在; B .右导数存在; C .左右导数都存在 D .有定义 6.()2-=x x f 在点2=x 处的导数是( ) A .1 B .0 C .-1 D .不存在 7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( ) A .8 B .12 C .-6 D .6 8.设()x f e y =且()x f 二阶可导,则=''y ( ) A .()x f e B .()()x f e x f '' C .()()()[]x f x f e x f ''' D .()()[](){} x f x f e x f ''+'2 9.若()???≥+<=0 ,2sin 0,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( ) A .2=a ,1=b B . 1=a ,2=b C .2-=a ,1=b D .2=a ,1-=b

高等数学导数与微分练习题

作业习题 1、求下列函数的导数。 (1)223)1(-=x x y ; (2)x x y sin = ; (3)bx e y ax sin =; (4))ln(22a x x y ++=;(5)11arctan -+=x x y ;(6)x x x y )1(+=。 2、求下列隐函数的导数。 (1)0)cos(sin =+-y x x y ;(2)已知,e xy e y =+求)0(y ''。 3、求参数方程???-=-=) cos 1()sin (t a y t t a x )0(>a 所确定函数的一阶导数dx dy 与二阶导数 2 2dx y d 。 4、求下列函数的高阶导数。 (1),αx y =求)(n y ; (2),2sin 2x x y =求)50(y 。 5、求下列函数的微分。 (1))0(,>=x x y x ; (2)2 1arcsin x x y -= 。 6、求双曲线122 22=-b y a x ,在点)3,2(b a 处的切线方程与法线方程。 7、用定义求)0(f ',其中?????=, 0,1sin )(2 x x x f .0, 0=≠x x 并讨论导函数的连续性。 作业习题参考答案: 1、(1)解:])1[()1()(])1([23223223'-+-'='-='x x x x x x y ]))(1(2[)1(3223222'-+-=x x x x x x x x x x 2)1(2)1(323222?-+-= )37)(1(222--=x x x 。 (2)解:2sin cos )sin ( x x x x x x y -='='。 (3)解:bx be bx ae bx e y ax ax ax cos sin )sin (+='=' )cos sin (bx b bx a e ax +=。

导数与微分练习题

题型 1.由已知导数,求切线的方程 2.对简单的、常见函数进行求导 3.对复合函数、隐函数、对数求导法进行求导 4.参数方程与一些个别函数的应用 5.常见的高阶导数及其求导 内容 一.导数的概念 1.导数的定义 2.导数的几何意义 3.导数的物理意义 4.可导与连续之间的关系 二.导数的计算 1.导数的基本公式 2.导数的四则运算法则 3.反函数的求导法则 4.复函数的求导法则 5.隐函数的求导 6.参数方程所确定的函数的导数 7. 对数求导法 8.高阶导数

三.微分 1.微分的定义 2.可导与可微的关系 3.复合函数的微分法则 4.微分在近似计算中的应用 典型例题 题型I 利用导数定义解题 题型II 导数在几何上的应用 题型III 利用导数公式及其求导法则求导 题型IV 求高阶导数 题型V 可导、连续与极限存在的关系 自测题二 一.填空题 二.选择题 三.解答题 4月9日微分练习题 基础题: (一)选择题 1.若 ? ??≥+<+=1,1,3)(2x b ax x x x f 在1=x 处可导,则( ) A. 2,2==b a B. 2,2=-=b a C. 2,2-==b a D. 2 ,2-=-=b a

2. 设 0'()2f x =,则000 ()() lim x f x h f x h h ?→+--=( ). A 、不存在 B 、 2 C 、 0 D 、 4 3. 设 )0()(32>=x x x f , 则(_))4(='f A.2 B.3 C.4 D.5 4.已知函数)(x f 具有任意阶导数,且2)]([)(x f x f =',则当n 为大于 2的正整数时, )(x f 的n 阶 导数 )()(x f n 是( )。 A 、1)]([+n x f n B 、1)]([!+n x f n C 、n x f 2)]([ D 、n x f n 2)]([! (二)填空题 5. 设 2 sin x e y = ,则=dy _____. 6.已知 x y 2sin =,则) (n y = . 7.设函数 ()y y x =由参数方程(),()x x y y θθ==确定,()x θ与()y θ均可导,且00()x x θ=, '0()2x θ=, 2x x dy dx ==,则'0()y θ= . 8.设 0,sin )(>=a x x f ,则=--→h a f h a f h 2) ()(lim ; 9. 已知设 cos2x y e = ,则=dy ____ _. 10. sin x y x = ,则2 x dy π==_____________ 11. 已知函数()x f x xe =,则(100)()f x = . 12. 设 )]([22x f x f y +=, 其中)(u f 为可导函数, 则 =dx dy 13.2 x x y =,则 dx dy .=______ 14. 已知函数)100()2)(1()(---=x x x x x f ,则)0('f = 15. 设函数,22x x y -+=求.) (n y . 综合题: (三)解答题 16. 求与抛物线2 25y x x =-+上连接两点(1,4)P 与(3,8)Q 的弦平行,且与抛物线相切的

导数及其应用典型例题

第一章 导数及其应用 1.1 变化率与导数 【知识点归纳】 1.平均变化率: 2.瞬时速度: 3.导数及导函数的概念: 4.导数的几何意义: 拓展知识: 5.平均变化率的几何意义: 6.导数与切线的关系: 【典型例题】 题型一 求平均变化率: 例 1.已知函数2 ()21y f x x ==-的图像上一点(1,1)及其邻近一点(1,1)x y +?+?,则y x ??=_______. 变式训练: 1.以00(0)v v >速度竖直向上抛出一物体,t 秒时的高度为201()2 s t v t gt =-,求物体在0t 到0t t +?这段时间的平均速度v . 2.求正弦函数sin y x =在0x =和2x π= 附近的平均变化率,并比较他们的大小.

题型二 实际问题中的瞬时速度 例 2 已知质点M 按规律223s t =+做直线运动(位移单位:cm ,时间单位:s ) (1)当2,0.01t t =?=时,求s t ??;(2)当2,0.001t t =?=时,求s t ??; (3)求质点M 在t=2时的瞬时速度. 题型三 求函数的导数及导函数的值 例 3求函数1y x x =-在1x =处的导数. 题型四 曲线的切线问题 例 4 (1)已知曲线22y x =上一点A (1,2),求点A 处的切线方程. (2)求过点(-1,-2)且与曲线32y x x =-想切的直线方程. (3)求曲线321()53f x x x = -+在x=1处的切线的倾斜角. (4)曲线3y x =在点P 处的切线斜率为3,求点P 的坐标.

高等数学考研大总结之四导数与微分知识讲解

第四章 导数与微分 第一讲 导数 一,导数的定义: 1函数在某一点0x 处的导数:设()x f y = 在某个()δ,0x U 内有定义,如果极限 ()()0 lim 00→??-?+x x x f x x f (其中()() x x f x x f ?-?+00称为函数()x f 在(0x ,0x +x ?)上的平均变化率(或差商)称此极限值为函数()x f 在0x 处的变化率)存在则称函数()x f 在0x 点可导.并称该极限值为()x f 在0x 点的导数记为()0/ x f ,若记()()00,x f x f y x x x -=?-=?则 ()0/ x f =()()0 00lim x x x x x f x f →--=0lim →???x x y 解析:⑴导数的实质是两个无穷小的比。 即:函数相对于自变量变化快慢的程度,其绝对值 越大,则函数在该点附近变化的速度越快。 ⑵导数就是平均变化率(或差商)的极限,常用记法: ()0/ x f ,0/x x y =,0x x dx dy =。 ⑶函数()x f 在某一点0x 处的导数是研究函数()x f 在点0x 处函数的性质。 ⑷导数定义给出了求函数()x f 在点0x 处的导数的具体方法,即:①对于点0x 处的自变量增量x ?,求出函数的增量(差分)y ?=()()00x f x x f -?+②求函数增量y ?与自变量增 量x ?之比x y ??③求极限0 lim →???x x y 若存在,则极限值就是函数()x f 在点0x 处的导数,若极限不 存在,则称函数()x f 在0x 处不可导。 ⑸在求极限的过程中, 0x 是常数, x ?是变量, 求出的极限值一般依赖于0x ⑹导数是由极限定义的但两者仍有不同,我们称当极限值为∞时通常叫做极限不存在,而导数则不同,因其具有实在的几何意义,故当在某点处左,右导数存在且为同一个广义实数值时我们称函数在某点可导。实质是给导数的定义做了一个推广。 ⑺注意: 若函数()x f 在点0x 处无定义,则函数在0x 点处必无导数,但若函数在点0x 处有定义,则函数在点0x 处未必可导。 2 单侧导数:设函数()x f 在某个(]00,x x δ-(或[)δ+00,x x )有定义,并且极限

《数学分析》第五章 导数与微分

第五章 导数与微分 (计划课时:1 2时) §1 导数的概念 ( 2 时) 一. 导数的背景与定义: 1. 背景:曲线的切线、直线运动的瞬时速度. 2. 导数的定义: )(0x f '定义的各种形式. )0(f '的定义. 导数的记法. 有限增量公式: .0 ),( )(0→? ?+?'=?x x x x f y 例1 ,)(2 x x f = 求). 1 (f ' 例2 设函数)(x f 在点0x 可导, 求极限 .) 3()(lim 000 h h x f x f h --→ 3. 单侧导数: 定义. 单侧可导与可导的关系. 曲线的尖点. 例3 . )(x x f = 考查)(x f 在点0=x 的可导情况. 例4 设?? ?<≥-=. 0, ,0, cos 1)(x x x x x f 讨论)(x f 在点0=x 处的左、右导数与导数. 二. 导数的几何意义: 可导的几何意义, 导数的几何意义, 单侧导数的几何意义. 例5 求曲线2 )(x x f y ==在点) 1 , 1 (处的切线与法线方程. 三. 可导与连续的关系: Th1 若函数f 在点0x (左、右)可导,则f 在点0x (左、右)连续. 例6 证明函数)()(2 x D x x f =仅在点00=x 处可导,其中)(x D 为Dirichlet 函数. 四 导函数: 函数在区间上的可导性, 导函数, 导函数的记法. .) ()(lim )(0x x f x x f x f x ?-?+='→? (注意:x sin 等具体函数的导函数不能记为,n si x ' 应记为.)(sin 'x ) 例7 求下列函数的导数:⑴ ,)(n x x f = ⑵x x f sin )(=, ⑶x x f a log )(=. 五 导函数的介值性:

微积分典型例题和重点知识点

微积分典型例题和重点知识点 1. 重点掌握定义域-习题1-2中的2,4(17页) 2. 习题1-3中的1-2-3-6-8(23页) 3. 左右极限法-例6,课后习题1. 4.6 4. 无穷小与无穷大---定义1/定理3习题4 5. 极限运算法则--定理1,例5/习题中1的2-5-610-14-15/2 的3/3 6. 单调有界准则中的准则2/两个重要极限/习题1的3,4/2的4,7/4 7. 无穷小的比较---习题1/2/3/5的2-3-5 8. 函数的连续与间断---定义1/定义2/习题2 的2/4的3/6 9. 连续函数的运算与性质-习题1/2/4/6 10. 总习题1的1-8-26-29-33-34-35 11. 导数的概念-例2/例3 12. 函数的求导法则-定理1/复合函数的求导法则/例9-注意化简/例10/基本求导公式/习题1的2-4-5-9-10/2 的1/4 的3-5-6-8/5的1-2-5-8/6的2 13. 高阶导数==与隐函数求导结合出题---习题1的4-5/4/6的3 14. 隐函数的求导数---例2/例3/习题中1 的2-5,2的2-3,3的3 15. 函数的微分-例3 /例4 16. 总复习题1-2-10-13-14-21-23-25 17. 中值定理---习题1-3-5(重点证明题)-10的1-11========[证明一个中值的等式或根的存在,多用罗尔定理,可用原函数找辅助函函数]=========[注意洛必达法则失败的情况]==习题1 的3-5-6-910-11-12-14-17 18. 函数凹凸性:定理2/例6/例8/习题4 的2-3,6的2 19. 习题3-5中的8 20. 导数在经济学中的应用---例3(应用题)/例4/例5 /例6/习题的5-9-10 21. 总复习题1 的2/13 的1-5/24的1 22. 不定积分----例4(可能与不定积分结合)/性质1性质2(可能出选择题)/基本积分表/例8/例9/习题1 的7-10-12/3/4====有一个会有第一类间断点的函数都没有原函数 23. 换元积分法---例2 /例3/例6/常用凑微分公式/习题2 的7-8-10-11-12/3的1/4 24. 分部积分法----按”反-对-幂-三-指”的顺序,在前的设为U,在后的设为V/例3/例4/例10/习题1的2-5-14/3 25. 注意---------------------微积分重点小节是:1.7-----1.8----2.2-----2.4-----3.2-----3.7------4.2------4.3----- 计算题4题分别是分步积分凑积分法极限隐函数的求导 应用题的是弹性函数和利用函数求最值 以上是其他老师划的一些重点知识和例题,习题,请各位同学根据老师讲的内容并结合自身复习情况,做适当的调整

高等数学导数与微分练习题(完整资料).doc

【最新整理,下载后即可编辑】 作业习题 1、求下列函数的导数。 (1)223)1(-=x x y ; (2)x x y sin =; (3)bx e y ax sin =; (4))ln(22a x x y ++=;(5)11arctan -+=x x y ;(6)x x x y )1( +=。 2、求下列隐函数的导数。 (1)0)cos(sin =+-y x x y ;(2)已知,e xy e y =+求)0(y ''。 3、求参数方程?? ?-=-=) cos 1() sin (t a y t t a x )0(>a 所确定函数的一阶导数dx dy 与二 阶导数22dx y d 。 4、求下列函数的高阶导数。 (1),αx y =求)(n y ; (2),2sin 2x x y =求)50(y 。 5、求下列函数的微分。 (1))0(,>=x x y x ; (2)2 1arcsin x x y -= 。 6、求双曲线122 22=-b y a x ,在点)3,2(b a 处的切线方程与法线方程。 7、用定义求)0(f ',其中?????=, 0,1sin )(2 x x x f .0, 0=≠x x 并讨论导函数的连续性。 作业习题参考答案: 1、(1)解:])1[()1()(])1([23223223'-+-'='-='x x x x x x y ]))(1(2[)1(3223222'-+-=x x x x x x x x x x 2)1(2)1(323222?-+-= )37)(1(222--=x x x 。 (2)解:2 sin cos )sin (x x x x x x y -= '='。 (3)解:bx be bx ae bx e y ax ax ax cos sin )sin (+='=' )cos sin (bx b bx a e ax +=。 (4)解:][1 ])[ln(222 222'++++= '++='a x x a x x a x x y ])(21 1[1222 222'+++++=a x a x a x x

数学分析 §5.1导数的概念

第五章 导数与微分 §1 导数的概念 【教学目的】深刻理解导数的概念,能准确表达其定义;明确其实际背景并给出物理、几何解释;能够从定 义出发求某些函数的导数;知道导数与导函数的相互联系和区别;明确导数与单侧导数、可导与连续的关系;能利用导数概念解决一些涉及函数变化率的实际应用问题;会求曲线上一点处的切线方程;清楚函数极值的概念,并会判断简单函数的极值。 【教学重点】导数的概念,几何意义及可导与连续的关系。 【教学难点】导数的概念。 一、导数的定义 1.引入(背景) 导数的概念和其它的数学概念一样是源于人类的实践。导数的思想最初是由法国数学家费马(Fermat )为研究极值问题而引入的,后来英国数学家牛顿(Newton )在研究物理问题变速运动物体的瞬时速度,德国数学家莱布尼兹(Leibuiz )在研究几何问题曲线切线的斜率问题中,都采用了相同的研究思想。这个思想归结到数学上来,就是我们将要学习的导数。 在引入导数的定义前,先看两个与导数概念有关的实际问题。 问题1直线运动质点的瞬时速度:设一质点作直线变速运动,其运动规律为)(t s s =,若0t 为某一确定时 刻,求质点在此时刻时的瞬时速度。 取临近于0t 时刻的某一时刻t ,则质点在[]t t ,0或[]0,t t 时间段的平均速度为:00) ()(t t t s t s v --= , 当t 越接近于0t ,平均速度就越接近于0t 时刻的瞬时速度,于是瞬时速度:0 0) ()(lim t t t s t s v t t --=→。 问题2 曲线上一点处切线的斜率:已知曲线方程为)(x f y =,求此曲线在点),(00y x P 处的切线。 在曲线上取临近于P 点的某点),(y x Q ,则割线PQ 的斜率为:0 0) ()(tan x x x f x f k --= =α, 当Q 越接近于P ,割线PQ 斜率就越接近于曲线在点P 处的斜率,于是曲线在点P 处的斜率: 0 0) ()(lim x x x f x f k x x --=→. 2.导数的定义 以上两个问题的实际意义虽然不同,但从数学角度来看,都是特殊形式的函数的极限。 定义1 设函数)(x f y =在0x 的某邻域内有定义,若极限0 0()(lim x x x f x f x x --→) 存在,则称函数f 在点0x 处可导,并称该极限为f 在点0x 处的导数,记作)('0x f 或 .0 x x dx dy =

最新数学分析教案华东师大版第五章导数和微分精编版

2020年数学分析教案华东师大版第五章导数和微分精编版

第五章导数和微分 教学目的: 1.使学生准确掌握导数与微分的概念。明确其物理、几何意义,能从定义出发求一些简单函数的导数与微分; 2.弄清函数可导与可微之间的一致性及其相互联系,熟悉导数与微分的运算性质和微分法则,牢记基本初等函数的导数公式,并熟练地进行初等函数的微分运算; 3.能利用导数与微分的意义解决某些实际问题的计算。 教学重点、难点:本章重点是导数与微分的概念及其计算;难点是求复合函数的导数。 教学时数:16学时 § 1 导数的概念(4学时) 教学目的:使学生准备掌握导数的概念。明确其物理、几何意义,能从定义出发求一些简单函数的导数与微分,能利用导数的意义解决某些实际应用的计算问题。 教学要求:深刻理解导数的概念,能准确表达其定义;明确其实际背景并给出物理、几何解释;能够从定义出发求某些函数的导数;知道导数与导函数

的相互联系和区别;明确导数与单侧导数、可导与连续的关系;能利用导数概念解决一些涉及函数变化率的实际应用为体;会求曲线上一点处的切线方程。 教学重点:导数的概念。 教学难点:导数的概念。 教学方法:“系统讲授”结合“问题教学”。 一、问题提出:导数的背景. 背景:曲线的切线;运动的瞬时速度. 二、讲授新课: 1.导数的定义: 定义的各种形式. 的定义. 导数的记法. 有限增量公式: 例1 求 例2 设函数在点可导, 求极限 2.单侧导数: 定义. 单侧可导与可导的关系. 曲线的尖点. 例3考查在点的可导情况. 3.导数的几何意义: 可导的几何意义, 导数的几何意义, 单侧导数的几何意义.

高考数学 导数及其应用的典型例题

第二部分 导数、微分及其导数的应用 知识汇总 一、求导数方法 1.利用定义求导数 2.导数的四则运算法则 3.复合函数的求导法则 若)(u f y =与)(x u φ=均可导,则[])(x f y φ=也可导,且dx du du dy dx dy ?= 即 [])()(x x f y φφ'?'=' 4.反函数的求导法则 若)(x f y =与)(y x φ=互为反函数,且)(y φ单调、可导,则 ) (1 )(y x f φ'= ',即dy dx dx dy 1= 5.隐函数求导法 求由方程0),(=y x F 确定的隐函数 )(x f y =的导数dx dy 。只需将方程0),(=y x F 两边同时对x 求导(注意其中变量y 是x 的函数),然后解出 dx dy 即可。 6.对数求导法 对数求导法是先取对数,然后按隐函数求导数的方法来求导数。对数求导法主要解决两类函数的求导数问题: (1)幂指数函数y=)()(x v x u ;(2)由若干个因子的乘积或商的显函数,如 y= 34 )3(52)2)(1(---++x x x x x ,3 ) 2)(53() 32)(1(--+-=x x x x y ,5 5 2 2 5 +-=x x y 等等。 7.由参数方程所确定函数的求导法则 设由参数方程 ? ? ?==)() (t y t x ?φ ),(βα∈t 确定的函数为y=f(x),其中)(),(t t ?φ

可导,且)(t φ'≠0,则y=f(x)可导,且 dt dx dt dy t t dx dy =''=)()(φ? 8.求高阶导数的方法 二、求导数公式 1.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 2.常见函数的高阶导数 (1) n n x n x -+-?-?-?=αααααα)1()2()1()()( (2) x n x e e =)()( (3) ()()ln x n x n a a a = (4) () (sin ) sin 2n x x n π? ?=+? ??? (5) ??? ? ??+=2cos )(cos )(πn x x n (6) () 1 (1)!ln() (1) ()n n n n a x a x --+=-+ (7) 1 )() (!)1()1(++-=+n n n n b ax a n b ax

最新导数与微分练习题 (2)

导数与微分练习题 (2)

题型 1.由已知导数,求切线的方程 2.对简单的、常见函数进行求导 3.对复合函数、隐函数、对数求导法进行求导 4.参数方程与一些个别函数的应用 5.常见的高阶导数及其求导 内容一.导数的概念 1.导数的定义 2.导数的几何意义 3.导数的物理意义 4.可导与连续之间的关系 二.导数的计算 1.导数的基本公式 2.导数的四则运算法则 3.反函数的求导法则 4.复函数的求导法则 5.隐函数的求导 6.参数方程所确定的函数的导数 7. 对数求导法 8.高阶导数

三.微分 1.微分的定义 2.可导与可微的关系 3.复合函数的微分法则 4.微分在近似计算中的应用 典型例题 题型I 利用导数定义解题 题型II 导数在几何上的应用 题型III 利用导数公式及其求导法则求导 题型IV 求高阶导数 题型V 可导、连续与极限存在的关系 自测题二 一.填空题 二.选择题 三.解答题 4月9日微分练习题 基础题: (一)选择题 1.若?Skip Record If...?在?Skip Record If...?处可导,则() A. ?Skip Record If...? B. ?Skip Record If...? C. ?Skip Record If...? D. ?Skip Record If...? 2. 设?Skip Record If...?,则?Skip Record If...?=( ). A、不存在 B、 2 C、 0 D、 4 3. 设?Skip Record If...?, 则?Skip Record If...?

A.2 B.3 C.4 D.5 4.已知函数?Skip Record If...?具有任意阶导数,且?Skip Record If...?,则当?Skip Record If...?为大于2的正整数时,?Skip Record If...?的?Skip Record If...?阶导数?Skip Record If...?是()。 A、?Skip Record If...? B、?Skip Record If...? C、?Skip Record If...? D、?Skip Record If...? (二)填空题 5.设?Skip Record If...?,则?Skip Record If...?_____. 6.已知?Skip Record If...?,则?Skip Record If...?= . 7.设函数?Skip Record If...?由参数方程?Skip Record If...?确定,?Skip Record If...?与?Skip Record If...?均可导,且?Skip Record If...?,?Skip Record If...?,?Skip Record If...?,则 ?Skip Record If...?. 8.设?Skip Record If...?,则?Skip Record If...?; 9.已知设 ?Skip Record If...?,则?Skip Record If...?____ _. 10.?Skip Record If...?,则?Skip Record If...?_____________ 11.已知函数?Skip Record If...?,则?Skip Record If...?= . 12.设?Skip Record If...?, 其中?Skip Record If...?为可导函数, 则?Skip Record If...? 13.?Skip Record If...?,则?Skip Record If...?.=?Skip Record If...? 14.已知函数?Skip Record If...?,则?Skip Record If...?= 15.设函数?Skip Record If...?求?Skip Record If...? . 综合题: (三)解答题 16.求与抛物线?Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...?且与抛物线相切的直线方程. 17.求幂指函数?Skip Record If...?的导数. 18. 已知?Skip Record If...?,求?Skip Record If...?. 19. 求由参数方程?Skip Record If...?所确定的函数的一阶导数?Skip Record If...?和二阶导数?Skip Record If...?.

(完整版)同济版《高等数学》稿WORD版导数与微分

第二章 导数与微分 教学目的: 1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系. 2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3、 了解高阶导数的概念,会求某些简单函数的n 阶导数. 4、 会求分段函数的导数. 5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数. 教学重点: 1、导数和微分的概念与微分的关系; 2、导数的四则运算法则和复合函数的求导法则; 3、基本初等函数的导数公式; 4、高阶导数; 6、 隐函数和由参数方程确定的函数的导数. 教学难点: 1、复合函数的求导法则; 2、分段函数的导数; 3、反函数的导数 4、隐函数和由参数方程确定的导数. §2. 1 导数概念 一、引例 1.直线运动的速度 设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数: s =f (t ), 求动点在时刻t 0的速度. 考虑比值 000) ()(t t t f t f t t s s --=--, 这个比值可认为是动点在时间间隔t -t 0内的平均速度. 如果时间间隔选较短, 这个比值在实践 中也可用来说明动点在时刻t 0的速度. 但这样做是不精确的, 更确地应当这样: 令t -t 0→0, 取

比值 0) ()(t t t f t f --的极限, 如果这个极限存在, 设为v , 即 0) ()(lim t t t f t f v t t --=→, 这时就把这个极限值v 称为动点在时刻t 0的速度. 2.切线问题 设有曲线C 及C 上的一点M , 在点M 外另取C 上一点N , 作割线MN . 当点N 沿曲线C 趋于点M 时, 如果割线MN绕点M旋转而趋于极限位置MT , 直线MT就称为曲线C有点M处的切线. 设曲线C 就是函数y =f (x )的图形. 现在要确定曲线在点M (x 0, y 0)(y 0=f (x 0))处的切线, 只要定出切线的斜率就行了. 为此, 在点M 外另取C 上一点N (x , y ), 于是割线MN 的斜率为 0 000) ()(tan x x x f x f x x y y --= --= ?, 其中?为割线MN 的倾角. 当点N 沿曲线C 趋于点M 时, x →x 0. 如果当x → 0时, 上式的极限存 在, 设为k , 即 00) ()(lim 0x x x f x f k x x --=→ 存在, 则此极限k 是割线斜率的极限, 也就是切线的斜率. 这里k =tan α, 其中α是切线MT 的 倾角. 于是, 通过点M (x 0, f (x 0))且以k 为斜率的直线MT 便是曲线C 在点M 处的切线. 二、导数的定义 1. 函数在一点处的导数与导函数 从上面所讨论的两个问题看出, 非匀速直线运动的速度和切线的斜率都归结为如下的极限: 00) ()(lim 0x x x f x f x x --→. 令?x =x -x 0, 则?y =f (x 0+?x )-f (x 0)= f (x )-f (x 0), x →x 0相当于?x →0, 于是0 0) ()(lim 0 x x x f x f x x --→ 成为 x y x ??→?0lim 或x x f x x f x ?-?+→?)()(lim 000. 定义 设函数y =f (x )在点x 0的某个邻域内有定义, 当自变量x 在x 0处取得增量?x (点x 0+?x 仍在该邻域内)时, 相应地函数y 取得增量?y =f (x 0+?x )-f (x 0); 如果?y 与?x 之比当?x →0时的极限存在, 则称函数y =f (x )在点x 0处可导, 并称这个极限为函数y =f (x )在点x 0处的导数, 记为0|x x y =', 即 x x f x x f x y x f x x ?-?+=??='→?→?)()(lim lim )(00000,

相关主题
文本预览
相关文档 最新文档