当前位置:文档之家› 过渡金属氧化物纳米材料的合成及相关性能研究

过渡金属氧化物纳米材料的合成及相关性能研究

过渡金属氧化物纳米材料的合成及相关性能研究
过渡金属氧化物纳米材料的合成及相关性能研究

江苏大学

硕士学位论文

过渡金属氧化物纳米材料的合成及相关性能研究

姓名:魏超

申请学位级别:硕士

专业:无机化学

指导教师:张文莉

20090601

纳米材料特性

《纳米材料导论》作业 1、什么是纳米材料?怎样对纳米材料进行分类? 答:任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料称作纳米材料。它包括体积分数近似相等的两部分:一是直径为几或几十纳米的粒子,二是粒子间的界面。纳米材料通常按照维度进行分类。原子团簇、纳米微粒等为0维纳米材料。纳米线为1维纳米材料,纳米薄膜为2维纳米材料,纳米块体为3维纳米材料,及由他们组成的纳米复合材料。 按照形态还可以分为粉体材料、晶体材料、薄膜材料。 2、纳米材料有哪些基本的效应?试举例说明。 答:纳米材料的基本效应有:一、尺寸效应,纳米微粒的尺寸相当或小于光波波长、传导电子的德布罗意波长、超导态的相干长度或投射深度等特征尺寸时,周期性的边界条件将被破坏,声、光、电、磁、热力学等特征性即呈现新的小尺寸效应。出现光吸收显著增加并产生吸收峰的等离子共振频移; 磁有序态转为无序态;超导相转变为正常相;声子谱发生改变等。例如,纳米微粒的熔点远低于块状金属;纳米强磁性颗粒尺寸为单畴临界尺寸时,具有很高的矫顽力;库仑阻塞效应等。二、量子效应,当能级间距δ大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须考虑量子效应,随着金属微粒尺寸的减小,金属费米能级附近的电子能级由准连续变为离散能级的现象和半导体微粒存在不连续的最高被占据分子轨道和最低未被占据分子轨道,能隙变宽的现象均称为量子效应。例如,颗粒的磁化率、比热容与所含电子的奇、偶有关,相应会产生光谱线的频移,介电常数变化等。 三、界面效应,纳米材料由于表面原子数增多,晶界上的原子占有相当高的 比例,而表面原子配位数不足和高的表面自由能,使这些原子易与其它原子相结合而稳定下来,从而具有很高的化学活性。引起表面电子自旋构象和电子能谱的变化;纳米微粒表面原子运输和构型的变化。四、体积效应,由于纳米粒子体积很小,包含原子数很少,许多现象不能用有无限个原子的块状物质的性质加以说明,即称体积效应。久保理论对此做了些解释。 3、纳米材料的晶界有哪些不同于粗晶晶界的特点? 答:纳米晶的晶界具有以下不同于粗晶晶界结构的特点:1)晶界具有大量未被原子占据的空间或过剩体积,2)低的配位数和密度,3)大的原子均方间距,4)存在三叉晶界。此外,纳米晶材料晶间原子的热振动要大于粗晶的晶间原子的热振动,晶界还存在有空位团、微孔等缺陷,它们与旋错、晶粒内的位错、孪晶、层错以及晶面等共同形成纳米材料的缺陷。 4、纳米材料有哪些缺陷?总结纳米材料中位错的特点。 答:纳米材料的缺陷有:一、点缺陷,如空位,溶质原子和杂质原子等,这是一种零维缺陷。二、线缺陷,如位错,一种一维缺陷,位错的线长度及位错运动的平均自由程均小于晶粒的尺寸。三、面缺陷,如孪晶、层错等,这是一种二维缺陷。纳米晶粒内的位错具有尺寸效应,当晶粒小于某一临界尺寸时,位错不稳定,趋向于离开晶粒,而当粒径大于该临界尺寸时,位错便稳定地存在于晶粒 T 内。位错与晶粒大小之间的关系为:1)当晶粒尺寸在50~100nm之间,温度<0.5 m

过渡金属氧化物锂离子电池负极材料的类型以及改性

二○一五年专业课论文 过渡金属氧化物锂离子电池负极材料的 类型以及改性研究 学院:材料科学与工程学院 专业:材料物理与化学 姓名:崔宇 学号:2014231015

过渡金属氧化物锂离子电池负极材料的类型以及改性研究 崔宇 长安大学材料科学与工程学院,陕西西安,710049 摘要系统的介绍了锂离子电池负极材料的类型,原理以及电化学性能?叙述了对不同的材料的改性办法?简要介绍了氧化物材料的纳米改性和复合改性,对以后可能展开的研究方向提出指导? 关键词锂离子电池负极;纳米改性 Types of transition metal oxide anode material for lithium-ion batteries and modification Abstract Systems introduces the type of anode material for lithium-ion batteries, principle and electrochemical properties. Modified approach to the different materials is described. Introduced and modification of nano-modification of oxide materials, possible research direction in the future. Keywords Lithium ion battery; Nano modified 0引言 伴随着互联网移动化的进程,诞生出越来越多的移动设备?随着智能手机的普及,电池这一性能瓶颈带来的问题日益突出?因此,研发出新的具有更强性能的锂电池成为当下的热点方向?由于手机对于锂电池的容量要求极高,而且它具有较高的利润,因此使用一些金属元素来代替现有的碳材料成为可能?目前,传统的石墨负极材料理论比容量为372mAh/g,已不能满足新一代高比容量电池负极材料的需求,为此,开发新型高比容量锂离子电池负极材料显得迫在眉睫[1-2]?与传统的石墨负极相比,过渡金属氧化物拥有高的理论容量和首次充放电容量?然而由于它们存在首次库仑效率低?高倍率充放电容量低和循环稳定性较差等缺陷,限制了其广泛应用[3-5]?与正极材料一样,负极材料也是影响锂离子电池性能的重要因素之一,是锂离子电池发展的主要研究内容?它经历了3个阶段的发展,分别是最初的金属锂,锂合金和目前商业应用的碳材料?一般来说,理想的负极材料应满足以下要求[6-7]: (1)低的氧化还原电位,近可能接近锂的电位?负极材料的氧化还原电位越低,整个电池系统的工作电位就会越高,这样锂离子电池将获得更高的能量; (2)良好的电子传导率和锂离子迁移率?良好的导电性和锂离子迁移率可以保证电池反应的快速发生,从而保证电池系统能够进行快速充电; (3)结构稳定,容量高?负极材料应该具有锂离子容易脱嵌的结构,并且在发生锂离子脱嵌的过程中,其结构应该保持稳定,具有稳定的循环性能; (4)与电解液有很好的兼容性,并且不与电解液反应; (5)制备容易?成本低?环保?无毒性等? 1碳基负极材料 自从索尼公司用碳材料作负极的商品化锂离子电池以来,人们对碳负极进行了广泛研究?

贵金属纳米材料及其应用

贵金属纳米材料及其应用 张丹丹 (化学与环境工程学院11应化1班11331123) 摘要:系统地介绍了贵金属纳米材料的制备方法,以及其在催化剂、卫生医用及传感材料等方面的应用。 关键词:贵金属;纳米材料;制备;应用 1 前言 纳米材料由于具有量子效应、小尺寸效应及表面效应,呈现出许多特有的物理、化学性质,已成为物理、化学、材料等诸多学科研究的前沿领域。 贵金属纳米材料是纳米材料的一个重要组成部分,由于其将贵金属独特的物理化学性质与纳米材料的特殊性能有机地结合起来,在化学催化、能源、电子和生物等领域有着广阔的应用前景,得到了越来越广泛的重视。 2 贵金属纳米材料的制备 纳米材料的制备方法主要可分为物理方法和化学方法两大类。在制备纳米微粒的过中,关键是控制纳米微粒的尺寸、较窄的粒度分布范围及纳米微粒的分散性。目前,关于贵金属纳米微粒的制备方法的报道较多,也有关于大尺寸纳米贵金属、复合贵金属纳米材料及贵金属纳米线和纳米管的报道。除了常用的制备方法外,近年还提出了新的制备方法,如“Ship-in-Bottle”法等。 2.1 贵金属纳米微粒的制备 纳米微粒多用液相法制备,与气相法相比,液相法的设备投资少,操作较简便。最常用的是溶胶-凝胶法和沉淀法等。沉淀法是将沉淀剂加入到金属盐溶液中,进行沉淀处理,然后将沉淀物加热分解得到金属纳米微粒。1995年我国华东理工大学张宗涛等[1]用高分子保护化学还原沉淀法成功制备了平均粒径为30-100nm 的球型银粉。此法用水合肼作还原剂,水为分散介质,聚乙烯吡咯烷酮(pvp)为保护剂,在搅拌下将AgNO3水溶液滴加入PVP 和水合肼的混合溶液中。反应终止后,将所得的Ag粉用水和丙酮洗涤,40℃下干燥12h,

纳米金属材料的发展与应用综述

纳米金属材料的发展与应用 摘要:纳米技术的诞生将对人类社会产生深远的影响,可能许多问题的发展都与纳米材料的发展息息相关。在纳米金属材料的研究中,它的制备、特性、性能和应用是比较重要的方面。本文概要的论述了纳米材料的发现发展过程,并结合当今纳米金属材料研究领域最前沿的技术和成果,简述了纳米材料在各方面的应用及其未来的发展前景。 关键词:纳米金属材料、纳米技术、应用 一、前言 纳米级结构材料简称为纳米材料(nanomater material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。 纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。 纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。我国已努力赶上先进国家水平,研究队伍也在日渐壮大。 二、纳米材料的发现和发展 1861年,随着胶体化学的建立,科学家们开始了对直径为1~100nm的粒子体系的研究工作。1990年7月在美国召开了第一届国际纳米科技技术会议(International Conference on Nanoscience &Technology),正式宣布纳米材料科学为材料科学的一个新分支。自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。 三、纳米材料的应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十

金属氧化物纳米材料的制备新进展

摘要:综述了近5年来金属氧化物纳米材料的制备方法、研究现状;讨论了这些方法的优缺点。指出液相法,尤其是溶胶-凝胶法、沉淀法、水解法、微乳液法、水热溶剂热法等是目前制备纳米金属氧化物材料最广泛应用的方法。而超声技术、微波辐射技术、交流电沉积技术、超临界流体干燥技术、非水溶剂水热技术等新技术与传统液相法的有机结合,是制备高纯度、小粒径、均匀分散的金属氧化物纳米粉体的最有前途的方法。最后对金属氧化物纳米材料研究的发展方向提出了展望。 关键词:金属氧化物;纳米;制备;进展 金属氧化物纳米材料广泛应用于制作催化剂、精细陶瓷、复合材料、磁性材料、荧光材料、湿敏性传感器及红外吸收材料等[1]。例如:纳米氧化锌在磁、光、电敏感材料方面呈现常规材料所不具备的特殊功能,使得高品质的氧化锌的应用前景广阔;纳米氧化铝作为重要的陶瓷材料,具有非常高的应用价值;高纯纳米级SnO2可用来制作气敏及湿敏元件;纳米氧化钛由于在精细陶瓷、半导体、催化材料方面的广泛应用,也越来越引起人们的关注。多年来,科技工作者们已经研制出多种制备金属氧化物纳米材料的方法,如:溶胶-凝胶法、醇盐水解法、强制水解法、溶液的气相分解法、湿化学合成法、微乳液法等。近年来材料科学家和化学家又将激光技术、微波辐射技术、超声技术、交流电沉积技术、超临界流体干燥技术、非水溶剂水热技术等方法引入了金属氧化物纳米材料的传统制备方法中,使金属氧化物纳米材料的制备方法得到了较大的完善和发展。关于金属氧化物纳米材料,邓红梅[2]综述了化学法制备及EXAFS特征研究,汪信[3]对复合金属氧化物的制备进行了评述。本文着重评述近5年来单分散性金属氧化物纳米材料的制备方法、研究现状和发展方向。 1 金属氧化物纳米微粒的制备 根据原料状态的不同,制备金属氧化物纳米微粒的方法大致可分为3类:固相法、液相法和气相法。 1.1固相法 传统的固相法是将金属盐和金属氢氧化物按一定的比例充分混合,发生复分解反应生成前驱物,多次洗涤后充分研磨进行煅烧,然后再研磨得到纳米粒子。此法设备和工艺简单,反应条件容易控制,产率高,成本低,环境污染少,但产品粒度分布不均,易团聚。刘长久等[4]采用固相反应法制备了粒径为30nm的NiO纳米粉体,并对其电化学性能进行了研究。HengLi等[5]在环境温度下用固相反应成功地合成了纳米氧化物SiO2、CeO2、SnO2,并初步探讨了环境温度下纳米材料的形成机理。贾殿赠等[6]对此法进行了改进,在固相配位化学反应的基础上,将室温固相配位化学反应引入金属氧化物纳米粒子的合成中,提出一种室温固相化学反应合成纳米材料的新方法,即用室温固相化学反应首先制得前驱物,进而前驱物经热分解得纳米金属氧化物。此法不仅是无溶剂反应,而且许多反应可在室温或低温条件下发生。因此从原料的使用、合成条件及合成工艺等方面考虑,固相配位化学反应法在合成新颖纳米材料方面具有其潜在的优点。目前采用此新方法已制得纳米CuO[7]、ZnO、NiO等。 1 2液相法 液相法因其相关的工业过程控制与设备的放大技术较为成熟,具有更强的技术竞争优势。该法比较容易控制成核,从而容易控制颗粒的化学组成、形状及大小,而且该方法添加的微量成分和组成较均匀,即使是对于很复杂的材料也可以获得化学均匀性很高的粉体。不过,该法极易引入杂质(如部分阴离子等),造成所得粉体纯度不够。近年来,超声、微波辐射、电弧放电、共沸蒸馏等物理技术的引入,使普通液相法制备纳米粉体得到了新的发展。液相法大致可分为以下几种方法。 1.2.1溶胶-凝胶法(Sol-Gel) 溶胶-凝胶法是近期发展起来的,能代替高温固相合成反应制备陶瓷、玻璃和许多固体材料的新方法。作为低温或温和条件下合成无机化合物或无机材料的重要方法,在软化学合成中已

金属纳米材料制备技术的研究进展

金属纳米材料制备技术的研究进展 摘要:本文从金属纳米材料这一金属材料重要分支进行了简要的阐述,其中重 点讲述了强行塑性变形及胶束法制备纳米材料,并分析了金属纳米材料的现状及对今后的展望。 关键字:晶粒细化;强烈塑性变形;胶束法;块状纳米材料 引言: 金属材料是指金属元素为主构成的具有金属特性的材料的统称。包括金属、合金、金属间化合物和特种金属材料等。人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。 现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。同时,人类文明的发展和社会的进步对金属材料的服役性能提出了更高的要求,各国科学家积极投身于金属材料领域,向金属材料的性能极限不断逼近,充分利用其为人类服务。 一种崭新的技术的实现,往往需要新材料的支持。例如,人们早就知道喷气式航空发动机比螺旋桨航空发动机有很多优点,但由于没有合适的材料能承受喷射出燃气的高温,是这种理想只能是空中楼阁,直到1942年制成了耐热合金,才使喷气式发动机的制造得以实现。 1金属纳米材料的提出 从目前看,提高金属材料性能的有效途径之一是向着金属结构的极端状态发展:一方面认为金属晶界是薄弱环节,力求减少甚至消除晶界,因此发展出了单晶与非晶态合金;另一方面使多晶体的晶粒细化到纳米级(一般<100 nm,典型为10 nm左右)[1]。细化晶粒是金属材料强韧化的重要手段之一,它可以有效地提高金属材料的综合力学性能,尤其是当金属材料的晶粒尺寸减小到纳米尺度时,金属表现出更加优异的力学性能[2]。因此,金属材料晶粒超细化/纳米化技术的发展备受人们关注,一系列金属纳米材料的制备技术相继提出并进行了探索,包括电沉积法、溅射法、非晶晶化法、强烈塑性变形法(Severe Plastic Deformation, SPD)、粉末冶金法以及热喷涂法等[3]。 金属纳米材料是指三维空间中至少有一维处于纳米尺度或由它们作为基本单元构成的金属材料。若按维数,纳米材料的基本单元可分为( 类:一是零维。指在空间三维尺度均在纳米尺度,如纳米粉体、原子团簇等;二是一维。指在空间有两维处于纳米尺度,如纳米丝、纳米棒、纳米管等;三是二维。指在三维空间中有一维处于纳米尺度,如超薄膜、多层膜及超晶格等。超微颗粒的表面具有很高的活性,在空气中金属颗粒会迅速氧化而燃烧。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料[4]。金属纳米颗粒表现出许多块体材料所不具备的优越性质,可用于催化、光催化、燃料电池、化学传感、

金属氧化物纳米材料的电化学合成与形貌调控研究进展

[Review] https://www.doczj.com/doc/bc11955054.html, doi:10.3866/PKU.WHXB 201209145 物理化学学报(Wuli Huaxue Xuebao ) Acta Phys.-Chim.Sin.2012,28(10),2436-2446 October Received:August 30,2012;Revised:September 10,2012;Published on Web:September 14,2012.? Corresponding author.Email:dsxu@https://www.doczj.com/doc/bc11955054.html,;Tel:+86-10-62760360. The project was supported by the National Natural Science Foundation of China (51121091,21133001,61176004),National Key Basic Research Program of China (973)(2007CB936201,2011CB808702),and Science and Technology on Electro-optical Information Security Control Laboratory,China (9140C150304110C1502). 国家自然科学基金(51121091,21133001,61176004),国家重点基础研究发展规划项目(973)(2007CB936201,2011CB808702)和国家光电信息控制和安全技术重点实验室基金(9140C150304110C1502)资助 ?Editorial office of Acta Physico-Chimica Sinica 金属氧化物纳米材料的电化学合成与形貌调控研究进展 焦淑红1 徐东升1,2,*许荔芬1张晓光2 (1北京大学化学与分子工程学院,分子动态与稳态结构国家重点实验室,北京分子科学国家实验室,北京100871; 2 光电信息控制和安全技术重点实验室,河北三河065201) 摘要:金属氧化物纳米材料因其丰富的形貌、独特的性能、广泛的应用成为材料合成领域研究的热点.调控金 属氧化物纳米材料的形貌对于调变其性能、拓展其应用空间具有重要意义.电化学方法由于操作简单易控、方法灵活多变,因此成为调控金属氧化物形貌的常用方法.本文综述了近年来我们在金属氧化物纳米材料的电化学合成与形貌调控方面已取得的研究结果;总结了不同金属氧化物在电化学过程中晶体生长机制和形貌调控的规律,为实现功能材料的定向合成奠定了基础.关键词: ZnO;金属氧化物;形貌调控;电沉积;纳米管;多级结构 中图分类号: O646 Recent Progress in Electrochemical Synthesis and Morphological Control of Metal Oxide Nanostructures JIAO Shu-Hong 1 XU Dong-Sheng 1,2,* XU Li-Fen 1 ZHANG Xiao-Guang 2 (1Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Unstable and Stable Species,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P .R.China ;2Science and Technology on Electro-optical Information Security Control Laboratory,Sanhe 065201,Hebei Province,P .R.China ) Abstract:There has been considerable focus on the synthesis of metal oxide nanostructures because of their extensive structures,unique properties,and wide applications.The morphological control of metal oxide nanostructures is of interest for tuning their performance and expanding their range of applications.Electrochemical methods have become a common way of controlling the morphologies of metal oxides,owing to their simple operation,ease of control,and flexible modes.This paper presents a brief overview of our research in the electrochemical synthesis and morphological control of metal oxide nanostructures.We will also discuss the crystal growth mechanism and the morphology control of different metal oxides during the electrochemical deposition process,which lays the foundation for orientation design and fabrication of functional materials. Key Words:ZnO;Metal oxide;Morphological control; Electrodeposition; Nanotube; Hierarchical structure 2436

纳米材料论文

纳米材料的制备技术进展及展望 物理工程学院2007级应用物理学03班衷雷 20072200342 摘要综述了国内外块状纳米材料的制备技术进展及存在的问题。提出了超短时脉冲电流直接晶化法和深过冷直接晶化法两类潜在的块状金属纳米晶制备技术,并对今后的研究及发展前景进行了展望。 关键词:纳米晶块体材料制备非晶晶化机械合金化深过冷 自80年代初德国科学家H.V.Gleiter成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后[1],纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能[2],使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的热点。为使这种新型材料既有利于理论研究,又能在实际中拓宽其使用范围,探索高质量的三维大尺寸纳米晶体样品的制备技术已成为纳米材料研究的关键之一。本文综述国内外现有块状金属纳米材料的制备技术进展,并提出今后可能成为块状金属纳米材料制备的潜在技术。 1现有块状金属纳米材料的制备技术 1.1 惰性气体凝聚原位加压成形法 该法首先由H.V.Gleiter教授提出[1],其装置主要由蒸发源、液氮冷却的纳米微粉收集系统、刮落输运系统及原位加压成形(烧结)系统组成。其制备过程是:在高真空反应室中惰性气体保护下使金属受热升华并在液氮冷镜壁上聚集、凝结为纳米尺寸的超微粒子,刮板将收集器上的纳米微粒刮落进入漏斗并导入模具,在10-6Pa高真空下,加压系统以1~5 GPa的压力使纳米粉原位加压(烧结)成块。采用该法已成功地制得Pd、Cu、Fe、Ag、Mg、S b、Ni3Al、NiAl、TiAl、Fe5Si95等合金的块状纳米材料[3]。近年来,在该装置基础之上,通过改进使金属升华的热源及方式(如采用感应加热、等离子体法、电子束加热法、激光热解法、磁溅射等)以及改良其它装备,可以获得克级到几十克级的纳米晶体样品。纳米超饱和合金、纳米复合材料等也正在利用此法研究之中。目前该法正向多组分、计量控制、多副模具、超高压力方向发展。 该法的特点是适用范围广,微粉表面洁净,有助于纳米材料的理论研究。但工艺设备复杂,产量极低,很难满足性能研究及应用的要求,特别是用这种方法制备的纳米晶体样品存在大量的微孔隙,致密样品密度仅能达金属体积密度的75%~90%,这种微孔隙对纳米材料的结构性能研究及某些性能的提高十分不利。近年来,尽管发展了一些新的纳米粉制备方法

纳米金属材料的进展与挑战

纳米金属材料进展和挑战 1 引言 40多年以前,科学家们就认识到实际材料中的无序结构是不容忽视的。许多新发现的物理效应,诸如某些相转变、量子尺寸效应和有关的传输现象等,只出现在含有缺陷的有序固体中。事实上,如果多晶体中晶体区的特征尺度(晶粒或晶畴直径或薄膜厚度)达到某种特征长度时(如电子波长、平均自由程、共格长度、相关长度等),材料的性能将不仅依赖于晶格原子的交互作用,也受其维数、尺度的减小和高密度缺陷控制。有鉴于此,HGleitCr认为,如果能够合成出晶粒尺寸在纳米量级的多晶体,即主要由非共格界面构成的材料。 例如,由50%(in vol.)的非共植晶界和50%(in vol.)的晶体构成],其结构将与普通多晶体(晶粒大于lmm)或玻璃(有序度小于2nm)明显不同,称之为纳米晶体材料(nanocrystalline materials)。后来,人们又将晶体区域或其它特征长度在纳米量级范围(小于100nn)的材料广义定义为纳米材料或纳米结构材料(nanostructured materials)。由于其独特的微结构和奇异性能,纳米材料引起了科学界的极大关注,成为世界范围内的研究热点,其领域涉及物理、化学、生物、微电子等诸多学科。目前,广义的纳米材料的主要l)清洁或涂层表面的金属、半导体或聚合物薄膜;2)人造超晶格和量子讲结构;功半结晶聚合物和聚合物混和物;3)纳米晶体和纳米玻璃材料;4)金属键、共价键或分子组元构成的纳米复合材料。 经过最近十多年的研究与探索,现已在纳米材料制备方法、结构表征、物理和化学性能、实用化等方面取得显著进展,研究成果日新月异,研究范围不断拓宽。本文主要从材料科学与工程的角度,介绍与评述纳米金属材料的某些研究进展。

金属纳米材料研究进展

金属纳米材料研究进展 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

高等物理化学 学生姓名:聂荣健 学号:…………….. 学院:化工学院 专业:应用化学 指导教师:…………. 金属氧化物纳米材料研究进展 应用化学专业聂荣健学号:……指导老师:…… 摘要:综述了近年来金属氧化物纳米材料水热合成方法的研究进展,简要阐述了金属氧化物纳米材料的应用,对其今后的研究发展方向进行了展望。 关键词:纳米材料水热合成金属氧化物 Research progress of metal oxide nanomaterials Name Rongjian Nie Abstract: This article reviews the recent progress in hydrothermal synthesis of metal oxide nanomaterials. The application progress of metal oxide nanomaterials is briefly describrd.The future research directions are prospected. Keywords: nanomaterials; hydrothermal; metal oxides ; 引言 纳米材料是纳米科学中的一个重要的研究发展方向,近年来已在许多科学领域引起了广泛的重视,成为材料科学研究的热点。作为纳米材料的一个方面,金属氧化物纳米材料在现代工业、国防和高技术发展中充当着重要的角色。 1.纳米材料简介 纳米材料概述

金属纳米材料的应用研究

金属纳米材料的应用与研究 【前言】著名科学家费曼于1959年所作的《在底部还有很大空间》的演讲中,以“由下而上的方法”(bottom up) 出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。”[1] 1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。1982年,科学家发明研究纳米的重要工具--扫描隧道显微镜,使人类首次在大气和常温下看见原子,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。 【摘要】纳米技术是当今世界最有前途的决定性技术。文章简要地概述了纳米技术,纳米材料的结构和特殊性质以及纳米纳米材料各方面的性能在实际中的应用,并展望了纳米材料的应用前景。 1.纳米科学和技术 1.1 纳米科技的定义 纳米科技是20世纪80年代末诞生并正在崛起的新科技,是一门在0.1~ 100 nm尺度空间内,研究电子、原子和分子运动规律和特性的高技术学科。其涵义是人类在纳米尺寸(10-9--10-7m)范围内认识和改造自然,最终目标是通过直接操纵和安排原子、分子而创造特定功能的新物质。纳米科技

是现代物理学与先进工程技术相结合的基础上诞生的,是一门基础研究与应用研究紧密联系的新兴科学技术。其中纳米材料是纳米科技的重要组成部分。 1.2 纳米科技的内容 纳米科技主要包含:纳米物理学;纳米电子学;纳米材料学;纳米机械学;纳米生物学;纳米显微学;纳米计量学;纳米制造学…… 1.3 纳米科技的内涵 第一:纳米科技不仅仅是纳米材料的问题。目前科技界普遍公认的纳米科技的定义是:在纳米尺度上研究物质的特性和相互作用以及如何利用这些特性和相互作用的具有多学科交叉性质的科学和技术。纳米科技与众多学科密切相关,它是一门体现多学科交叉性质的前沿领域。现在已不能将纳米科技划归任何一个传统学科。如果将纳米科技与传统学科相结合,可产生众多的新的学科领域,并派生出许多新名词。这些新名词所体现的研究内容又有交叉重叠。若以研究对象或工作性质来区分,纳米科技包括三个研究领域:纳米材料;纳米器件;纳米尺度的检测与表征。其中纳米材料是纳米科技的基础;纳米器件的研制水平和应用程度是人类是否进入纳米科技时代的重要标志;纳米尺度的检测与表征是纳米科技研究必不可少的手段和理论与实验的重要基础。目前人们对纳米科技的理解,似乎仅仅是讲纳米材料,只局限于纳米材料的制备,这是不全面的。主要原因:国内科研经费的资助以及有影响的成果的获得,主要集中在纳米材料领域,而且我国目前纳米科技在实际生活中的应用也最先在纳米材料这一领域表现出来。我国现在300余家从事纳米科技研发的公司也主要是从事纳米材

【CN110124702A】一种双金属磷化物复合还原石墨烯纳米电催化材料的制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910325365.4 (22)申请日 2019.04.22 (71)申请人 浙江大学 地址 310058 浙江省杭州市西湖区余杭塘 路866号 (72)发明人 刘毅 赵蓉 杨梦雅 王欢  姜永学 王聪  (74)专利代理机构 浙江杭州金通专利事务所有 限公司 33100 代理人 徐关寿 (51)Int.Cl. B01J 27/185(2006.01) B01J 37/28(2006.01) C25B 11/06(2006.01) C25B 1/04(2006.01) (54)发明名称 一种双金属磷化物复合还原石墨烯纳米电 催化材料的制备方法 (57)摘要 本发明公开了一种双金属磷化物复合还原 石墨烯纳米电催化材料的制备方法,包括步骤1) 将氧化石墨烯溶于水,超声至均匀;2)将四水合 醋酸镍和四水合醋酸钴分别加到氧化石墨烯溶 液中,搅拌均匀得溶液A;3)将2,5-二羟基对苯二 甲酸与氢氧化钠溶于去离子水中,搅拌均匀得溶 液B;4)将溶液A与溶液B均匀混合反应后,离心收 集得到沉淀物,将沉淀物洗涤后冷冻干燥,得含 Ni、Co双金属MOF复合氧化石墨烯纳米材料;5)将 步骤4)中得到的材料和次磷酸钠分别置于管式 炉中,在惰性气氛下升温并保温一段时间,冷却 至室温后得到含Ni与Co的双金属磷化物复合还 原石墨烯纳米电催化材料NiCo/P -rGO。本方法操 作简便、成本低廉,得到的材料具有较好的电催 化性能。权利要求书1页 说明书6页 附图2页CN 110124702 A 2019.08.16 C N 110124702 A

纳米金属氧化物的制备及应用研究的若干进展

纳米金属氧化物的制备及应用研究的若干进展 汪信陆路德 综述了氧化物及复合氧化物纳米晶的各种制备方法及特点,重点介绍了有机配合物前驱体法-聚乙二醇法、明胶法和硬脂酸法制备氧化物纳米晶的原理、特点以及在磁性材料、电磁波吸收材料、催化剂和塑料改性方面的若干应用。 关键词:纳米材料氧化物软化学 分类号:O611.12 Progress of Preparation and Applications of Metal Oxide Nanocrystallines WANG Xin LU Lu-De (Materials Chemistry Laboratory, Nanjing University of Science and Technology,Nanjing 210094) The preparative methods of nanostructured metal oxides are reviewed. Particularly the principles and features of the organic coordination precursor methods, including polyethylene glycol, gelatin and stearic acid methods, are discussed. The oxide nanocrystals has been used as magnetic and microwave-absorbing materials, catalysts and strengthening fillers for modification of plastics. Keywords: nanostructured material oxide soft chemistry 一九七八年十月我们有幸作为文革后第一批研究生来到南京大学配位化学研究所学习。开学不久,戴安邦教授为全体研究生作了题为“无机化学的进展”的学术报告,把我们带入了内容极为丰富的科学领域。虽然我们离开南京大学已有多年,虽然戴先生今年已离我们而去,但他的学术思想、治学态度和为人品格无时无刻都在影响着我们,是我们进步的一种动力。十多年来我们一直把从南京大学学到的知识和理工科大学的教学、科研结合起来,取得了一些成果,下面主要介绍一些无机纳米材料的研究工作。 1 复合氧化物纳米晶的制备方法 传统的复合氧化物的制备通常是以固态的氧化物或金属碳酸盐为原料,球磨后经高温固相反应,再粉碎得到复合氧化物的粉体。由于是高温反应,不仅制备的产物粒径大、分布宽,而且某些组分易于挥发或发生偏析,这种方法一般不宜用来制备纳米氧化物。纳米复合氧化物的制备通常是采用软化学法,即通过反应原料的液相混合使各金属元素高度分散,从而可以在较低的反应温度和较温和的化学环境下制备纳米材料。采用的方法主要有共沉淀法、溶胶-凝胶法、有机配合物前驱体法等。 1.1 共沉淀法 共沉淀法是液相化学反应合成金属氧化物纳米颗粒最早采用的方法。沉淀法成本较低,但有如下问题:沉淀物通常为胶状物,水洗、过滤较困难;沉淀剂作为杂质易混入;沉淀过程中各种成分可能发生偏析,水洗时部分沉淀物发生溶解。此外由于大量金属不容易发生沉淀反应,因此

金属镍纳米材料研究进展

万方数据

万方数据

万方数据

万方数据

金属镍纳米材料研究进展 作者:张磊, 葛洪良, 钟敏, ZHANG Lei, GE Hongliang, ZHONG Min 作者单位:浙江省磁性材料实验基地中国计量学院材料学院纳米材料化学制备室,杭州,310018 刊名: 材料导报 英文刊名:MATERIALS REVIEW 年,卷(期):2008,22(z1) 参考文献(32条) 1.Zeng H;Li J;Liu J P Exchange-coupled nanocomposite magnets via nanoparticle self-assembly 2002 2.Xiao Y;Patolsky F;Katz E Plugging into enzymes:Nanowiring of redox enzymes by a gold nanoparticle 2003 3.Xia Y;Yang P;Sun Y One-dimensional nanostructures:synthesis,characterization,and applications 2003 4.Gudiksen M S;Lauhon L J;Wang J F Growth of nanowire superlattice structure for mnoscale photonics and electronics 2002 5.Chu S Z;Wada K Fabrication and characteristics of ordered Ni nanostructures on glass by anodization and direct current electrodeposition[外文期刊] 2002(11) 6.谈玲华;李勤华;杨毅纳米镍粉的制备及其催化性能研究[期刊论文]-固体火箭技术 2004(03) 7.葛秀涛;焦健;肖建平常温常压下吡咯及其衍生物的镍催化加氢反应考察[期刊论文]-化学物理学报 2001(02) 8.Glerter H Nanocrystalline materials 1989(04) 9.魏智强;温贤伦;王君工艺参数对阳极弧放电等离子体制备镍纳米粉的影响[期刊论文]-稀有金属材料与工程2004(03) 10.左东华;张志琨;崔作林纳米镍在硝基苯加氢中催化性能的研究 1995(04) 11.屈子梅羰基法生产纳米镍粉[期刊论文]-粉末冶金工业 2003(05) 12.Eckert J;Holzer J C;Krill C E Structural and thermody-namic properties of nanocrystalline fcc metals prepared by mechenical attrition 1992 13.韦钦;刘雄飞;曹建纳米Ni的制备与微观结构的研究 1994(01) 14.Baburaj E G;Hubert K T;Fores F H S Preparation of Ni powder by mechanoehemical process 1997 15.Tepper F Nanosize powders produced by electro-explosion of wire and their potential applications [外文期刊] 2000(04) 16.Chatterjee A Chakravorty n Preparation of nickel nanoparticles by metalorganic route 1992(01) 17.高宝娇;高建峰;周加其超微镍粉的微乳液法制备研究[期刊论文]-无机化学学报 2001(04) 18.Ni Xiaomin;Su Xiaobo;Yang Zhiping The preparation of nickel nanorods in water-in-oil microemulsion[外文期刊] 2003(4) 19.Liu Z P;Li S;Yang Y Complex-surfactant-assisted hydrothermal route to ferromagnetic nickel nanobelts[外文期刊] 2003(22) 20.Niu H L;Chan Q W;Ning M Synthesis and one-dimensional self-assembly of acicular nickel nanocrystallites under magnetic fields 2004 21.Liu Qi;Liu Hongiiang;Han Min Nanometer-sized nickel hollow spheres[外文期刊] 2005(16) 22.Wang Xuewei Size-dependent orientation growth of large area ordered Ni nanowire arrays 2005 23.Mock J J;Oldenburg S J;Smith D R Composite pias mon resonant nanowires 2002

相关主题
文本预览
相关文档 最新文档